/* The copyright in this software is being made available under the BSD
 * License, included below. This software may be subject to other third party
 * and contributor rights, including patent rights, and no such rights are
 * granted under this license.
 *
 * Copyright (c) 2010-2019, ITU/ISO/IEC
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
 *    be used to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/** \file     EncSearch.cpp
 *  \brief    encoder intra search class
 */

#include "IntraSearch.h"

#include "EncModeCtrl.h"

#include "CommonLib/CommonDef.h"
#include "CommonLib/Rom.h"
#include "CommonLib/Picture.h"
#include "CommonLib/UnitTools.h"

#include "CommonLib/dtrace_next.h"
#include "CommonLib/dtrace_buffer.h"

#include <math.h>
#include <limits>

 //! \ingroup EncoderLib
 //! \{

IntraSearch::IntraSearch()
  : m_pSplitCS      (nullptr)
  , m_pFullCS       (nullptr)
  , m_pBestCS       (nullptr)
  , m_pcEncCfg      (nullptr)
  , m_pcTrQuant     (nullptr)
  , m_pcRdCost      (nullptr)
  , m_pcReshape     (nullptr)
  , m_CABACEstimator(nullptr)
  , m_CtxCache      (nullptr)
  , m_isInitialized (false)
{
  for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
  {
    m_pSharedPredTransformSkip[ch] = nullptr;
  }
}


void IntraSearch::destroy()
{
  CHECK( !m_isInitialized, "Not initialized" );

  if( m_pcEncCfg )
  {
    const uint32_t uiNumLayersToAllocateSplit = 1;
    const uint32_t uiNumLayersToAllocateFull  = 1;
    const int uiNumSaveLayersToAllocate = 2;

    for( uint32_t layer = 0; layer < uiNumSaveLayersToAllocate; layer++ )
    {
      m_pSaveCS[layer]->destroy();
      delete m_pSaveCS[layer];
    }

    uint32_t numWidths  = gp_sizeIdxInfo->numWidths();
    uint32_t numHeights = gp_sizeIdxInfo->numHeights();

    for( uint32_t width = 0; width < numWidths; width++ )
    {
      for( uint32_t height = 0; height < numHeights; height++ )
      {
        if( gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( width ) ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( height ) ) )
        {
          for( uint32_t layer = 0; layer < uiNumLayersToAllocateSplit; layer++ )
          {
            m_pSplitCS[width][height][layer]->destroy();

            delete m_pSplitCS[width][height][layer];
          }

          for( uint32_t layer = 0; layer < uiNumLayersToAllocateFull; layer++ )
          {
            m_pFullCS[width][height][layer]->destroy();

            delete m_pFullCS[width][height][layer];
          }

          delete[] m_pSplitCS[width][height];
          delete[] m_pFullCS [width][height];

          m_pBestCS[width][height]->destroy();
          m_pTempCS[width][height]->destroy();

          delete m_pTempCS[width][height];
          delete m_pBestCS[width][height];
        }
      }

      delete[] m_pSplitCS[width];
      delete[] m_pFullCS [width];

      delete[] m_pTempCS[width];
      delete[] m_pBestCS[width];
    }

    delete[] m_pSplitCS;
    delete[] m_pFullCS;

    delete[] m_pBestCS;
    delete[] m_pTempCS;

    delete[] m_pSaveCS;
  }

  m_pSplitCS = m_pFullCS = nullptr;

  m_pBestCS = m_pTempCS = nullptr;

  m_pSaveCS = nullptr;

  for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
  {
    delete[] m_pSharedPredTransformSkip[ch];
    m_pSharedPredTransformSkip[ch] = nullptr;
  }

  m_tmpStorageLCU.destroy();
  m_isInitialized = false;
}

IntraSearch::~IntraSearch()
{
  if( m_isInitialized )
  {
    destroy();
  }
}

void IntraSearch::init( EncCfg*        pcEncCfg,
                        TrQuant*       pcTrQuant,
                        RdCost*        pcRdCost,
                        CABACWriter*   CABACEstimator,
                        CtxCache*      ctxCache,
                        const uint32_t     maxCUWidth,
                        const uint32_t     maxCUHeight,
                        const uint32_t     maxTotalCUDepth
                       , EncReshape*   pcReshape
)
{
  CHECK(m_isInitialized, "Already initialized");
  m_pcEncCfg                     = pcEncCfg;
  m_pcTrQuant                    = pcTrQuant;
  m_pcRdCost                     = pcRdCost;
  m_CABACEstimator               = CABACEstimator;
  m_CtxCache                     = ctxCache;
  m_pcReshape                    = pcReshape;

  const ChromaFormat cform = pcEncCfg->getChromaFormatIdc();

  IntraPrediction::init( cform, pcEncCfg->getBitDepth( CHANNEL_TYPE_LUMA ) );
  m_tmpStorageLCU.create(UnitArea(cform, Area(0, 0, MAX_CU_SIZE, MAX_CU_SIZE)));

  for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
  {
    m_pSharedPredTransformSkip[ch] = new Pel[MAX_CU_SIZE * MAX_CU_SIZE];
  }

  uint32_t numWidths  = gp_sizeIdxInfo->numWidths();
  uint32_t numHeights = gp_sizeIdxInfo->numHeights();

  const uint32_t uiNumLayersToAllocateSplit = 1;
  const uint32_t uiNumLayersToAllocateFull  = 1;

  m_pBestCS = new CodingStructure**[numWidths];
  m_pTempCS = new CodingStructure**[numWidths];

  m_pFullCS  = new CodingStructure***[numWidths];
  m_pSplitCS = new CodingStructure***[numWidths];

  for( uint32_t width = 0; width < numWidths; width++ )
  {
    m_pBestCS[width] = new CodingStructure*[numHeights];
    m_pTempCS[width] = new CodingStructure*[numHeights];

    m_pFullCS [width] = new CodingStructure**[numHeights];
    m_pSplitCS[width] = new CodingStructure**[numHeights];

    for( uint32_t height = 0; height < numHeights; height++ )
    {
      if(  gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( width ) ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( height ) ) )
      {
        m_pBestCS[width][height] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
        m_pTempCS[width][height] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );

        m_pBestCS[width][height]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
        m_pTempCS[width][height]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
        m_pFullCS [width][height] = new CodingStructure*[uiNumLayersToAllocateFull];
        m_pSplitCS[width][height] = new CodingStructure*[uiNumLayersToAllocateSplit];

        for( uint32_t layer = 0; layer < uiNumLayersToAllocateFull; layer++ )
        {
          m_pFullCS [width][height][layer] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );

          m_pFullCS [width][height][layer]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
        }

        for( uint32_t layer = 0; layer < uiNumLayersToAllocateSplit; layer++ )
        {
          m_pSplitCS[width][height][layer] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );

          m_pSplitCS[width][height][layer]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
        }
      }
      else
      {
        m_pBestCS[width][height] = nullptr;
        m_pTempCS[width][height] = nullptr;

        m_pFullCS [width][height] = nullptr;
        m_pSplitCS[width][height] = nullptr;
      }
    }
  }

  const int uiNumSaveLayersToAllocate = 2;

  m_pSaveCS = new CodingStructure*[uiNumSaveLayersToAllocate];

  for( uint32_t depth = 0; depth < uiNumSaveLayersToAllocate; depth++ )
  {
    m_pSaveCS[depth] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
    m_pSaveCS[depth]->create( UnitArea( cform, Area( 0, 0, maxCUWidth, maxCUHeight ) ), false );
  }

  m_isInitialized = true;
}


//////////////////////////////////////////////////////////////////////////
// INTRA PREDICTION
//////////////////////////////////////////////////////////////////////////

void IntraSearch::estIntraPredLumaQT( CodingUnit &cu, Partitioner &partitioner, const double bestCostSoFar )
{
  CodingStructure       &cs            = *cu.cs;
  const SPS             &sps           = *cs.sps;
  const uint32_t             uiWidthBit    = g_aucLog2[partitioner.currArea().lwidth() ];
  const uint32_t             uiHeightBit   =                   g_aucLog2[partitioner.currArea().lheight()];

  // Lambda calculation at equivalent Qp of 4 is recommended because at that Qp, the quantization divisor is 1.
  const double sqrtLambdaForFirstPass = m_pcRdCost->getMotionLambda(cu.transQuantBypass) / double(1 << SCALE_BITS);


  //===== loop over partitions =====

  const TempCtx ctxStart          ( m_CtxCache, m_CABACEstimator->getCtx() );
  const TempCtx ctxStartIntraMode(m_CtxCache, SubCtx(Ctx::IntraLumaMpmFlag, m_CABACEstimator->getCtx()));
  const TempCtx ctxStartMHIntraMode ( m_CtxCache, SubCtx( Ctx::MHIntraPredMode,        m_CABACEstimator->getCtx() ) );
  const TempCtx ctxStartMrlIdx      ( m_CtxCache, SubCtx( Ctx::MultiRefLineIdx,        m_CABACEstimator->getCtx() ) );

  CHECK( !cu.firstPU, "CU has no PUs" );
  const bool keepResi   = cs.pps->getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() || KEEP_PRED_AND_RESI_SIGNALS;


  uint32_t extraModes = 0; // add two extra modes, which would be used after uiMode <= DC_IDX is removed for cu.nsstIdx == 3

  const int width   = partitioner.currArea().lwidth();
  const int height  = partitioner.currArea().lheight();
  int nOptionsForISP = NUM_INTRA_SUBPARTITIONS_MODES;
  double bestCurrentCost = bestCostSoFar;

  int ispOptions[NUM_INTRA_SUBPARTITIONS_MODES] = { 0 };
  if( nOptionsForISP > 1 )
  {
#if MAX_TB_SIZE_SIGNALLING
    auto splitsThatCanBeUsedForISP = CU::canUseISPSplit( width, height, cu.cs->sps->getMaxTbSize() );
#else
    auto splitsThatCanBeUsedForISP = CU::canUseISPSplit( width, height, MAX_TB_SIZEY );
#endif
    if( splitsThatCanBeUsedForISP == CAN_USE_VER_AND_HORL_SPLITS )
    {
      const CodingUnit* cuLeft  = cu.ispMode != NOT_INTRA_SUBPARTITIONS ? cs.getCU( cs.area.blocks[partitioner.chType].pos().offset( -1, 0 ), partitioner.chType ) : nullptr;
      const CodingUnit* cuAbove = cu.ispMode != NOT_INTRA_SUBPARTITIONS ? cs.getCU( cs.area.blocks[partitioner.chType].pos().offset( 0, -1 ), partitioner.chType ) : nullptr;
      bool ispHorIsFirstTest = CU::firstTestISPHorSplit( width, height, COMPONENT_Y, cuLeft, cuAbove );
      if( ispHorIsFirstTest )
      {
        ispOptions[1] = HOR_INTRA_SUBPARTITIONS;
        ispOptions[2] = VER_INTRA_SUBPARTITIONS;
      }
      else
      {
        ispOptions[1] = VER_INTRA_SUBPARTITIONS;
        ispOptions[2] = HOR_INTRA_SUBPARTITIONS;
      }
    }
    else if( splitsThatCanBeUsedForISP == HOR_INTRA_SUBPARTITIONS )
    {
      nOptionsForISP = 2;
      ispOptions[1] = HOR_INTRA_SUBPARTITIONS;
    }
    else if( splitsThatCanBeUsedForISP == VER_INTRA_SUBPARTITIONS )
    {
      nOptionsForISP = 2;
      ispOptions[1] = VER_INTRA_SUBPARTITIONS;
    }
    else
    {
      nOptionsForISP = 1;
    }
  }
  if( nOptionsForISP > 1 )
  {
    //variables for the full RD list without MRL modes
    m_rdModeListWithoutMrl      .clear();
    m_rdModeListWithoutMrlHor   .clear();
    m_rdModeListWithoutMrlVer   .clear();
    //variables with data from regular intra used to skip ISP splits
    m_intraModeDiagRatio        .clear();
    m_intraModeHorVerRatio      .clear();
    m_intraModeTestedNormalIntra.clear();
  }

  static_vector<uint32_t,   FAST_UDI_MAX_RDMODE_NUM> uiHadModeList;
  static_vector<double, FAST_UDI_MAX_RDMODE_NUM> CandCostList;
  static_vector<double, FAST_UDI_MAX_RDMODE_NUM> CandHadList;

  static_vector<int, FAST_UDI_MAX_RDMODE_NUM> extendRefList;
  static_vector<int, FAST_UDI_MAX_RDMODE_NUM>* nullList = NULL;

  auto &pu = *cu.firstPU;
  {
    CandHadList.clear();
    CandCostList.clear();
    uiHadModeList.clear();
    extendRefList.clear();

    CHECK(pu.cu != &cu, "PU is not contained in the CU");

    //===== determine set of modes to be tested (using prediction signal only) =====
    int numModesAvailable = NUM_LUMA_MODE; // total number of Intra modes
    static_vector< uint32_t, FAST_UDI_MAX_RDMODE_NUM > uiRdModeList;

    int numModesForFullRD = 3;
    numModesForFullRD = g_aucIntraModeNumFast_UseMPM_2D[uiWidthBit - MIN_CU_LOG2][uiHeightBit - MIN_CU_LOG2];

#if INTRA_FULL_SEARCH
    numModesForFullRD = numModesAvailable;
#endif

    {
      // this should always be true
      CHECK( !pu.Y().valid(), "PU is not valid" );
#if ENABLE_JVET_L0283_MRL
      bool isFirstLineOfCtu = (((pu.block(COMPONENT_Y).y)&((pu.cs->sps)->getMaxCUWidth() - 1)) == 0);
      int numOfPassesExtendRef = (isFirstLineOfCtu ? 1 : MRL_NUM_REF_LINES);
#endif
      pu.multiRefIdx = 0;

      //===== init pattern for luma prediction =====
      initIntraPatternChType( cu, pu.Y(), IntraPrediction::useFilteredIntraRefSamples( COMPONENT_Y, pu, false, pu ) );
      if( numModesForFullRD != numModesAvailable )
      {
        CHECK( numModesForFullRD >= numModesAvailable, "Too many modes for full RD search" );

        const CompArea &area = pu.Y();

        PelBuf piOrg         = cs.getOrgBuf(area);
        PelBuf piPred        = cs.getPredBuf(area);

#if JVET_N0363_INTRA_COST_MOD
        DistParam distParamSad;
        DistParam distParamHad;
#else
        DistParam distParam;

        const bool bUseHadamard = cu.transQuantBypass == 0;
#endif

        if (cu.slice->getReshapeInfo().getUseSliceReshaper() && m_pcReshape->getCTUFlag())
        {
          CompArea      tmpArea(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
          PelBuf tmpOrg = m_tmpStorageLCU.getBuf(tmpArea);
          tmpOrg.copyFrom(piOrg);
          tmpOrg.rspSignal(m_pcReshape->getFwdLUT());
#if JVET_N0363_INTRA_COST_MOD
          m_pcRdCost->setDistParam(distParamSad, tmpOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y, false); // Use SAD cost
          m_pcRdCost->setDistParam(distParamHad, tmpOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y,  true); // Use HAD (SATD) cost
#else
          m_pcRdCost->setDistParam(distParam, tmpOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y, bUseHadamard);
#endif
        }
        else
#if JVET_N0363_INTRA_COST_MOD
        {
          m_pcRdCost->setDistParam(distParamSad, piOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y, false); // Use SAD cost
          m_pcRdCost->setDistParam(distParamHad, piOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y,  true); // Use HAD (SATD) cost
        }
#else
        m_pcRdCost->setDistParam(distParam, piOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y, bUseHadamard);
#endif

#if JVET_N0363_INTRA_COST_MOD
        distParamSad.applyWeight = false;
        distParamHad.applyWeight = false;
#else
        distParam.applyWeight = false;
#endif

        bool bSatdChecked[NUM_INTRA_MODE];
        memset( bSatdChecked, 0, sizeof( bSatdChecked ) );

        {
          for( int modeIdx = 0; modeIdx < numModesAvailable; modeIdx++ )
          {
            uint32_t       uiMode = modeIdx;
            Distortion uiSad  = 0;

            // Skip checking extended Angular modes in the first round of SATD
            if( uiMode > DC_IDX && ( uiMode & 1 ) )
            {
              continue;
            }

            bSatdChecked[uiMode] = true;

            pu.intraDir[0] = modeIdx;

            if( useDPCMForFirstPassIntraEstimation( pu, uiMode ) )
            {
              encPredIntraDPCM( COMPONENT_Y, piOrg, piPred, uiMode );
            }
            else
            {
              predIntraAng( COMPONENT_Y, piPred, pu, IntraPrediction::useFilteredIntraRefSamples( COMPONENT_Y, pu, true, pu ) );
            }
#if JVET_N0363_INTRA_COST_MOD
            // Use the min between SAD and HAD as the cost criterion
            // SAD is scaled by 2 to align with the scaling of HAD
            uiSad += std::min(distParamSad.distFunc(distParamSad)*2, distParamHad.distFunc(distParamHad));
#else
            // use Hadamard transform here
            uiSad += distParam.distFunc(distParam);
#endif

            // NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
            m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
            m_CABACEstimator->getCtx() = SubCtx( Ctx::MHIntraPredMode, ctxStartMHIntraMode );
            m_CABACEstimator->getCtx() = SubCtx( Ctx::MultiRefLineIdx, ctxStartMrlIdx );

            uint64_t fracModeBits = xFracModeBitsIntra(pu, uiMode, CHANNEL_TYPE_LUMA);

            double cost = ( double ) uiSad + ( double ) fracModeBits * sqrtLambdaForFirstPass;

            DTRACE( g_trace_ctx, D_INTRA_COST, "IntraHAD: %u, %llu, %f (%d)\n", uiSad, fracModeBits, cost, uiMode );

            updateCandList( uiMode, cost,  uiRdModeList, CandCostList
              , extendRefList, 0
              , numModesForFullRD + extraModes );
            updateCandList(uiMode, (double) uiSad, uiHadModeList, CandHadList
              , *nullList, -1
              , 3 + extraModes);
          }
        } // NSSTFlag

        // forget the extra modes
        uiRdModeList.resize( numModesForFullRD );
        CandCostList.resize(numModesForFullRD);
        extendRefList.resize(numModesForFullRD);
        static_vector<unsigned, FAST_UDI_MAX_RDMODE_NUM> parentCandList(FAST_UDI_MAX_RDMODE_NUM);
        std::copy_n(uiRdModeList.begin(), numModesForFullRD, parentCandList.begin());

        // Second round of SATD for extended Angular modes
        for (int modeIdx = 0; modeIdx < numModesForFullRD; modeIdx++)
        {
          unsigned parentMode = parentCandList[modeIdx];
          if (parentMode > (DC_IDX + 1) && parentMode < (NUM_LUMA_MODE - 1))
          {
            for (int subModeIdx = -1; subModeIdx <= 1; subModeIdx += 2)
            {
              unsigned mode = parentMode + subModeIdx;


              if (!bSatdChecked[mode])
              {
                pu.intraDir[0] = mode;

                if (useDPCMForFirstPassIntraEstimation(pu, mode))
                {
                  encPredIntraDPCM(COMPONENT_Y, piOrg, piPred, mode);
                }
                else
                {
                  predIntraAng(COMPONENT_Y, piPred, pu,
                               IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Y, pu, true, pu));
                }
                
#if JVET_N0363_INTRA_COST_MOD
                // Use the min between SAD and SATD as the cost criterion
                // SAD is scaled by 2 to align with the scaling of HAD
                Distortion sad = std::min(distParamSad.distFunc(distParamSad)*2, distParamHad.distFunc(distParamHad));
#else
                // use Hadamard transform here
                Distortion sad = distParam.distFunc(distParam);
#endif

                // NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
                m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
                m_CABACEstimator->getCtx() = SubCtx( Ctx::MHIntraPredMode, ctxStartMHIntraMode );
                m_CABACEstimator->getCtx() = SubCtx( Ctx::MultiRefLineIdx, ctxStartMrlIdx );

                uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);

                double cost = (double) sad + (double) fracModeBits * sqrtLambdaForFirstPass;

                updateCandList(mode, cost, uiRdModeList, CandCostList
                  , extendRefList, 0
                  , numModesForFullRD);
                updateCandList(mode, (double)sad, uiHadModeList, CandHadList
                  , *nullList, -1
                  , 3);

                bSatdChecked[mode] = true;
              }
            }
          }
        }
        if( nOptionsForISP > 1 )
        {
          //we save the list with no mrl modes to keep only the Hadamard selected modes (no mpms)
          m_rdModeListWithoutMrl.resize( numModesForFullRD );
          std::copy_n( uiRdModeList.begin(), numModesForFullRD, m_rdModeListWithoutMrl.begin() );
        }
#if ENABLE_JVET_L0283_MRL
        pu.multiRefIdx = 1;
        const int  numMPMs = NUM_MOST_PROBABLE_MODES;
        unsigned  multiRefMPM [numMPMs];
        PU::getIntraMPMs(pu, multiRefMPM);
        for (int mRefNum = 1; mRefNum < numOfPassesExtendRef; mRefNum++)
        {
          int multiRefIdx = MULTI_REF_LINE_IDX[mRefNum];

          pu.multiRefIdx = multiRefIdx;
          {
            initIntraPatternChType(cu, pu.Y(), IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Y, pu, false, pu));
          }
#if JVET_N0185_UNIFIED_MPM
          for (int x = 1; x < numMPMs; x++)
#else
          for (int x = 0; x < numMPMs; x++)
#endif
          {
            uint32_t mode = multiRefMPM[x];
            {
              pu.intraDir[0] = mode;

              if (useDPCMForFirstPassIntraEstimation(pu, mode))
              {
                encPredIntraDPCM(COMPONENT_Y, piOrg, piPred, mode);
              }
              else
              {
                predIntraAng(COMPONENT_Y, piPred, pu, IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Y, pu, true, pu));
              }

#if JVET_N0363_INTRA_COST_MOD
              // Use the min between SAD and SATD as the cost criterion
              // SAD is scaled by 2 to align with the scaling of HAD
              Distortion sad = std::min(distParamSad.distFunc(distParamSad)*2, distParamHad.distFunc(distParamHad));
#else
              // use Hadamard transform here
              Distortion sad = distParam.distFunc(distParam);
#endif

              // NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
              m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
              m_CABACEstimator->getCtx() = SubCtx( Ctx::MHIntraPredMode, ctxStartMHIntraMode );
              m_CABACEstimator->getCtx() = SubCtx( Ctx::MultiRefLineIdx, ctxStartMrlIdx );

              uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);

              double cost = (double)sad + (double)fracModeBits * sqrtLambdaForFirstPass;
              updateCandList(mode, cost, uiRdModeList, CandCostList, extendRefList, multiRefIdx, numModesForFullRD);
            }
          }
        }
#endif
        CandCostList.resize(numModesForFullRD);
        extendRefList.resize(numModesForFullRD);
        if( m_pcEncCfg->getFastUDIUseMPMEnabled() )
        {
          const int numMPMs = NUM_MOST_PROBABLE_MODES;
          unsigned  uiPreds[numMPMs];

          pu.multiRefIdx = 0;

          const int numCand = PU::getIntraMPMs( pu, uiPreds );

          for( int j = 0; j < numCand; j++ )
          {
            bool mostProbableModeIncluded = false;
            int  mostProbableMode         = uiPreds[j];


            for( int i = 0; i < numModesForFullRD; i++ )
            {
              mostProbableModeIncluded |= (mostProbableMode == uiRdModeList[i] && extendRefList[i] == 0);
            }
            if( !mostProbableModeIncluded )
            {
              extendRefList.push_back(0);
              numModesForFullRD++;
              uiRdModeList.push_back( mostProbableMode );
            }
          }
          if( nOptionsForISP > 1 )
          {
            //we add the ISP MPMs to the list without mrl modes
            m_rdModeListWithoutMrlHor = m_rdModeListWithoutMrl;
            m_rdModeListWithoutMrlVer = m_rdModeListWithoutMrl;
            static_vector<uint32_t, FAST_UDI_MAX_RDMODE_NUM>* listPointer;
            for( int k = 1; k < nOptionsForISP; k++ )
            {
              cu.ispMode = ispOptions[k];
              listPointer = &( cu.ispMode == HOR_INTRA_SUBPARTITIONS ? m_rdModeListWithoutMrlHor : m_rdModeListWithoutMrlVer );
              const int numCandISP = PU::getIntraMPMs( pu, uiPreds );
              for( int j = 0; j < numCandISP; j++ )
              {
                bool mostProbableModeIncluded = false;
                int  mostProbableMode = uiPreds[j];

                for( int i = 0; i < listPointer->size(); i++ )
                {
                  mostProbableModeIncluded |= ( mostProbableMode == listPointer->at( i ) );
                }
                if( !mostProbableModeIncluded )
                {
                  listPointer->push_back( mostProbableMode );
                }
              }
            }
            cu.ispMode = NOT_INTRA_SUBPARTITIONS;
          }
        }
      }
      else
      {
        for( int i = 0; i < numModesForFullRD; i++ )
        {
          uiRdModeList.push_back( i );
        }
      }
    }

    if( nOptionsForISP > 1 ) // we remove the non-MPMs from the ISP lists
    {
      static_vector< uint32_t, FAST_UDI_MAX_RDMODE_NUM > uiRdModeListCopyHor = m_rdModeListWithoutMrlHor;
      m_rdModeListWithoutMrlHor.clear();
      static_vector< uint32_t, FAST_UDI_MAX_RDMODE_NUM > uiRdModeListCopyVer = m_rdModeListWithoutMrlVer;
      m_rdModeListWithoutMrlVer.clear();
      static_vector< uint32_t, FAST_UDI_MAX_RDMODE_NUM > *listPointerCopy, *listPointer;
      for( int ispOptionIdx = 1; ispOptionIdx < nOptionsForISP; ispOptionIdx++ )
      {
        cu.ispMode = ispOptions[ispOptionIdx];
        //we get the mpm cand list
        const int numMPMs = NUM_MOST_PROBABLE_MODES;
        unsigned  uiPreds[numMPMs];

        pu.multiRefIdx = 0;

        PU::getIntraMPMs( pu, uiPreds );

        //we copy only the ISP MPMs
        listPointerCopy = &( cu.ispMode == HOR_INTRA_SUBPARTITIONS ? uiRdModeListCopyHor : uiRdModeListCopyVer );
        listPointer     = &( cu.ispMode == HOR_INTRA_SUBPARTITIONS ? m_rdModeListWithoutMrlHor : m_rdModeListWithoutMrlVer );
        for( int k = 0; k < listPointerCopy->size(); k++ )
        {
          for( int q = 0; q < numMPMs; q++ )
          {
            if( listPointerCopy->at( k ) == uiPreds[q] )
            {
              listPointer->push_back( listPointerCopy->at( k ) );
              break;
            }
          }
        }
      }
      cu.ispMode = NOT_INTRA_SUBPARTITIONS;
    }


    CHECK( numModesForFullRD != uiRdModeList.size(), "Inconsistent state!" );

    // after this point, don't use numModesForFullRD

    // PBINTRA fast
#if JVET_N0329_IBC_SEARCH_IMP
    if (m_pcEncCfg->getUsePbIntraFast() && !cs.slice->isIntra() && uiRdModeList.size() < numModesAvailable && !cs.slice->getDisableSATDForRD())
#else
    if( m_pcEncCfg->getUsePbIntraFast() && !cs.slice->isIntra() && uiRdModeList.size() < numModesAvailable )
#endif
    {
      if( CandHadList.size() < 3 || CandHadList[2] > cs.interHad * PBINTRA_RATIO )
      {
        uiRdModeList.resize( std::min<size_t>( uiRdModeList.size(), 2 ) );
        extendRefList.resize( std::min<size_t>( extendRefList.size(), 2 ) );
        if( nOptionsForISP > 1 )
        {
          m_rdModeListWithoutMrlHor.resize( std::min<size_t>( m_rdModeListWithoutMrlHor.size(), 2 ) );
          m_rdModeListWithoutMrlVer.resize( std::min<size_t>( m_rdModeListWithoutMrlVer.size(), 2 ) );
        }
      }
      if( CandHadList.size() < 2 || CandHadList[1] > cs.interHad * PBINTRA_RATIO )
      {
        uiRdModeList.resize( std::min<size_t>( uiRdModeList.size(), 1 ) );
        extendRefList.resize( std::min<size_t>( extendRefList.size(), 1 ) );
        if( nOptionsForISP > 1 )
        {
          m_rdModeListWithoutMrlHor.resize( std::min<size_t>( m_rdModeListWithoutMrlHor.size(), 1 ) );
          m_rdModeListWithoutMrlVer.resize( std::min<size_t>( m_rdModeListWithoutMrlVer.size(), 1 ) );
        }
      }
      if( CandHadList.size() < 1 || CandHadList[0] > cs.interHad * PBINTRA_RATIO )
      {
        cs.dist = std::numeric_limits<Distortion>::max();
        cs.interHad = 0;

        //===== reset context models =====
        m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
        m_CABACEstimator->getCtx() = SubCtx( Ctx::MHIntraPredMode, ctxStartMHIntraMode );
        m_CABACEstimator->getCtx() = SubCtx( Ctx::MultiRefLineIdx, ctxStartMrlIdx );

        return;
      }
    }

    if ( nOptionsForISP > 1 )
    {
      //we create a single full RD list that includes all intra modes using regular intra, MRL and ISP
      auto* firstIspList  = ispOptions[1] == HOR_INTRA_SUBPARTITIONS ? &m_rdModeListWithoutMrlHor : &m_rdModeListWithoutMrlVer;
      auto* secondIspList = ispOptions[1] == HOR_INTRA_SUBPARTITIONS ? &m_rdModeListWithoutMrlVer : &m_rdModeListWithoutMrlHor;

      if ( m_pcEncCfg->getUseFastISP() )
      {
        // find the first non-MRL mode
        size_t indexFirstMode = std::find( extendRefList.begin(), extendRefList.end(), 0 ) - extendRefList.begin();
        // if not found, just take the last mode
        if( indexFirstMode >= extendRefList.size() ) indexFirstMode = extendRefList.size() - 1;
        // move the mode indicated by indexFirstMode to the beginning
        for( int idx = ((int)indexFirstMode) - 1; idx >= 0; idx-- )
        {
          std::swap( extendRefList[idx], extendRefList[idx + 1] );
          std::swap( uiRdModeList [idx], uiRdModeList [idx + 1] );
        }
        //insert all ISP modes after the first non-mrl mode
        uiRdModeList.insert( uiRdModeList.begin() + 1, secondIspList->begin(), secondIspList->end() );
        uiRdModeList.insert( uiRdModeList.begin() + 1, firstIspList->begin() , firstIspList->end()  );

        extendRefList.insert( extendRefList.begin() + 1, secondIspList->size(), MRL_NUM_REF_LINES + ispOptions[2] );
        extendRefList.insert( extendRefList.begin() + 1, firstIspList->size() , MRL_NUM_REF_LINES + ispOptions[1] );
      }
      else
      {
        //insert all ISP modes at the end of the current list
        uiRdModeList.insert( uiRdModeList.end(), secondIspList->begin(), secondIspList->end() );
        uiRdModeList.insert( uiRdModeList.end(), firstIspList->begin() , firstIspList->end()  );

        extendRefList.insert( extendRefList.end(), secondIspList->size(), MRL_NUM_REF_LINES + ispOptions[2] );
        extendRefList.insert( extendRefList.end(), firstIspList->size() , MRL_NUM_REF_LINES + ispOptions[1] );
      }
    }
    CHECKD(uiRdModeList.size() != extendRefList.size(),"uiRdModeList and extendRefList do not have the same size!");

    //===== check modes (using r-d costs) =====
    uint32_t       uiBestPUMode  = 0;
    int            bestExtendRef = 0;

    CodingStructure *csTemp = m_pTempCS[gp_sizeIdxInfo->idxFrom( cu.lwidth() )][gp_sizeIdxInfo->idxFrom( cu.lheight() )];
    CodingStructure *csBest = m_pBestCS[gp_sizeIdxInfo->idxFrom( cu.lwidth() )][gp_sizeIdxInfo->idxFrom( cu.lheight() )];

    csTemp->slice = cs.slice;
    csBest->slice = cs.slice;
    csTemp->initStructData();
    csBest->initStructData();

    // just to be sure
    numModesForFullRD = ( int ) uiRdModeList.size();
    PartSplit intraSubPartitionsProcOrder = TU_NO_ISP;
    int       bestNormalIntraModeIndex    = -1;
    uint8_t   bestIspOption               = NOT_INTRA_SUBPARTITIONS;
    TUIntraSubPartitioner subTuPartitioner( partitioner );
    bool      ispHorAllZeroCbfs = false, ispVerAllZeroCbfs = false;

    for (uint32_t uiMode = 0; uiMode < numModesForFullRD; uiMode++)
    {
      // set luma prediction mode
      uint32_t uiOrgMode = uiRdModeList[uiMode];

      cu.ispMode = extendRefList[uiMode] > MRL_NUM_REF_LINES ? extendRefList[uiMode] - MRL_NUM_REF_LINES : NOT_INTRA_SUBPARTITIONS;
        pu.intraDir[0] = uiOrgMode;

        int multiRefIdx = 0;
        pu.multiRefIdx = multiRefIdx;
        if( cu.ispMode )
        {
          intraSubPartitionsProcOrder = CU::getISPType( cu, COMPONENT_Y );
          bool tuIsDividedInRows = CU::divideTuInRows( cu );
          if ( ( tuIsDividedInRows && ispHorAllZeroCbfs ) || ( !tuIsDividedInRows && ispVerAllZeroCbfs ) )
          {
            continue;
          }
          if( m_intraModeDiagRatio.at( bestNormalIntraModeIndex ) > 1.25 )
          {
            continue;
          }
          if( ( m_intraModeHorVerRatio.at( bestNormalIntraModeIndex ) > 1.25 && tuIsDividedInRows ) || ( m_intraModeHorVerRatio.at( bestNormalIntraModeIndex ) < 0.8 && !tuIsDividedInRows ) )
          {
            continue;
          }
        }
        else
        {
          multiRefIdx = extendRefList[uiMode];
          pu.multiRefIdx = multiRefIdx;
#if !JVET_N0185_UNIFIED_MPM
          CHECK( pu.multiRefIdx && ( pu.intraDir[0] == DC_IDX || pu.intraDir[0] == PLANAR_IDX ), "ERL" );
#else
          CHECK( pu.multiRefIdx && (pu.intraDir[0] == PLANAR_IDX), "ERL" );
#endif
        }


      // set context models
      m_CABACEstimator->getCtx() = ctxStart;

      // determine residual for partition
      cs.initSubStructure( *csTemp, partitioner.chType, cs.area, true );

      if( cu.ispMode )
      {
        xRecurIntraCodingLumaQT( *csTemp, subTuPartitioner, bestCurrentCost, 0, intraSubPartitionsProcOrder );
      }
      else
      {
        xRecurIntraCodingLumaQT( *csTemp, partitioner, bestIspOption ? bestCurrentCost : MAX_DOUBLE, -1, TU_NO_ISP, bestIspOption );
      }

      if( cu.ispMode && !csTemp->cus[0]->firstTU->cbf[COMPONENT_Y] )
      {
        if ( cu.ispMode == HOR_INTRA_SUBPARTITIONS )
        {
          ispHorAllZeroCbfs |= ( m_pcEncCfg->getUseFastISP() && csTemp->tus[0]->lheight() > 2 && csTemp->cost >= bestCurrentCost );
        }
        else
        {
          ispVerAllZeroCbfs |= ( m_pcEncCfg->getUseFastISP() && csTemp->tus[0]->lwidth() > 2 && csTemp->cost >= bestCurrentCost );
        }
        csTemp->cost = MAX_DOUBLE;
        csTemp->costDbOffset = 0;
      }



      DTRACE( g_trace_ctx, D_INTRA_COST, "IntraCost T %f (%d) \n", csTemp->cost, uiOrgMode );

      // check r-d cost
      if( csTemp->cost < csBest->cost )
      {
        std::swap( csTemp, csBest );

        uiBestPUMode  = uiOrgMode;
        bestExtendRef = multiRefIdx;
        bestIspOption = cu.ispMode;
        if( csBest->cost < bestCurrentCost )
        {
          bestCurrentCost = csBest->cost;
        }
        if( !cu.ispMode )
        {
          bestNormalIntraModeIndex = uiMode;
        }
      }

      csTemp->releaseIntermediateData();
    } // Mode loop
    cu.ispMode = bestIspOption;

    cs.useSubStructure(*csBest, partitioner.chType, pu.singleChan(CHANNEL_TYPE_LUMA), true, true, keepResi, keepResi);
    csBest->releaseIntermediateData();
    //=== update PU data ====
    pu.intraDir[0] = uiBestPUMode;
    pu.multiRefIdx = bestExtendRef;
  }

  //===== reset context models =====
  m_CABACEstimator->getCtx() = ctxStart;
}

void IntraSearch::estIntraPredChromaQT( CodingUnit &cu, Partitioner &partitioner, const double maxCostAllowed )
{
  const ChromaFormat format   = cu.chromaFormat;
  const uint32_t    numberValidComponents = getNumberValidComponents(format);
  CodingStructure &cs = *cu.cs;
  const TempCtx ctxStart  ( m_CtxCache, m_CABACEstimator->getCtx() );

  cs.setDecomp( cs.area.Cb(), false );

  double    bestCostSoFar = maxCostAllowed;
  bool      lumaUsesISP   = !CS::isDualITree( *cu.cs ) && cu.ispMode;
  PartSplit ispType       = lumaUsesISP ? CU::getISPType( cu, COMPONENT_Y ) : TU_NO_ISP;
  CHECK( cu.ispMode && bestCostSoFar < 0, "bestCostSoFar must be positive!" );

  auto &pu = *cu.firstPU;

  {
    uint32_t       uiBestMode = 0;
    Distortion uiBestDist = 0;
    double     dBestCost = MAX_DOUBLE;

    //----- init mode list ----
    {
      uint32_t  uiMinMode = 0;
      uint32_t  uiMaxMode = NUM_CHROMA_MODE;

      //----- check chroma modes -----
      uint32_t chromaCandModes[ NUM_CHROMA_MODE ];
      PU::getIntraChromaCandModes( pu, chromaCandModes );

      // create a temporary CS
      CodingStructure &saveCS = *m_pSaveCS[0];
      saveCS.pcv      = cs.pcv;
      saveCS.picture  = cs.picture;
      saveCS.area.repositionTo( cs.area );
      saveCS.clearTUs();

      if( !CS::isDualITree( cs ) && cu.ispMode )
      {
        saveCS.clearCUs();
        saveCS.clearPUs();
      }

      if( CS::isDualITree( cs ) )
      {
        if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
        {
          partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );

          do
          {
            cs.addTU( CS::getArea( cs, partitioner.currArea(), partitioner.chType ), partitioner.chType ).depth = partitioner.currTrDepth;
          } while( partitioner.nextPart( cs ) );

          partitioner.exitCurrSplit();
        }
        else
        cs.addTU( CS::getArea( cs, partitioner.currArea(), partitioner.chType ), partitioner.chType );
      }

      std::vector<TransformUnit*> orgTUs;

      if( lumaUsesISP )
      {
        CodingUnit& auxCU = saveCS.addCU( cu, partitioner.chType );
        auxCU.ispMode = cu.ispMode;
        saveCS.sps = cu.cs->sps;
        saveCS.addPU( *cu.firstPU, partitioner.chType );
      }


      // create a store for the TUs
      for( const auto &ptu : cs.tus )
      {
        // for split TUs in HEVC, add the TUs without Chroma parts for correct setting of Cbfs
        if( lumaUsesISP || pu.contains( *ptu, CHANNEL_TYPE_CHROMA ) )
        {
          saveCS.addTU( *ptu, partitioner.chType );
          orgTUs.push_back( ptu );
        }
      }
      if( lumaUsesISP )
      {
        saveCS.clearCUs();
      }
      // SATD pre-selecting.
      int satdModeList[NUM_CHROMA_MODE];
      int64_t satdSortedCost[NUM_CHROMA_MODE];
      for (int i = 0; i < NUM_CHROMA_MODE; i++)
      {
        satdSortedCost[i] = 0; // for the mode not pre-select by SATD, do RDO by default, so set the initial value 0.
        satdModeList[i] = 0;
      }
      bool modeIsEnable[NUM_INTRA_MODE + 1]; // use intra mode idx to check whether enable
      for (int i = 0; i < NUM_INTRA_MODE + 1; i++)
      {
        modeIsEnable[i] = 1;
      }

      DistParam distParam;
#if JVET_N0329_IBC_SEARCH_IMP
      const bool useHadamard = !cu.transQuantBypass;
#else
      const bool useHadamard = true;
#endif
      pu.intraDir[1] = MDLM_L_IDX; // temporary assigned, just to indicate this is a MDLM mode. for luma down-sampling operation.

      initIntraPatternChType(cu, pu.Cb());
      initIntraPatternChType(cu, pu.Cr());
      xGetLumaRecPixels(pu, pu.Cb());

      for (int idx = uiMinMode; idx <= uiMaxMode - 1; idx++)
      {
        int mode = chromaCandModes[idx];
        satdModeList[idx] = mode;
        if (PU::isLMCMode(mode) && !PU::isLMCModeEnabled(pu, mode))
        {
          continue;
        }
        if ((mode == LM_CHROMA_IDX) || (mode == PLANAR_IDX) || (mode == DM_CHROMA_IDX)) // only pre-check regular modes and MDLM modes, not including DM ,Planar, and LM
        {
          continue;
        }
        pu.intraDir[1] = mode; // temporary assigned, for SATD checking.

        int64_t sad = 0;
        CodingStructure& cs = *(pu.cs);

        CompArea areaCb = pu.Cb();
        PelBuf orgCb = cs.getOrgBuf(areaCb);
        PelBuf predCb = cs.getPredBuf(areaCb);

        m_pcRdCost->setDistParam(distParam, orgCb, predCb, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cb, useHadamard);
        distParam.applyWeight = false;

        if (PU::isLMCMode(mode))
        {
          predIntraChromaLM(COMPONENT_Cb, predCb, pu, areaCb, mode);
        }
        else
        {
          predIntraAng(COMPONENT_Cb, predCb, pu, false);
        }

        sad += distParam.distFunc(distParam);

        CompArea areaCr = pu.Cr();
        PelBuf orgCr = cs.getOrgBuf(areaCr);
        PelBuf predCr = cs.getPredBuf(areaCr);

        m_pcRdCost->setDistParam(distParam, orgCr, predCr, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cr, useHadamard);
        distParam.applyWeight = false;

        if (PU::isLMCMode(mode))
        {
          predIntraChromaLM(COMPONENT_Cr, predCr, pu, areaCr, mode);
        }
        else
        {
          predIntraAng(COMPONENT_Cr, predCr, pu, false);
        }
        sad += distParam.distFunc(distParam);
        satdSortedCost[idx] = sad;
      }
      // sort the mode based on the cost from small to large.
      int tempIdx = 0;
      int64_t tempCost = 0;
      for (int i = uiMinMode; i <= uiMaxMode - 1; i++)
      {
        for (int j = i + 1; j <= uiMaxMode - 1; j++)
        {
          if (satdSortedCost[j] < satdSortedCost[i])
          {
            tempIdx = satdModeList[i];
            satdModeList[i] = satdModeList[j];
            satdModeList[j] = tempIdx;

            tempCost = satdSortedCost[i];
            satdSortedCost[i] = satdSortedCost[j];
            satdSortedCost[j] = tempCost;

          }
        }
      }
      int reducedModeNumber = 2; // reduce the number of chroma modes
      for (int i = 0; i < reducedModeNumber; i++)
      {
        modeIsEnable[satdModeList[uiMaxMode - 1 - i]] = 0; // disable the last reducedModeNumber modes
      }

      // save the dist
      Distortion baseDist = cs.dist;

      for (uint32_t uiMode = uiMinMode; uiMode < uiMaxMode; uiMode++)
      {
        const int chromaIntraMode = chromaCandModes[uiMode];
        if( PU::isLMCMode( chromaIntraMode ) && ! PU::isLMCModeEnabled( pu, chromaIntraMode ) )
        {
          continue;
        }
        if (!modeIsEnable[chromaIntraMode] && PU::isLMCModeEnabled(pu, chromaIntraMode)) // when CCLM is disable, then MDLM is disable. not use satd checking
        {
          continue;
        }
        cs.setDecomp( pu.Cb(), false );
        cs.dist = baseDist;
        //----- restore context models -----
        m_CABACEstimator->getCtx() = ctxStart;

        //----- chroma coding -----
        pu.intraDir[1] = chromaIntraMode;

        xRecurIntraChromaCodingQT( cs, partitioner, bestCostSoFar, ispType );
        if( lumaUsesISP && cs.dist == MAX_UINT )
        {
          continue;
        }

        if (cs.pps->getUseTransformSkip())
        {
          m_CABACEstimator->getCtx() = ctxStart;
        }

        uint64_t fracBits   = xGetIntraFracBitsQT( cs, partitioner, false, true, -1, ispType );
        Distortion uiDist = cs.dist;
        double    dCost   = m_pcRdCost->calcRdCost( fracBits, uiDist - baseDist );

        //----- compare -----
        if( dCost < dBestCost )
        {
          if( lumaUsesISP && dCost < bestCostSoFar )
          {
            bestCostSoFar = dCost;
          }
          for( uint32_t i = getFirstComponentOfChannel( CHANNEL_TYPE_CHROMA ); i < numberValidComponents; i++ )
          {
            const CompArea &area = pu.blocks[i];

            saveCS.getRecoBuf     ( area ).copyFrom( cs.getRecoBuf   ( area ) );
#if KEEP_PRED_AND_RESI_SIGNALS
            saveCS.getPredBuf     ( area ).copyFrom( cs.getPredBuf   ( area ) );
            saveCS.getResiBuf     ( area ).copyFrom( cs.getResiBuf   ( area ) );
#endif
            saveCS.getPredBuf     ( area ).copyFrom( cs.getPredBuf   (area ) );
            cs.picture->getPredBuf( area ).copyFrom( cs.getPredBuf   (area ) );
            cs.picture->getRecoBuf( area ).copyFrom( cs.getRecoBuf( area ) );

            for( uint32_t j = 0; j < saveCS.tus.size(); j++ )
            {
              saveCS.tus[j]->copyComponentFrom( *orgTUs[j], area.compID );
            }
          }

          dBestCost  = dCost;
          uiBestDist = uiDist;
          uiBestMode = chromaIntraMode;
        }
      }

      for( uint32_t i = getFirstComponentOfChannel( CHANNEL_TYPE_CHROMA ); i < numberValidComponents; i++ )
      {
        const CompArea &area = pu.blocks[i];

        cs.getRecoBuf         ( area ).copyFrom( saveCS.getRecoBuf( area ) );
#if KEEP_PRED_AND_RESI_SIGNALS
        cs.getPredBuf         ( area ).copyFrom( saveCS.getPredBuf( area ) );
        cs.getResiBuf         ( area ).copyFrom( saveCS.getResiBuf( area ) );
#endif
        cs.getPredBuf         ( area ).copyFrom( saveCS.getPredBuf( area ) );
        cs.picture->getPredBuf( area ).copyFrom( cs.getPredBuf    ( area ) );

        cs.picture->getRecoBuf( area ).copyFrom( cs.    getRecoBuf( area ) );

        for( uint32_t j = 0; j < saveCS.tus.size(); j++ )
        {
          orgTUs[ j ]->copyComponentFrom( *saveCS.tus[ j ], area.compID );
        }
      }
    }

    pu.intraDir[1] = uiBestMode;
    cs.dist        = uiBestDist;
  }

  //----- restore context models -----
  m_CABACEstimator->getCtx() = ctxStart;
  if( lumaUsesISP && bestCostSoFar >= maxCostAllowed )
  {
    cu.ispMode = 0;
  }
}

void IntraSearch::IPCMSearch(CodingStructure &cs, Partitioner& partitioner)
{
  ComponentID compStr = (CS::isDualITree(cs) && !isLuma(partitioner.chType)) ? COMPONENT_Cb: COMPONENT_Y;
  ComponentID compEnd = (CS::isDualITree(cs) && isLuma(partitioner.chType)) ? COMPONENT_Y : COMPONENT_Cr;
  for( ComponentID compID = compStr; compID <= compEnd; compID = ComponentID(compID+1) )
  {

    xEncPCM(cs, partitioner, compID);
  }

  cs.getPredBuf().fill(0);
  cs.getResiBuf().fill(0);
  cs.getOrgResiBuf().fill(0);

  cs.dist     = 0;
  cs.fracBits = 0;
  cs.cost     = 0;

  cs.setDecomp(cs.area);
  cs.picture->getPredBuf(cs.area).copyFrom(cs.getPredBuf());
}

void IntraSearch::xEncPCM(CodingStructure &cs, Partitioner& partitioner, const ComponentID &compID)
{
  TransformUnit &tu = *cs.getTU( partitioner.chType );

  const int  channelBitDepth = cs.sps->getBitDepth(toChannelType(compID));
  const uint32_t uiPCMBitDepth = cs.sps->getPCMBitDepth(toChannelType(compID));

  const int pcmShiftRight = (channelBitDepth - int(uiPCMBitDepth));

  CompArea  area    = tu.blocks[compID];
  PelBuf    pcmBuf  = tu.getPcmbuf  (compID);
  PelBuf    recBuf  = cs.getRecoBuf ( area );
  CPelBuf   orgBuf  = cs.getOrgBuf  ( area );

  CHECK(pcmShiftRight < 0, "Negative shift");
  CompArea      tmpArea(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
  PelBuf tempOrgBuf = m_tmpStorageLCU.getBuf(tmpArea);
  tempOrgBuf.copyFrom(orgBuf);
  if (cs.slice->getReshapeInfo().getUseSliceReshaper() && m_pcReshape->getCTUFlag() && compID == COMPONENT_Y)
  {
    tempOrgBuf.rspSignal(m_pcReshape->getFwdLUT());
  }
  for (uint32_t uiY = 0; uiY < pcmBuf.height; uiY++)
  {
    for (uint32_t uiX = 0; uiX < pcmBuf.width; uiX++)
    {
      // Encode
      pcmBuf.at(uiX, uiY) = tempOrgBuf.at(uiX, uiY) >> pcmShiftRight;
      // Reconstruction
      recBuf.at(uiX, uiY) = pcmBuf.at(uiX, uiY) << pcmShiftRight;
    }
  }
}

// -------------------------------------------------------------------------------------------------------------------
// Intra search
// -------------------------------------------------------------------------------------------------------------------

void IntraSearch::xEncIntraHeader( CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma, const int subTuIdx )
{
  CodingUnit &cu = *cs.getCU( partitioner.chType );

  if (bLuma)
  {
    bool isFirst = cu.ispMode ? subTuIdx == 0 : partitioner.currArea().lumaPos() == cs.area.lumaPos();

    // CU header
    if( isFirst )
    {
      if ((!cs.slice->isIntra() || cs.slice->getSPS()->getIBCFlag())
        && cu.Y().valid()
        )
      {
        if( cs.pps->getTransquantBypassEnabledFlag() )
        {
          m_CABACEstimator->cu_transquant_bypass_flag( cu );
        }
        m_CABACEstimator->cu_skip_flag( cu );
        m_CABACEstimator->pred_mode   ( cu );
      }
      if( CU::isIntra(cu) )
      {
        m_CABACEstimator->pcm_data( cu, partitioner );
        if( cu.ipcm )
        {
          return;
        }
      }
      m_CABACEstimator->extend_ref_line(cu);
      m_CABACEstimator->isp_mode      ( cu );
    }

    PredictionUnit &pu = *cs.getPU(partitioner.currArea().lumaPos(), partitioner.chType);

    // luma prediction mode
    if (isFirst)
    {
      if ( !cu.Y().valid())
        m_CABACEstimator->pred_mode( cu );
      m_CABACEstimator->intra_luma_pred_mode( pu );
    }
  }

  if (bChroma)
  {
    bool isFirst = partitioner.currArea().Cb().valid() && partitioner.currArea().chromaPos() == cs.area.chromaPos();

    PredictionUnit &pu = *cs.getPU( partitioner.currArea().chromaPos(), CHANNEL_TYPE_CHROMA );

    if( isFirst )
    {
      m_CABACEstimator->intra_chroma_pred_mode( pu );
    }
  }
}

void IntraSearch::xEncSubdivCbfQT( CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma, const int subTuIdx, const PartSplit ispType )
{
  const UnitArea &currArea = partitioner.currArea();
          int subTuCounter = subTuIdx;
  TransformUnit &currTU = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType, subTuCounter );
  CodingUnit    &currCU = *currTU.cu;
  uint32_t currDepth           = partitioner.currTrDepth;

  const bool subdiv        = currTU.depth > currDepth;
  ComponentID compID = partitioner.chType == CHANNEL_TYPE_LUMA ? COMPONENT_Y : COMPONENT_Cb;
  const bool chromaCbfISP = currArea.blocks[COMPONENT_Cb].valid() && currCU.ispMode && !subdiv;

  if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
  {
    CHECK( !subdiv, "TU split implied" );
  }
  else
  {
    CHECK( subdiv && !currCU.ispMode && isLuma( compID ), "No TU subdivision is allowed with QTBT" );
  }

  if( bChroma && ( !currCU.ispMode || chromaCbfISP ) )
  {
    const uint32_t numberValidComponents = getNumberValidComponents(currArea.chromaFormat);
    const uint32_t cbfDepth = ( chromaCbfISP ? currDepth - 1 : currDepth );

    for (uint32_t ch = COMPONENT_Cb; ch < numberValidComponents; ch++)
    {
      const ComponentID compID = ComponentID(ch);

      if( currDepth == 0 || TU::getCbfAtDepth( currTU, compID, currDepth - 1 ) || chromaCbfISP )
      {
        const bool prevCbf = ( compID == COMPONENT_Cr ? TU::getCbfAtDepth( currTU, COMPONENT_Cb, currDepth ) : false );
        m_CABACEstimator->cbf_comp( cs, TU::getCbfAtDepth( currTU, compID, currDepth ), currArea.blocks[compID], cbfDepth, prevCbf );

      }
    }
  }

  if (subdiv)
  {

    if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
    {
      partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
    }
    else if( currCU.ispMode && isLuma( compID ) )
    {
      partitioner.splitCurrArea( ispType, cs );
    }
    else
    THROW( "Cannot perform an implicit split!" );

    do
    {
      xEncSubdivCbfQT( cs, partitioner, bLuma, bChroma, subTuCounter, ispType );
      subTuCounter += subTuCounter != -1 ? 1 : 0;
    } while( partitioner.nextPart( cs ) );

    partitioner.exitCurrSplit();
  }
  else
  {
    //===== Cbfs =====
    if (bLuma)
    {
      bool previousCbf       = false;
      bool lastCbfIsInferred = false;
      if( ispType != TU_NO_ISP )
      {
        bool rootCbfSoFar = false;
        uint32_t nTus = currCU.ispMode == HOR_INTRA_SUBPARTITIONS ? currCU.lheight() >> g_aucLog2[currTU.lheight()] : currCU.lwidth() >> g_aucLog2[currTU.lwidth()];
        if( subTuCounter == nTus - 1 )
        {
          TransformUnit* tuPointer = currCU.firstTU;
          for( int tuIdx = 0; tuIdx < nTus - 1; tuIdx++ )
          {
            rootCbfSoFar |= TU::getCbfAtDepth( *tuPointer, COMPONENT_Y, currDepth );
            tuPointer = tuPointer->next;
          }
          if( !rootCbfSoFar )
          {
            lastCbfIsInferred = true;
          }
        }
        if( !lastCbfIsInferred )
        {
          previousCbf = TU::getPrevTuCbfAtDepth( currTU, COMPONENT_Y, partitioner.currTrDepth );
        }
      }
      if( !lastCbfIsInferred )
      {
        m_CABACEstimator->cbf_comp( cs, TU::getCbfAtDepth( currTU, COMPONENT_Y, currDepth ), currTU.Y(), currTU.depth, previousCbf, currCU.ispMode );
      }
    }
  }
}

void IntraSearch::xEncCoeffQT( CodingStructure &cs, Partitioner &partitioner, const ComponentID compID, const int subTuIdx, const PartSplit ispType )
{
  const UnitArea &currArea  = partitioner.currArea();

       int subTuCounter     = subTuIdx;
  TransformUnit &currTU     = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType, subTuIdx );
  uint32_t      currDepth       = partitioner.currTrDepth;
  const bool subdiv         = currTU.depth > currDepth;

  if (subdiv)
  {
    if (partitioner.canSplit(TU_MAX_TR_SPLIT, cs))
    {
      partitioner.splitCurrArea(TU_MAX_TR_SPLIT, cs);
    }
    else if( currTU.cu->ispMode )
    {
      partitioner.splitCurrArea( ispType, cs );
    }
    else
      THROW("Implicit TU split not available!");

    do
    {
      xEncCoeffQT( cs, partitioner, compID, subTuCounter, ispType );
      subTuCounter += subTuCounter != -1 ? 1 : 0;
    } while( partitioner.nextPart( cs ) );

    partitioner.exitCurrSplit();
  }
  else

  if( currArea.blocks[compID].valid() )
  {
    if( TU::hasCrossCompPredInfo( currTU, compID ) )
    {
      m_CABACEstimator->cross_comp_pred( currTU, compID );
    }
    if( TU::getCbf( currTU, compID ) )
    {
      m_CABACEstimator->residual_coding( currTU, compID );
    }
  }
}

uint64_t IntraSearch::xGetIntraFracBitsQT( CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma, const int subTuIdx, const PartSplit ispType )
{
  m_CABACEstimator->resetBits();

  xEncIntraHeader( cs, partitioner, bLuma, bChroma, subTuIdx );
  xEncSubdivCbfQT( cs, partitioner, bLuma, bChroma, subTuIdx, ispType );


  if( bLuma )
  {
    xEncCoeffQT( cs, partitioner, COMPONENT_Y, subTuIdx, ispType );
  }
  if( bChroma )
  {
    xEncCoeffQT( cs, partitioner, COMPONENT_Cb, subTuIdx, ispType );
    xEncCoeffQT( cs, partitioner, COMPONENT_Cr, subTuIdx, ispType );
  }

  uint64_t fracBits = m_CABACEstimator->getEstFracBits();
  return fracBits;
}

uint64_t IntraSearch::xGetIntraFracBitsQTSingleChromaComponent( CodingStructure &cs, Partitioner &partitioner, const ComponentID compID )
{
  m_CABACEstimator->resetBits();

  if( compID == COMPONENT_Cb )
  {
    //intra mode coding
    PredictionUnit &pu = *cs.getPU( partitioner.currArea().lumaPos(), partitioner.chType );
    m_CABACEstimator->intra_chroma_pred_mode( pu );
    //xEncIntraHeader(cs, partitioner, false, true);
  }
  CHECK( partitioner.currTrDepth != 1, "error in the depth!" );
  const UnitArea &currArea = partitioner.currArea();

  TransformUnit &currTU = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType );

  //cbf coding
  m_CABACEstimator->cbf_comp( cs, TU::getCbfAtDepth( currTU, compID, partitioner.currTrDepth ), currArea.blocks[compID], partitioner.currTrDepth - 1 );
  //coeffs coding and cross comp coding
  if( TU::hasCrossCompPredInfo( currTU, compID ) )
  {
    m_CABACEstimator->cross_comp_pred( currTU, compID );
  }
  if( TU::getCbf( currTU, compID ) )
  {
    m_CABACEstimator->residual_coding( currTU, compID );
  }

  uint64_t fracBits = m_CABACEstimator->getEstFracBits();
  return fracBits;
}

uint64_t IntraSearch::xGetIntraFracBitsQTChroma(TransformUnit& currTU, const ComponentID &compID)
{
  m_CABACEstimator->resetBits();

  if( TU::hasCrossCompPredInfo( currTU, compID ) )
  {
    m_CABACEstimator->cross_comp_pred( currTU, compID );
  }

#if JVET_N0054_JOINT_CHROMA
  // Include Cbf and jointCbCr flags here as we make decisions across components
  CodingStructure &cs = *currTU.cs;
  
  if ( currTU.jointCbCr )
  {
    if ( TU::getCbf( currTU, COMPONENT_Cb ) )
    {
      m_CABACEstimator->cbf_comp( cs, true, currTU.blocks[ COMPONENT_Cb ], currTU.depth, false );
      m_CABACEstimator->cbf_comp( cs, true, currTU.blocks[ COMPONENT_Cr ], currTU.depth, true );
      m_CABACEstimator->joint_cb_cr( currTU );
    }
    else
    {
      m_CABACEstimator->cbf_comp( cs, false, currTU.blocks[ COMPONENT_Cb ], currTU.depth, false );
      m_CABACEstimator->cbf_comp( cs, false, currTU.blocks[ COMPONENT_Cr ], currTU.depth, false );
    }
  }
  else
  {
    if ( compID == COMPONENT_Cb )
      m_CABACEstimator->cbf_comp( cs, TU::getCbf( currTU, compID ), currTU.blocks[ compID ], currTU.depth, false );
    else
      m_CABACEstimator->cbf_comp( cs, TU::getCbf( currTU, compID ), currTU.blocks[ compID ], currTU.depth, TU::getCbf( currTU, COMPONENT_Cb ) );
  }
  
#endif
  if( TU::getCbf( currTU, compID ) )
  {
    m_CABACEstimator->residual_coding( currTU, compID );
  }

  uint64_t fracBits = m_CABACEstimator->getEstFracBits();
  return fracBits;
}

void IntraSearch::xIntraCodingTUBlock(TransformUnit &tu, const ComponentID &compID, const bool &checkCrossCPrediction, Distortion& ruiDist, const int &default0Save1Load2, uint32_t* numSig, std::vector<TrMode>* trModes, const bool loadTr)
{
  if (!tu.blocks[compID].valid())
  {
    return;
  }

  CodingStructure &cs                       = *tu.cs;

  const CompArea      &area                 = tu.blocks[compID];
  const SPS           &sps                  = *cs.sps;
  const PPS           &pps                  = *cs.pps;

  const ChannelType    chType               = toChannelType(compID);
  const int            bitDepth             = sps.getBitDepth(chType);

  PelBuf         piOrg                      = cs.getOrgBuf    (area);
  PelBuf         piPred                     = cs.getPredBuf   (area);
  PelBuf         piResi                     = cs.getResiBuf   (area);
  PelBuf         piOrgResi                  = cs.getOrgResiBuf(area);
  PelBuf         piReco                     = cs.getRecoBuf   (area);

  const PredictionUnit &pu                  = *cs.getPU(area.pos(), chType);
  const uint32_t           uiChFinalMode        = PU::getFinalIntraMode(pu, chType);

  const bool           bUseCrossCPrediction = pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && isChroma( compID ) && PU::isChromaIntraModeCrossCheckMode( pu ) && checkCrossCPrediction;
  const bool           ccUseRecoResi        = m_pcEncCfg->getUseReconBasedCrossCPredictionEstimate();
  const bool           ispSplitIsAllowed    = CU::canUseISPSplit( *tu.cu, compID );


  //===== init availability pattern =====
#if JVET_N0054_JOINT_CHROMA
  bool jointCbCr = tu.jointCbCr && compID == COMPONENT_Cb;
  
  if ( compID == COMPONENT_Y )
  {
#endif
  PelBuf sharedPredTS( m_pSharedPredTransformSkip[compID], area );
  if( default0Save1Load2 != 2 )
  {
    const bool bUseFilteredPredictions = IntraPrediction::useFilteredIntraRefSamples( compID, pu, true, tu );
    initIntraPatternChType( *tu.cu, area, bUseFilteredPredictions );

    //===== get prediction signal =====
    if( compID != COMPONENT_Y && PU::isLMCMode( uiChFinalMode ) )
    {
      {
        xGetLumaRecPixels( pu, area );
      }
      predIntraChromaLM( compID, piPred, pu, area, uiChFinalMode );
    }
    else
    {
      predIntraAng( compID, piPred, pu, bUseFilteredPredictions );
    }


    // save prediction
    if( default0Save1Load2 == 1 )
    {
      sharedPredTS.copyFrom( piPred );
    }
  }
  else
  {
    // load prediction
    piPred.copyFrom( sharedPredTS );
  }
#if JVET_N0054_JOINT_CHROMA
  }
#endif


  DTRACE( g_trace_ctx, D_PRED, "@(%4d,%4d) [%2dx%2d] IMode=%d\n", tu.lx(), tu.ly(), tu.lwidth(), tu.lheight(), uiChFinalMode );
  //DTRACE_PEL_BUF( D_PRED, piPred, tu, tu.cu->predMode, COMPONENT_Y );

  const Slice           &slice = *cs.slice;
  bool flag = slice.getReshapeInfo().getUseSliceReshaper() && (slice.isIntra() || (!slice.isIntra() && m_pcReshape->getCTUFlag()));
  if (flag && slice.getReshapeInfo().getSliceReshapeChromaAdj() && isChroma(compID))
  {
    const Area area = tu.Y().valid() ? tu.Y() : Area(recalcPosition(tu.chromaFormat, tu.chType, CHANNEL_TYPE_LUMA, tu.blocks[tu.chType].pos()), recalcSize(tu.chromaFormat, tu.chType, CHANNEL_TYPE_LUMA, tu.blocks[tu.chType].size()));
    const CompArea &areaY = CompArea(COMPONENT_Y, tu.chromaFormat, area );
    PelBuf piPredY;
    piPredY = cs.picture->getPredBuf(areaY);
    const Pel avgLuma = piPredY.computeAvg();
    int adj = m_pcReshape->calculateChromaAdj(avgLuma);
    tu.setChromaAdj(adj);
  }
  //===== get residual signal =====
  piResi.copyFrom( piOrg  );
  if (slice.getReshapeInfo().getUseSliceReshaper() && m_pcReshape->getCTUFlag() && compID==COMPONENT_Y)
  {
    CompArea      tmpArea(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
    PelBuf tmpPred = m_tmpStorageLCU.getBuf(tmpArea);
    tmpPred.copyFrom(piPred);
    piResi.rspSignal(m_pcReshape->getFwdLUT());
    piResi.subtract(tmpPred);
  }
  else
  piResi.subtract( piPred );

  if (pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && isLuma(compID))
  {
    piOrgResi.copyFrom (piResi);
  }

  if (bUseCrossCPrediction)
  {
    if (xCalcCrossComponentPredictionAlpha(tu, compID, ccUseRecoResi) == 0)
    {
      return;
    }
    CrossComponentPrediction::crossComponentPrediction(tu, compID, cs.getResiBuf(tu.Y()), piResi, piResi, false);
  }

  //===== transform and quantization =====
  //--- init rate estimation arrays for RDOQ ---
  //--- transform and quantization           ---
  TCoeff uiAbsSum = 0;

  const QpParam cQP(tu, compID);

#if RDOQ_CHROMA_LAMBDA
  m_pcTrQuant->selectLambda(compID);
#endif

  flag =flag && (tu.blocks[compID].width*tu.blocks[compID].height > 4);
  if (flag && isChroma(compID) && slice.getReshapeInfo().getSliceReshapeChromaAdj() )
  {
    int cResScaleInv = tu.getChromaAdj();
    double cResScale = round((double)(1 << CSCALE_FP_PREC) / (double)cResScaleInv);
    m_pcTrQuant->setLambda(m_pcTrQuant->getLambda() / (cResScale*cResScale));
#if JVET_N0054_JOINT_CHROMA
    if ( !jointCbCr ) // Joint CbCr signal is to be scaled in the case of joint chroma
#endif
    piResi.scaleSignal(cResScaleInv, 1, tu.cu->cs->slice->clpRng(compID));
  }

#if JVET_N0054_JOINT_CHROMA
  const CompArea &crArea = tu.blocks     [ COMPONENT_Cr ];
  PelBuf          crOrg  = cs.getOrgBuf  ( crArea );
  PelBuf          crPred = cs.getPredBuf ( crArea );
  PelBuf          crResi = cs.getResiBuf ( crArea );
  PelBuf          crReco = cs.getRecoBuf ( crArea );
  
  if ( jointCbCr )
  {
    // Get Cr prediction and residual
    crResi.copyFrom( crOrg  );
    crResi.subtract( crPred );
    
    // Create joint residual and store it for Cb component: jointResi = (cbResi - crResi)/2
    piResi.subtractAndHalve( crResi );
    
    // Scale the joint signal
    if ( flag && slice.getReshapeInfo().getSliceReshapeChromaAdj() )
      piResi.scaleSignal(tu.getChromaAdj(), 1, tu.cu->cs->slice->clpRng(compID));
    
    // Lambda is loosened for the joint mode with respect to single modes as the same residual is used for both chroma blocks
    m_pcTrQuant->setLambda( 0.60 * m_pcTrQuant->getLambda() );
  }
  else if ( isChroma(compID) && tu.cu->cs->slice->getSliceQp() > 18 )
    m_pcTrQuant->setLambda( 1.10 * m_pcTrQuant->getLambda() );
#endif
  
  double diagRatio = 0, horVerRatio = 0;

  if( trModes )
  {
    m_pcTrQuant->transformNxN( tu, compID, cQP, trModes, CU::isIntra( *tu.cu ) ? m_pcEncCfg->getIntraMTSMaxCand() : m_pcEncCfg->getInterMTSMaxCand(), ispSplitIsAllowed ? &diagRatio : nullptr, ispSplitIsAllowed ? &horVerRatio : nullptr );
    tu.mtsIdx = trModes->at(0).first;
  }
  m_pcTrQuant->transformNxN( tu, compID, cQP, uiAbsSum, m_CABACEstimator->getCtx(), loadTr, &diagRatio, &horVerRatio );
  if (!tu.cu->ispMode && isLuma(compID) && ispSplitIsAllowed &&
    tu.mtsIdx == 0
    )
  {
    m_intraModeDiagRatio        .push_back(diagRatio);
    m_intraModeHorVerRatio      .push_back(horVerRatio);
    m_intraModeTestedNormalIntra.push_back((int)uiChFinalMode);
  }


  DTRACE( g_trace_ctx, D_TU_ABS_SUM, "%d: comp=%d, abssum=%d\n", DTRACE_GET_COUNTER( g_trace_ctx, D_TU_ABS_SUM ), compID, uiAbsSum );


  //--- inverse transform ---
  if (uiAbsSum > 0)
  {
    m_pcTrQuant->invTransformNxN(tu, compID, piResi, cQP);
  }
  else
  {
    piResi.fill(0);
  }

  //===== reconstruction =====
  if (flag && uiAbsSum > 0 && isChroma(compID) && slice.getReshapeInfo().getSliceReshapeChromaAdj() )
  {
    piResi.scaleSignal(tu.getChromaAdj(), 0, tu.cu->cs->slice->clpRng(compID));
  }
  if (bUseCrossCPrediction)
  {
    CrossComponentPrediction::crossComponentPrediction(tu, compID, cs.getResiBuf(tu.Y()), piResi, piResi, true);
  }

  if (slice.getReshapeInfo().getUseSliceReshaper() && m_pcReshape->getCTUFlag() && compID == COMPONENT_Y)
  {
    CompArea      tmpArea(COMPONENT_Y, area.chromaFormat, Position(0,0), area.size());
    PelBuf tmpPred = m_tmpStorageLCU.getBuf(tmpArea);
    tmpPred.copyFrom(piPred);
    piReco.reconstruct(tmpPred, piResi, cs.slice->clpRng(compID));
  }
  else
  piReco.reconstruct(piPred, piResi, cs.slice->clpRng( compID ));

#if JVET_N0054_JOINT_CHROMA
  if ( jointCbCr )
  {
    // Cr uses negative of the signalled Cb residual
    if (uiAbsSum > 0)
      crResi.copyAndNegate( piResi );
    else
      crResi.fill(0);
    
    tu.getCoeffs(COMPONENT_Cr).fill(0);
    
    // Set cbf also for Cr
    TU::setCbfAtDepth (tu, COMPONENT_Cr, tu.depth, uiAbsSum > 0 ? true : false);
    
    // Cr reconstruction and its contribution to the total error
    crReco.reconstruct(crPred, crResi, cs.slice->clpRng( COMPONENT_Cr ));
    
#if WCG_EXT
    if ( m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled() ||
        (m_pcEncCfg->getReshaper()
         && slice.getReshapeInfo().getUseSliceReshaper()
         && (m_pcReshape->getCTUFlag() || (isChroma(compID) && m_pcEncCfg->getReshapeIntraCMD()))))
    {
      const CPelBuf orgLuma = cs.getOrgBuf( cs.area.blocks[COMPONENT_Y] );
      ruiDist += m_pcRdCost->getDistPart( crOrg, crReco, bitDepth, COMPONENT_Cr, DF_SSE_WTD, &orgLuma );
    }
    else
#endif
    {
      ruiDist += m_pcRdCost->getDistPart( crOrg, crReco, bitDepth, COMPONENT_Cr, DF_SSE );
    }
  }
#endif

  //===== update distortion =====
#if WCG_EXT
  if (m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled() || (m_pcEncCfg->getReshaper()
    && slice.getReshapeInfo().getUseSliceReshaper() && (m_pcReshape->getCTUFlag() || (isChroma(compID) && m_pcEncCfg->getReshapeIntraCMD()))))
  {
    const CPelBuf orgLuma = cs.getOrgBuf( cs.area.blocks[COMPONENT_Y] );
    if (compID == COMPONENT_Y  && !(m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled()))
    {
      CompArea      tmpArea1(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
      PelBuf tmpRecLuma = m_tmpStorageLCU.getBuf(tmpArea1);
      tmpRecLuma.copyFrom(piReco);
      tmpRecLuma.rspSignal(m_pcReshape->getInvLUT());
      ruiDist += m_pcRdCost->getDistPart(piOrg, tmpRecLuma, sps.getBitDepth(toChannelType(compID)), compID, DF_SSE_WTD, &orgLuma);
    }
    else
      ruiDist += m_pcRdCost->getDistPart(piOrg, piReco, bitDepth, compID, DF_SSE_WTD, &orgLuma);
  }
  else
#endif
  {
    ruiDist += m_pcRdCost->getDistPart( piOrg, piReco, bitDepth, compID, DF_SSE );
  }
}

void IntraSearch::xRecurIntraCodingLumaQT( CodingStructure &cs, Partitioner &partitioner, const double bestCostSoFar, const int subTuIdx, const PartSplit ispType, const bool ispIsCurrentWinnder )
{
        int   subTuCounter = subTuIdx;
  const UnitArea &currArea = partitioner.currArea();
  const CodingUnit     &cu = *cs.getCU( currArea.lumaPos(), partitioner.chType );
        bool  earlySkipISP = false;
  uint32_t currDepth       = partitioner.currTrDepth;
  const PPS &pps           = *cs.pps;
  const bool keepResi      = pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() || KEEP_PRED_AND_RESI_SIGNALS;
  bool bCheckFull          = true;
  bool bCheckSplit         = false;
  bCheckFull               = !partitioner.canSplit( TU_MAX_TR_SPLIT, cs );
  bCheckSplit              = partitioner.canSplit( TU_MAX_TR_SPLIT, cs );

  if( cu.ispMode )
  {
    bCheckSplit = partitioner.canSplit( ispType, cs );
    bCheckFull = !bCheckSplit;
  }
  uint32_t    numSig           = 0;

  double     dSingleCost                        = MAX_DOUBLE;
  Distortion uiSingleDistLuma                   = 0;
  uint64_t   singleFracBits                     = 0;
  int        bestModeId[MAX_NUM_COMPONENT]      = { 0, 0, 0 };

  const TempCtx ctxStart  ( m_CtxCache, m_CABACEstimator->getCtx() );
  TempCtx       ctxBest   ( m_CtxCache );

  CodingStructure *csSplit = nullptr;
  CodingStructure *csFull  = nullptr;

  if( bCheckSplit )
  {
    csSplit = &cs;
  }
  else if( bCheckFull )
  {
    csFull = &cs;
  }

  if( bCheckFull )
  {
    csFull->cost = 0.0;

    TransformUnit &tu = csFull->addTU( CS::getArea( *csFull, currArea, partitioner.chType ), partitioner.chType );
    tu.depth = currDepth;

    const bool tsAllowed  = TU::isTSAllowed ( tu, COMPONENT_Y );
    const bool mtsAllowed = TU::isMTSAllowed( tu, COMPONENT_Y );
    uint8_t nNumTransformCands = 1 + ( tsAllowed ? 1 : 0 ) + ( mtsAllowed ? 4 : 0 ); // DCT + TS + 4 MTS = 6 tests
    std::vector<TrMode> trModes;
    trModes.push_back( TrMode( 0, true ) ); //DCT2
    if( tsAllowed )
    {
      trModes.push_back( TrMode( 1, true ) );
    }
    if( mtsAllowed )
    {
      for( int i = 2; i < 6; i++ )
      {
        trModes.push_back( TrMode( i, true) );
      }
    }

    CHECK( !tu.Y().valid(), "Invalid TU" );

    CodingStructure &saveCS = *m_pSaveCS[0];

    TransformUnit *tmpTU = nullptr;

    Distortion singleDistTmpLuma = 0;
    uint64_t     singleTmpFracBits = 0;
    double     singleCostTmp     = 0;
    int        firstCheckId      = 0;

    int       lastCheckId        = trModes[nNumTransformCands-1].first;
    bool isNotOnlyOneMode        = nNumTransformCands != 1;

    if( isNotOnlyOneMode )
    {
      saveCS.pcv     = cs.pcv;
      saveCS.picture = cs.picture;
      saveCS.area.repositionTo(cs.area);
      saveCS.clearTUs();
      tmpTU = &saveCS.addTU(currArea, partitioner.chType);
    }

    bool    cbfDCT2  = true;

    double bestDCT2cost = MAX_DOUBLE;
    double threshold = m_pcEncCfg->getUseFastISP() && !cu.ispMode && ispIsCurrentWinnder && nNumTransformCands > 1 ? 1 + 1.4 / sqrt( cu.lwidth() * cu.lheight() ) : 1;
    for( int modeId = firstCheckId; modeId < nNumTransformCands; modeId++ )
    {
      if( !cbfDCT2 || ( m_pcEncCfg->getUseTransformSkipFast() && bestModeId[COMPONENT_Y] == 1 ) )
      {
        break;
      }
      if( !trModes[modeId].second )
      {
        continue;
      }
      //we compare the DCT-II cost against the best ISP cost so far (except for TS)
      if ( m_pcEncCfg->getUseFastISP() && !cu.ispMode && ispIsCurrentWinnder && trModes[modeId].first != 0 && ( trModes[modeId].first != 1 || !tsAllowed ) && bestDCT2cost > bestCostSoFar * threshold )
      {
        continue;
      }
      tu.mtsIdx = trModes[modeId].first;

      if ((modeId != firstCheckId) && isNotOnlyOneMode)
      {
        m_CABACEstimator->getCtx() = ctxStart;
      }

      int default0Save1Load2 = 0;
      singleDistTmpLuma = 0;

      if( modeId == firstCheckId && nNumTransformCands > 1 )
      {
        default0Save1Load2 = 1;
      }
      else if (modeId != firstCheckId)
      {
        default0Save1Load2 = 2;
      }
      if( cu.ispMode )
      {
        default0Save1Load2 = 0;
      }
      if( nNumTransformCands > 1 )
      {
        xIntraCodingTUBlock( tu, COMPONENT_Y, false, singleDistTmpLuma, default0Save1Load2, &numSig, modeId == 0 ? &trModes : nullptr, true );
        if( modeId == 0 )
        {
          for( int i = 0; i < nNumTransformCands; i++ )
          {
            if( trModes[i].second )
            {
              lastCheckId = trModes[i].first;
            }
          }
        }
      }
      else
      {
        xIntraCodingTUBlock( tu, COMPONENT_Y, false, singleDistTmpLuma, default0Save1Load2, &numSig );
      }

      //----- determine rate and r-d cost -----
      if( ( trModes[modeId].first != 0 && !TU::getCbfAtDepth( tu, COMPONENT_Y, currDepth ) ) )
      {
        //In order not to code TS flag when cbf is zero, the case for TS with cbf being zero is forbidden.
        singleCostTmp = MAX_DOUBLE;
      }
      else
      {
        if( cu.ispMode && m_pcRdCost->calcRdCost( csFull->fracBits, csFull->dist + singleDistTmpLuma ) > bestCostSoFar )
        {
          earlySkipISP = true;
        }
        else
        {
          singleTmpFracBits = xGetIntraFracBitsQT( *csFull, partitioner, true, false, subTuCounter, ispType );
        }
        singleCostTmp     = m_pcRdCost->calcRdCost( singleTmpFracBits, singleDistTmpLuma );
      }

      if ( !cu.ispMode && nNumTransformCands > 1 && modeId == firstCheckId )
      {
        bestDCT2cost = singleCostTmp;
      }

      if (singleCostTmp < dSingleCost)
      {
        dSingleCost       = singleCostTmp;
        uiSingleDistLuma  = singleDistTmpLuma;
        singleFracBits    = singleTmpFracBits;

        bestModeId[COMPONENT_Y] = trModes[modeId].first;
        if( trModes[modeId].first == 0 )
        {
          cbfDCT2  = TU::getCbfAtDepth( tu, COMPONENT_Y, currDepth );
        }

        if( bestModeId[COMPONENT_Y] != lastCheckId )
        {
          saveCS.getPredBuf( tu.Y() ).copyFrom( csFull->getPredBuf( tu.Y() ) );
          saveCS.getRecoBuf( tu.Y() ).copyFrom( csFull->getRecoBuf( tu.Y() ) );

          if( keepResi )
          {
            saveCS.getResiBuf   ( tu.Y() ).copyFrom( csFull->getResiBuf   ( tu.Y() ) );
            saveCS.getOrgResiBuf( tu.Y() ).copyFrom( csFull->getOrgResiBuf( tu.Y() ) );
          }

          tmpTU->copyComponentFrom( tu, COMPONENT_Y );

          ctxBest = m_CABACEstimator->getCtx();
        }
      }
    }

    if( bestModeId[COMPONENT_Y] != lastCheckId )
    {
      csFull->getPredBuf( tu.Y() ).copyFrom( saveCS.getPredBuf( tu.Y() ) );
      csFull->getRecoBuf( tu.Y() ).copyFrom( saveCS.getRecoBuf( tu.Y() ) );

      if( keepResi )
      {
        csFull->getResiBuf   ( tu.Y() ).copyFrom( saveCS.getResiBuf   ( tu.Y() ) );
        csFull->getOrgResiBuf( tu.Y() ).copyFrom( saveCS.getOrgResiBuf( tu.Y() ) );
      }

      tu.copyComponentFrom( *tmpTU, COMPONENT_Y );

      if( !bCheckSplit )
      {
        m_CABACEstimator->getCtx() = ctxBest;
      }
    }
    else if( bCheckSplit )
    {
      ctxBest = m_CABACEstimator->getCtx();
    }

    csFull->cost     += dSingleCost;
    csFull->dist     += uiSingleDistLuma;
    csFull->fracBits += singleFracBits;
  }

  if( bCheckSplit )
  {
    //----- store full entropy coding status, load original entropy coding status -----
    if( bCheckFull )
    {
      m_CABACEstimator->getCtx() = ctxStart;
    }
    //----- code splitted block -----
    csSplit->cost = 0;

    bool uiSplitCbfLuma  = false;
    bool splitIsSelected = true;
    if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
    {
      partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
    }

    if( cu.ispMode )
    {
      partitioner.splitCurrArea( ispType, *csSplit );
    }
    do
    {
      xRecurIntraCodingLumaQT( *csSplit, partitioner, bestCostSoFar, subTuCounter, ispType );
      subTuCounter += subTuCounter != -1 ? 1 : 0;

      if( !cu.ispMode )
      {
        csSplit->setDecomp( partitioner.currArea().Y() );
      }
      else if( CU::isISPFirst( cu, partitioner.currArea().Y(), COMPONENT_Y ) )
      {
        csSplit->setDecomp( cu.Y() );
      }

      uiSplitCbfLuma |= TU::getCbfAtDepth( *csSplit->getTU( partitioner.currArea().lumaPos(), partitioner.chType, subTuCounter - 1 ), COMPONENT_Y, partitioner.currTrDepth );
      if( cu.ispMode )
      {
        //exit condition if the accumulated cost is already larger than the best cost so far (no impact in RD performance)
        if( csSplit->cost > bestCostSoFar )
        {
          earlySkipISP    = true;
          splitIsSelected = false;
          break;
        }
        else
        {
          //more restrictive exit condition
          bool tuIsDividedInRows = CU::divideTuInRows( cu );
          int nSubPartitions = tuIsDividedInRows ? cu.lheight() >> g_aucLog2[cu.firstTU->lheight()] : cu.lwidth() >> g_aucLog2[cu.firstTU->lwidth()];
          double threshold = nSubPartitions == 2 ? 0.95 : subTuCounter == 1 ? 0.83 : 0.91;
          if( subTuCounter < nSubPartitions && csSplit->cost > bestCostSoFar*threshold )
          {
            earlySkipISP    = true;
            splitIsSelected = false;
            break;
          }
        }
      }



    } while( partitioner.nextPart( *csSplit ) );

    partitioner.exitCurrSplit();

    if( splitIsSelected )
    {
      for( auto &ptu : csSplit->tus )
      {
        if( currArea.Y().contains( ptu->Y() ) )
        {
          TU::setCbfAtDepth( *ptu, COMPONENT_Y, currDepth, uiSplitCbfLuma ? 1 : 0 );
        }
      }

      //----- restore context states -----
      m_CABACEstimator->getCtx() = ctxStart;

      //----- determine rate and r-d cost -----
      csSplit->fracBits = xGetIntraFracBitsQT( *csSplit, partitioner, true, false, cu.ispMode ? 0 : -1, ispType );

      //--- update cost ---
      csSplit->cost     = m_pcRdCost->calcRdCost(csSplit->fracBits, csSplit->dist);
    }
  }

  if( csFull || csSplit )
  {
    {
      // otherwise this would've happened in useSubStructure
      cs.picture->getRecoBuf( currArea.Y() ).copyFrom( cs.getRecoBuf( currArea.Y() ) );
      cs.picture->getPredBuf( currArea.Y() ).copyFrom( cs.getPredBuf( currArea.Y() ) );
    }

    if( cu.ispMode && earlySkipISP )
    {
      cs.cost = MAX_DOUBLE;
    }
    else
    {
      cs.cost = m_pcRdCost->calcRdCost( cs.fracBits, cs.dist );
    }
  }
}

ChromaCbfs IntraSearch::xRecurIntraChromaCodingQT( CodingStructure &cs, Partitioner& partitioner, const double bestCostSoFar, const PartSplit ispType )
{
  UnitArea currArea                   = partitioner.currArea();
  const bool keepResi                 = cs.sps->getUseLMChroma() || KEEP_PRED_AND_RESI_SIGNALS;
  if( !currArea.Cb().valid() ) return ChromaCbfs( false );


  TransformUnit &currTU               = *cs.getTU( currArea.chromaPos(), CHANNEL_TYPE_CHROMA );
  const PredictionUnit &pu            = *cs.getPU( currArea.chromaPos(), CHANNEL_TYPE_CHROMA );

  bool lumaUsesISP                    = !CS::isDualITree( cs ) && currTU.cu->ispMode;
  uint32_t     currDepth                  = partitioner.currTrDepth;
  const PPS &pps                      = *cs.pps;
  ChromaCbfs cbfs                     ( false );

  if (currDepth == currTU.depth)
  {
    if (!currArea.Cb().valid() || !currArea.Cr().valid())
    {
      return cbfs;
    }


    CodingStructure &saveCS = *m_pSaveCS[1];
    saveCS.pcv      = cs.pcv;
    saveCS.picture  = cs.picture;
    saveCS.area.repositionTo( cs.area );
    saveCS.initStructData( MAX_INT, false, true );

    if( !CS::isDualITree( cs ) && currTU.cu->ispMode )
    {
      saveCS.clearCUs();
      CodingUnit& auxCU = saveCS.addCU( *currTU.cu, partitioner.chType );
      auxCU.ispMode = currTU.cu->ispMode;
      saveCS.sps = currTU.cs->sps;
      saveCS.clearPUs();
      saveCS.addPU( *currTU.cu->firstPU, partitioner.chType );
    }

    TransformUnit &tmpTU = saveCS.addTU(currArea, partitioner.chType);


    cs.setDecomp(currArea.Cb(), true); // set in advance (required for Cb2/Cr2 in 4:2:2 video)

    const unsigned      numTBlocks  = ::getNumberValidTBlocks( *cs.pcv );
    
#if JVET_N0054_JOINT_CHROMA
    CompArea&  cbArea         = currTU.blocks[COMPONENT_Cb];
    CompArea&  crArea         = currTU.blocks[COMPONENT_Cr];
    double     bestCostCb     = MAX_DOUBLE;
    double     bestCostCr     = MAX_DOUBLE;
    Distortion bestDistCb     = 0;
    Distortion bestDistCr     = 0;
    int        maxModesTested = 0;
    bool       earlyExitISP   = false;
    
    TempCtx ctxStartTU( m_CtxCache );
    TempCtx ctxStart  ( m_CtxCache );
    TempCtx ctxBest   ( m_CtxCache );
    
    ctxStartTU       = m_CABACEstimator->getCtx();
    currTU.jointCbCr = 0;
    
    // Do predictions here to avoid repeating the "default0Save1Load2" stuff
    int  predMode   = PU::getFinalIntraMode( pu, CHANNEL_TYPE_CHROMA );
    bool refFiltCb  = IntraPrediction::useFilteredIntraRefSamples( COMPONENT_Cb, pu, true, currTU );
    bool refFiltCr  = IntraPrediction::useFilteredIntraRefSamples( COMPONENT_Cr, pu, true, currTU );
    
    PelBuf piPredCb = cs.getPredBuf(cbArea);
    PelBuf piPredCr = cs.getPredBuf(crArea);
    
    initIntraPatternChType( *currTU.cu, cbArea, refFiltCb );
    initIntraPatternChType( *currTU.cu, crArea, refFiltCr );
    
    if( PU::isLMCMode( predMode ) )
    {
      xGetLumaRecPixels( pu, cbArea );
      predIntraChromaLM( COMPONENT_Cb, piPredCb, pu, cbArea, predMode );
      predIntraChromaLM( COMPONENT_Cr, piPredCr, pu, crArea, predMode );
    }
    else
    {
      predIntraAng( COMPONENT_Cb, piPredCb, pu, refFiltCb );
      predIntraAng( COMPONENT_Cr, piPredCr, pu, refFiltCr );
    }
#endif

    for( uint32_t c = COMPONENT_Cb; c < numTBlocks; c++)
    {
      const ComponentID compID  = ComponentID(c);
      const CompArea&   area    = currTU.blocks[compID];

      double     dSingleCost    = MAX_DOUBLE;
      int        bestModeId     = 0;
#if !JVET_N0054_JOINT_CHROMA
      Distortion singleDistC    = 0;
#endif
      Distortion singleDistCTmp = 0;
      double     singleCostTmp  = 0;

      const bool checkCrossComponentPrediction = PU::isChromaIntraModeCrossCheckMode( pu ) && pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && TU::getCbf( currTU, COMPONENT_Y );

      const int  crossCPredictionModesToTest = checkCrossComponentPrediction ? 2 : 1;
      const int  totalModesToTest            = crossCPredictionModesToTest;
#if JVET_N0054_JOINT_CHROMA
      const bool isOneMode                   = false;
      maxModesTested                         = totalModesToTest > maxModesTested ? totalModesToTest : maxModesTested;
#else
      const bool isOneMode                   = (totalModesToTest == 1);
#endif
      
      int currModeId = 0;
      int default0Save1Load2 = 0;

#if !JVET_N0054_JOINT_CHROMA
      TempCtx ctxStart  ( m_CtxCache );
      TempCtx ctxBest   ( m_CtxCache );
#endif

      if (!isOneMode)
      {
        ctxStart = m_CABACEstimator->getCtx();
      }

      {
        for (int crossCPredictionModeId = 0; crossCPredictionModeId < crossCPredictionModesToTest; crossCPredictionModeId++)
        {
          currTU.compAlpha    [compID] = 0;

          currModeId++;

          const bool isFirstMode = (currModeId == 1);
#if JVET_N0054_JOINT_CHROMA
          const bool isLastMode  = false; // Always store output to saveCS and tmpTU
#else
          const bool isLastMode  = (currModeId == totalModesToTest); // currModeId is indexed from 1

          if (isOneMode)
          {
            default0Save1Load2 = 0;
          }
          else if (!isOneMode && (crossCPredictionModeId == 0))
          {
            default0Save1Load2 = 1; //save prediction on first mode
          }
          else
          {
            default0Save1Load2 = 2; //load it on subsequent modes
          }
#endif
          
          if (!isFirstMode) // if not first mode to be tested
          {
            m_CABACEstimator->getCtx() = ctxStart;
          }

          singleDistCTmp = 0;

          xIntraCodingTUBlock( currTU, compID, crossCPredictionModeId != 0, singleDistCTmp, default0Save1Load2 );

          if( ( ( crossCPredictionModeId == 1 ) && ( currTU.compAlpha[compID] == 0 ) ) ) //In order not to code TS flag when cbf is zero, the case for TS with cbf being zero is forbidden.
          {
            singleCostTmp = MAX_DOUBLE;
          }
          else if( lumaUsesISP && bestCostSoFar != MAX_DOUBLE && c == COMPONENT_Cb )
          {
            uint64_t fracBitsTmp = xGetIntraFracBitsQTSingleChromaComponent( cs, partitioner, ComponentID( c ) );
            singleCostTmp = m_pcRdCost->calcRdCost( fracBitsTmp, singleDistCTmp );
            if( isOneMode || ( !isOneMode && !isLastMode ) )
            {
              m_CABACEstimator->getCtx() = ctxStart;
            }
          }
          else if( !isOneMode )
          {
            uint64_t fracBitsTmp = xGetIntraFracBitsQTChroma( currTU, compID );
            singleCostTmp = m_pcRdCost->calcRdCost( fracBitsTmp, singleDistCTmp );
          }

          if( singleCostTmp < dSingleCost )
          {
#if JVET_N0054_JOINT_CHROMA
            dSingleCost = singleCostTmp;
            bestModeId  = currModeId;
            
            if ( c == COMPONENT_Cb )
            {
              bestCostCb = singleCostTmp;
              bestDistCb = singleDistCTmp;
            }
            else
            {
              bestCostCr = singleCostTmp;
              bestDistCr = singleDistCTmp;
            }
#else
            dSingleCost = singleCostTmp;
            singleDistC = singleDistCTmp;
            bestModeId  = currModeId;
#endif
            
            if( !isLastMode )
            {
#if KEEP_PRED_AND_RESI_SIGNALS
              saveCS.getPredBuf   (area).copyFrom(cs.getPredBuf   (area));
              saveCS.getOrgResiBuf(area).copyFrom(cs.getOrgResiBuf(area));
#endif
              saveCS.getPredBuf   (area).copyFrom(cs.getPredBuf   (area));
              if( keepResi )
              {
                saveCS.getResiBuf (area).copyFrom(cs.getResiBuf   (area));
              }
              saveCS.getRecoBuf   (area).copyFrom(cs.getRecoBuf   (area));

              tmpTU.copyComponentFrom(currTU, compID);

              ctxBest = m_CABACEstimator->getCtx();
            }
          }
        }
      }

      if( lumaUsesISP && dSingleCost > bestCostSoFar && c == COMPONENT_Cb )
      {
        //Luma + Cb cost is already larger than the best cost, so we don't need to test Cr
        cs.dist = MAX_UINT;
        m_CABACEstimator->getCtx() = ctxStart;
#if JVET_N0054_JOINT_CHROMA
        earlyExitISP               = true;
#endif
        break;
        //return cbfs;
      }

#if JVET_N0054_JOINT_CHROMA
      // Done with one component of separate coding of Cr and Cb, just switch to the best Cb contexts if Cr coding is still to be done
      if ( c == COMPONENT_Cb && bestModeId < totalModesToTest)
      {
        m_CABACEstimator->getCtx() = ctxBest;
        
        currTU.copyComponentFrom(tmpTU, COMPONENT_Cb); // Cbf of Cb is needed to estimate cost for Cr Cbf
      }
#else
      if (bestModeId < totalModesToTest)
      {
#if KEEP_PRED_AND_RESI_SIGNALS
        cs.getPredBuf   (area).copyFrom(saveCS.getPredBuf   (area));
        cs.getOrgResiBuf(area).copyFrom(saveCS.getOrgResiBuf(area));
#endif
        cs.getPredBuf   (area).copyFrom(saveCS.getPredBuf   (area));
        if( keepResi )
        {
          cs.getResiBuf (area).copyFrom(saveCS.getResiBuf   (area));
        }
        cs.getRecoBuf   (area).copyFrom(saveCS.getRecoBuf   (area));

        currTU.copyComponentFrom(tmpTU, compID);

        m_CABACEstimator->getCtx() = ctxBest;
      }

      cs.picture->getPredBuf(area).copyFrom(cs.getPredBuf(area));
      cs.picture->getRecoBuf(area).copyFrom(cs.getRecoBuf(area));

      cbfs.cbf(compID) = TU::getCbf(currTU, compID);

      cs.dist += singleDistC;
#endif // not JVET_N0054_JOINT_CHROMA
    }
    
#if JVET_N0054_JOINT_CHROMA
    if ( !earlyExitISP )
    {
      // Test using joint chroma residual coding
      double     bestCostCbCr   = bestCostCb + bestCostCr;
      Distortion bestDistCbCr   = bestDistCb + bestDistCr;
      int        bestJointCbCr  = 0;
      bool       checkJointCbCr = TU::getCbf(tmpTU, COMPONENT_Cb) || TU::getCbf(tmpTU, COMPONENT_Cr);
      
      if ( checkJointCbCr )
      {
        Distortion distTmp = 0;
        
        currTU.jointCbCr               = 1;
        currTU.compAlpha[COMPONENT_Cb] = 0;
        
        m_CABACEstimator->getCtx() = ctxStartTU;
        
        xIntraCodingTUBlock( currTU, COMPONENT_Cb, false, distTmp, 0 );
        
        uint64_t bits  = xGetIntraFracBitsQTChroma( currTU, COMPONENT_Cb );
        double costTmp = m_pcRdCost->calcRdCost( bits, distTmp );
        
        if( costTmp < bestCostCbCr )
        {
          bestCostCbCr  = costTmp;
          bestDistCbCr  = distTmp;
          bestJointCbCr = 1;
        }
      }
      
      // Retrieve the best CU data (unless it was the very last one tested)
      if ( !(maxModesTested == 1 && !checkJointCbCr) && bestJointCbCr == 0 )
      {
#if KEEP_PRED_AND_RESI_SIGNALS
        cs.getPredBuf   (cbArea).copyFrom(saveCS.getPredBuf   (cbArea));
        cs.getOrgResiBuf(cbArea).copyFrom(saveCS.getOrgResiBuf(cbArea));
        cs.getPredBuf   (crArea).copyFrom(saveCS.getPredBuf   (crArea));
        cs.getOrgResiBuf(crArea).copyFrom(saveCS.getOrgResiBuf(crArea));
#endif
        cs.getPredBuf   (cbArea).copyFrom(saveCS.getPredBuf   (cbArea));
        cs.getPredBuf   (crArea).copyFrom(saveCS.getPredBuf   (crArea));

        if( keepResi )
        {
          cs.getResiBuf (cbArea).copyFrom(saveCS.getResiBuf   (cbArea));
          cs.getResiBuf (crArea).copyFrom(saveCS.getResiBuf   (crArea));
        }
        cs.getRecoBuf   (cbArea).copyFrom(saveCS.getRecoBuf   (cbArea));
        cs.getRecoBuf   (crArea).copyFrom(saveCS.getRecoBuf   (crArea));
        
        currTU.copyComponentFrom(tmpTU, COMPONENT_Cb);
        currTU.copyComponentFrom(tmpTU, COMPONENT_Cr);
        
        m_CABACEstimator->getCtx() = ctxBest;
      }
      
      // Copy results to the picture structures
      cs.picture->getRecoBuf(cbArea).copyFrom(cs.getRecoBuf(cbArea));
      cs.picture->getRecoBuf(crArea).copyFrom(cs.getRecoBuf(crArea));
      cs.picture->getPredBuf(cbArea).copyFrom(cs.getPredBuf(cbArea));
      cs.picture->getPredBuf(crArea).copyFrom(cs.getPredBuf(crArea));
      
      cbfs.cbf(COMPONENT_Cb) = TU::getCbf(currTU, COMPONENT_Cb);
      cbfs.cbf(COMPONENT_Cr) = TU::getCbf(currTU, COMPONENT_Cr);
      
      currTU.jointCbCr = cbfs.cbf(COMPONENT_Cb) ? bestJointCbCr : 0;
      cs.dist         += bestDistCbCr;
    }
#endif // JVET_N0054_JOINT_CHROMA
  }
  else
  {
    unsigned    numValidTBlocks   = ::getNumberValidTBlocks( *cs.pcv );
    ChromaCbfs  SplitCbfs         ( false );

    if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
    {
      partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
    }
    else if( currTU.cu->ispMode )
    {
      partitioner.splitCurrArea( ispType, cs );
    }
    else
      THROW( "Implicit TU split not available" );

    do
    {
      ChromaCbfs subCbfs = xRecurIntraChromaCodingQT( cs, partitioner, bestCostSoFar, ispType );

      for( uint32_t ch = COMPONENT_Cb; ch < numValidTBlocks; ch++ )
      {
        const ComponentID compID = ComponentID( ch );
        SplitCbfs.cbf( compID ) |= subCbfs.cbf( compID );
      }
    } while( partitioner.nextPart( cs ) );

    partitioner.exitCurrSplit();

    if( lumaUsesISP && cs.dist == MAX_UINT )
    {
      return cbfs;
    }
    {

      cbfs.Cb |= SplitCbfs.Cb;
      cbfs.Cr |= SplitCbfs.Cr;

      if( !lumaUsesISP )
      {
        for( auto &ptu : cs.tus )
        {
          if( currArea.Cb().contains( ptu->Cb() ) || ( !ptu->Cb().valid() && currArea.Y().contains( ptu->Y() ) ) )
          {
            TU::setCbfAtDepth( *ptu, COMPONENT_Cb, currDepth, SplitCbfs.Cb );
            TU::setCbfAtDepth( *ptu, COMPONENT_Cr, currDepth, SplitCbfs.Cr );
          }
        }
      }
    }
  }

  return cbfs;
}

uint64_t IntraSearch::xFracModeBitsIntra(PredictionUnit &pu, const uint32_t &uiMode, const ChannelType &chType)
{
  uint32_t orgMode = uiMode;

  if (!pu.mhIntraFlag)
  std::swap(orgMode, pu.intraDir[chType]);

  m_CABACEstimator->resetBits();

  if( isLuma( chType ) )
  {
    if ( pu.mhIntraFlag )
      m_CABACEstimator->MHIntra_luma_pred_modes(*pu.cu);
    else
    {
      m_CABACEstimator->extend_ref_line(pu);
      m_CABACEstimator->intra_luma_pred_mode(pu);
    }
  }
  else
  {
    m_CABACEstimator->intra_chroma_pred_mode( pu );
  }

  if ( !pu.mhIntraFlag )
  std::swap(orgMode, pu.intraDir[chType]);

  return m_CABACEstimator->getEstFracBits();
}



void IntraSearch::encPredIntraDPCM( const ComponentID &compID, PelBuf &pOrg, PelBuf &pDst, const uint32_t &uiDirMode )
{
  CHECK( pOrg.buf == 0, "Encoder DPCM called without original buffer" );

  const int srcStride = m_topRefLength + 1;
  CPelBuf   pSrc = CPelBuf(getPredictorPtr(compID), srcStride, m_leftRefLength + 1);

  // Sample Adaptive intra-Prediction (SAP)
  if( uiDirMode == HOR_IDX )
  {
    // left column filled with reference samples, remaining columns filled with pOrg data
    for( int y = 0; y < pDst.height; y++ )
    {
      pDst.at( 0, y ) = pSrc.at( 0, 1 + y );
    }
    CPelBuf orgRest  = pOrg.subBuf( 0, 0, pOrg.width - 1, pOrg.height );
    PelBuf  predRest = pDst.subBuf( 1, 0, pDst.width - 1, pDst.height );

    predRest.copyFrom( orgRest );
  }
  else // VER_IDX
  {
    // top row filled with reference samples, remaining rows filled with pOrg data
    for( int x = 0; x < pDst.width; x++ )
    {
      pDst.at( x, 0 ) = pSrc.at( 1 + x, 0 );
    }
    CPelBuf orgRest  = pOrg.subBuf( 0, 0, pOrg.width, pOrg.height - 1 );
    PelBuf  predRest = pDst.subBuf( 0, 1, pDst.width, pDst.height - 1 );

    predRest.copyFrom( orgRest );
  }
}

bool IntraSearch::useDPCMForFirstPassIntraEstimation( const PredictionUnit &pu, const uint32_t &uiDirMode )
{
  return CU::isRDPCMEnabled( *pu.cu ) && pu.cu->transQuantBypass && (uiDirMode == HOR_IDX || uiDirMode == VER_IDX);
}