/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2023, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
*  * Redistributions of source code must retain the above copyright notice,
*    this list of conditions and the following disclaimer.
*  * Redistributions in binary form must reproduce the above copyright notice,
*    this list of conditions and the following disclaimer in the documentation
*    and/or other materials provided with the distribution.
*  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
*    be used to endorse or promote products derived from this software without
*    specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/

/** \file     Picture.cpp
 *  \brief    Description of a coded picture
 */

#include "Picture.h"
#include "SEI.h"
#include "ChromaFormat.h"
#include "CommonLib/InterpolationFilter.h"

#if JVET_AK0085_TM_BOUNDARY_PADDING
#include "TMP.h"
#include "CommonDef.h"
#endif

#if ENABLE_SPLIT_PARALLELISM

int g_wppThreadId( 0 );
#pragma omp threadprivate(g_wppThreadId)

#if ENABLE_SPLIT_PARALLELISM
int g_splitThreadId( 0 );
#pragma omp threadprivate(g_splitThreadId)

int g_splitJobId( 0 );
#pragma omp threadprivate(g_splitJobId)
#endif

Scheduler::Scheduler() :
#if ENABLE_SPLIT_PARALLELISM
  m_numSplitThreads( 1 )
#endif
{
}

Scheduler::~Scheduler()
{
}

#if ENABLE_SPLIT_PARALLELISM
unsigned Scheduler::getSplitDataId( int jobId ) const
{
  if( m_numSplitThreads > 1 && m_hasParallelBuffer )
  {
    int splitJobId = jobId == CURR_THREAD_ID ? g_splitJobId : jobId;

    return ( g_wppThreadId * NUM_RESERVERD_SPLIT_JOBS ) + splitJobId;
  }
  else
  {
    return 0;
  }
}

unsigned Scheduler::getSplitPicId( int tId /*= CURR_THREAD_ID */ ) const
{
  if( m_numSplitThreads > 1 && m_hasParallelBuffer )
  {
    int threadId = tId == CURR_THREAD_ID ? g_splitThreadId : tId;

    return ( g_wppThreadId * m_numSplitThreads ) + threadId;
  }
  else
  {
    return 0;
  }
}

unsigned Scheduler::getSplitJobId() const
{
  if( m_numSplitThreads > 1 )
  {
    return g_splitJobId;
  }
  else
  {
    return 0;
  }
}

void Scheduler::setSplitJobId( const int jobId )
{
  CHECK( g_splitJobId != 0 && jobId != 0, "Need to reset the jobId after usage!" );
  g_splitJobId = jobId;
}

void Scheduler::startParallel()
{
  m_hasParallelBuffer = true;
}

void Scheduler::finishParallel()
{
  m_hasParallelBuffer = false;
}

void Scheduler::setSplitThreadId( const int tId )
{
  g_splitThreadId = tId == CURR_THREAD_ID ? omp_get_thread_num() : tId;
}

#endif



unsigned Scheduler::getDataId() const
{
#if ENABLE_SPLIT_PARALLELISM
  if( m_numSplitThreads > 1 )
  {
    return getSplitDataId();
  }
#endif
  return 0;
}

bool Scheduler::init( const int ctuYsize, const int ctuXsize, const int numWppThreadsRunning, const int numWppExtraLines, const int numSplitThreads )
{
#if ENABLE_SPLIT_PARALLELISM
  m_numSplitThreads = numSplitThreads;
#endif

  return true;
}


int Scheduler::getNumPicInstances() const
{
#if !ENABLE_SPLIT_PARALLELISM
  return 1;
#else
  return ( m_numSplitThreads > 1 ? m_numSplitThreads : 1 );
#endif
}

#endif


// ---------------------------------------------------------------------------
// picture methods
// ---------------------------------------------------------------------------



Picture::Picture()
{
  cs                   = nullptr;
  m_isSubPicBorderSaved = false;
  m_bIsBorderExtended  = false;
  m_wrapAroundValid    = false;
  m_wrapAroundOffset   = 0;
  usedByCurr           = false;
  longTerm             = false;
  reconstructed        = false;
  neededForOutput      = false;
  referenced           = false;
  temporalId           = std::numeric_limits<uint32_t>::max();
  fieldPic             = false;
  topField             = false;
  precedingDRAP        = false;
#if JVET_S0124_UNAVAILABLE_REFERENCE
  nonReferencePictureFlag = false;
#endif
#if JVET_AH0135_TEMPORAL_PARTITIONING
  maxTemporalBtDepth   = 0;
#endif

  for( int i = 0; i < MAX_NUM_CHANNEL_TYPE; i++ )
  {
    m_prevQP[i] = -1;
  }
  m_spliceIdx = NULL;
  m_ctuNums = 0;
  layerId = NOT_VALID;
#if !JVET_S0258_SUBPIC_CONSTRAINTS
  numSubpics = 1;
#endif
  numSlices = 1;
  unscaledPic = nullptr;
#if JVET_Z0118_GDR
  m_cleanDirtyFlag = false;
#endif
}

void Picture::create(
  const bool rprEnabled,
#if JVET_Z0118_GDR
  const bool gdrEnabled,
#endif
  const bool useWrapAround, const ChromaFormat &_chromaFormat, const Size &size, const unsigned _maxCUSize,
  const unsigned _margin,
  const bool _decoder, const int _layerId, const bool gopBasedTemporalFilterEnabled)
{
  layerId = _layerId;
  UnitArea::operator=( UnitArea( _chromaFormat, Area( Position{ 0, 0 }, size ) ) );
  margin            =  rprEnabled?(MAX_SCALING_RATIO*_margin):_margin;
  const Area a      = Area( Position(), size );

#if JVET_Z0118_GDR
  int numPt = (gdrEnabled) ? 2 : 1;
  for (int i = 0; i < numPt; i++)
  {
    M_BUFS(0, PIC_RECONSTRUCTION_0 + i).create(_chromaFormat, a, _maxCUSize, margin, MEMORY_ALIGN_DEF_SIZE);
  }  
#else
  M_BUFS( 0, PIC_RECONSTRUCTION ).create( _chromaFormat, a, _maxCUSize, margin, MEMORY_ALIGN_DEF_SIZE );
#endif

  if (useWrapAround)
  {
    M_BUFS( 0, PIC_RECON_WRAP ).create( _chromaFormat, a, _maxCUSize, margin, MEMORY_ALIGN_DEF_SIZE );
  }

  
  if( !_decoder )
  {
    M_BUFS( 0, PIC_ORIGINAL ).    create( _chromaFormat, a );
  }
#if !KEEP_PRED_AND_RESI_SIGNALS
  m_ctuArea = UnitArea( _chromaFormat, Area( Position{ 0, 0 }, Size( _maxCUSize, _maxCUSize ) ) );
#endif
#if JVET_AK0085_TM_BOUNDARY_PADDING
  m_useTMBP = true;
#endif
  m_hashMap.clearAll();
}

void Picture::destroy()
{
#if ENABLE_SPLIT_PARALLELISM
  for( int jId = 0; jId < PARL_SPLIT_MAX_NUM_THREADS; jId++ )
#endif
  {
    for (uint32_t t = 0; t < NUM_PIC_TYPES; t++)
    {
      M_BUFS(jId, t).destroy();
    }
    m_hashMap.clearAll();
    if (cs)
    {
      cs->destroy();
      delete cs;
      cs = nullptr;
    }

    for (auto &ps: slices)
    {
      delete ps;
    }
    slices.clear();

    for (auto &psei: SEIs)
    {
      delete psei;
    }
    SEIs.clear();

    if (m_spliceIdx)
    {
      delete[] m_spliceIdx;
      m_spliceIdx = NULL;
    }
  }
}

void Picture::createTempBuffers( const unsigned _maxCUSize, bool useFilterFrame, bool resChange, bool decoder)
{
#if KEEP_PRED_AND_RESI_SIGNALS
  const Area a( Position{ 0, 0 }, lumaSize() );
#else
  const Area a = m_ctuArea.Y();
#if JVET_AC0162_ALF_RESIDUAL_SAMPLES_INPUT
  const Area aOld( Position{ 0, 0 }, lumaSize() );
#endif
#endif

#if ENABLE_SPLIT_PARALLELISM
  scheduler.startParallel();

  for( int jId = 0; jId < scheduler.getNumPicInstances(); jId++ )
#endif
  {
    M_BUFS( jId, PIC_PREDICTION                   ).create( chromaFormat, a,   _maxCUSize );
#if JVET_AC0162_ALF_RESIDUAL_SAMPLES_INPUT && !KEEP_PRED_AND_RESI_SIGNALS
    M_BUFS( jId, PIC_RESIDUAL                     ).create(chromaFormat, aOld, _maxCUSize );
#else
    M_BUFS( jId, PIC_RESIDUAL                     ).create( chromaFormat, a,   _maxCUSize );
#endif
    if (!decoder)
    {
#if JVET_AC0162_ALF_RESIDUAL_SAMPLES_INPUT && !KEEP_PRED_AND_RESI_SIGNALS
      M_BUFS(jId, PIC_TRUE_ORIGINAL).create(chromaFormat, aOld, _maxCUSize);
#else
      M_BUFS(jId, PIC_TRUE_ORIGINAL).create(chromaFormat, a, _maxCUSize);
#endif
      if (useFilterFrame)
      {
#if JVET_AC0162_ALF_RESIDUAL_SAMPLES_INPUT && !KEEP_PRED_AND_RESI_SIGNALS
        M_BUFS(jId, PIC_FILTERED_ORIGINAL).create(chromaFormat, aOld, _maxCUSize);
#else
        M_BUFS(jId, PIC_FILTERED_ORIGINAL).create(chromaFormat, a, _maxCUSize);
#endif
      }
      if (resChange)
      {
        const Area aInput(Position{ 0, 0 }, Size(M_BUFS(jId, PIC_ORIGINAL_INPUT).Y().width, M_BUFS(jId, PIC_ORIGINAL_INPUT).Y().height));
        M_BUFS(jId, PIC_TRUE_ORIGINAL_INPUT).create(chromaFormat, aInput, _maxCUSize);
        if (useFilterFrame)
        {
          M_BUFS(jId, PIC_FILTERED_ORIGINAL_INPUT).create(chromaFormat, aInput, _maxCUSize);
        }
      }
    }
#if ENABLE_SPLIT_PARALLELISM
    if (jId > 0)
    {
      M_BUFS(jId, PIC_RECONSTRUCTION).create(chromaFormat, Y(), _maxCUSize, margin, MEMORY_ALIGN_DEF_SIZE);
    }
#endif
  }

  if (cs)
  {
    cs->rebindPicBufs();
  }
}

void Picture::destroyTempBuffers()
{
#if ENABLE_SPLIT_PARALLELISM
  scheduler.finishParallel();

  for( int jId = 0; jId < scheduler.getNumPicInstances(); jId++ )
#endif
  {
    for (uint32_t t = 0; t < NUM_PIC_TYPES; t++)
    {
      if (t == PIC_RESIDUAL || t == PIC_PREDICTION || t == PIC_FILTERED_ORIGINAL || t == PIC_TRUE_ORIGINAL
        || t == PIC_TRUE_ORIGINAL_INPUT || t == PIC_FILTERED_ORIGINAL_INPUT)
      {
        M_BUFS(jId, t).destroy();
      }
#if ENABLE_SPLIT_PARALLELISM
      if (t == PIC_RECONSTRUCTION && jId > 0)
      {
        M_BUFS(jId, t).destroy();
      }
#endif
    }
  }

  if (cs)
  {
    cs->rebindPicBufs();
  }
}

       PelBuf     Picture::getOrigBuf(const CompArea &blk)        { return getBuf(blk,  PIC_ORIGINAL); }
const CPelBuf     Picture::getOrigBuf(const CompArea &blk)  const { return getBuf(blk,  PIC_ORIGINAL); }
       PelUnitBuf Picture::getOrigBuf(const UnitArea &unit)       { return getBuf(unit, PIC_ORIGINAL); }
const CPelUnitBuf Picture::getOrigBuf(const UnitArea &unit) const { return getBuf(unit, PIC_ORIGINAL); }
       PelUnitBuf Picture::getOrigBuf()                           { return M_BUFS(0,    PIC_ORIGINAL); }
const CPelUnitBuf Picture::getOrigBuf()                     const { return M_BUFS(0,    PIC_ORIGINAL); }

       PelBuf     Picture::getOrigBuf(const ComponentID compID)       { return getBuf(compID, PIC_ORIGINAL); }
const CPelBuf     Picture::getOrigBuf(const ComponentID compID) const { return getBuf(compID, PIC_ORIGINAL); }
       PelUnitBuf Picture::getTrueOrigBuf()                           { return M_BUFS(0, PIC_TRUE_ORIGINAL); }
const CPelUnitBuf Picture::getTrueOrigBuf()                     const { return M_BUFS(0, PIC_TRUE_ORIGINAL); }
       PelBuf     Picture::getTrueOrigBuf(const CompArea &blk)        { return getBuf(blk, PIC_TRUE_ORIGINAL); }
const CPelBuf     Picture::getTrueOrigBuf(const CompArea &blk)  const { return getBuf(blk, PIC_TRUE_ORIGINAL); }


       PelBuf     Picture::getTrueOrigBuf(const ComponentID compID)       { return getBuf(compID, PIC_TRUE_ORIGINAL); }
const CPelBuf     Picture::getTrueOrigBuf(const ComponentID compID) const { return getBuf(compID, PIC_TRUE_ORIGINAL); }


       PelUnitBuf Picture::getFilteredOrigBuf()                           { return M_BUFS(0, PIC_FILTERED_ORIGINAL); }
const CPelUnitBuf Picture::getFilteredOrigBuf()                     const { return M_BUFS(0, PIC_FILTERED_ORIGINAL); }
       PelBuf     Picture::getFilteredOrigBuf(const CompArea &blk)        { return getBuf(blk, PIC_FILTERED_ORIGINAL); }
const CPelBuf     Picture::getFilteredOrigBuf(const CompArea &blk)  const { return getBuf(blk, PIC_FILTERED_ORIGINAL); }


       PelBuf     Picture::getPredBuf(const CompArea &blk)        { return getBuf(blk,  PIC_PREDICTION); }
const CPelBuf     Picture::getPredBuf(const CompArea &blk)  const { return getBuf(blk,  PIC_PREDICTION); }
       PelUnitBuf Picture::getPredBuf(const UnitArea &unit)       { return getBuf(unit, PIC_PREDICTION); }
const CPelUnitBuf Picture::getPredBuf(const UnitArea &unit) const { return getBuf(unit, PIC_PREDICTION); }

#if JVET_AC0162_ALF_RESIDUAL_SAMPLES_INPUT
void Picture::setResiBufPLT()
{
  for (uint64_t k = 0; k < cs->cus.size(); k++)
  {
    CodingUnit *cu = cs->cus[k];
    for (int compID = 0; compID < 1; compID++)
    {
      if (cu->predMode == MODE_PLT)
      {
        const ComponentID comp     = ComponentID(compID);
        const CompArea   &compArea = cu->block(comp);

        getResiBuf(compArea).fill(0);
      }
    }
  }
}
#endif

       PelBuf     Picture::getResiBuf(const CompArea &blk)        { return getBuf(blk,  PIC_RESIDUAL); }
const CPelBuf     Picture::getResiBuf(const CompArea &blk)  const { return getBuf(blk,  PIC_RESIDUAL); }
       PelUnitBuf Picture::getResiBuf(const UnitArea &unit)       { return getBuf(unit, PIC_RESIDUAL); }
const CPelUnitBuf Picture::getResiBuf(const UnitArea &unit) const { return getBuf(unit, PIC_RESIDUAL); }

#if JVET_Z0118_GDR
       PelBuf     Picture::getRecoBuf(const ComponentID compID, bool wrap)       { return getBuf(compID, (PictureType) wrap ? PIC_RECON_WRAP : (m_cleanDirtyFlag ? PIC_RECONSTRUCTION_1 : PIC_RECONSTRUCTION_0)); }
const CPelBuf     Picture::getRecoBuf(const ComponentID compID, bool wrap) const { return getBuf(compID, (PictureType) wrap ? PIC_RECON_WRAP : (m_cleanDirtyFlag ? PIC_RECONSTRUCTION_1 : PIC_RECONSTRUCTION_0)); }
       PelBuf     Picture::getRecoBuf(const CompArea &blk, bool wrap)            { return getBuf(blk,    (PictureType) wrap ? PIC_RECON_WRAP : (m_cleanDirtyFlag ? PIC_RECONSTRUCTION_1 : PIC_RECONSTRUCTION_0)); }
const CPelBuf     Picture::getRecoBuf(const CompArea &blk, bool wrap)      const { return getBuf(blk,    (PictureType) wrap ? PIC_RECON_WRAP : (m_cleanDirtyFlag ? PIC_RECONSTRUCTION_1 : PIC_RECONSTRUCTION_0)); }
       PelUnitBuf Picture::getRecoBuf(const UnitArea &unit, bool wrap)           { return getBuf(unit,   (PictureType) wrap ? PIC_RECON_WRAP : (m_cleanDirtyFlag ? PIC_RECONSTRUCTION_1 : PIC_RECONSTRUCTION_0)); }
const CPelUnitBuf Picture::getRecoBuf(const UnitArea &unit, bool wrap)     const { return getBuf(unit,   (PictureType) wrap ? PIC_RECON_WRAP : (m_cleanDirtyFlag ? PIC_RECONSTRUCTION_1 : PIC_RECONSTRUCTION_0)); }
       PelUnitBuf Picture::getRecoBuf(bool wrap)                                 { return M_BUFS(scheduler.getSplitPicId(), wrap ? PIC_RECON_WRAP : (PictureType) (m_cleanDirtyFlag ? PIC_RECONSTRUCTION_1 : PIC_RECONSTRUCTION_0)); }
const CPelUnitBuf Picture::getRecoBuf(bool wrap)                           const { return M_BUFS(scheduler.getSplitPicId(), wrap ? PIC_RECON_WRAP : (PictureType) (m_cleanDirtyFlag ? PIC_RECONSTRUCTION_1 : PIC_RECONSTRUCTION_0)); }
#else
       PelBuf     Picture::getRecoBuf(const ComponentID compID, bool wrap)       { return getBuf(compID,                    wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); }
const CPelBuf     Picture::getRecoBuf(const ComponentID compID, bool wrap) const { return getBuf(compID,                    wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); }
       PelBuf     Picture::getRecoBuf(const CompArea &blk, bool wrap)            { return getBuf(blk,                       wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); }
const CPelBuf     Picture::getRecoBuf(const CompArea &blk, bool wrap)      const { return getBuf(blk,                       wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); }
       PelUnitBuf Picture::getRecoBuf(const UnitArea &unit, bool wrap)           { return getBuf(unit,                      wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); }
const CPelUnitBuf Picture::getRecoBuf(const UnitArea &unit, bool wrap)     const { return getBuf(unit,                      wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); }
       PelUnitBuf Picture::getRecoBuf(bool wrap)                                 { return M_BUFS(scheduler.getSplitPicId(), wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); }
const CPelUnitBuf Picture::getRecoBuf(bool wrap)                           const { return M_BUFS(scheduler.getSplitPicId(), wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); }
#endif

#if JVET_AK0065_TALF
void Picture::finalInit( const VPS* vps, const SPS& sps, const PPS& pps, PicHeader *picHeader, APS** alfApss, APS** alfApss2, APS* lmcsAps, APS* scalingListAps )
#else
void Picture::finalInit( const VPS* vps, const SPS& sps, const PPS& pps, PicHeader *picHeader, APS** alfApss, APS* lmcsAps, APS* scalingListAps )
#endif
{
  for( auto &sei : SEIs )
  {
    delete sei;
  }
  SEIs.clear();
  clearSliceBuffer();

  const ChromaFormat chromaFormatIDC = sps.getChromaFormatIdc();
  const int          iWidth = pps.getPicWidthInLumaSamples();
  const int          iHeight = pps.getPicHeightInLumaSamples();

  if (cs == nullptr)
  {
    cs = new CodingStructure( g_globalUnitCache.cuCache, g_globalUnitCache.puCache, g_globalUnitCache.tuCache );
#if JVET_Z0118_GDR
    cs->create(chromaFormatIDC, Area(0, 0, iWidth, iHeight), true, (bool)sps.getPLTMode(), sps.getGDREnabledFlag());
#else
    cs->create(chromaFormatIDC, Area(0, 0, iWidth, iHeight), true, (bool)sps.getPLTMode());
#endif

  }
  cs->sps = &sps;

  cs->vps = vps;
  cs->picture = this;
  cs->slice   = nullptr;  // the slices for this picture have not been set at this point. update cs->slice after swapSliceObject()
  cs->pps     = &pps;

  picHeader->setSPSId( sps.getSPSId() );
  picHeader->setPPSId( pps.getPPSId() );

#if JVET_Z0118_GDR
  if (cs->isGdrEnabled())
  {
    setCleanDirty(false);

    picHeader->setPic(this);

    PicHeader *ph = new PicHeader;
    ph->initPicHeader();
    *ph = *picHeader;
    ph->setPic(this);

    if (cs->picHeader)
    {
      delete cs->picHeader;
      cs->picHeader = nullptr;
    }

    cs->picHeader = ph;
  }
  else
  {
    cs->picHeader = picHeader;
  }
#else
  cs->picHeader = picHeader;
#endif

  memcpy(cs->alfApss, alfApss, sizeof(cs->alfApss));

#if JVET_AK0065_TALF
  memcpy(cs->talfApss, alfApss2, sizeof(cs->talfApss));
#endif
  cs->lmcsAps = lmcsAps;
  cs->scalinglistAps = scalingListAps;
  cs->pcv     = pps.pcv;
  m_conformanceWindow = pps.getConformanceWindow();
  m_scalingWindow = pps.getScalingWindow();

  if (m_spliceIdx == NULL)
  {
    m_ctuNums = cs->pcv->sizeInCtus;
    m_spliceIdx = new int[m_ctuNums];
    memset(m_spliceIdx, 0, m_ctuNums * sizeof(int));
  }
}

void Picture::allocateNewSlice()
{
  slices.push_back(new Slice);
  Slice& slice = *slices.back();
  memcpy(slice.getAlfAPSs(), cs->alfApss, sizeof(cs->alfApss));

#if JVET_AK0065_TALF
  memcpy(slice.getTAlfAPSs(), cs->talfApss, sizeof(cs->talfApss));
#endif
  slice.setPPS( cs->pps);
  slice.setSPS( cs->sps);
  slice.setVPS( cs->vps);
  if(slices.size()>=2)
  {
    slice.copySliceInfo( slices[slices.size()-2] );
    slice.initSlice();
  }
}

void Picture::fillSliceLossyLosslessArray(std::vector<uint16_t> sliceLosslessIndexArray, bool mixedLossyLossless)
{
  uint16_t numElementsinsliceLosslessIndexArray = (uint16_t)sliceLosslessIndexArray.size();
  uint32_t numSlices = this->cs->pps->getNumSlicesInPic();
  m_lossylosslessSliceArray.assign(numSlices, true); // initialize to all slices are lossless 
  if (mixedLossyLossless)
  {
    m_lossylosslessSliceArray.assign(numSlices, false); // initialize to all slices are lossless 
    CHECK(numElementsinsliceLosslessIndexArray == 0 , "sliceLosslessArray is empty, must need to configure for mixed lossy/lossless");

    // mixed lossy/lossless slices, set only lossless slices;
    for (uint16_t i = 0; i < numElementsinsliceLosslessIndexArray; i++)
    {
        CHECK(sliceLosslessIndexArray[i] >= numSlices || sliceLosslessIndexArray[i] < 0, "index of lossless slice is out of slice index bound");
        m_lossylosslessSliceArray[sliceLosslessIndexArray[i]] = true;
    }
  } 
  CHECK(m_lossylosslessSliceArray.size() < numSlices, "sliceLosslessArray size is less than number of slices");
}

Slice *Picture::swapSliceObject(Slice * p, uint32_t i)
{
  p->setSPS(cs->sps);
  p->setPPS(cs->pps);
  p->setVPS(cs->vps);
  p->setAlfAPSs(cs->alfApss);


  Slice * pTmp = slices[i];
  slices[i] = p;
  pTmp->setSPS(0);
  pTmp->setPPS(0);
  pTmp->setVPS(0);
  memset(pTmp->getAlfAPSs(), 0, sizeof(*pTmp->getAlfAPSs())*ALF_CTB_MAX_NUM_APS);
#if JVET_AK0065_TALF
  p->setTAlfAPSs(cs->talfApss);
  memset(pTmp->getTAlfAPSs(), 0, sizeof(*pTmp->getTAlfAPSs()) * ALF_CTB_MAX_NUM_APS);
#endif

  return pTmp;
}

void Picture::clearSliceBuffer()
{
  for (uint32_t i = 0; i < uint32_t(slices.size()); i++)
  {
    delete slices[i];
  }
  slices.clear();
}

#if ENABLE_SPLIT_PARALLELISM
void Picture::finishParallelPart( const UnitArea& area )
{
  const UnitArea clipdArea = clipArea( area, *this );
  const int      sourceID  = scheduler.getSplitPicId( 0 );
  CHECK( scheduler.getSplitJobId() > 0, "Finish-CU cannot be called from within a mode- or split-parallelized block!" );

  // distribute the reconstruction across all of the parallel workers
  for( int tId = 1; tId < scheduler.getNumSplitThreads(); tId++ )
  {
    const int destID = scheduler.getSplitPicId( tId );

    M_BUFS( destID, PIC_RECONSTRUCTION ).subBuf( clipdArea ).copyFrom( M_BUFS( sourceID, PIC_RECONSTRUCTION ).subBuf( clipdArea ) );
  }
}
#endif

const TFilterCoeff DownsamplingFilterSRC[8][16][12] =
{
    { // D = 1
      {   0,   0,   0,   0,   0, 128,   0,   0,   0,   0,   0,   0 },
      {   0,   0,   0,   2,  -6, 127,   7,  -2,   0,   0,   0,   0 },
      {   0,   0,   0,   3, -12, 125,  16,  -5,   1,   0,   0,   0 },
      {   0,   0,   0,   4, -16, 120,  26,  -7,   1,   0,   0,   0 },
      {   0,   0,   0,   5, -18, 114,  36, -10,   1,   0,   0,   0 },
      {   0,   0,   0,   5, -20, 107,  46, -12,   2,   0,   0,   0 },
      {   0,   0,   0,   5, -21,  99,  57, -15,   3,   0,   0,   0 },
      {   0,   0,   0,   5, -20,  89,  68, -18,   4,   0,   0,   0 },
      {   0,   0,   0,   4, -19,  79,  79, -19,   4,   0,   0,   0 },
      {   0,   0,   0,   4, -18,  68,  89, -20,   5,   0,   0,   0 },
      {   0,   0,   0,   3, -15,  57,  99, -21,   5,   0,   0,   0 },
      {   0,   0,   0,   2, -12,  46, 107, -20,   5,   0,   0,   0 },
      {   0,   0,   0,   1, -10,  36, 114, -18,   5,   0,   0,   0 },
      {   0,   0,   0,   1,  -7,  26, 120, -16,   4,   0,   0,   0 },
      {   0,   0,   0,   1,  -5,  16, 125, -12,   3,   0,   0,   0 },
      {   0,   0,   0,   0,  -2,   7, 127,  -6,   2,   0,   0,   0 }
    },
    { // D = 1.5
#if JVET_AD0169_SMALL_SCALE_DOWNSAMPLING
      {   0,   0,   4, -14,  27,  94,  27, -14,   4,   0,   0,   0 },
      {   0,   0,   4, -13,  21,  94,  32, -14,   3,   1,   0,   0 },
      {   0,   0,   4, -12,  16,  93,  39, -15,   3,   1,  -1,   0 },
      {   0,   0,   4, -11,  11,  92,  45, -15,   2,   1,  -1,   0 },
      {   0,  -1,   4, -10,   7,  89,  51, -14,   1,   2,  -1,   0 },
      {   0,  -1,   4,  -8,   2,  86,  57, -13,   0,   2,  -1,   0 },
      {   0,  -1,   4,  -7,  -1,  82,  63, -12,  -1,   2,  -1,   0 },
      {   0,  -1,   4,  -5,  -5,  78,  68, -10,  -3,   3,  -1,   0 },
      {   0,  -1,   3,  -4,  -8,  74,  74,  -8,  -4,   3,  -1,   0 },
      {   0,  -1,   3,  -3, -10,  68,  78,  -5,  -5,   4,  -1,   0 },
      {   0,  -1,   2,  -1, -12,  63,  82,  -1,  -7,   4,  -1,   0 },
      {   0,  -1,   2,   0, -13,  57,  86,   2,  -8,   4,  -1,   0 },
      {   0,  -1,   2,   1, -14,  51,  89,   7, -10,   4,  -1,   0 },
      {   0,  -1,   1,   2, -15,  45,  92,  11, -11,   4,   0,   0 },
      {   0,  -1,   1,   3, -15,  39,  93,  16, -12,   4,   0,   0 },
      {   0,   0,   1,   3, -14,  32,  94,  21, -13,   4,   0,   0 }
#else
      {   0,   2,   0, -14,  33,  86,  33, -14,   0,   2,   0,   0 },
      {   0,   1,   1, -14,  29,  85,  38, -13,  -1,   2,   0,   0 },
      {   0,   1,   2, -14,  24,  84,  43, -12,  -2,   2,   0,   0 },
      {   0,   1,   2, -13,  19,  83,  48, -11,  -3,   2,   0,   0 },
      {   0,   0,   3, -13,  15,  81,  53, -10,  -4,   3,   0,   0 },
      {   0,   0,   3, -12,  11,  79,  57,  -8,  -5,   3,   0,   0 },
      {   0,   0,   3, -11,   7,  76,  62,  -5,  -7,   3,   0,   0 },
      {   0,   0,   3, -10,   3,  73,  65,  -2,  -7,   3,   0,   0 },
      {   0,   0,   3,  -9,   0,  70,  70,   0,  -9,   3,   0,   0 },
      {   0,   0,   3,  -7,  -2,  65,  73,   3, -10,   3,   0,   0 },
      {   0,   0,   3,  -7,  -5,  62,  76,   7, -11,   3,   0,   0 },
      {   0,   0,   3,  -5,  -8,  57,  79,  11, -12,   3,   0,   0 },
      {   0,   0,   3,  -4, -10,  53,  81,  15, -13,   3,   0,   0 },
      {   0,   0,   2,  -3, -11,  48,  83,  19, -13,   2,   1,   0 },
      {   0,   0,   2,  -2, -12,  43,  84,  24, -14,   2,   1,   0 },
      {   0,   0,   2,  -1, -13,  38,  85,  29, -14,   1,   1,   0 }
#endif
    },
    { // D = 2
      {   0,   5,   -6,  -10,  37,  76,   37,  -10,  -6,    5,  0,   0}, //0
      {   0,   5,   -4,  -11,  33,  76,   40,  -9,    -7,    5,  0,   0}, //1
      //{   0,   5,   -3,  -12,  28,  75,   44,  -7,    -8,    5,  1,   0}, //2
      {  -1,   5,   -3,  -12,  29,  75,   45,  -7,    -8,   5,  0,   0}, //2 new coefficients in m24499
      {  -1,   4,   -2,  -13,  25,  75,   48,  -5,    -9,    5,  1,   0}, //3
      {  -1,   4,   -1,  -13,  22,  73,   52,  -3,    -10,  4,  1,   0}, //4
      {  -1,   4,   0,    -13,  18,  72,   55,  -1,    -11,  4,  2,  -1}, //5
      {  -1,   4,   1,    -13,  14,  70,   59,  2,    -12,  3,  2,  -1}, //6
      {  -1,   3,   1,    -13,  11,  68,   62,  5,    -12,  3,  2,  -1}, //7
      {  -1,   3,   2,    -13,  8,  65,   65,  8,    -13,  2,  3,  -1}, //8
      {  -1,   2,   3,    -12,  5,  62,   68,  11,    -13,  1,  3,  -1}, //9
      {  -1,   2,   3,    -12,  2,  59,   70,  14,    -13,  1,  4,  -1}, //10
      {  -1,   2,   4,    -11,  -1,  55,   72,  18,    -13,  0,  4,  -1}, //11
      {   0,   1,   4,    -10,  -3,  52,   73,  22,    -13,  -1,  4,  -1}, //12
      {   0,   1,   5,    -9,    -5,  48,   75,  25,    -13,  -2,  4,  -1}, //13
      //{   0,   1,   5,    -8,    -7,  44,   75,  28,    -12,  -3,  5,   0}, //14
      {    0,   0,   5,    -8,   -7,  45,   75,  29,    -12,  -3,  5,  -1}  , //14 new coefficients in m24499
      {   0,   0,   5,    -7,    -9,  40,   76,  33,    -11,  -4,  5,   0}, //15
    },
    { // D = 2.5
      {   2,  -3,   -9,  6,   39,  58,   39,  6,   -9,  -3,    2,    0}, // 0
      {   2,  -3,   -9,  4,   38,  58,   43,  7,   -9,  -4,    1,    0}, // 1
      {   2,  -2,   -9,  2,   35,  58,   44,  9,   -8,  -4,    1,    0}, // 2
      {   1,  -2,   -9,  1,   34,  58,   46,  11,   -8,  -5,    1,    0}, // 3
      //{   1,  -1,   -8,  -1,   31,  57,   48,  13,   -8,  -5,    1,    0}, // 4
      {   1,  -1,   -8,  -1,   31,  57,   47,  13,   -7,  -5,    1,    0},  // 4 new coefficients in m24499
      {   1,  -1,   -8,  -2,   29,  56,   49,  15,   -7,  -6,    1,    1}, // 5
      {   1,  0,   -8,  -3,   26,  55,   51,  17,   -7,  -6,    1,    1}, // 6
      {   1,  0,   -7,  -4,   24,  54,   52,  19,   -6,  -7,    1,    1}, // 7
      {   1,  0,   -7,  -5,   22,  53,   53,  22,   -5,  -7,    0,    1}, // 8
      {   1,  1,   -7,  -6,   19,  52,   54,  24,   -4,  -7,    0,    1}, // 9
      {   1,  1,   -6,  -7,   17,  51,   55,  26,   -3,  -8,    0,    1}, // 10
      {   1,  1,   -6,  -7,   15,  49,   56,  29,   -2,  -8,    -1,    1}, // 11
      //{   0,  1,   -5,  -8,   13,  48,   57,  31,   -1,  -8,    -1,    1}, // 12 new coefficients in m24499
      {   0,  1,   -5,  -7,   13,  47,  57,  31,  -1,    -8,   -1,    1}, // 12
      {   0,  1,   -5,  -8,   11,  46,   58,  34,   1,    -9,    -2,    1}, // 13
      {   0,  1,   -4,  -8,   9,    44,   58,  35,   2,    -9,    -2,    2}, // 14
      {   0,  1,   -4,  -9,   7,    43,   58,  38,   4,    -9,    -3,    2}, // 15
    },
    { // D = 3
      {  -2,  -7,   0,  17,  35,  43,  35,  17,   0,  -7,  -5,   2 },
      {  -2,  -7,  -1,  16,  34,  43,  36,  18,   1,  -7,  -5,   2 },
      {  -1,  -7,  -1,  14,  33,  43,  36,  19,   1,  -6,  -5,   2 },
      {  -1,  -7,  -2,  13,  32,  42,  37,  20,   3,  -6,  -5,   2 },
      {   0,  -7,  -3,  12,  31,  42,  38,  21,   3,  -6,  -5,   2 },
      {   0,  -7,  -3,  11,  30,  42,  39,  23,   4,  -6,  -6,   1 },
      {   0,  -7,  -4,  10,  29,  42,  40,  24,   5,  -6,  -6,   1 },
      {   1,  -7,  -4,   9,  27,  41,  40,  25,   6,  -5,  -6,   1 },
      {   1,  -6,  -5,   7,  26,  41,  41,  26,   7,  -5,  -6,   1 },
      {   1,  -6,  -5,   6,  25,  40,  41,  27,   9,  -4,  -7,   1 },
      {   1,  -6,  -6,   5,  24,  40,  42,  29,  10,  -4,  -7,   0 },
      {   1,  -6,  -6,   4,  23,  39,  42,  30,  11,  -3,  -7,   0 },
      {   2,  -5,  -6,   3,  21,  38,  42,  31,  12,  -3,  -7,   0 },
      {   2,  -5,  -6,   3,  20,  37,  42,  32,  13,  -2,  -7,  -1 },
      {   2,  -5,  -6,   1,  19,  36,  43,  33,  14,  -1,  -7,  -1 },
      {   2,  -5,  -7,   1,  18,  36,  43,  34,  16,  -1,  -7,  -2 }
    },
    { // D = 3.5
      {  -6,  -3,   5,  19,  31,  36,  31,  19,   5,  -3,  -6,   0 },
      {  -6,  -4,   4,  18,  31,  37,  32,  20,   6,  -3,  -6,  -1 },
      {  -6,  -4,   4,  17,  30,  36,  33,  21,   7,  -3,  -6,  -1 },
      {  -5,  -5,   3,  16,  30,  36,  33,  22,   8,  -2,  -6,  -2 },
      {  -5,  -5,   2,  15,  29,  36,  34,  23,   9,  -2,  -6,  -2 },
      {  -5,  -5,   2,  15,  28,  36,  34,  24,  10,  -2,  -6,  -3 },
      {  -4,  -5,   1,  14,  27,  36,  35,  24,  10,  -1,  -6,  -3 },
      {  -4,  -5,   0,  13,  26,  35,  35,  25,  11,   0,  -5,  -3 },
      {  -4,  -6,   0,  12,  26,  36,  36,  26,  12,   0,  -6,  -4 },
      {  -3,  -5,   0,  11,  25,  35,  35,  26,  13,   0,  -5,  -4 },
      {  -3,  -6,  -1,  10,  24,  35,  36,  27,  14,   1,  -5,  -4 },
      {  -3,  -6,  -2,  10,  24,  34,  36,  28,  15,   2,  -5,  -5 },
      {  -2,  -6,  -2,   9,  23,  34,  36,  29,  15,   2,  -5,  -5 },
      {  -2,  -6,  -2,   8,  22,  33,  36,  30,  16,   3,  -5,  -5 },
      {  -1,  -6,  -3,   7,  21,  33,  36,  30,  17,   4,  -4,  -6 },
      {  -1,  -6,  -3,   6,  20,  32,  37,  31,  18,   4,  -4,  -6 }
    },
    { // D = 4
      {  -9,   0,   9,  20,  28,  32,  28,  20,   9,   0,  -9,   0 },
      {  -9,   0,   8,  19,  28,  32,  29,  20,  10,   0,  -4,  -5 },
      {  -9,  -1,   8,  18,  28,  32,  29,  21,  10,   1,  -4,  -5 },
      {  -9,  -1,   7,  18,  27,  32,  30,  22,  11,   1,  -4,  -6 },
      {  -8,  -2,   6,  17,  27,  32,  30,  22,  12,   2,  -4,  -6 },
      {  -8,  -2,   6,  16,  26,  32,  31,  23,  12,   2,  -4,  -6 },
      {  -8,  -2,   5,  16,  26,  31,  31,  23,  13,   3,  -3,  -7 },
      {  -8,  -3,   5,  15,  25,  31,  31,  24,  14,   4,  -3,  -7 },
      {  -7,  -3,   4,  14,  25,  31,  31,  25,  14,   4,  -3,  -7 },
      {  -7,  -3,   4,  14,  24,  31,  31,  25,  15,   5,  -3,  -8 },
      {  -7,  -3,   3,  13,  23,  31,  31,  26,  16,   5,  -2,  -8 },
      {  -6,  -4,   2,  12,  23,  31,  32,  26,  16,   6,  -2,  -8 },
      {  -6,  -4,   2,  12,  22,  30,  32,  27,  17,   6,  -2,  -8 },
      {  -6,  -4,   1,  11,  22,  30,  32,  27,  18,   7,  -1,  -9 },
      {  -5,  -4,   1,  10,  21,  29,  32,  28,  18,   8,  -1,  -9 },
      {  -5,  -4,   0,  10,  20,  29,  32,  28,  19,   8,   0,  -9 }
    },
    { // D = 5.5
      {  -8,   7,  13,  18,  22,  24,  22,  18,  13,   7,   2, -10 },
      {  -8,   7,  13,  18,  22,  23,  22,  19,  13,   7,   2, -10 },
      {  -8,   6,  12,  18,  22,  23,  22,  19,  14,   8,   2, -10 },
      {  -9,   6,  12,  17,  22,  23,  23,  19,  14,   8,   3, -10 },
      {  -9,   6,  12,  17,  21,  23,  23,  19,  14,   9,   3, -10 },
      {  -9,   5,  11,  17,  21,  23,  23,  20,  15,   9,   3, -10 },
      {  -9,   5,  11,  16,  21,  23,  23,  20,  15,   9,   4, -10 },
      {  -9,   5,  10,  16,  21,  23,  23,  20,  15,  10,   4, -10 },
      { -10,   5,  10,  16,  20,  23,  23,  20,  16,  10,   5, -10 },
      { -10,   4,  10,  15,  20,  23,  23,  21,  16,  10,   5,  -9 },
      { -10,   4,   9,  15,  20,  23,  23,  21,  16,  11,   5,  -9 },
      { -10,   3,   9,  15,  20,  23,  23,  21,  17,  11,   5,  -9 },
      { -10,   3,   9,  14,  19,  23,  23,  21,  17,  12,   6,  -9 },
      { -10,   3,   8,  14,  19,  23,  23,  22,  17,  12,   6,  -9 },
      { -10,   2,   8,  14,  19,  22,  23,  22,  18,  12,   6,  -8 },
      { -10,   2,   7,  13,  19,  22,  23,  22,  18,  13,   7,  -8 }
    }
};

#if JVET_AB0082
const TFilterCoeff m_lumaFilter12_alt[16][12] =
{
{ 0, 0, 0, 0, 0, 256, 0, 0, 0, 0, 0, 0, },
{ 1, -1, 0, 3, -12, 253, 16, -6, 2, 0, 0, 0, },
{ 0, 0, -3, 9, -24, 250, 32, -11, 4, -1, 0, 0, },
{ 0, 0, -4, 12, -32, 241, 52, -18, 8, -4, 2, -1, },
{ 0, 1, -6, 15, -38, 228, 75, -28, 14, -7, 3, -1, },
{ 0, 1, -7, 18, -43, 214, 96, -33, 16, -8, 3, -1, },
{ 1, 0, -6, 17, -44, 196, 119, -40, 20, -10, 4, -1, },
{ 0, 2, -9, 21, -47, 180, 139, -43, 20, -10, 4, -1, },
{ -1, 3, -9, 21, -46, 160, 160, -46, 21, -9, 3, -1, },
{ -1, 4, -10, 20, -43, 139, 180, -47, 21, -9, 2, 0, },
{ -1, 4, -10, 20, -40, 119, 196, -44, 17, -6, 0, 1, },
{ -1, 3, -8, 16, -33, 96, 214, -43, 18, -7, 1, 0, },
{ -1, 3, -7, 14, -28, 75, 228, -38, 15, -6, 1, 0, },
{ -1, 2, -4, 8, -18, 52, 241, -32, 12, -4, 0, 0, },
{ 0, 0, -1, 4, -11, 32, 250, -24, 9, -3, 0, 0, },
{ 0, 0, 0, 2, -6, 16, 253, -12, 3, 0, -1, 1, },
};
const TFilterCoeff m_chromaFilter6_alt[32][6] =
{
{0, 0, 256, 0, 0, 0, },
{ 1, -6, 256, 6, -1, 0, },
{ 2, -11, 254, 14, -4, 1, },
{ 4, -18, 252, 23, -6, 1, },
{ 6, -24, 249, 32, -9, 2, },
{ 6, -26, 244, 41, -12, 3, },
{ 7, -30, 239, 53, -18, 5, },
{ 8, -34, 235, 61, -19, 5, },
{ 10, -38, 228, 72, -22, 6, },
{ 10, -39, 220, 84, -26, 7, },
{ 10, -40, 213, 94, -29, 8, },
{ 11, -42, 205, 105, -32, 9, },
{ 11, -42, 196, 116, -35, 10, },
{ 11, -42, 186, 128, -37, 10, },
{ 11, -42, 177, 138, -38, 10, },
{ 11, -41, 167, 148, -40, 11, },
{ 11, -41, 158, 158, -41, 11, },
{ 11, -40, 148, 167, -41, 11, },
{ 10, -38, 138, 177, -42, 11, },
{ 10, -37, 128, 186, -42, 11, },
{ 10, -35, 116, 196, -42, 11, },
{ 9, -32, 105, 205, -42, 11, },
{ 8, -29, 94, 213, -40, 10, },
{ 7, -26, 84, 220, -39, 10, },
{ 6, -22, 72, 228, -38, 10, },
{ 5, -19, 61, 235, -34, 8, },
{ 5, -18, 53, 239, -30, 7, },
{ 3, -12, 41, 244, -26, 6, },
{ 2, -9, 32, 249, -24, 6, },
{ 1, -6, 23, 252, -18, 4, },
{ 1, -4, 14, 254, -11, 2, },
{ 0, -1, 6, 256, -6, 1, }
};
#endif
void Picture::sampleRateConv( const std::pair<int, int> scalingRatio, const std::pair<int, int> compScale,
                              const CPelBuf& beforeScale, const int beforeScaleLeftOffset, const int beforeScaleTopOffset,
                              const PelBuf& afterScale, const int afterScaleLeftOffset, const int afterScaleTopOffset,
                              const int bitDepth, const bool useLumaFilter, const bool downsampling,
                              const bool horCollocatedPositionFlag, const bool verCollocatedPositionFlag
#if JVET_AB0082
                              , const bool rescaleForDisplay, const int upscaleFilterForDisplay
#endif
)
{
  const Pel* orgSrc = beforeScale.buf;
  const int orgWidth = beforeScale.width;
  const int orgHeight = beforeScale.height;
  const int orgStride = beforeScale.stride;

  Pel* scaledSrc = afterScale.buf;
  const int scaledWidth = afterScale.width;
  const int scaledHeight = afterScale.height;
  const int scaledStride = afterScale.stride;

  if( orgWidth == scaledWidth && orgHeight == scaledHeight && scalingRatio == SCALE_1X && !beforeScaleLeftOffset && !beforeScaleTopOffset && !afterScaleLeftOffset && !afterScaleTopOffset )
  {
    for( int j = 0; j < orgHeight; j++ )
    {
      memcpy( scaledSrc + j * scaledStride, orgSrc + j * orgStride, sizeof( Pel ) * orgWidth );
    }

    return;
  }

#if JVET_AB0082
  const TFilterCoeff* filterHor = useLumaFilter ? &InterpolationFilter::m_lumaFilter12[0][0] : &InterpolationFilter::m_chromaFilter[0][0];
  const TFilterCoeff* filterVer = useLumaFilter ? &InterpolationFilter::m_lumaFilter12[0][0] : &InterpolationFilter::m_chromaFilter[0][0];
  if (rescaleForDisplay)
  {
    if (upscaleFilterForDisplay != 2)
    {
      filterHor = useLumaFilter ? (upscaleFilterForDisplay == 1 ? &m_lumaFilter12_alt[0][0] : &InterpolationFilter::m_lumaFilter[0][0]) : (upscaleFilterForDisplay == 1 ? &m_chromaFilter6_alt[0][0] : &InterpolationFilter::m_chromaFilter4[0][0]);
      filterVer = useLumaFilter ? (upscaleFilterForDisplay == 1 ? &m_lumaFilter12_alt[0][0] : &InterpolationFilter::m_lumaFilter[0][0]) : (upscaleFilterForDisplay == 1 ? &m_chromaFilter6_alt[0][0] : &InterpolationFilter::m_chromaFilter4[0][0]);
    }
   }
#else
  const TFilterCoeff* filterHor = useLumaFilter ? &InterpolationFilter::m_lumaFilter[0][0] : &InterpolationFilter::m_chromaFilter[0][0];
  const TFilterCoeff* filterVer = useLumaFilter ? &InterpolationFilter::m_lumaFilter[0][0] : &InterpolationFilter::m_chromaFilter[0][0];
#endif
  const int numFracPositions = useLumaFilter ? 15 : 31;
  const int numFracShift = useLumaFilter ? 4 : 5;
  const int posShiftX = SCALE_RATIO_BITS - numFracShift + compScale.first;
  const int posShiftY = SCALE_RATIO_BITS - numFracShift + compScale.second;
  int addX = ( 1 << ( posShiftX - 1 ) ) + ( beforeScaleLeftOffset << SCALE_RATIO_BITS ) + ( ( int( 1 - horCollocatedPositionFlag ) * 8 * ( scalingRatio.first - SCALE_1X.first ) + ( 1 << ( 2 + compScale.first ) ) ) >> ( 3 + compScale.first ) );
  int addY = ( 1 << ( posShiftY - 1 ) ) + ( beforeScaleTopOffset << SCALE_RATIO_BITS ) + ( ( int( 1 - verCollocatedPositionFlag ) * 8 * ( scalingRatio.second - SCALE_1X.second ) + ( 1 << ( 2 + compScale.second ) ) ) >> ( 3 + compScale.second ) );

  if( downsampling )
  {
    int verFilter = 0;
    int horFilter = 0;

    if (scalingRatio.first > (15 << SCALE_RATIO_BITS) / 4)
    {
      horFilter = 7;
    }
    else if (scalingRatio.first > (20 << SCALE_RATIO_BITS) / 7)
    {
      horFilter = 6;
    }
    else if (scalingRatio.first > (5 << SCALE_RATIO_BITS) / 2)
    {
      horFilter = 5;
    }
    else if (scalingRatio.first > (2 << SCALE_RATIO_BITS))
    {
      horFilter = 4;
    }
    else if (scalingRatio.first > (5 << SCALE_RATIO_BITS) / 3)
    {
      horFilter = 3;
    }
#if JVET_AD0169_SMALL_SCALE_DOWNSAMPLING
    else if (scalingRatio.first > (27 << SCALE_RATIO_BITS) / 20)
#else
    else if (scalingRatio.first > (5 << SCALE_RATIO_BITS) / 4)
#endif
    {
      horFilter = 2;
    }
#if JVET_AD0169_SMALL_SCALE_DOWNSAMPLING
    else if (scalingRatio.first > (11 << SCALE_RATIO_BITS) / 10)
#else
    else if (scalingRatio.first > (20 << SCALE_RATIO_BITS) / 19)
#endif
    {
      horFilter = 1;
    }

    if (scalingRatio.second > (15 << SCALE_RATIO_BITS) / 4)
    {
      verFilter = 7;
    }
    else if (scalingRatio.second > (20 << SCALE_RATIO_BITS) / 7)
    {
      verFilter = 6;
    }
    else if (scalingRatio.second > (5 << SCALE_RATIO_BITS) / 2)
    {
      verFilter = 5;
    }
    else if (scalingRatio.second > (2 << SCALE_RATIO_BITS))
    {
      verFilter = 4;
    }
    else if (scalingRatio.second > (5 << SCALE_RATIO_BITS) / 3)
    {
      verFilter = 3;
    }
#if JVET_AD0169_SMALL_SCALE_DOWNSAMPLING
    else if (scalingRatio.second > (27 << SCALE_RATIO_BITS) / 20)
#else
    else if (scalingRatio.second > (5 << SCALE_RATIO_BITS) / 4)
#endif
    {
      verFilter = 2;
    }
#if JVET_AD0169_SMALL_SCALE_DOWNSAMPLING
    else if (scalingRatio.second > (11 << SCALE_RATIO_BITS) / 10)
#else
    else if (scalingRatio.second > (20 << SCALE_RATIO_BITS) / 19)
#endif
    {
      verFilter = 1;
    }

    filterHor = &DownsamplingFilterSRC[horFilter][0][0];
    filterVer = &DownsamplingFilterSRC[verFilter][0][0];
  }
#if IF_12TAP
#if !RPR_ENABLE
  CHECK( true, "Called at un-handled point" );
#endif
#if JVET_AB0082
  int filterLengthsLuma[3] = { 8, 12, 12 };
  int filterLengthsChroma[3] = { 4, 6, 6 };
  const int filterLength = downsampling ? 12 : rescaleForDisplay ? (useLumaFilter ? filterLengthsLuma[upscaleFilterForDisplay] : filterLengthsChroma[upscaleFilterForDisplay]) : (useLumaFilter ? NTAPS_LUMA(0) : NTAPS_CHROMA);
#else
  const int filterLength = downsampling ? 12 : (useLumaFilter ? NTAPS_LUMA(1) : NTAPS_CHROMA);
#endif
#else
  const int filterLength = downsampling ? 12 : (useLumaFilter ? NTAPS_LUMA : NTAPS_CHROMA);
#endif
#if RPR_ENABLE && IF_12TAP
  const int log2Norm = downsampling ? 14 : 16;
#else
  const int log2Norm = downsampling ? 14 : 12;
#endif

  int *buf = new int[orgHeight * scaledWidth];
  int maxVal = ( 1 << bitDepth ) - 1;

  CHECK( bitDepth > 17, "Overflow may happen!" );

  for( int i = 0; i < scaledWidth; i++ )
  {
    const Pel* org = orgSrc;
    int refPos = ( ( ( i << compScale.first ) - afterScaleLeftOffset ) * scalingRatio.first + addX ) >> posShiftX;
    int integer = refPos >> numFracShift;
    int frac = refPos & numFracPositions;
    int* tmp = buf + i;

    for( int j = 0; j < orgHeight; j++ )
    {
      int sum = 0;
      const TFilterCoeff* f = filterHor + frac * filterLength;

      for( int k = 0; k < filterLength; k++ )
      {
        int xInt = std::min<int>( std::max( 0, integer + k - filterLength / 2 + 1 ), orgWidth - 1 );
        sum += f[k] * org[xInt]; // postpone horizontal filtering gain removal after vertical filtering
      }

      *tmp = sum;

      tmp += scaledWidth;
      org += orgStride;
    }
  }

  Pel* dst = scaledSrc;

  for( int j = 0; j < scaledHeight; j++ )
  {
    int refPos = ( ( ( j << compScale.second ) - afterScaleTopOffset ) * scalingRatio.second + addY ) >> posShiftY;
    int integer = refPos >> numFracShift;
    int frac = refPos & numFracPositions;

    for( int i = 0; i < scaledWidth; i++ )
    {
#if RPR_ENABLE && IF_12TAP
      uint64_t sum = 0;
#else
      int sum = 0;
#endif
      int* tmp = buf + i;
      const TFilterCoeff* f = filterVer + frac * filterLength;

      for( int k = 0; k < filterLength; k++ )
      {
        int yInt = std::min<int>( std::max( 0, integer + k - filterLength / 2 + 1 ), orgHeight - 1 );
        sum += f[k] * tmp[yInt*scaledWidth];
      }

#if RPR_ENABLE && IF_12TAP
      const uint64_t one = 1;
      int sumS = (int)((sum + (one << (log2Norm - 1))) >> log2Norm);
      dst[i] = std::min<int>(std::max(0, sumS), maxVal);
#else
      dst[i] = std::min<int>( std::max( 0, ( sum + ( 1 << ( log2Norm - 1 ) ) ) >> log2Norm ), maxVal );
#endif
    }

    dst += scaledStride;
  }

  delete[] buf;
}

void Picture::rescalePicture( const std::pair<int, int> scalingRatio,
                              const CPelUnitBuf& beforeScaling, const Window& scalingWindowBefore,
                              const PelUnitBuf& afterScaling, const Window& scalingWindowAfter,
                              const ChromaFormat chromaFormatIDC, const BitDepths& bitDepths, const bool useLumaFilter, const bool downsampling,
                              const bool horCollocatedChromaFlag, const bool verCollocatedChromaFlag
#if JVET_AB0082
                            , bool rescaleForDisplay, int upscaleFilterForDisplay
#endif
)
{
  for( int comp = 0; comp < ::getNumberValidComponents( chromaFormatIDC ); comp++ )
  {
    ComponentID compID = ComponentID( comp );
    const CPelBuf& beforeScale = beforeScaling.get( compID );
    const PelBuf& afterScale = afterScaling.get( compID );

    sampleRateConv( scalingRatio, std::pair<int, int>( ::getComponentScaleX( compID, chromaFormatIDC ), ::getComponentScaleY( compID, chromaFormatIDC ) ),
                    beforeScale, scalingWindowBefore.getWindowLeftOffset() * SPS::getWinUnitX( chromaFormatIDC ), scalingWindowBefore.getWindowTopOffset() * SPS::getWinUnitY( chromaFormatIDC ),
                    afterScale, scalingWindowAfter.getWindowLeftOffset() * SPS::getWinUnitX( chromaFormatIDC ), scalingWindowAfter.getWindowTopOffset() * SPS::getWinUnitY( chromaFormatIDC ),
                    bitDepths.recon[toChannelType(compID)], downsampling || useLumaFilter ? true : isLuma( compID ), downsampling,
                    isLuma( compID ) ? 1 : horCollocatedChromaFlag, isLuma( compID ) ? 1 : verCollocatedChromaFlag
#if JVET_AB0082
                  , rescaleForDisplay, upscaleFilterForDisplay
#endif
    );
  }
}

void Picture::saveSubPicBorder(int POC, int subPicX0, int subPicY0, int subPicWidth, int subPicHeight)
{
  // 1.1 set up margin for back up memory allocation
  int xMargin = margin >> getComponentScaleX(COMPONENT_Y, cs->area.chromaFormat);
  int yMargin = margin >> getComponentScaleY(COMPONENT_Y, cs->area.chromaFormat);

  // 1.2 measure the size of back up memory
  Area areaAboveBelow(0, 0, subPicWidth + 2 * xMargin, yMargin);
  Area areaLeftRight(0, 0, xMargin, subPicHeight);
  UnitArea unitAreaAboveBelow(cs->area.chromaFormat, areaAboveBelow);
  UnitArea unitAreaLeftRight(cs->area.chromaFormat, areaLeftRight);

  // 1.3 create back up memory
  m_bufSubPicAbove.create(unitAreaAboveBelow);
  m_bufSubPicBelow.create(unitAreaAboveBelow);
  m_bufSubPicLeft.create(unitAreaLeftRight);
  m_bufSubPicRight.create(unitAreaLeftRight);
  m_bufWrapSubPicAbove.create(unitAreaAboveBelow);
  m_bufWrapSubPicBelow.create(unitAreaAboveBelow);

  for (int comp = 0; comp < getNumberValidComponents(cs->area.chromaFormat); comp++)
  {
    ComponentID compID = ComponentID(comp);

    // 2.1 measure the margin for each component
    int xmargin = margin >> getComponentScaleX(compID, cs->area.chromaFormat);
    int ymargin = margin >> getComponentScaleY(compID, cs->area.chromaFormat);

    // 2.2 calculate the origin of the subpicture
    int left = subPicX0 >> getComponentScaleX(compID, cs->area.chromaFormat);
    int top = subPicY0 >> getComponentScaleY(compID, cs->area.chromaFormat);

    // 2.3 calculate the width/height of the subPic
    int width = subPicWidth >> getComponentScaleX(compID, cs->area.chromaFormat);
    int height = subPicHeight >> getComponentScaleY(compID, cs->area.chromaFormat);


    // 3.1.1 set reconstructed picture
    PelBuf s = M_BUFS(0, PIC_RECONSTRUCTION).get(compID);
    Pel *src = s.bufAt(left, top);

    // 3.2.1 set back up buffer for left
    PelBuf dBufLeft   = m_bufSubPicLeft.getBuf(compID);
    Pel    *dstLeft   = dBufLeft.bufAt(0, 0);


    // 3.2.2 set back up buffer for right
    PelBuf dBufRight  = m_bufSubPicRight.getBuf(compID);
    Pel    *dstRight  = dBufRight.bufAt(0, 0);

    // 3.2.3 copy to recon picture to back up buffer
    Pel *srcLeft  = src - xmargin;
    Pel *srcRight = src + width;
    for (int y = 0; y < height; y++)
    {
      ::memcpy(dstLeft  + y *  dBufLeft.stride, srcLeft  + y * s.stride, sizeof(Pel) * xmargin);
      ::memcpy(dstRight + y * dBufRight.stride, srcRight + y * s.stride, sizeof(Pel) * xmargin);
    }

    // 3.3.1 set back up buffer for above
    PelBuf dBufTop = m_bufSubPicAbove.getBuf(compID);
    Pel    *dstTop = dBufTop.bufAt(0, 0);

    // 3.3.2 set back up buffer for below
    PelBuf dBufBottom = m_bufSubPicBelow.getBuf(compID);
    Pel    *dstBottom = dBufBottom.bufAt(0, 0);

    // 3.3.3 copy to recon picture to back up buffer
    Pel *srcTop    = src - xmargin - ymargin * s.stride;
    Pel *srcBottom = src - xmargin +  height * s.stride;
    for (int y = 0; y < ymargin; y++)
    {
      ::memcpy(dstTop    + y *    dBufTop.stride, srcTop    + y * s.stride, sizeof(Pel) * (2 * xmargin + width));
      ::memcpy(dstBottom + y * dBufBottom.stride, srcBottom + y * s.stride, sizeof(Pel) * (2 * xmargin + width));
    }

    // back up recon wrap buffer
    if (cs->sps->getWrapAroundEnabledFlag())
    {
      PelBuf sWrap = M_BUFS(0, PIC_RECON_WRAP).get(compID);
      Pel *srcWrap = sWrap.bufAt(left, top);

      // 3.4.1 set back up buffer for above
      PelBuf dBufTopWrap = m_bufWrapSubPicAbove.getBuf(compID);
      Pel    *dstTopWrap = dBufTopWrap.bufAt(0, 0);

      // 3.4.2 set back up buffer for below
      PelBuf dBufBottomWrap = m_bufWrapSubPicBelow.getBuf(compID);
      Pel    *dstBottomWrap = dBufBottomWrap.bufAt(0, 0);

      // 3.4.3 copy recon wrap picture to back up buffer
      Pel *srcTopWrap    = srcWrap - xmargin - ymargin * sWrap.stride;
      Pel *srcBottomWrap = srcWrap - xmargin +  height * sWrap.stride;
      for (int y = 0; y < ymargin; y++)
      {
        ::memcpy(dstTopWrap    + y *    dBufTopWrap.stride, srcTopWrap    + y * sWrap.stride, sizeof(Pel) * (2 * xmargin + width));
        ::memcpy(dstBottomWrap + y * dBufBottomWrap.stride, srcBottomWrap + y * sWrap.stride, sizeof(Pel) * (2 * xmargin + width));
      }
    }
  }
}

void Picture::extendSubPicBorder(int POC, int subPicX0, int subPicY0, int subPicWidth, int subPicHeight)
{
  for (int comp = 0; comp < getNumberValidComponents(cs->area.chromaFormat); comp++)
  {
    ComponentID compID = ComponentID(comp);

    // 2.1 measure the margin for each component
    int xmargin = margin >> getComponentScaleX(compID, cs->area.chromaFormat);
    int ymargin = margin >> getComponentScaleY(compID, cs->area.chromaFormat);

    // 2.2 calculate the origin of the Subpicture
    int left = subPicX0 >> getComponentScaleX(compID, cs->area.chromaFormat);
    int top = subPicY0 >> getComponentScaleY(compID, cs->area.chromaFormat);

    // 2.3 calculate the width/height of the Subpicture
    int width = subPicWidth >> getComponentScaleX(compID, cs->area.chromaFormat);
    int height = subPicHeight >> getComponentScaleY(compID, cs->area.chromaFormat);

#if JVET_Z0118_GDR
    int numPt = (cs->isGdrEnabled()) ? 2 : 1;    
    for (int i = 0; i < numPt; i++)
    {
      PelBuf s = M_BUFS(0, PIC_RECONSTRUCTION+i).get(compID);
      Pel *src = s.bufAt(left, top);
#else
      // 3.1 set reconstructed picture
      PelBuf s = M_BUFS(0, PIC_RECONSTRUCTION).get(compID);
      Pel *src = s.bufAt(left, top);
#endif

      // 4.1 apply padding for left and right    
      Pel *dstLeft  = src - xmargin;
      Pel *dstRight = src + width;
      Pel *srcLeft  = src + 0;
      Pel *srcRight = src + width - 1;

      for (int y = 0; y < height; y++)
      {
        for (int x = 0; x < xmargin; x++)
        {
          dstLeft[x]  = *srcLeft;
          dstRight[x] = *srcRight;
        }
        dstLeft += s.stride;
        dstRight += s.stride;
        srcLeft += s.stride;
        srcRight += s.stride;
      }    

      // 4.2 apply padding on bottom
      Pel *srcBottom = src + s.stride * (height - 1) - xmargin;
      Pel *dstBottom = srcBottom + s.stride;
      for (int y = 0; y < ymargin; y++)
      {
        ::memcpy(dstBottom, srcBottom, sizeof(Pel)*(2 * xmargin + width));
        dstBottom += s.stride;
      }

      // 4.3 apply padding for top
      // si is still (-marginX, SubpictureHeight-1)
      Pel *srcTop = src - xmargin;
      Pel *dstTop = srcTop - s.stride;
      // si is now (-marginX, 0)
      for (int y = 0; y < ymargin; y++)
      {
        ::memcpy(dstTop, srcTop, sizeof(Pel)*(2 * xmargin + width));
        dstTop -= s.stride;
      }
#if JVET_Z0118_GDR
    } // for loop
#endif 

    // Appy padding for recon wrap buffer
    if (cs->sps->getWrapAroundEnabledFlag())
    {
      // set recon wrap picture
      PelBuf sWrap = M_BUFS(0, PIC_RECON_WRAP).get(compID);
      Pel *srcWrap = sWrap.bufAt(left, top);

      // apply padding on bottom
      Pel *srcBottomWrap = srcWrap + sWrap.stride * (height - 1) - xmargin;
      Pel *dstBottomWrap = srcBottomWrap + sWrap.stride;
      for (int y = 0; y < ymargin; y++)
      {
        ::memcpy(dstBottomWrap, srcBottomWrap, sizeof(Pel)*(2 * xmargin + width));
        dstBottomWrap += sWrap.stride;
      }

      // apply padding for top
      // si is still (-marginX, SubpictureHeight-1)
      Pel *srcTopWrap = srcWrap - xmargin;
      Pel *dstTopWrap = srcTopWrap - sWrap.stride;
      // si is now (-marginX, 0)
      for (int y = 0; y < ymargin; y++)
      {
        ::memcpy(dstTopWrap, srcTopWrap, sizeof(Pel)*(2 * xmargin + width));
        dstTopWrap -= sWrap.stride;
      }
    }
  } // end of for
}

void Picture::restoreSubPicBorder(int POC, int subPicX0, int subPicY0, int subPicWidth, int subPicHeight)
{
  for (int comp = 0; comp < getNumberValidComponents(cs->area.chromaFormat); comp++)
  {
    ComponentID compID = ComponentID(comp);

    // 2.1 measure the margin for each component
    int xmargin = margin >> getComponentScaleX(compID, cs->area.chromaFormat);
    int ymargin = margin >> getComponentScaleY(compID, cs->area.chromaFormat);

    // 2.2 calculate the origin of the subpicture
    int left = subPicX0 >> getComponentScaleX(compID, cs->area.chromaFormat);
    int top = subPicY0 >> getComponentScaleY(compID, cs->area.chromaFormat);

    // 2.3 calculate the width/height of the subpicture
    int width = subPicWidth >> getComponentScaleX(compID, cs->area.chromaFormat);
    int height = subPicHeight >> getComponentScaleY(compID, cs->area.chromaFormat);

    // 3.1 set reconstructed picture
    PelBuf s = M_BUFS(0, PIC_RECONSTRUCTION).get(compID);
    Pel *src = s.bufAt(left, top);

    // 4.2.1 copy from back up buffer to recon picture
    PelBuf dBufLeft = m_bufSubPicLeft.getBuf(compID);
    Pel    *dstLeft = dBufLeft.bufAt(0, 0);

    // 4.2.2 set back up buffer for right
    PelBuf dBufRight = m_bufSubPicRight.getBuf(compID);
    Pel    *dstRight = dBufRight.bufAt(0, 0);

    // 4.2.3 copy to recon picture to back up buffer
    Pel *srcLeft  = src - xmargin;
    Pel *srcRight = src + width;

    for (int y = 0; y < height; y++)
    {
      // the destination and source position is reversed on purpose
      ::memcpy(srcLeft  + y * s.stride,  dstLeft + y *  dBufLeft.stride, sizeof(Pel) * xmargin);
      ::memcpy(srcRight + y * s.stride, dstRight + y * dBufRight.stride, sizeof(Pel) * xmargin);
    }


    // 4.3.1 set back up buffer for above
    PelBuf dBufTop = m_bufSubPicAbove.getBuf(compID);
    Pel    *dstTop = dBufTop.bufAt(0, 0);

    // 4.3.2 set back up buffer for below
    PelBuf dBufBottom = m_bufSubPicBelow.getBuf(compID);
    Pel    *dstBottom = dBufBottom.bufAt(0, 0);

    // 4.3.3 copy to recon picture to back up buffer
    Pel *srcTop = src - xmargin - ymargin * s.stride;
    Pel *srcBottom = src - xmargin + height * s.stride;

    for (int y = 0; y < ymargin; y++)
    {
      ::memcpy(srcTop    + y * s.stride, dstTop    + y *    dBufTop.stride, sizeof(Pel) * (2 * xmargin + width));
      ::memcpy(srcBottom + y * s.stride, dstBottom + y * dBufBottom.stride, sizeof(Pel) * (2 * xmargin + width));
    }

    // restore recon wrap buffer
    if (cs->sps->getWrapAroundEnabledFlag())
    {
      // set recon wrap picture
      PelBuf sWrap = M_BUFS(0, PIC_RECON_WRAP).get(compID);
      Pel *srcWrap = sWrap.bufAt(left, top);

      // set back up buffer for above
      PelBuf dBufTopWrap = m_bufWrapSubPicAbove.getBuf(compID);
      Pel    *dstTopWrap = dBufTopWrap.bufAt(0, 0);

      // set back up buffer for below
      PelBuf dBufBottomWrap = m_bufWrapSubPicBelow.getBuf(compID);
      Pel    *dstBottomWrap = dBufBottomWrap.bufAt(0, 0);

      // copy to recon wrap picture from back up buffer
      Pel *srcTopWrap = srcWrap - xmargin - ymargin * sWrap.stride;
      Pel *srcBottomWrap = srcWrap - xmargin + height * sWrap.stride;

      for (int y = 0; y < ymargin; y++)
      {
        ::memcpy(srcTopWrap    + y * sWrap.stride, dstTopWrap    + y *    dBufTopWrap.stride, sizeof(Pel) * (2 * xmargin + width));
        ::memcpy(srcBottomWrap + y * sWrap.stride, dstBottomWrap + y * dBufBottomWrap.stride, sizeof(Pel) * (2 * xmargin + width));
      }
    }
  }

  // 5.0 destroy the back up memory
  m_bufSubPicAbove.destroy();
  m_bufSubPicBelow.destroy();
  m_bufSubPicLeft.destroy();
  m_bufSubPicRight.destroy();
  m_bufWrapSubPicAbove.destroy();
  m_bufWrapSubPicBelow.destroy();
}

void Picture::extendPicBorder( const PPS *pps )
{
  if ( m_bIsBorderExtended )
  {
    if( isWrapAroundEnabled( pps ) && ( !m_wrapAroundValid || m_wrapAroundOffset != pps->getWrapAroundOffset() ) )
    {
      extendWrapBorder( pps );
    }
    return;
  }


#if JVET_AK0085_TM_BOUNDARY_PADDING
    int picWidth = cs->sps->getMaxPicWidthInLumaSamples();
    int picHeight = cs->sps->getMaxPicHeightInLumaSamples();

    PelUnitBuf s = M_BUFS(0, PIC_RECONSTRUCTION);

    BoundaryTop topB = 0;
    BoundaryBottom bottomB = 0;
    BoundaryLeft leftB = 0;
    BoundaryRight rightB = 0;

    Area picAreaTopBottom = Area(Position(0, 0), Size(picWidth, picHeight));
    TemplateMatchingPadding(s, topB, picAreaTopBottom);
    TemplateMatchingPadding(s, bottomB, picAreaTopBottom);

    Area picAreaLeftRight = Area(Position(0, -TMP_PADSIZE), Size(picWidth, picHeight+2*TMP_PADSIZE));
    TemplateMatchingPadding(s, leftB, picAreaLeftRight);
    TemplateMatchingPadding(s, rightB, picAreaLeftRight);
#endif


#if JVET_Z0118_GDR
  int numPt = (cs->isGdrEnabled()) ? PIC_RECONSTRUCTION_1 : PIC_RECONSTRUCTION_0;  
  for (int pt = (int) PIC_RECONSTRUCTION_0; pt <= (int) numPt; pt++)
  {
    for (int comp = 0; comp < getNumberValidComponents(cs->area.chromaFormat); comp++)
    {
      ComponentID compID = ComponentID(comp);
      PelBuf p = M_BUFS(0, (PictureType) pt).get(compID);
#if JVET_AK0085_TM_BOUNDARY_PADDING
      int width = p.width + ((2*TMP_PADSIZE) >> getComponentScaleX(compID, cs->area.chromaFormat));
      int height = p.height + ((2*TMP_PADSIZE) >> getComponentScaleY(compID, cs->area.chromaFormat));

      int tmpOffsetX = TMP_PADSIZE >> getComponentScaleX( compID, cs->area.chromaFormat );
      int tmpOffsetY = TMP_PADSIZE >> getComponentScaleY( compID, cs->area.chromaFormat );

      Pel *piTxt = p.bufAt(-tmpOffsetX,-tmpOffsetY);

      int xmargin = (margin - TMP_PADSIZE) >> getComponentScaleX( compID, cs->area.chromaFormat );
      int ymargin = (margin - TMP_PADSIZE) >> getComponentScaleY( compID, cs->area.chromaFormat );
#else
      int width = p.width;
      int height = p.height;

      Pel *piTxt = p.bufAt(0, 0);
      int xmargin = margin >> getComponentScaleX(compID, cs->area.chromaFormat);
      int ymargin = margin >> getComponentScaleY(compID, cs->area.chromaFormat);
#endif

      Pel*  pi = piTxt;
      // do left and right margins
      for (int y = 0; y < height; y++)
      {
        for (int x = 0; x < xmargin; x++)
        {
          pi[-xmargin + x] = pi[0];
          pi[width + x] = pi[width - 1];
        }
        pi += p.stride;
      }

      // pi is now the (0,height) (bottom left of image within bigger picture
      pi -= (p.stride + xmargin);
      // pi is now the (-marginX, height-1)
      for (int y = 0; y < ymargin; y++)
      {
        ::memcpy(pi + (y + 1)*p.stride, pi, sizeof(Pel)*(width + (xmargin << 1)));
      }

      // pi is still (-marginX, height-1)
      pi -= ((height - 1) * p.stride);
      // pi is now (-marginX, 0)
      for (int y = 0; y < ymargin; y++)
      {
        ::memcpy(pi - (y + 1)*p.stride, pi, sizeof(Pel)*(width + (xmargin << 1)));
      }

      // reference picture with horizontal wrapped boundary
      if (isWrapAroundEnabled(pps))
      {
        extendWrapBorder(pps);
      }
      else
      {
        m_wrapAroundValid = false;
        m_wrapAroundOffset = 0;
      }
    }
  }
#else
  for(int comp=0; comp<getNumberValidComponents( cs->area.chromaFormat ); comp++)
  {
    ComponentID compID = ComponentID( comp );
    PelBuf p = M_BUFS( 0, PIC_RECONSTRUCTION ).get( compID );

#if JVET_AK0085_TM_BOUNDARY_PADDING
    int width = p.width + ((2*TMP_PADSIZE) >> getComponentScaleX(compID, cs->area.chromaFormat));
    int height = p.height + ((2*TMP_PADSIZE) >> getComponentScaleY(compID, cs->area.chromaFormat));

    Pel *piTxt = p.bufAt(-TMP_PADSIZE,-TMP_PADSIZE);
    int xmargin = (margin - TMP_PADSIZE) >> getComponentScaleX( compID, cs->area.chromaFormat );
    int ymargin = (margin - TMP_PADSIZE) >> getComponentScaleY( compID, cs->area.chromaFormat );
#else
    int width = p.width;
    int height = p.height;

    Pel *piTxt = p.bufAt(0,0);
    int xmargin = margin >> getComponentScaleX( compID, cs->area.chromaFormat );
    int ymargin = margin >> getComponentScaleY( compID, cs->area.chromaFormat );
#endif

    Pel*  pi = piTxt;
    // do left and right margins
    for (int y = 0; y < height; y++)
    {
      for (int x = 0; x < xmargin; x++)
      {
        pi[-xmargin + x] = pi[0];
        pi[width + x]  = pi[width - 1];
      }
      pi += p.stride;
    }

    // pi is now the (0,height) (bottom left of image within bigger picture
    pi -= (p.stride + xmargin);
    // pi is now the (-marginX, height-1)
    for (int y = 0; y < ymargin; y++ )
    {
      ::memcpy( pi + (y+1)*p.stride, pi, sizeof(Pel)*(width + (xmargin << 1)));
    }

    // pi is still (-marginX, height-1)
    pi -= ((height-1) * p.stride);
    // pi is now (-marginX, 0)
    for (int y = 0; y < ymargin; y++ )
    {
      ::memcpy( pi - (y+1)*p.stride, pi, sizeof(Pel)*(width + (xmargin<<1)) );
    }

    // reference picture with horizontal wrapped boundary
    if ( isWrapAroundEnabled( pps ) )
    {
      extendWrapBorder( pps );
    }
    else
    {
      m_wrapAroundValid = false;
      m_wrapAroundOffset = 0;
    }
  }
#endif

  m_bIsBorderExtended = true;
}

void Picture::extendWrapBorder( const PPS *pps )
{
  for(int comp=0; comp<getNumberValidComponents( cs->area.chromaFormat ); comp++)
  {
    ComponentID compID = ComponentID( comp );
    PelBuf p = M_BUFS( 0, PIC_RECON_WRAP ).get( compID );
    p.copyFrom(M_BUFS( 0, PIC_RECONSTRUCTION ).get( compID ));
    Pel *piTxt = p.bufAt(0,0);
    int xmargin = margin >> getComponentScaleX( compID, cs->area.chromaFormat );
    int ymargin = margin >> getComponentScaleY( compID, cs->area.chromaFormat );
    Pel*  pi = piTxt;
    int xoffset = pps->getWrapAroundOffset() >> getComponentScaleX( compID, cs->area.chromaFormat );
    for (int y = 0; y < p.height; y++)
    {
      for (int x = 0; x < xmargin; x++ )
      {
        if( x < xoffset )
        {
          pi[ -x - 1 ] = pi[ -x - 1 + xoffset ];
          pi[  p.width + x ] = pi[ p.width + x - xoffset ];
        }
        else
        {
          pi[ -x - 1 ] = pi[ 0 ];
          pi[  p.width + x ] = pi[ p.width - 1 ];
        }
      }
      pi += p.stride;
    }
    pi -= (p.stride + xmargin);
    for (int y = 0; y < ymargin; y++ )
    {
      ::memcpy( pi + (y+1)*p.stride, pi, sizeof(Pel)*(p.width + (xmargin << 1)));
    }
    pi -= ((p.height-1) * p.stride);
    for (int y = 0; y < ymargin; y++ )
    {
      ::memcpy( pi - (y+1)*p.stride, pi, sizeof(Pel)*(p.width + (xmargin<<1)) );
    }
  }
  m_wrapAroundValid = true;
  m_wrapAroundOffset = pps->getWrapAroundOffset();
}

PelBuf Picture::getBuf( const ComponentID compID, const PictureType &type )
{
#if JVET_Z0118_GDR
  if (type == PIC_RECONSTRUCTION_0 || type == PIC_RECONSTRUCTION_1)
  {
    return M_BUFS(scheduler.getSplitPicId(), type).getBuf(compID);
  }
#endif

  return M_BUFS( ( type == PIC_ORIGINAL || type == PIC_TRUE_ORIGINAL || type == PIC_FILTERED_ORIGINAL || type == PIC_ORIGINAL_INPUT || type == PIC_TRUE_ORIGINAL_INPUT || type == PIC_FILTERED_ORIGINAL_INPUT ) ? 0 : scheduler.getSplitPicId(), type ).getBuf( compID );
}

const CPelBuf Picture::getBuf( const ComponentID compID, const PictureType &type ) const
{
#if JVET_Z0118_GDR
  if (type == PIC_RECONSTRUCTION_0 || type == PIC_RECONSTRUCTION_1)
  {
    return M_BUFS(scheduler.getSplitPicId(), type).getBuf(compID);
  }
#endif

  return M_BUFS( ( type == PIC_ORIGINAL || type == PIC_TRUE_ORIGINAL || type == PIC_FILTERED_ORIGINAL || type == PIC_ORIGINAL_INPUT || type == PIC_TRUE_ORIGINAL_INPUT || type == PIC_FILTERED_ORIGINAL_INPUT ) ? 0 : scheduler.getSplitPicId(), type ).getBuf( compID );
}

PelBuf Picture::getBuf( const CompArea &blk, const PictureType &type )
{
  if( !blk.valid() )
  {
    return PelBuf();
  }

#if ENABLE_SPLIT_PARALLELISM
  const int jId = ( type == PIC_ORIGINAL || type == PIC_TRUE_ORIGINAL || type == PIC_ORIGINAL_INPUT || type == PIC_TRUE_ORIGINAL_INPUT ) ? 0 : scheduler.getSplitPicId();
#endif
#if !KEEP_PRED_AND_RESI_SIGNALS
#if JVET_AC0162_ALF_RESIDUAL_SAMPLES_INPUT
  if (type == PIC_PREDICTION)
#else
  if( type == PIC_RESIDUAL || type == PIC_PREDICTION )
#endif
  {
    CompArea localBlk = blk;
    localBlk.x &= ( cs->pcv->maxCUWidthMask  >> getComponentScaleX( blk.compID, blk.chromaFormat ) );
    localBlk.y &= ( cs->pcv->maxCUHeightMask >> getComponentScaleY( blk.compID, blk.chromaFormat ) );

    return M_BUFS( jId, type ).getBuf( localBlk );
  }
#endif

  return M_BUFS( jId, type ).getBuf( blk );
}

const CPelBuf Picture::getBuf( const CompArea &blk, const PictureType &type ) const
{
  if( !blk.valid() )
  {
    return PelBuf();
  }

#if ENABLE_SPLIT_PARALLELISM
  const int jId = ( type == PIC_ORIGINAL || type == PIC_TRUE_ORIGINAL ) ? 0 : scheduler.getSplitPicId();

#endif
#if !KEEP_PRED_AND_RESI_SIGNALS
#if JVET_AC0162_ALF_RESIDUAL_SAMPLES_INPUT
  if (type == PIC_PREDICTION)
#else
  if( type == PIC_RESIDUAL || type == PIC_PREDICTION )
#endif
  {
    CompArea localBlk = blk;
    localBlk.x &= ( cs->pcv->maxCUWidthMask  >> getComponentScaleX( blk.compID, blk.chromaFormat ) );
    localBlk.y &= ( cs->pcv->maxCUHeightMask >> getComponentScaleY( blk.compID, blk.chromaFormat ) );

    return M_BUFS( jId, type ).getBuf( localBlk );
  }
#endif

  return M_BUFS( jId, type ).getBuf( blk );
}

PelUnitBuf Picture::getBuf( const UnitArea &unit, const PictureType &type )
{
  if( chromaFormat == CHROMA_400 )
  {
    return PelUnitBuf( chromaFormat, getBuf( unit.Y(), type ) );
  }
  else
  {
    return PelUnitBuf( chromaFormat, getBuf( unit.Y(), type ), getBuf( unit.Cb(), type ), getBuf( unit.Cr(), type ) );
  }
}

const CPelUnitBuf Picture::getBuf( const UnitArea &unit, const PictureType &type ) const
{
  if( chromaFormat == CHROMA_400 )
  {
    return CPelUnitBuf( chromaFormat, getBuf( unit.Y(), type ) );
  }
  else
  {
    return CPelUnitBuf( chromaFormat, getBuf( unit.Y(), type ), getBuf( unit.Cb(), type ), getBuf( unit.Cr(), type ) );
  }
}

Pel* Picture::getOrigin( const PictureType &type, const ComponentID compID ) const
{
#if ENABLE_SPLIT_PARALLELISM
  const int jId = ( type == PIC_ORIGINAL || type == PIC_TRUE_ORIGINAL ) ? 0 : scheduler.getSplitPicId();
#endif
  return M_BUFS( jId, type ).getOrigin( compID );
}

void Picture::createSpliceIdx(int nums)
{
  m_ctuNums = nums;
  m_spliceIdx = new int[m_ctuNums];
  memset(m_spliceIdx, 0, m_ctuNums * sizeof(int));
}

bool Picture::getSpliceFull()
{
  int count = 0;
  for (int i = 0; i < m_ctuNums; i++)
  {
    if (m_spliceIdx[i] != 0)
    {
      count++;
    }
  }
  if (count < m_ctuNums * 0.25)
  {
    return false;
  }
  return true;
}

void Picture::addPictureToHashMapForInter()
{
  int picWidth = slices[0]->getPPS()->getPicWidthInLumaSamples();
  int picHeight = slices[0]->getPPS()->getPicHeightInLumaSamples();
  uint32_t* blockHashValues[2][2];
  bool* bIsBlockSame[2][3];

  for (int i = 0; i < 2; i++)
  {
    for (int j = 0; j < 2; j++)
    {
      blockHashValues[i][j] = new uint32_t[picWidth*picHeight];
    }

    for (int j = 0; j < 3; j++)
    {
      bIsBlockSame[i][j] = new bool[picWidth*picHeight];
    }
  }
  m_hashMap.create(picWidth, picHeight);
  m_hashMap.generateBlock2x2HashValue(getOrigBuf(), picWidth, picHeight, slices[0]->getSPS()->getBitDepths(), blockHashValues[0], bIsBlockSame[0]);//2x2
  m_hashMap.generateBlockHashValue(picWidth, picHeight, 4, 4, blockHashValues[0], blockHashValues[1], bIsBlockSame[0], bIsBlockSame[1]);//4x4
  m_hashMap.addToHashMapByRowWithPrecalData(blockHashValues[1], bIsBlockSame[1][2], picWidth, picHeight, 4, 4);

  m_hashMap.generateBlockHashValue(picWidth, picHeight, 8, 8, blockHashValues[1], blockHashValues[0], bIsBlockSame[1], bIsBlockSame[0]);//8x8
  m_hashMap.addToHashMapByRowWithPrecalData(blockHashValues[0], bIsBlockSame[0][2], picWidth, picHeight, 8, 8);

  m_hashMap.generateBlockHashValue(picWidth, picHeight, 16, 16, blockHashValues[0], blockHashValues[1], bIsBlockSame[0], bIsBlockSame[1]);//16x16
  m_hashMap.addToHashMapByRowWithPrecalData(blockHashValues[1], bIsBlockSame[1][2], picWidth, picHeight, 16, 16);

  m_hashMap.generateBlockHashValue(picWidth, picHeight, 32, 32, blockHashValues[1], blockHashValues[0], bIsBlockSame[1], bIsBlockSame[0]);//32x32
  m_hashMap.addToHashMapByRowWithPrecalData(blockHashValues[0], bIsBlockSame[0][2], picWidth, picHeight, 32, 32);

  m_hashMap.generateBlockHashValue(picWidth, picHeight, 64, 64, blockHashValues[0], blockHashValues[1], bIsBlockSame[0], bIsBlockSame[1]);//64x64
  m_hashMap.addToHashMapByRowWithPrecalData(blockHashValues[1], bIsBlockSame[1][2], picWidth, picHeight, 64, 64);

  m_hashMap.setInitial();

  for (int i = 0; i < 2; i++)
  {
    for (int j = 0; j < 2; j++)
    {
      delete[] blockHashValues[i][j];
    }

    for (int j = 0; j < 3; j++)
    {
      delete[] bIsBlockSame[i][j];
    }
  }
}

#if JVET_Z0118_GDR
void Picture::initCleanCurPicture()
{   
  if (!cs->isGdrEnabled())
  {
    return;
  }

  const int picWidth = getPicWidthInLumaSamples();
  const int picHight = getPicHeightInLumaSamples();
  const int bitDepth = slices[0]->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA);
  const Pel dirtyPelVal = 1 << (bitDepth - 1);
      
  UnitArea wholePictureArea = UnitArea(chromaFormat, Area(Position(0, 0), Size(picWidth, picHight)));

  getBuf(wholePictureArea, PIC_RECONSTRUCTION_0).fill(dirtyPelVal);
  getBuf(wholePictureArea, PIC_RECONSTRUCTION_1).fill(dirtyPelVal);

  cs->getMotionBuf(wholePictureArea, PIC_RECONSTRUCTION_0).fill(0);
  cs->getMotionBuf(wholePictureArea, PIC_RECONSTRUCTION_1).fill(0);
   
#if JVET_W0123_TIMD_FUSION
  cs->getIpmBuf(wholePictureArea, PIC_RECONSTRUCTION_0).fill(0);
  cs->getIpmBuf(wholePictureArea, PIC_RECONSTRUCTION_1).fill(0);
#endif
}

void Picture::copyCleanCurPicture()
{
  if (!cs->isGdrEnabled())
  {
    return;
  }

  if (cs->isInGdrIntervalOrRecoveryPoc())
  {
    ChromaFormat chromaFormat = cs->sps->getChromaFormatIdc();
    int gdrEndX = cs->picHeader->getGdrEndX();
    int gdrEndY = cs->pps->getPicHeightInLumaSamples();

    UnitArea cleanArea = UnitArea(chromaFormat, Area(Position(0, 0), Size(gdrEndX, gdrEndY)));

    PelUnitBuf picBuf0 = getBuf(cleanArea, PIC_RECONSTRUCTION_0);
    PelUnitBuf picBuf1 = getBuf(cleanArea, PIC_RECONSTRUCTION_1);

    picBuf1.copyFrom(picBuf0);
  }
}
#endif

#if JVET_AG0145_ADAPTIVE_CLIPPING
void Picture::calcLumaClpParams()
{
  int pelMax = getLumaClpRng().max;
  int pelMin = getLumaClpRng().min;
#if JVET_AI0096_ADAPTIVE_CLIPPING_BIT_DEPTH_FIX
  int targetMin = 16 * (1 << (cs->sps->getBitDepth(toChannelType(COMPONENT_Y)) - 8));
  int targetMax = 235 * (1 << (cs->sps->getBitDepth(toChannelType(COMPONENT_Y)) - 8));
#else
  int targetMin = 64, targetMax = 940;
#endif
  if (cs->slice->getSliceType() != I_SLICE)
  {
    const Picture *const pColPic = cs->slice->getRefPic(RefPicList(1 - cs->slice->getColFromL0Flag()), cs->slice->getColRefIdx())->unscaledPic;
    ClpRng colLumaClpRng = pColPic->getLumaClpRng();
    targetMin            = colLumaClpRng.min;
    targetMax            = colLumaClpRng.max;
  }
  int clipDeltaShift = 0;
  if (cs->slice->getSliceType() != I_SLICE && cs->slice->getCheckLDC())
  {
    clipDeltaShift = ADAPTIVE_CLIP_SHIFT_DELTA_VALUE_1;
    cs->slice->setAdaptiveClipQuant(true);
  }
  else
  {
    clipDeltaShift = ADAPTIVE_CLIP_SHIFT_DELTA_VALUE_0;
    cs->slice->setAdaptiveClipQuant(false);
  }
#if JVET_AJ0237_INTERNAL_12BIT
  clipDeltaShift += std::max(0, cs->sps->getBitDepth(toChannelType(COMPONENT_Y)) - 10);
#endif
  int       pelMaxOF  = 0;
  int       pelMinOF  = (1 << cs->sps->getBitDepth(toChannelType(COMPONENT_Y))) - 1;
  const int orgPelMin = pelMin;
  {
    int deltaMinToSignal = (pelMin - targetMin);
    if (deltaMinToSignal < 0)
    {
      int absDelta = ((targetMin - pelMin) >> clipDeltaShift) << clipDeltaShift;
      pelMin       = targetMin - absDelta;
      while (pelMin > orgPelMin)
      {
        pelMin -= (1 << clipDeltaShift);
      }
      while (pelMin < 0)
      {
        pelMinOF = pelMin;
        pelMin   = 0;
      }
      CHECK(pelMin < 0, "this is not possible");
    }
    else if (deltaMinToSignal > 0)
    {
      int absDelta = (deltaMinToSignal >> clipDeltaShift) << clipDeltaShift;
      pelMin       = targetMin + absDelta;
      CHECK(pelMin > orgPelMin, "this is not possible");
      CHECK(pelMin < 0, "this is not possible");
    }
    else
    {
      CHECK(pelMin != targetMin, "this is not possible");
    }
  }

  const int orgPelMax = pelMax;
  {
    int deltaMaxToSignal = (pelMax - targetMax);
    if (deltaMaxToSignal < 0)
    {
      int absDelta = ((targetMax - pelMax) >> clipDeltaShift) << clipDeltaShift;
      pelMax       = targetMax - absDelta;
      CHECK(pelMax < orgPelMax, "this is not possible");
      CHECK(pelMax > (1 << cs->sps->getBitDepth(toChannelType(COMPONENT_Y))) - 1, "this is not possible");
    }
    else if (deltaMaxToSignal > 0)
    {
      int absDelta = (deltaMaxToSignal >> clipDeltaShift) << clipDeltaShift;
      pelMax       = targetMax + absDelta;
      while (pelMax < orgPelMax)
      {
        pelMax += (1 << clipDeltaShift);
      }
      while (pelMax >= (1 << cs->sps->getBitDepth(toChannelType(COMPONENT_Y))))
      {
        pelMaxOF = pelMax;
        pelMax   = (1 << cs->sps->getBitDepth(toChannelType(COMPONENT_Y))) - 1;
      }
      CHECK(pelMax > (1 << cs->sps->getBitDepth(toChannelType(COMPONENT_Y))) - 1, "this is not possible");
    }
    else
    {
      CHECK(pelMax != targetMax, "this is not possible");
    }
  }
  cs->slice->setLumaPelMax(pelMax);
  cs->slice->setLumaPelMin(pelMin);
  lumaClpRng.min         = pelMin;
  lumaClpRng.max         = pelMax;
  lumaClpRngforQuant.min = std::min(pelMin, pelMinOF);
  lumaClpRngforQuant.max = std::max(pelMax, pelMaxOF);
}
#endif