Common.h 10.2 KB
Newer Older
1
2
3
4
5
/* The copyright in this software is being made available under the BSD
 * License, included below. This software may be subject to other third party
 * and contributor rights, including patent rights, and no such rights are
 * granted under this license.
 *
6
 * Copyright (c) 2010-2019, ITU/ISO/IEC
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
 *    be used to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/** \file     Common.h
 *  \brief    Common 2D-geometrical structures
 */

#ifndef __COMMON__
#define __COMMON__

#include "CommonDef.h"

typedef int PosType;
typedef uint32_t SizeType;
struct Position
{
  PosType x;
  PosType y;

  Position()                                   : x(0),  y(0)  { }
  Position(const PosType _x, const PosType _y) : x(_x), y(_y) { }

  bool operator!=(const Position &other)  const { return x != other.x || y != other.y; }
  bool operator==(const Position &other)  const { return x == other.x && y == other.y; }

  Position offset(const Position pos)                 const { return Position(x + pos.x, y + pos.y); }
  Position offset(const PosType _x, const PosType _y) const { return Position(x + _x   , y + _y   ); }
  void     repositionTo(const Position newPos)              { x  = newPos.x; y  = newPos.y; }
  void     relativeTo  (const Position origin)              { x -= origin.x; y -= origin.y; }

  Position operator-( const Position &other )         const { return{ x - other.x, y - other.y }; }
};

struct Size
{
  SizeType width;
  SizeType height;

  Size()                                              : width(0),      height(0)       { }
  Size(const SizeType _width, const SizeType _height) : width(_width), height(_height) { }

  bool operator!=(const Size &other)      const { return (width != other.width) || (height != other.height); }
  bool operator==(const Size &other)      const { return (width == other.width) && (height == other.height); }
  uint32_t area()                             const { return (uint32_t) width * (uint32_t) height; }
75
76
77
#if REUSE_CU_RESULTS_WITH_MULTIPLE_TUS
  void resizeTo(const Size newSize)             { width = newSize.width; height = newSize.height; }
#endif
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
};

struct Area : public Position, public Size
{
  Area()                                                                         : Position(),       Size()       { }
  Area(const Position &_pos, const Size &_size)                                  : Position(_pos),   Size(_size)  { }
  Area(const PosType _x, const PosType _y, const SizeType _w, const SizeType _h) : Position(_x, _y), Size(_w, _h) { }

        Position& pos()                           { return *this; }
  const Position& pos()                     const { return *this; }
        Size&     size()                          { return *this; }
  const Size&     size()                    const { return *this; }

  const Position& topLeft()                 const { return *this; }
        Position  topRight()                const { return { (PosType) (x + width - 1), y                          }; }
        Position  bottomLeft()              const { return { x                        , (PosType) (y + height - 1) }; }
        Position  bottomRight()             const { return { (PosType) (x + width - 1), (PosType) (y + height - 1) }; }
        Position  center()                  const { return { (PosType) (x + width / 2), (PosType) (y + height / 2) }; }

  bool contains(const Position &_pos)       const { return (_pos.x >= x) && (_pos.x < (x + width)) && (_pos.y >= y) && (_pos.y < (y + height)); }
  bool contains(const Area &_area)          const { return contains(_area.pos()) && contains(_area.bottomRight()); }

  bool operator!=(const Area &other)        const { return (Size::operator!=(other)) || (Position::operator!=(other)); }
  bool operator==(const Area &other)        const { return (Size::operator==(other)) && (Position::operator==(other)); }
};

struct UnitScale
{
  UnitScale()                 : posx( 0), posy( 0), area(posx+posy) {}
  UnitScale( int sx, int sy ) : posx(sx), posy(sy), area(posx+posy) {}
  int posx;
  int posy;
  int area;

  template<typename T> T scaleHor ( const T &in ) const { return in >> posx; }
  template<typename T> T scaleVer ( const T &in ) const { return in >> posy; }
  template<typename T> T scaleArea( const T &in ) const { return in >> area; }

  Position scale( const Position &pos  ) const { return { pos.x >> posx, pos.y >> posy }; }
  Size     scale( const Size     &size ) const { return { size.width >> posx, size.height >> posy }; }
  Area     scale( const Area    &_area ) const { return Area( scale( _area.pos() ), scale( _area.size() ) ); }
};
Xiaozhong Xu's avatar
Xiaozhong Xu committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
namespace std
{
  template <>
  struct hash<Position> : public unary_function<Position, uint64_t>
  {
    uint64_t operator()(const Position& value) const
    {
      return (((uint64_t)value.x << 32) + value.y);
    }
  };

  template <>
  struct hash<Size> : public unary_function<Size, uint64_t>
  {
    uint64_t operator()(const Size& value) const
    {
      return (((uint64_t)value.width << 32) + value.height);
    }
  };
}
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
inline size_t rsAddr(const Position &pos, const uint32_t stride, const UnitScale &unitScale )
{
  return (size_t)(stride >> unitScale.posx) * (size_t)(pos.y >> unitScale.posy) + (size_t)(pos.x >> unitScale.posx);
}

inline size_t rsAddr(const Position &pos, const Position &origin, const uint32_t stride, const UnitScale &unitScale )
{
  return (stride >> unitScale.posx) * ((pos.y - origin.y) >> unitScale.posy) + ((pos.x - origin.x) >> unitScale.posx);
}

inline size_t rsAddr(const Position &pos, const uint32_t stride )
{
  return stride * (size_t)pos.y + (size_t)pos.x;
}

inline size_t rsAddr(const Position &pos, const Position &origin, const uint32_t stride )
{
  return stride * (pos.y - origin.y) + (pos.x - origin.x);
}

inline Area clipArea(const Area &_area, const Area &boundingBox)
{
  Area area = _area;

  if (area.x + area.width > boundingBox.x + boundingBox.width)
  {
    area.width = boundingBox.x + boundingBox.width - area.x;
  }

  if (area.y + area.height > boundingBox.y + boundingBox.height)
  {
    area.height = boundingBox.y + boundingBox.height - area.y;
  }

  return area;
}


class SizeIndexInfo
{
public:
  SizeIndexInfo(){}
  virtual ~SizeIndexInfo(){}
  SizeType numAllWidths()               { return (SizeType)m_idxToSizeTab.size(); }
  SizeType numAllHeights()              { return (SizeType)m_idxToSizeTab.size(); }
  SizeType numWidths()                  { return (SizeType)m_numBlkSizes; }
  SizeType numHeights()                 { return (SizeType)m_numBlkSizes; }
  SizeType sizeFrom( SizeType idx )     { return m_idxToSizeTab[idx]; }
  SizeType idxFrom( SizeType size )     { CHECKD( m_sizeToIdxTab[size] == std::numeric_limits<SizeType>::max(), "Index of given size does NOT EXIST!" ); return m_sizeToIdxTab[size]; }
  bool     isCuSize( SizeType size )    { return m_isCuSize[size]; }
  virtual void init( SizeType maxSize ) {}

protected:

  void xInit()
  {
    m_isCuSize.resize( m_sizeToIdxTab.size(), false );

    std::vector<SizeType> grpSizes;

    for( int i = 0, n = 0; i < m_sizeToIdxTab.size(); i++ )
    {
      if( m_sizeToIdxTab[i] != std::numeric_limits<SizeType>::max() )
      {
        m_sizeToIdxTab[i] = n;
        m_idxToSizeTab.push_back( i );
        n++;
      }

      if( m_sizeToIdxTab[i] != std::numeric_limits<SizeType>::max() && m_sizeToIdxTab[i >> 1] != std::numeric_limits<SizeType>::max() && i >= 4 )
      {
        m_isCuSize[i] = true;
      }

      // collect group sizes (for coefficient group coding)
      SizeType grpSize = i >> ( ( i & 3 ) != 0 ? 1 : 2 );
      if( m_sizeToIdxTab[i] != std::numeric_limits<SizeType>::max() && m_sizeToIdxTab[grpSize] == std::numeric_limits<SizeType>::max() )
      {
        grpSizes.push_back( grpSize );
      }
    }

    m_numBlkSizes = (SizeType)m_idxToSizeTab.size();

    for( SizeType grpSize : grpSizes )
    {
      if( grpSize > 0 && m_sizeToIdxTab[grpSize] == std::numeric_limits<SizeType>::max() )
      {
        m_sizeToIdxTab[grpSize] = (SizeType)m_idxToSizeTab.size();
        m_idxToSizeTab.push_back( grpSize );
      }
    }
  };

  std::vector<bool    > m_isCuSize;
  int                   m_numBlkSizes; // as opposed to number all sizes, which also contains grouped sizes
  std::vector<SizeType> m_sizeToIdxTab;
  std::vector<SizeType> m_idxToSizeTab;
};

class SizeIndexInfoLog2 : public SizeIndexInfo
{
public:
  SizeIndexInfoLog2(){}
  ~SizeIndexInfoLog2(){};

  void init( SizeType maxSize )
  {
    for( int i = 0, n = 0; i <= maxSize; i++ )
    {
      SizeType val = std::numeric_limits<SizeType>::max();
      if( i == ( 1 << n ) )
      {
        n++;
        val = i;
      }
      m_sizeToIdxTab.push_back( val );
    }
    SizeIndexInfo::xInit();
  }
};

262
#if !JVET_O0925_MIP_SIMPLIFICATIONS 
263
264
265
266
267
268
269
270
struct AvailableInfo
{
  int  maxPosTop;
  int  maxPosLeft;

  AvailableInfo() : maxPosTop(0), maxPosLeft(0) {}
  AvailableInfo(const int top, const int left) : maxPosTop(top), maxPosLeft(left) {}
};
271
#endif
272
273
274


#endif