/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2018, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file VLCWriter.cpp * \brief Writer for high level syntax */ #include "VLCWriter.h" #include "SEIwrite.h" #include "CommonLib/CommonDef.h" #include "CommonLib/Unit.h" #include "CommonLib/Picture.h" // th remove this #include "CommonLib/dtrace_next.h" #include "EncAdaptiveLoopFilter.h" #include "CommonLib/AdaptiveLoopFilter.h" //! \ingroup EncoderLib //! \{ #if ENABLE_TRACING void VLCWriter::xWriteCodeTr (uint32_t value, uint32_t length, const char *pSymbolName) { xWriteCode (value,length); if( g_HLSTraceEnable ) { if( length < 10 ) { DTRACE( g_trace_ctx, D_HEADER, "%-50s u(%d) : %d\n", pSymbolName, length, value ); } else { DTRACE( g_trace_ctx, D_HEADER, "%-50s u(%d) : %d\n", pSymbolName, length, value ); } } } void VLCWriter::xWriteUvlcTr (uint32_t value, const char *pSymbolName) { xWriteUvlc (value); if( g_HLSTraceEnable ) { DTRACE( g_trace_ctx, D_HEADER, "%-50s ue(v) : %d\n", pSymbolName, value ); } } void VLCWriter::xWriteSvlcTr (int value, const char *pSymbolName) { xWriteSvlc(value); if( g_HLSTraceEnable ) { DTRACE( g_trace_ctx, D_HEADER, "%-50s se(v) : %d\n", pSymbolName, value ); } } void VLCWriter::xWriteFlagTr(uint32_t value, const char *pSymbolName) { xWriteFlag(value); if( g_HLSTraceEnable ) { DTRACE( g_trace_ctx, D_HEADER, "%-50s u(1) : %d\n", pSymbolName, value ); } } bool g_HLSTraceEnable = true; #endif void VLCWriter::xWriteCode ( uint32_t uiCode, uint32_t uiLength ) { CHECK( uiLength == 0, "Code of lenght '0' not supported" ); m_pcBitIf->write( uiCode, uiLength ); } void VLCWriter::xWriteUvlc ( uint32_t uiCode ) { uint32_t uiLength = 1; uint32_t uiTemp = ++uiCode; CHECK( !uiTemp, "Integer overflow" ); while( 1 != uiTemp ) { uiTemp >>= 1; uiLength += 2; } // Take care of cases where uiLength > 32 m_pcBitIf->write( 0, uiLength >> 1); m_pcBitIf->write( uiCode, (uiLength+1) >> 1); } void VLCWriter::xWriteSvlc ( int iCode ) { uint32_t uiCode = uint32_t( iCode <= 0 ? (-iCode)<<1 : (iCode<<1)-1); xWriteUvlc( uiCode ); } void VLCWriter::xWriteFlag( uint32_t uiCode ) { m_pcBitIf->write( uiCode, 1 ); } void VLCWriter::xWriteRbspTrailingBits() { WRITE_FLAG( 1, "rbsp_stop_one_bit"); int cnt = 0; while (m_pcBitIf->getNumBitsUntilByteAligned()) { WRITE_FLAG( 0, "rbsp_alignment_zero_bit"); cnt++; } CHECK(cnt>=8, "More than '8' alignment bytes read"); } void AUDWriter::codeAUD(OutputBitstream& bs, const int pictureType) { #if ENABLE_TRACING xTraceAccessUnitDelimiter(); #endif CHECK(pictureType >= 3, "Invalid picture type"); setBitstream(&bs); WRITE_CODE(pictureType, 3, "pic_type"); xWriteRbspTrailingBits(); } void HLSWriter::xCodeShortTermRefPicSet( const ReferencePictureSet* rps, bool calledFromSliceHeader, int idx) { //int lastBits = getNumberOfWrittenBits(); if (idx > 0) { WRITE_FLAG( rps->getInterRPSPrediction(), "inter_ref_pic_set_prediction_flag" ); // inter_RPS_prediction_flag } if (rps->getInterRPSPrediction()) { int deltaRPS = rps->getDeltaRPS(); if(calledFromSliceHeader) { WRITE_UVLC( rps->getDeltaRIdxMinus1(), "delta_idx_minus1" ); // delta index of the Reference Picture Set used for prediction minus 1 } WRITE_CODE( (deltaRPS >=0 ? 0: 1), 1, "delta_rps_sign" ); //delta_rps_sign WRITE_UVLC( abs(deltaRPS) - 1, "abs_delta_rps_minus1"); // absolute delta RPS minus 1 for(int j=0; j < rps->getNumRefIdc(); j++) { int refIdc = rps->getRefIdc(j); WRITE_CODE( (refIdc==1? 1: 0), 1, "used_by_curr_pic_flag" ); //first bit is "1" if Idc is 1 if (refIdc != 1) { WRITE_CODE( refIdc>>1, 1, "use_delta_flag" ); //second bit is "1" if Idc is 2, "0" otherwise. } } } else { WRITE_UVLC( rps->getNumberOfNegativePictures(), "num_negative_pics" ); WRITE_UVLC( rps->getNumberOfPositivePictures(), "num_positive_pics" ); int prev = 0; for(int j=0 ; j < rps->getNumberOfNegativePictures(); j++) { WRITE_UVLC( prev-rps->getDeltaPOC(j)-1, "delta_poc_s0_minus1" ); prev = rps->getDeltaPOC(j); WRITE_FLAG( rps->getUsed(j), "used_by_curr_pic_s0_flag"); } prev = 0; for(int j=rps->getNumberOfNegativePictures(); j < rps->getNumberOfNegativePictures()+rps->getNumberOfPositivePictures(); j++) { WRITE_UVLC( rps->getDeltaPOC(j)-prev-1, "delta_poc_s1_minus1" ); prev = rps->getDeltaPOC(j); WRITE_FLAG( rps->getUsed(j), "used_by_curr_pic_s1_flag" ); } } //DTRACE( g_trace_ctx, D_RPSINFO, "irps=%d (%2d bits) ", rps->getInterRPSPrediction(), getNumberOfWrittenBits() - lastBits ); rps->printDeltaPOC(); } void HLSWriter::codePPS( const PPS* pcPPS ) { #if ENABLE_TRACING xTracePPSHeader (); #endif WRITE_UVLC( pcPPS->getPPSId(), "pps_pic_parameter_set_id" ); WRITE_UVLC( pcPPS->getSPSId(), "pps_seq_parameter_set_id" ); #if HEVC_DEPENDENT_SLICES WRITE_FLAG( pcPPS->getDependentSliceSegmentsEnabledFlag() ? 1 : 0, "dependent_slice_segments_enabled_flag" ); #endif WRITE_FLAG( pcPPS->getOutputFlagPresentFlag() ? 1 : 0, "output_flag_present_flag" ); WRITE_CODE( pcPPS->getNumExtraSliceHeaderBits(), 3, "num_extra_slice_header_bits"); WRITE_FLAG( pcPPS->getCabacInitPresentFlag() ? 1 : 0, "cabac_init_present_flag" ); WRITE_UVLC( pcPPS->getNumRefIdxL0DefaultActive()-1, "num_ref_idx_l0_default_active_minus1"); WRITE_UVLC( pcPPS->getNumRefIdxL1DefaultActive()-1, "num_ref_idx_l1_default_active_minus1"); WRITE_SVLC( pcPPS->getPicInitQPMinus26(), "init_qp_minus26"); WRITE_FLAG( pcPPS->getConstrainedIntraPred() ? 1 : 0, "constrained_intra_pred_flag" ); WRITE_FLAG( pcPPS->getUseTransformSkip() ? 1 : 0, "transform_skip_enabled_flag" ); WRITE_FLAG( pcPPS->getUseDQP() ? 1 : 0, "cu_qp_delta_enabled_flag" ); if ( pcPPS->getUseDQP() ) { WRITE_UVLC( pcPPS->getMaxCuDQPDepth(), "diff_cu_qp_delta_depth" ); } WRITE_SVLC( pcPPS->getQpOffset(COMPONENT_Cb), "pps_cb_qp_offset" ); WRITE_SVLC( pcPPS->getQpOffset(COMPONENT_Cr), "pps_cr_qp_offset" ); WRITE_FLAG( pcPPS->getSliceChromaQpFlag() ? 1 : 0, "pps_slice_chroma_qp_offsets_present_flag" ); WRITE_FLAG( pcPPS->getUseWP() ? 1 : 0, "weighted_pred_flag" ); // Use of Weighting Prediction (P_SLICE) WRITE_FLAG( pcPPS->getWPBiPred() ? 1 : 0, "weighted_bipred_flag" ); // Use of Weighting Bi-Prediction (B_SLICE) WRITE_FLAG( pcPPS->getTransquantBypassEnabledFlag() ? 1 : 0, "transquant_bypass_enabled_flag" ); #if HEVC_TILES_WPP WRITE_FLAG( pcPPS->getTilesEnabledFlag() ? 1 : 0, "tiles_enabled_flag" ); WRITE_FLAG( pcPPS->getEntropyCodingSyncEnabledFlag() ? 1 : 0, "entropy_coding_sync_enabled_flag" ); if( pcPPS->getTilesEnabledFlag() ) { WRITE_UVLC( pcPPS->getNumTileColumnsMinus1(), "num_tile_columns_minus1" ); WRITE_UVLC( pcPPS->getNumTileRowsMinus1(), "num_tile_rows_minus1" ); WRITE_FLAG( pcPPS->getTileUniformSpacingFlag(), "uniform_spacing_flag" ); if( !pcPPS->getTileUniformSpacingFlag() ) { for(uint32_t i=0; i<pcPPS->getNumTileColumnsMinus1(); i++) { WRITE_UVLC( pcPPS->getTileColumnWidth(i)-1, "column_width_minus1" ); } for(uint32_t i=0; i<pcPPS->getNumTileRowsMinus1(); i++) { WRITE_UVLC( pcPPS->getTileRowHeight(i)-1, "row_height_minus1" ); } } CHECK ((pcPPS->getNumTileColumnsMinus1() + pcPPS->getNumTileRowsMinus1()) == 0, "Invalid tile parameters read"); WRITE_FLAG( pcPPS->getLoopFilterAcrossTilesEnabledFlag()?1 : 0, "loop_filter_across_tiles_enabled_flag"); } #endif WRITE_FLAG( pcPPS->getLoopFilterAcrossSlicesEnabledFlag()?1 : 0, "pps_loop_filter_across_slices_enabled_flag"); WRITE_FLAG( pcPPS->getDeblockingFilterControlPresentFlag()?1 : 0, "deblocking_filter_control_present_flag"); if(pcPPS->getDeblockingFilterControlPresentFlag()) { WRITE_FLAG( pcPPS->getDeblockingFilterOverrideEnabledFlag() ? 1 : 0, "deblocking_filter_override_enabled_flag" ); WRITE_FLAG( pcPPS->getPPSDeblockingFilterDisabledFlag() ? 1 : 0, "pps_deblocking_filter_disabled_flag" ); if(!pcPPS->getPPSDeblockingFilterDisabledFlag()) { WRITE_SVLC( pcPPS->getDeblockingFilterBetaOffsetDiv2(), "pps_beta_offset_div2" ); WRITE_SVLC( pcPPS->getDeblockingFilterTcOffsetDiv2(), "pps_tc_offset_div2" ); } } #if HEVC_USE_SCALING_LISTS WRITE_FLAG( pcPPS->getScalingListPresentFlag() ? 1 : 0, "pps_scaling_list_data_present_flag" ); if( pcPPS->getScalingListPresentFlag() ) { codeScalingList( pcPPS->getScalingList() ); } #endif WRITE_FLAG( pcPPS->getListsModificationPresentFlag(), "lists_modification_present_flag"); WRITE_UVLC( pcPPS->getLog2ParallelMergeLevelMinus2(), "log2_parallel_merge_level_minus2"); WRITE_FLAG( pcPPS->getSliceHeaderExtensionPresentFlag() ? 1 : 0, "slice_segment_header_extension_present_flag"); bool pps_extension_present_flag=false; bool pps_extension_flags[NUM_PPS_EXTENSION_FLAGS]={false}; pps_extension_flags[PPS_EXT__REXT] = pcPPS->getPpsRangeExtension().settingsDifferFromDefaults(pcPPS->getUseTransformSkip()); // Other PPS extension flags checked here. for(int i=0; i<NUM_PPS_EXTENSION_FLAGS; i++) { pps_extension_present_flag|=pps_extension_flags[i]; } WRITE_FLAG( (pps_extension_present_flag?1:0), "pps_extension_present_flag" ); if (pps_extension_present_flag) { #if ENABLE_TRACING /*|| RExt__DECODER_DEBUG_BIT_STATISTICS*/ static const char *syntaxStrings[]={ "pps_range_extension_flag", "pps_multilayer_extension_flag", "pps_extension_6bits[0]", "pps_extension_6bits[1]", "pps_extension_6bits[2]", "pps_extension_6bits[3]", "pps_extension_6bits[4]", "pps_extension_6bits[5]" }; #endif for(int i=0; i<NUM_PPS_EXTENSION_FLAGS; i++) { WRITE_FLAG( pps_extension_flags[i]?1:0, syntaxStrings[i] ); } for(int i=0; i<NUM_PPS_EXTENSION_FLAGS; i++) // loop used so that the order is determined by the enum. { if (pps_extension_flags[i]) { switch (PPSExtensionFlagIndex(i)) { case PPS_EXT__REXT: { const PPSRExt &ppsRangeExtension = pcPPS->getPpsRangeExtension(); if (pcPPS->getUseTransformSkip()) { WRITE_UVLC( ppsRangeExtension.getLog2MaxTransformSkipBlockSize()-2, "log2_max_transform_skip_block_size_minus2"); } WRITE_FLAG((ppsRangeExtension.getCrossComponentPredictionEnabledFlag() ? 1 : 0), "cross_component_prediction_enabled_flag" ); WRITE_FLAG(uint32_t(ppsRangeExtension.getChromaQpOffsetListEnabledFlag()), "chroma_qp_offset_list_enabled_flag" ); if (ppsRangeExtension.getChromaQpOffsetListEnabledFlag()) { WRITE_UVLC(ppsRangeExtension.getDiffCuChromaQpOffsetDepth(), "diff_cu_chroma_qp_offset_depth"); WRITE_UVLC(ppsRangeExtension.getChromaQpOffsetListLen() - 1, "chroma_qp_offset_list_len_minus1"); /* skip zero index */ for (int cuChromaQpOffsetIdx = 0; cuChromaQpOffsetIdx < ppsRangeExtension.getChromaQpOffsetListLen(); cuChromaQpOffsetIdx++) { WRITE_SVLC(ppsRangeExtension.getChromaQpOffsetListEntry(cuChromaQpOffsetIdx+1).u.comp.CbOffset, "cb_qp_offset_list[i]"); WRITE_SVLC(ppsRangeExtension.getChromaQpOffsetListEntry(cuChromaQpOffsetIdx+1).u.comp.CrOffset, "cr_qp_offset_list[i]"); } } WRITE_UVLC( ppsRangeExtension.getLog2SaoOffsetScale(CHANNEL_TYPE_LUMA), "log2_sao_offset_scale_luma" ); WRITE_UVLC( ppsRangeExtension.getLog2SaoOffsetScale(CHANNEL_TYPE_CHROMA), "log2_sao_offset_scale_chroma" ); } break; default: CHECK(pps_extension_flags[i]==false, "Unknown PPS extension signalled"); // Should never get here with an active PPS extension flag. break; } // switch } // if flag present } // loop over PPS flags } // pps_extension_present_flag is non-zero xWriteRbspTrailingBits(); } void HLSWriter::codeVUI( const VUI *pcVUI, const SPS* pcSPS ) { #if ENABLE_TRACING DTRACE( g_trace_ctx, D_HEADER, "----------- vui_parameters -----------\n"); #endif WRITE_FLAG(pcVUI->getAspectRatioInfoPresentFlag(), "aspect_ratio_info_present_flag"); if (pcVUI->getAspectRatioInfoPresentFlag()) { WRITE_CODE(pcVUI->getAspectRatioIdc(), 8, "aspect_ratio_idc" ); if (pcVUI->getAspectRatioIdc() == 255) { WRITE_CODE(pcVUI->getSarWidth(), 16, "sar_width"); WRITE_CODE(pcVUI->getSarHeight(), 16, "sar_height"); } } WRITE_FLAG(pcVUI->getOverscanInfoPresentFlag(), "overscan_info_present_flag"); if (pcVUI->getOverscanInfoPresentFlag()) { WRITE_FLAG(pcVUI->getOverscanAppropriateFlag(), "overscan_appropriate_flag"); } WRITE_FLAG(pcVUI->getVideoSignalTypePresentFlag(), "video_signal_type_present_flag"); if (pcVUI->getVideoSignalTypePresentFlag()) { WRITE_CODE(pcVUI->getVideoFormat(), 3, "video_format"); WRITE_FLAG(pcVUI->getVideoFullRangeFlag(), "video_full_range_flag"); WRITE_FLAG(pcVUI->getColourDescriptionPresentFlag(), "colour_description_present_flag"); if (pcVUI->getColourDescriptionPresentFlag()) { WRITE_CODE(pcVUI->getColourPrimaries(), 8, "colour_primaries"); WRITE_CODE(pcVUI->getTransferCharacteristics(), 8, "transfer_characteristics"); WRITE_CODE(pcVUI->getMatrixCoefficients(), 8, "matrix_coeffs"); } } WRITE_FLAG(pcVUI->getChromaLocInfoPresentFlag(), "chroma_loc_info_present_flag"); if (pcVUI->getChromaLocInfoPresentFlag()) { WRITE_UVLC(pcVUI->getChromaSampleLocTypeTopField(), "chroma_sample_loc_type_top_field"); WRITE_UVLC(pcVUI->getChromaSampleLocTypeBottomField(), "chroma_sample_loc_type_bottom_field"); } WRITE_FLAG(pcVUI->getNeutralChromaIndicationFlag(), "neutral_chroma_indication_flag"); WRITE_FLAG(pcVUI->getFieldSeqFlag(), "field_seq_flag"); WRITE_FLAG(pcVUI->getFrameFieldInfoPresentFlag(), "frame_field_info_present_flag"); Window defaultDisplayWindow = pcVUI->getDefaultDisplayWindow(); WRITE_FLAG(defaultDisplayWindow.getWindowEnabledFlag(), "default_display_window_flag"); if( defaultDisplayWindow.getWindowEnabledFlag() ) { WRITE_UVLC(defaultDisplayWindow.getWindowLeftOffset() / SPS::getWinUnitX(pcSPS->getChromaFormatIdc()), "def_disp_win_left_offset"); WRITE_UVLC(defaultDisplayWindow.getWindowRightOffset() / SPS::getWinUnitX(pcSPS->getChromaFormatIdc()), "def_disp_win_right_offset"); WRITE_UVLC(defaultDisplayWindow.getWindowTopOffset() / SPS::getWinUnitY(pcSPS->getChromaFormatIdc()), "def_disp_win_top_offset"); WRITE_UVLC(defaultDisplayWindow.getWindowBottomOffset()/ SPS::getWinUnitY(pcSPS->getChromaFormatIdc()), "def_disp_win_bottom_offset"); } const TimingInfo *timingInfo = pcVUI->getTimingInfo(); WRITE_FLAG(timingInfo->getTimingInfoPresentFlag(), "vui_timing_info_present_flag"); if(timingInfo->getTimingInfoPresentFlag()) { WRITE_CODE(timingInfo->getNumUnitsInTick(), 32, "vui_num_units_in_tick"); WRITE_CODE(timingInfo->getTimeScale(), 32, "vui_time_scale"); WRITE_FLAG(timingInfo->getPocProportionalToTimingFlag(), "vui_poc_proportional_to_timing_flag"); if(timingInfo->getPocProportionalToTimingFlag()) { WRITE_UVLC(timingInfo->getNumTicksPocDiffOneMinus1(), "vui_num_ticks_poc_diff_one_minus1"); } WRITE_FLAG(pcVUI->getHrdParametersPresentFlag(), "vui_hrd_parameters_present_flag"); if( pcVUI->getHrdParametersPresentFlag() ) { codeHrdParameters(pcVUI->getHrdParameters(), 1, pcSPS->getMaxTLayers() - 1 ); } } WRITE_FLAG(pcVUI->getBitstreamRestrictionFlag(), "bitstream_restriction_flag"); if (pcVUI->getBitstreamRestrictionFlag()) { #if HEVC_TILES_WPP WRITE_FLAG(pcVUI->getTilesFixedStructureFlag(), "tiles_fixed_structure_flag"); #endif WRITE_FLAG(pcVUI->getMotionVectorsOverPicBoundariesFlag(), "motion_vectors_over_pic_boundaries_flag"); WRITE_FLAG(pcVUI->getRestrictedRefPicListsFlag(), "restricted_ref_pic_lists_flag"); WRITE_UVLC(pcVUI->getMinSpatialSegmentationIdc(), "min_spatial_segmentation_idc"); WRITE_UVLC(pcVUI->getMaxBytesPerPicDenom(), "max_bytes_per_pic_denom"); WRITE_UVLC(pcVUI->getMaxBitsPerMinCuDenom(), "max_bits_per_min_cu_denom"); WRITE_UVLC(pcVUI->getLog2MaxMvLengthHorizontal(), "log2_max_mv_length_horizontal"); WRITE_UVLC(pcVUI->getLog2MaxMvLengthVertical(), "log2_max_mv_length_vertical"); } } void HLSWriter::codeHrdParameters( const HRD *hrd, bool commonInfPresentFlag, uint32_t maxNumSubLayersMinus1 ) { if( commonInfPresentFlag ) { WRITE_FLAG( hrd->getNalHrdParametersPresentFlag() ? 1 : 0 , "nal_hrd_parameters_present_flag" ); WRITE_FLAG( hrd->getVclHrdParametersPresentFlag() ? 1 : 0 , "vcl_hrd_parameters_present_flag" ); if( hrd->getNalHrdParametersPresentFlag() || hrd->getVclHrdParametersPresentFlag() ) { WRITE_FLAG( hrd->getSubPicCpbParamsPresentFlag() ? 1 : 0, "sub_pic_hrd_params_present_flag" ); if( hrd->getSubPicCpbParamsPresentFlag() ) { WRITE_CODE( hrd->getTickDivisorMinus2(), 8, "tick_divisor_minus2" ); WRITE_CODE( hrd->getDuCpbRemovalDelayLengthMinus1(), 5, "du_cpb_removal_delay_increment_length_minus1" ); WRITE_FLAG( hrd->getSubPicCpbParamsInPicTimingSEIFlag() ? 1 : 0, "sub_pic_cpb_params_in_pic_timing_sei_flag" ); WRITE_CODE( hrd->getDpbOutputDelayDuLengthMinus1(), 5, "dpb_output_delay_du_length_minus1" ); } WRITE_CODE( hrd->getBitRateScale(), 4, "bit_rate_scale" ); WRITE_CODE( hrd->getCpbSizeScale(), 4, "cpb_size_scale" ); if( hrd->getSubPicCpbParamsPresentFlag() ) { WRITE_CODE( hrd->getDuCpbSizeScale(), 4, "du_cpb_size_scale" ); } WRITE_CODE( hrd->getInitialCpbRemovalDelayLengthMinus1(), 5, "initial_cpb_removal_delay_length_minus1" ); WRITE_CODE( hrd->getCpbRemovalDelayLengthMinus1(), 5, "au_cpb_removal_delay_length_minus1" ); WRITE_CODE( hrd->getDpbOutputDelayLengthMinus1(), 5, "dpb_output_delay_length_minus1" ); } } int i, j, nalOrVcl; for( i = 0; i <= maxNumSubLayersMinus1; i ++ ) { WRITE_FLAG( hrd->getFixedPicRateFlag( i ) ? 1 : 0, "fixed_pic_rate_general_flag"); bool fixedPixRateWithinCvsFlag = true; if( !hrd->getFixedPicRateFlag( i ) ) { fixedPixRateWithinCvsFlag = hrd->getFixedPicRateWithinCvsFlag( i ); WRITE_FLAG( hrd->getFixedPicRateWithinCvsFlag( i ) ? 1 : 0, "fixed_pic_rate_within_cvs_flag"); } if( fixedPixRateWithinCvsFlag ) { WRITE_UVLC( hrd->getPicDurationInTcMinus1( i ), "elemental_duration_in_tc_minus1"); } else { WRITE_FLAG( hrd->getLowDelayHrdFlag( i ) ? 1 : 0, "low_delay_hrd_flag"); } if (!hrd->getLowDelayHrdFlag( i )) { WRITE_UVLC( hrd->getCpbCntMinus1( i ), "cpb_cnt_minus1"); } for( nalOrVcl = 0; nalOrVcl < 2; nalOrVcl ++ ) { if( ( ( nalOrVcl == 0 ) && ( hrd->getNalHrdParametersPresentFlag() ) ) || ( ( nalOrVcl == 1 ) && ( hrd->getVclHrdParametersPresentFlag() ) ) ) { for( j = 0; j <= ( hrd->getCpbCntMinus1( i ) ); j ++ ) { WRITE_UVLC( hrd->getBitRateValueMinus1( i, j, nalOrVcl ), "bit_rate_value_minus1"); WRITE_UVLC( hrd->getCpbSizeValueMinus1( i, j, nalOrVcl ), "cpb_size_value_minus1"); if( hrd->getSubPicCpbParamsPresentFlag() ) { WRITE_UVLC( hrd->getDuCpbSizeValueMinus1( i, j, nalOrVcl ), "cpb_size_du_value_minus1"); WRITE_UVLC( hrd->getDuBitRateValueMinus1( i, j, nalOrVcl ), "bit_rate_du_value_minus1"); } WRITE_FLAG( hrd->getCbrFlag( i, j, nalOrVcl ) ? 1 : 0, "cbr_flag"); } } } } } void HLSWriter::codeSPSNext( const SPSNext& spsNext, const bool usePCM ) { // tool enabling flags WRITE_FLAG( spsNext.getUseLargeCTU() ? 1 : 0, "large_ctu_flag" ); WRITE_FLAG(spsNext.getUseSubPuMvp() ? 1 : 0, "subpu_tmvp_flag"); WRITE_FLAG( spsNext.getUseIMV() ? 1 : 0, "imv_enable_flag" ); #if !REMOVE_MV_ADAPT_PREC WRITE_FLAG( spsNext.getUseHighPrecMv() ? 1 : 0, "high_precision_motion_vectors"); #endif #if JVET_L0256_BIO WRITE_FLAG( spsNext.getUseBIO() ? 1 : 0, "bio_enable_flag" ); #endif WRITE_FLAG( spsNext.getDisableMotCompress() ? 1 : 0, "disable_motion_compression_flag" ); WRITE_FLAG( spsNext.getUseLMChroma() ? 1 : 0, "lm_chroma_enabled_flag" ); WRITE_FLAG( spsNext.getUseIntraEMT() ? 1 : 0, "emt_intra_enabled_flag" ); WRITE_FLAG( spsNext.getUseInterEMT() ? 1 : 0, "emt_inter_enabled_flag" ); WRITE_FLAG( spsNext.getUseAffine() ? 1 : 0, "affine_flag" ); if ( spsNext.getUseAffine() ) { WRITE_FLAG( spsNext.getUseAffineType() ? 1 : 0, "affine_type_flag" ); } #if JVET_L0646_GBI WRITE_FLAG( spsNext.getUseGBi() ? 1 : 0, "gbi_flag" ); #endif #if JVET_L0293_CPR WRITE_FLAG(spsNext.getCPRMode() ? 1 : 0, "cpr_flag" ); #endif for( int k = 0; k < SPSNext::NumReservedFlags; k++ ) { WRITE_FLAG( 0, "reserved_flag" ); } WRITE_FLAG( spsNext.getMTTEnabled() ? 1 : 0, "mtt_enabled_flag" ); #if JVET_L0100_MULTI_HYPOTHESIS_INTRA WRITE_FLAG( spsNext.getUseMHIntra() ? 1 : 0, "mhintra_flag" ); #endif #if JVET_L0124_L0208_TRIANGLE WRITE_FLAG( spsNext.getUseTriangle() ? 1: 0, "triangle_flag" ); #endif #if ENABLE_WPP_PARALLELISM WRITE_FLAG( spsNext.getUseNextDQP(), "next_dqp_enabled_flag" ); #else WRITE_FLAG( 0, "reserved_flag" ); #endif // additional parameters WRITE_FLAG( spsNext.getUseDualITree(), "qtbt_dual_intra_tree" ); WRITE_UVLC( g_aucLog2[spsNext.getCTUSize()] - MIN_CU_LOG2, "log2_CTU_size_minus2" ); #if JVET_L0217_L0678_PARTITION_HIGHLEVEL_CONSTRAINT WRITE_FLAG (spsNext.getSplitConsOverrideEnabledFlag(), "sps_override_partition_constraints_enable_flag"); WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize(I_SLICE)] - spsNext.getSPS().getLog2MinCodingBlockSize(), "sps_log2_diff_min_qt_min_cb_intra_slice"); WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize(B_SLICE)] - spsNext.getSPS().getLog2MinCodingBlockSize(), "sps_log2_diff_min_qt_min_cb_inter_slice"); WRITE_UVLC( spsNext.getMaxBTDepth(), "sps_max_mtt_hierarchy_depth_inter_slices"); WRITE_UVLC( spsNext.getMaxBTDepthI(), "sps_max_mtt_hierarchy_depth_intra_slices"); if (spsNext.getMaxBTDepthI() != 0) { WRITE_UVLC(g_aucLog2[spsNext.getMaxBTSizeI()] - g_aucLog2[spsNext.getMinQTSize(I_SLICE)], "sps_log2_diff_max_bt_min_qt_intra_slice"); WRITE_UVLC(g_aucLog2[spsNext.getMaxTTSizeI()] - g_aucLog2[spsNext.getMinQTSize(I_SLICE)], "sps_log2_diff_max_tt_min_qt_intra_slice"); } if (spsNext.getMaxBTDepth() != 0) { WRITE_UVLC(g_aucLog2[spsNext.getMaxBTSize()] - g_aucLog2[spsNext.getMinQTSize(B_SLICE)], "sps_log2_diff_max_bt_min_qt_inter_slice"); WRITE_UVLC(g_aucLog2[spsNext.getMaxTTSize()] - g_aucLog2[spsNext.getMinQTSize(B_SLICE)], "sps_log2_diff_max_tt_min_qt_inter_slice"); } #else WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize( I_SLICE ) ] - MIN_CU_LOG2, "log2_minQT_ISlice_minus2" ); WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize( B_SLICE ) ] - MIN_CU_LOG2, "log2_minQT_PBSlice_minus2" ); WRITE_UVLC( spsNext.getMaxBTDepth(), "max_bt_depth" ); WRITE_UVLC( spsNext.getMaxBTDepthI(), "max_bt_depth_i_slice" ); #endif if( spsNext.getUseDualITree() ) { #if JVET_L0217_L0678_PARTITION_HIGHLEVEL_CONSTRAINT WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize( I_SLICE, CHANNEL_TYPE_CHROMA )] - spsNext.getSPS().getLog2MinCodingBlockSize(), "sps_log2_diff_min_qt_min_cb_intra_slice_chroma"); WRITE_UVLC( spsNext.getMaxBTDepthIChroma(), "sps_max_mtt_hierarchy_depth_intra_slices_chroma"); if (spsNext.getMaxBTDepthIChroma() != 0) { WRITE_UVLC(g_aucLog2[spsNext.getMaxBTSizeIChroma()] - g_aucLog2[spsNext.getMinQTSize(I_SLICE, CHANNEL_TYPE_CHROMA)], "sps_log2_diff_max_bt_min_qt_intra_slice_chroma"); WRITE_UVLC(g_aucLog2[spsNext.getMaxTTSizeIChroma()] - g_aucLog2[spsNext.getMinQTSize(I_SLICE, CHANNEL_TYPE_CHROMA)], "sps_log2_diff_max_tt_min_qt_intra_slice_chroma"); } #else WRITE_UVLC( g_aucLog2[spsNext.getMinQTSize( I_SLICE, CHANNEL_TYPE_CHROMA )] - MIN_CU_LOG2, "log2_minQT_ISliceChroma_minus2" ); WRITE_UVLC( spsNext.getMaxBTDepthIChroma(), "max_bt_depth_i_slice_chroma" ); #endif } #if !JVET_L0198_L0468_L0104_ATMVP_8x8SUB_BLOCK if( spsNext.getUseSubPuMvp() ) { WRITE_CODE( spsNext.getSubPuMvpLog2Size() - MIN_CU_LOG2, 3, "log2_sub_pu_tmvp_size_minus2" ); } #endif if( spsNext.getUseIMV() ) { WRITE_UVLC( spsNext.getImvMode()-1, "imv_mode_minus1" ); } if( spsNext.getMTTEnabled() ) { WRITE_UVLC( spsNext.getMTTMode() - 1, "mtt_mode_minus1" ); } #if LUMA_ADAPTIVE_DEBLOCKING_FILTER_QP_OFFSET WRITE_FLAG( spsNext.getLadfEnabled() ? 1 : 0, "sps_ladf_enabled_flag" ); if ( spsNext.getLadfEnabled() ) { WRITE_CODE( spsNext.getLadfNumIntervals() - 2, 2, "sps_num_ladf_intervals_minus2" ); WRITE_SVLC( spsNext.getLadfQpOffset( 0 ), "sps_ladf_lowest_interval_qp_offset"); for ( int k = 1; k< spsNext.getLadfNumIntervals(); k++ ) { WRITE_SVLC( spsNext.getLadfQpOffset( k ), "sps_ladf_qp_offset" ); WRITE_UVLC( spsNext.getLadfIntervalLowerBound( k ) - spsNext.getLadfIntervalLowerBound( k - 1 ) - 1, "sps_ladf_delta_threshold_minus1" ); } } #endif // ADD_NEW_TOOL : (sps extension writer) write tool enabling flags and associated parameters here } void HLSWriter::codeSPS( const SPS* pcSPS ) { const ChromaFormat format = pcSPS->getChromaFormatIdc(); const bool chromaEnabled = isChromaEnabled(format); #if ENABLE_TRACING xTraceSPSHeader (); #endif #if HEVC_VPS WRITE_CODE( pcSPS->getVPSId (), 4, "sps_video_parameter_set_id" ); #endif WRITE_CODE( pcSPS->getMaxTLayers() - 1, 3, "sps_max_sub_layers_minus1" ); WRITE_FLAG( pcSPS->getTemporalIdNestingFlag() ? 1 : 0, "sps_temporal_id_nesting_flag" ); codePTL( pcSPS->getPTL(), true, pcSPS->getMaxTLayers() - 1 ); WRITE_UVLC( pcSPS->getSPSId (), "sps_seq_parameter_set_id" ); WRITE_UVLC( int(pcSPS->getChromaFormatIdc ()), "chroma_format_idc" ); if( format == CHROMA_444 ) { WRITE_FLAG( 0, "separate_colour_plane_flag"); } WRITE_UVLC( pcSPS->getPicWidthInLumaSamples (), "pic_width_in_luma_samples" ); WRITE_UVLC( pcSPS->getPicHeightInLumaSamples(), "pic_height_in_luma_samples" ); Window conf = pcSPS->getConformanceWindow(); WRITE_FLAG( conf.getWindowEnabledFlag(), "conformance_window_flag" ); if (conf.getWindowEnabledFlag()) { WRITE_UVLC( conf.getWindowLeftOffset() / SPS::getWinUnitX(pcSPS->getChromaFormatIdc() ), "conf_win_left_offset" ); WRITE_UVLC( conf.getWindowRightOffset() / SPS::getWinUnitX(pcSPS->getChromaFormatIdc() ), "conf_win_right_offset" ); WRITE_UVLC( conf.getWindowTopOffset() / SPS::getWinUnitY(pcSPS->getChromaFormatIdc() ), "conf_win_top_offset" ); WRITE_UVLC( conf.getWindowBottomOffset() / SPS::getWinUnitY(pcSPS->getChromaFormatIdc() ), "conf_win_bottom_offset" ); } WRITE_UVLC( pcSPS->getBitDepth(CHANNEL_TYPE_LUMA) - 8, "bit_depth_luma_minus8" ); WRITE_UVLC( chromaEnabled ? (pcSPS->getBitDepth(CHANNEL_TYPE_CHROMA) - 8):0, "bit_depth_chroma_minus8" ); WRITE_UVLC( pcSPS->getBitsForPOC()-4, "log2_max_pic_order_cnt_lsb_minus4" ); const bool subLayerOrderingInfoPresentFlag = 1; WRITE_FLAG(subLayerOrderingInfoPresentFlag, "sps_sub_layer_ordering_info_present_flag"); for(uint32_t i=0; i <= pcSPS->getMaxTLayers()-1; i++) { WRITE_UVLC( pcSPS->getMaxDecPicBuffering(i) - 1, "sps_max_dec_pic_buffering_minus1[i]" ); WRITE_UVLC( pcSPS->getNumReorderPics(i), "sps_max_num_reorder_pics[i]" ); WRITE_UVLC( pcSPS->getMaxLatencyIncreasePlus1(i), "sps_max_latency_increase_plus1[i]" ); if (!subLayerOrderingInfoPresentFlag) { break; } } CHECK( pcSPS->getMaxCUWidth() != pcSPS->getMaxCUHeight(), "Rectangular CTUs not supported" ); #if JVET_L0217_L0678_PARTITION_HIGHLEVEL_CONSTRAINT WRITE_UVLC( pcSPS->getLog2MinCodingBlockSize() - 2, "log2_min_luma_coding_block_size_minus2"); #else WRITE_UVLC( pcSPS->getLog2MinCodingBlockSize() - 3, "log2_min_luma_coding_block_size_minus3" ); #endif WRITE_UVLC( pcSPS->getLog2DiffMaxMinCodingBlockSize(), "log2_diff_max_min_luma_coding_block_size" ); WRITE_UVLC( pcSPS->getQuadtreeTULog2MinSize() - 2, "log2_min_luma_transform_block_size_minus2" ); WRITE_UVLC( pcSPS->getQuadtreeTULog2MaxSize() - pcSPS->getQuadtreeTULog2MinSize(), "log2_diff_max_min_luma_transform_block_size" ); WRITE_UVLC( pcSPS->getQuadtreeTUMaxDepthInter() - 1, "max_transform_hierarchy_depth_inter" ); WRITE_UVLC( pcSPS->getQuadtreeTUMaxDepthIntra() - 1, "max_transform_hierarchy_depth_intra" ); WRITE_FLAG( pcSPS->getUseALF(), "sps_alf_enable_flag" ); #if HEVC_USE_SCALING_LISTS WRITE_FLAG( pcSPS->getScalingListFlag() ? 1 : 0, "scaling_list_enabled_flag" ); if(pcSPS->getScalingListFlag()) { WRITE_FLAG( pcSPS->getScalingListPresentFlag() ? 1 : 0, "sps_scaling_list_data_present_flag" ); if(pcSPS->getScalingListPresentFlag()) { codeScalingList( pcSPS->getScalingList() ); } } #endif WRITE_FLAG( pcSPS->getUseAMP() ? 1 : 0, "amp_enabled_flag" ); WRITE_FLAG( pcSPS->getUseSAO() ? 1 : 0, "sample_adaptive_offset_enabled_flag"); WRITE_FLAG( pcSPS->getUsePCM() ? 1 : 0, "pcm_enabled_flag"); if( pcSPS->getUsePCM() ) { WRITE_CODE( pcSPS->getPCMBitDepth(CHANNEL_TYPE_LUMA) - 1, 4, "pcm_sample_bit_depth_luma_minus1" ); WRITE_CODE( chromaEnabled ? (pcSPS->getPCMBitDepth(CHANNEL_TYPE_CHROMA) - 1) : 0, 4, "pcm_sample_bit_depth_chroma_minus1" ); WRITE_UVLC( pcSPS->getPCMLog2MinSize() - 3, "log2_min_pcm_luma_coding_block_size_minus3" ); WRITE_UVLC( pcSPS->getPCMLog2MaxSize() - pcSPS->getPCMLog2MinSize(), "log2_diff_max_min_pcm_luma_coding_block_size" ); WRITE_FLAG( pcSPS->getPCMFilterDisableFlag()?1 : 0, "pcm_loop_filter_disable_flag"); } CHECK( pcSPS->getMaxTLayers() == 0, "Maximum number of T-layers is '0'" ); const RPSList* rpsList = pcSPS->getRPSList(); WRITE_UVLC(rpsList->getNumberOfReferencePictureSets(), "num_short_term_ref_pic_sets" ); for(int i=0; i < rpsList->getNumberOfReferencePictureSets(); i++) { const ReferencePictureSet*rps = rpsList->getReferencePictureSet(i); xCodeShortTermRefPicSet( rps,false, i); } WRITE_FLAG( pcSPS->getLongTermRefsPresent() ? 1 : 0, "long_term_ref_pics_present_flag" ); if (pcSPS->getLongTermRefsPresent()) { WRITE_UVLC(pcSPS->getNumLongTermRefPicSPS(), "num_long_term_ref_pics_sps" ); for (uint32_t k = 0; k < pcSPS->getNumLongTermRefPicSPS(); k++) { WRITE_CODE( pcSPS->getLtRefPicPocLsbSps(k), pcSPS->getBitsForPOC(), "lt_ref_pic_poc_lsb_sps"); WRITE_FLAG( pcSPS->getUsedByCurrPicLtSPSFlag(k), "used_by_curr_pic_lt_sps_flag[i]"); } } WRITE_FLAG( pcSPS->getSPSTemporalMVPEnabledFlag() ? 1 : 0, "sps_temporal_mvp_enabled_flag" ); #if HEVC_USE_INTRA_SMOOTHING_T32 || HEVC_USE_INTRA_SMOOTHING_T64 WRITE_FLAG( pcSPS->getUseStrongIntraSmoothing(), "strong_intra_smoothing_enable_flag" ); #endif WRITE_FLAG( pcSPS->getVuiParametersPresentFlag(), "vui_parameters_present_flag" ); if (pcSPS->getVuiParametersPresentFlag()) { codeVUI(pcSPS->getVuiParameters(), pcSPS); } // KTA tools bool sps_extension_present_flag=false; bool sps_extension_flags[NUM_SPS_EXTENSION_FLAGS]={false}; sps_extension_flags[SPS_EXT__REXT] = pcSPS->getSpsRangeExtension().settingsDifferFromDefaults(); sps_extension_flags[SPS_EXT__NEXT] = pcSPS->getSpsNext().nextToolsEnabled(); // Other SPS extension flags checked here. for(int i=0; i<NUM_SPS_EXTENSION_FLAGS; i++) { sps_extension_present_flag|=sps_extension_flags[i]; } WRITE_FLAG( (sps_extension_present_flag?1:0), "sps_extension_present_flag" ); if (sps_extension_present_flag) { #if ENABLE_TRACING /*|| RExt__DECODER_DEBUG_BIT_STATISTICS*/ static const char *syntaxStrings[]={ "sps_range_extension_flag", "sps_multilayer_extension_flag", "sps_extension_6bits[0]", "sps_extension_6bits[1]", "sps_extension_6bits[2]", "sps_extension_6bits[3]", "sps_extension_6bits[4]", "sps_extension_6bits[5]" }; #endif for(int i=0; i<NUM_SPS_EXTENSION_FLAGS; i++) { WRITE_FLAG( sps_extension_flags[i]?1:0, syntaxStrings[i] ); } for(int i=0; i<NUM_SPS_EXTENSION_FLAGS; i++) // loop used so that the order is determined by the enum. { if (sps_extension_flags[i]) { switch (SPSExtensionFlagIndex(i)) { case SPS_EXT__REXT: { const SPSRExt &spsRangeExtension=pcSPS->getSpsRangeExtension(); WRITE_FLAG( (spsRangeExtension.getTransformSkipRotationEnabledFlag() ? 1 : 0), "transform_skip_rotation_enabled_flag"); WRITE_FLAG( (spsRangeExtension.getTransformSkipContextEnabledFlag() ? 1 : 0), "transform_skip_context_enabled_flag"); WRITE_FLAG( (spsRangeExtension.getRdpcmEnabledFlag(RDPCM_SIGNAL_IMPLICIT) ? 1 : 0), "implicit_rdpcm_enabled_flag" ); WRITE_FLAG( (spsRangeExtension.getRdpcmEnabledFlag(RDPCM_SIGNAL_EXPLICIT) ? 1 : 0), "explicit_rdpcm_enabled_flag" ); WRITE_FLAG( (spsRangeExtension.getExtendedPrecisionProcessingFlag() ? 1 : 0), "extended_precision_processing_flag" ); WRITE_FLAG( (spsRangeExtension.getIntraSmoothingDisabledFlag() ? 1 : 0), "intra_smoothing_disabled_flag" ); WRITE_FLAG( (spsRangeExtension.getHighPrecisionOffsetsEnabledFlag() ? 1 : 0), "high_precision_offsets_enabled_flag" ); WRITE_FLAG( (spsRangeExtension.getPersistentRiceAdaptationEnabledFlag() ? 1 : 0), "persistent_rice_adaptation_enabled_flag" ); WRITE_FLAG( (spsRangeExtension.getCabacBypassAlignmentEnabledFlag() ? 1 : 0), "cabac_bypass_alignment_enabled_flag" ); break; } case SPS_EXT__NEXT: { codeSPSNext( pcSPS->getSpsNext(), pcSPS->getUsePCM() ); break; } default: CHECK(sps_extension_flags[i]!=false, "Unknown PPS extension signalled"); // Should never get here with an active SPS extension flag. break; } } } } xWriteRbspTrailingBits(); } #if HEVC_VPS void HLSWriter::codeVPS( const VPS* pcVPS ) { #if ENABLE_TRACING xTraceVPSHeader(); #endif WRITE_CODE( pcVPS->getVPSId(), 4, "vps_video_parameter_set_id" ); WRITE_FLAG( 1, "vps_base_layer_internal_flag" ); WRITE_FLAG( 1, "vps_base_layer_available_flag" ); WRITE_CODE( 0, 6, "vps_max_layers_minus1" ); WRITE_CODE( pcVPS->getMaxTLayers() - 1, 3, "vps_max_sub_layers_minus1" ); WRITE_FLAG( pcVPS->getTemporalNestingFlag(), "vps_temporal_id_nesting_flag" ); CHECK(pcVPS->getMaxTLayers()<=1&&!pcVPS->getTemporalNestingFlag(), "Invalud parameters"); WRITE_CODE( 0xffff, 16, "vps_reserved_0xffff_16bits" ); codePTL( pcVPS->getPTL(), true, pcVPS->getMaxTLayers() - 1 ); const bool subLayerOrderingInfoPresentFlag = 1; WRITE_FLAG(subLayerOrderingInfoPresentFlag, "vps_sub_layer_ordering_info_present_flag"); for(uint32_t i=0; i <= pcVPS->getMaxTLayers()-1; i++) { WRITE_UVLC( pcVPS->getMaxDecPicBuffering(i) - 1, "vps_max_dec_pic_buffering_minus1[i]" ); WRITE_UVLC( pcVPS->getNumReorderPics(i), "vps_max_num_reorder_pics[i]" ); WRITE_UVLC( pcVPS->getMaxLatencyIncrease(i), "vps_max_latency_increase_plus1[i]" ); if (!subLayerOrderingInfoPresentFlag) { break; } } CHECK( pcVPS->getNumHrdParameters() > MAX_VPS_NUM_HRD_PARAMETERS, "Too many HRD parameters" ); CHECK( pcVPS->getMaxNuhReservedZeroLayerId() >= MAX_VPS_NUH_RESERVED_ZERO_LAYER_ID_PLUS1, "Invalid parameters read" ); WRITE_CODE( pcVPS->getMaxNuhReservedZeroLayerId(), 6, "vps_max_layer_id" ); WRITE_UVLC( pcVPS->getMaxOpSets() - 1, "vps_num_layer_sets_minus1" ); for( uint32_t opsIdx = 1; opsIdx <= ( pcVPS->getMaxOpSets() - 1 ); opsIdx ++ ) { // Operation point set for( uint32_t i = 0; i <= pcVPS->getMaxNuhReservedZeroLayerId(); i ++ ) { // Only applicable for version 1 // pcVPS->setLayerIdIncludedFlag( true, opsIdx, i ); WRITE_FLAG( pcVPS->getLayerIdIncludedFlag( opsIdx, i ) ? 1 : 0, "layer_id_included_flag[opsIdx][i]" ); } } const TimingInfo *timingInfo = pcVPS->getTimingInfo(); WRITE_FLAG(timingInfo->getTimingInfoPresentFlag(), "vps_timing_info_present_flag"); if(timingInfo->getTimingInfoPresentFlag()) { WRITE_CODE(timingInfo->getNumUnitsInTick(), 32, "vps_num_units_in_tick"); WRITE_CODE(timingInfo->getTimeScale(), 32, "vps_time_scale"); WRITE_FLAG(timingInfo->getPocProportionalToTimingFlag(), "vps_poc_proportional_to_timing_flag"); if(timingInfo->getPocProportionalToTimingFlag()) { WRITE_UVLC(timingInfo->getNumTicksPocDiffOneMinus1(), "vps_num_ticks_poc_diff_one_minus1"); } WRITE_UVLC( pcVPS->getNumHrdParameters(), "vps_num_hrd_parameters" ); if( pcVPS->getNumHrdParameters() > 0 ) { for( uint32_t i = 0; i < pcVPS->getNumHrdParameters(); i ++ ) { // Only applicable for version 1 WRITE_UVLC( pcVPS->getHrdOpSetIdx( i ), "hrd_layer_set_idx" ); if( i > 0 ) { WRITE_FLAG( pcVPS->getCprmsPresentFlag( i ) ? 1 : 0, "cprms_present_flag[i]" ); } codeHrdParameters(pcVPS->getHrdParameters(i), pcVPS->getCprmsPresentFlag( i ), pcVPS->getMaxTLayers() - 1); } } } WRITE_FLAG( 0, "vps_extension_flag" ); //future extensions here.. xWriteRbspTrailingBits(); } #endif void HLSWriter::codeSliceHeader ( Slice* pcSlice ) { #if ENABLE_TRACING xTraceSliceHeader (); #endif CodingStructure& cs = *pcSlice->getPic()->cs; const ChromaFormat format = pcSlice->getSPS()->getChromaFormatIdc(); const uint32_t numberValidComponents = getNumberValidComponents(format); const bool chromaEnabled = isChromaEnabled(format); //calculate number of bits required for slice address int maxSliceSegmentAddress = cs.pcv->sizeInCtus; int bitsSliceSegmentAddress = 0; while(maxSliceSegmentAddress>(1<<bitsSliceSegmentAddress)) { bitsSliceSegmentAddress++; } #if HEVC_DEPENDENT_SLICES const int ctuTsAddress = pcSlice->getSliceSegmentCurStartCtuTsAddr(); #else const int ctuTsAddress = pcSlice->getSliceCurStartCtuTsAddr(); #endif //write slice address #if HEVC_TILES_WPP const int sliceSegmentRsAddress = pcSlice->getPic()->tileMap->getCtuTsToRsAddrMap(ctuTsAddress); #else const int sliceSegmentRsAddress = ctuTsAddress; #endif WRITE_FLAG( sliceSegmentRsAddress==0, "first_slice_segment_in_pic_flag" ); if ( pcSlice->getRapPicFlag() ) { WRITE_FLAG( pcSlice->getNoOutputPriorPicsFlag() ? 1 : 0, "no_output_of_prior_pics_flag" ); } WRITE_UVLC( pcSlice->getPPS()->getPPSId(), "slice_pic_parameter_set_id" ); #if HEVC_DEPENDENT_SLICES if ( pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag() && (sliceSegmentRsAddress!=0) ) { WRITE_FLAG( pcSlice->getDependentSliceSegmentFlag() ? 1 : 0, "dependent_slice_segment_flag" ); } #endif if(sliceSegmentRsAddress>0) { WRITE_CODE( sliceSegmentRsAddress, bitsSliceSegmentAddress, "slice_segment_address" ); } #if HEVC_DEPENDENT_SLICES if( !pcSlice->getDependentSliceSegmentFlag() ) { #endif for( int i = 0; i < pcSlice->getPPS()->getNumExtraSliceHeaderBits(); i++ ) { WRITE_FLAG( 0, "slice_reserved_flag[]" ); } WRITE_UVLC( pcSlice->getSliceType(), "slice_type" ); if( pcSlice->getPPS()->getOutputFlagPresentFlag() ) { WRITE_FLAG( pcSlice->getPicOutputFlag() ? 1 : 0, "pic_output_flag" ); } if( !pcSlice->getIdrPicFlag() ) { int picOrderCntLSB = ( pcSlice->getPOC() - pcSlice->getLastIDR() + ( 1 << pcSlice->getSPS()->getBitsForPOC() ) ) & ( ( 1 << pcSlice->getSPS()->getBitsForPOC() ) - 1 ); WRITE_CODE( picOrderCntLSB, pcSlice->getSPS()->getBitsForPOC(), "slice_pic_order_cnt_lsb" ); const ReferencePictureSet* rps = pcSlice->getRPS(); // check for bitstream restriction stating that: // If the current picture is a BLA or CRA picture, the value of NumPocTotalCurr shall be equal to 0. // Ideally this process should not be repeated for each slice in a picture if( pcSlice->isIRAP() ) { for( int picIdx = 0; picIdx < rps->getNumberOfPictures(); picIdx++ ) { CHECK( rps->getUsed( picIdx ), "Picture should not be used" ); } } if( pcSlice->getRPSidx() < 0 ) { WRITE_FLAG( 0, "short_term_ref_pic_set_sps_flag" ); xCodeShortTermRefPicSet( rps, true, pcSlice->getSPS()->getRPSList()->getNumberOfReferencePictureSets() ); } else { WRITE_FLAG( 1, "short_term_ref_pic_set_sps_flag" ); int numBits = 0; while( ( 1 << numBits ) < pcSlice->getSPS()->getRPSList()->getNumberOfReferencePictureSets() ) { numBits++; } if( numBits > 0 ) { WRITE_CODE( pcSlice->getRPSidx(), numBits, "short_term_ref_pic_set_idx" ); } } if( pcSlice->getSPS()->getLongTermRefsPresent() ) { int numLtrpInSH = rps->getNumberOfLongtermPictures(); int ltrpInSPS[MAX_NUM_REF_PICS]; int numLtrpInSPS = 0; uint32_t ltrpIndex; int counter = 0; // WARNING: The following code only works only if a matching long-term RPS is // found in the SPS for ALL long-term pictures // The problem is that the SPS coded long-term pictures are moved to the // beginning of the list which causes a mismatch when no reference picture // list reordering is used // NB: Long-term coding is currently not supported in general by the HM encoder for( int k = rps->getNumberOfPictures() - 1; k > rps->getNumberOfPictures() - rps->getNumberOfLongtermPictures() - 1; k-- ) { if( xFindMatchingLTRP( pcSlice, <rpIndex, rps->getPOC( k ), rps->getUsed( k ) ) ) { ltrpInSPS[numLtrpInSPS] = ltrpIndex; numLtrpInSPS++; } else { counter++; } } numLtrpInSH -= numLtrpInSPS; // check that either all long-term pictures are coded in SPS or in slice header (no mixing) CHECK( numLtrpInSH != 0 && numLtrpInSPS != 0, "Long term picture not coded" ); int bitsForLtrpInSPS = 0; while( pcSlice->getSPS()->getNumLongTermRefPicSPS() > ( 1 << bitsForLtrpInSPS ) ) { bitsForLtrpInSPS++; } if( pcSlice->getSPS()->getNumLongTermRefPicSPS() > 0 ) { WRITE_UVLC( numLtrpInSPS, "num_long_term_sps" ); } WRITE_UVLC( numLtrpInSH, "num_long_term_pics" ); // Note that the LSBs of the LT ref. pic. POCs must be sorted before. // Not sorted here because LT ref indices will be used in setRefPicList() int prevDeltaMSB = 0, prevLSB = 0; int offset = rps->getNumberOfNegativePictures() + rps->getNumberOfPositivePictures(); counter = 0; // Warning: If some pictures are moved to ltrpInSPS, i is referring to a wrong index // (mapping would be required) for( int i = rps->getNumberOfPictures() - 1; i > offset - 1; i--, counter++ ) { if( counter < numLtrpInSPS ) { if( bitsForLtrpInSPS > 0 ) { WRITE_CODE( ltrpInSPS[counter], bitsForLtrpInSPS, "lt_idx_sps[i]" ); } } else { WRITE_CODE( rps->getPocLSBLT( i ), pcSlice->getSPS()->getBitsForPOC(), "poc_lsb_lt" ); WRITE_FLAG( rps->getUsed( i ), "used_by_curr_pic_lt_flag" ); } WRITE_FLAG( rps->getDeltaPocMSBPresentFlag( i ), "delta_poc_msb_present_flag" ); if( rps->getDeltaPocMSBPresentFlag( i ) ) { bool deltaFlag = false; // First LTRP from SPS || First LTRP from SH || curr LSB != prev LSB if( ( i == rps->getNumberOfPictures() - 1 ) || ( i == rps->getNumberOfPictures() - 1 - numLtrpInSPS ) || ( rps->getPocLSBLT( i ) != prevLSB ) ) { deltaFlag = true; } if( deltaFlag ) { WRITE_UVLC( rps->getDeltaPocMSBCycleLT( i ), "delta_poc_msb_cycle_lt[i]" ); } else { int differenceInDeltaMSB = rps->getDeltaPocMSBCycleLT( i ) - prevDeltaMSB; CHECK( differenceInDeltaMSB < 0, "Negative diff. delta MSB" ); WRITE_UVLC( differenceInDeltaMSB, "delta_poc_msb_cycle_lt[i]" ); } prevLSB = rps->getPocLSBLT( i ); prevDeltaMSB = rps->getDeltaPocMSBCycleLT( i ); } } } if( pcSlice->getSPS()->getSPSTemporalMVPEnabledFlag() ) { WRITE_FLAG( pcSlice->getEnableTMVPFlag() ? 1 : 0, "slice_temporal_mvp_enabled_flag" ); } } if( pcSlice->getSPS()->getUseSAO() ) { WRITE_FLAG( pcSlice->getSaoEnabledFlag( CHANNEL_TYPE_LUMA ), "slice_sao_luma_flag" ); if( chromaEnabled ) { WRITE_FLAG( pcSlice->getSaoEnabledFlag( CHANNEL_TYPE_CHROMA ), "slice_sao_chroma_flag" ); } } if( pcSlice->getSPS()->getUseALF() ) { alf( pcSlice->getAlfSliceParam() ); } //check if numrefidxes match the defaults. If not, override if( !pcSlice->isIntra() ) { bool overrideFlag = ( pcSlice->getNumRefIdx( REF_PIC_LIST_0 ) != pcSlice->getPPS()->getNumRefIdxL0DefaultActive() || ( pcSlice->isInterB() && pcSlice->getNumRefIdx( REF_PIC_LIST_1 ) != pcSlice->getPPS()->getNumRefIdxL1DefaultActive() ) ); WRITE_FLAG( overrideFlag ? 1 : 0, "num_ref_idx_active_override_flag" ); if( overrideFlag ) { WRITE_UVLC( pcSlice->getNumRefIdx( REF_PIC_LIST_0 ) - 1, "num_ref_idx_l0_active_minus1" ); if( pcSlice->isInterB() ) { WRITE_UVLC( pcSlice->getNumRefIdx( REF_PIC_LIST_1 ) - 1, "num_ref_idx_l1_active_minus1" ); } else { pcSlice->setNumRefIdx( REF_PIC_LIST_1, 0 ); } } } else { pcSlice->setNumRefIdx( REF_PIC_LIST_0, 0 ); pcSlice->setNumRefIdx( REF_PIC_LIST_1, 0 ); } if( pcSlice->getPPS()->getListsModificationPresentFlag() && pcSlice->getNumRpsCurrTempList() > 1 ) { RefPicListModification* refPicListModification = pcSlice->getRefPicListModification(); if( !pcSlice->isIntra() ) { WRITE_FLAG( pcSlice->getRefPicListModification()->getRefPicListModificationFlagL0() ? 1 : 0, "ref_pic_list_modification_flag_l0" ); if( pcSlice->getRefPicListModification()->getRefPicListModificationFlagL0() ) { int numRpsCurrTempList0 = pcSlice->getNumRpsCurrTempList(); if( numRpsCurrTempList0 > 1 ) { int length = 1; numRpsCurrTempList0--; while( numRpsCurrTempList0 >>= 1 ) { length++; } for( int i = 0; i < pcSlice->getNumRefIdx( REF_PIC_LIST_0 ); i++ ) { WRITE_CODE( refPicListModification->getRefPicSetIdxL0( i ), length, "list_entry_l0" ); } } } } if( pcSlice->isInterB() ) { WRITE_FLAG( pcSlice->getRefPicListModification()->getRefPicListModificationFlagL1() ? 1 : 0, "ref_pic_list_modification_flag_l1" ); if( pcSlice->getRefPicListModification()->getRefPicListModificationFlagL1() ) { int numRpsCurrTempList1 = pcSlice->getNumRpsCurrTempList(); if( numRpsCurrTempList1 > 1 ) { int length = 1; numRpsCurrTempList1--; while( numRpsCurrTempList1 >>= 1 ) { length++; } for( int i = 0; i < pcSlice->getNumRefIdx( REF_PIC_LIST_1 ); i++ ) { WRITE_CODE( refPicListModification->getRefPicSetIdxL1( i ), length, "list_entry_l1" ); } } } } } if( pcSlice->isInterB() ) { WRITE_FLAG( pcSlice->getMvdL1ZeroFlag() ? 1 : 0, "mvd_l1_zero_flag" ); } if( !pcSlice->isIntra() ) { if( !pcSlice->isIntra() && pcSlice->getPPS()->getCabacInitPresentFlag() ) { SliceType sliceType = pcSlice->getSliceType(); SliceType encCABACTableIdx = pcSlice->getEncCABACTableIdx(); bool encCabacInitFlag = ( sliceType != encCABACTableIdx && encCABACTableIdx != I_SLICE ) ? true : false; pcSlice->setCabacInitFlag( encCabacInitFlag ); WRITE_FLAG( encCabacInitFlag ? 1 : 0, "cabac_init_flag" ); } } if( pcSlice->getEnableTMVPFlag() ) { if( pcSlice->getSliceType() == B_SLICE ) { WRITE_FLAG( pcSlice->getColFromL0Flag(), "collocated_from_l0_flag" ); } if( pcSlice->getSliceType() != I_SLICE && ( ( pcSlice->getColFromL0Flag() == 1 && pcSlice->getNumRefIdx( REF_PIC_LIST_0 ) > 1 ) || ( pcSlice->getColFromL0Flag() == 0 && pcSlice->getNumRefIdx( REF_PIC_LIST_1 ) > 1 ) ) ) { WRITE_UVLC( pcSlice->getColRefIdx(), "collocated_ref_idx" ); } } if( ( pcSlice->getPPS()->getUseWP() && pcSlice->getSliceType() == P_SLICE ) || ( pcSlice->getPPS()->getWPBiPred() && pcSlice->getSliceType() == B_SLICE ) ) { xCodePredWeightTable( pcSlice ); } WRITE_FLAG( pcSlice->getDepQuantEnabledFlag() ? 1 : 0, "dep_quant_enable_flag" ); #if HEVC_USE_SIGN_HIDING if( !pcSlice->getDepQuantEnabledFlag() ) { WRITE_FLAG( pcSlice->getSignDataHidingEnabledFlag() ? 1 : 0, "sign_data_hiding_enable_flag" ); } else { CHECK( pcSlice->getSignDataHidingEnabledFlag(), "sign data hiding not supported when dependent quantization is enabled" ); } #endif #if JVET_L0217_L0678_PARTITION_HIGHLEVEL_CONSTRAINT if (pcSlice->getSPS()->getSpsNext().getSplitConsOverrideEnabledFlag()) { WRITE_FLAG(pcSlice->getSplitConsOverrideFlag() ? 1 : 0, "partition_constrainst_override_flag"); if (pcSlice->getSplitConsOverrideFlag()) { WRITE_UVLC(g_aucLog2[pcSlice->getMinQTSize()] - pcSlice->getSPS()->getLog2MinCodingBlockSize(), "log2_diff_min_qt_min_cb"); WRITE_UVLC(pcSlice->getMaxBTDepth(), "max_bt_depth"); if (pcSlice->getMaxBTDepth() != 0) { CHECK(pcSlice->getMaxBTSize() < pcSlice->getMinQTSize(), "maxBtSize is smaller than minQtSize"); WRITE_UVLC(g_aucLog2[pcSlice->getMaxBTSize()] - g_aucLog2[pcSlice->getMinQTSize()], "log2_diff_max_bt_min_qt"); CHECK(pcSlice->getMaxTTSize() < pcSlice->getMinQTSize(), "maxTtSize is smaller than minQtSize"); WRITE_UVLC(g_aucLog2[pcSlice->getMaxTTSize()] - g_aucLog2[pcSlice->getMinQTSize()], "log2_diff_max_tt_min_qt"); } if (pcSlice->isIntra() && pcSlice->getSPS()->getSpsNext().getUseDualITree()) { WRITE_UVLC(g_aucLog2[pcSlice->getMinQTSizeIChroma()] - pcSlice->getSPS()->getLog2MinCodingBlockSize(), "log2_diff_min_qt_min_cb_chroma"); WRITE_UVLC(pcSlice->getMaxBTDepthIChroma(), "max_mtt_hierarchy_depth_chroma"); if (pcSlice->getMaxBTDepthIChroma() != 0) { CHECK(pcSlice->getMaxBTSizeIChroma() < pcSlice->getMinQTSizeIChroma(), "maxBtSizeC is smaller than minQtSizeC"); WRITE_UVLC(g_aucLog2[pcSlice->getMaxBTSizeIChroma()] - g_aucLog2[pcSlice->getMinQTSizeIChroma()], "log2_diff_max_bt_min_qt_chroma"); CHECK(pcSlice->getMaxTTSizeIChroma() < pcSlice->getMinQTSizeIChroma(), "maxTtSizeC is smaller than minQtSizeC"); WRITE_UVLC(g_aucLog2[pcSlice->getMaxTTSizeIChroma()] - g_aucLog2[pcSlice->getMinQTSizeIChroma()], "log2_diff_max_tt_min_qt_chroma"); } } } } #else if( !pcSlice->isIntra() ) { if( pcSlice->getSPS()->getSpsNext().getCTUSize() > pcSlice->getMaxBTSize() ) { WRITE_UVLC( g_aucLog2[pcSlice->getSPS()->getSpsNext().getCTUSize()] - g_aucLog2[pcSlice->getMaxBTSize()], "max_binary_tree_unit_size" ); } else { WRITE_UVLC( 0, "max_binary_tree_unit_size" ); } } #endif if( !pcSlice->isIntra() ) { #if JVET_L0369_SUBBLOCK_MERGE CHECK( pcSlice->getMaxNumMergeCand() > MRG_MAX_NUM_CANDS, "More merge candidates signalled than supported" ); WRITE_UVLC( MRG_MAX_NUM_CANDS - pcSlice->getMaxNumMergeCand(), "six_minus_max_num_merge_cand" ); #else CHECK( pcSlice->getMaxNumMergeCand() > ( MRG_MAX_NUM_CANDS - ( pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() ? 0 : 2 ) ), "More merge candidates signalled than supported" ); WRITE_UVLC( MRG_MAX_NUM_CANDS - pcSlice->getMaxNumMergeCand() - ( pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() ? 0 : 2 ), pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() ? "seven_minus_max_num_merge_cand" : "five_minus_max_num_merge_cand" ); #endif #if JVET_L0632_AFFINE_MERGE #if JVET_L0369_SUBBLOCK_MERGE if ( pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() && !pcSlice->getSPS()->getSpsNext().getUseAffine() ) // ATMVP only { CHECK( pcSlice->getMaxNumAffineMergeCand() != 1, "Sub-block merge can number should be 1" ); } else if ( !pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() && !pcSlice->getSPS()->getSpsNext().getUseAffine() ) // both off { CHECK( pcSlice->getMaxNumAffineMergeCand() != 0, "Sub-block merge can number should be 0" ); } else #endif if ( pcSlice->getSPS()->getSpsNext().getUseAffine() ) { CHECK( pcSlice->getMaxNumAffineMergeCand() > AFFINE_MRG_MAX_NUM_CANDS, "More affine merge candidates signalled than supported" ); WRITE_UVLC( AFFINE_MRG_MAX_NUM_CANDS - pcSlice->getMaxNumAffineMergeCand(), "five_minus_max_num_affine_merge_cand" ); } #endif } int iCode = pcSlice->getSliceQp() - ( pcSlice->getPPS()->getPicInitQPMinus26() + 26 ); WRITE_SVLC( iCode, "slice_qp_delta" ); if (pcSlice->getPPS()->getSliceChromaQpFlag()) { if (numberValidComponents > COMPONENT_Cb) { WRITE_SVLC( pcSlice->getSliceChromaQpDelta(COMPONENT_Cb), "slice_cb_qp_offset" ); } if (numberValidComponents > COMPONENT_Cr) { WRITE_SVLC( pcSlice->getSliceChromaQpDelta(COMPONENT_Cr), "slice_cr_qp_offset" ); } CHECK(numberValidComponents < COMPONENT_Cr+1, "Too many valid components"); } if (pcSlice->getPPS()->getPpsRangeExtension().getChromaQpOffsetListEnabledFlag()) { WRITE_FLAG(pcSlice->getUseChromaQpAdj(), "cu_chroma_qp_offset_enabled_flag"); } if (pcSlice->getPPS()->getDeblockingFilterControlPresentFlag()) { if (pcSlice->getPPS()->getDeblockingFilterOverrideEnabledFlag() ) { WRITE_FLAG(pcSlice->getDeblockingFilterOverrideFlag(), "deblocking_filter_override_flag"); } if (pcSlice->getDeblockingFilterOverrideFlag()) { WRITE_FLAG(pcSlice->getDeblockingFilterDisable(), "slice_deblocking_filter_disabled_flag"); if(!pcSlice->getDeblockingFilterDisable()) { WRITE_SVLC (pcSlice->getDeblockingFilterBetaOffsetDiv2(), "slice_beta_offset_div2"); WRITE_SVLC (pcSlice->getDeblockingFilterTcOffsetDiv2(), "slice_tc_offset_div2"); } } } bool isSAOEnabled = pcSlice->getSPS()->getUseSAO() && (pcSlice->getSaoEnabledFlag(CHANNEL_TYPE_LUMA) || (chromaEnabled && pcSlice->getSaoEnabledFlag(CHANNEL_TYPE_CHROMA))); bool isDBFEnabled = (!pcSlice->getDeblockingFilterDisable()); if(pcSlice->getPPS()->getLoopFilterAcrossSlicesEnabledFlag() && ( isSAOEnabled || isDBFEnabled )) { WRITE_FLAG(pcSlice->getLFCrossSliceBoundaryFlag()?1:0, "slice_loop_filter_across_slices_enabled_flag"); } #if HEVC_DEPENDENT_SLICES } #endif #if !JVET_L0198_L0468_L0104_ATMVP_8x8SUB_BLOCK if (pcSlice->getSPS()->getSpsNext().getUseSubPuMvp() && !pcSlice->isIntra()) { WRITE_FLAG(pcSlice->getSubPuMvpSliceSubblkSizeEnable(), "slice_atmvp_subblk_size_enable_flag"); if (pcSlice->getSubPuMvpSliceSubblkSizeEnable()) { WRITE_CODE(pcSlice->getSubPuMvpSubblkLog2Size() - MIN_CU_LOG2, 3, "log2_slice_sub_pu_tmvp_size_minus2"); } } #endif if(pcSlice->getPPS()->getSliceHeaderExtensionPresentFlag()) { WRITE_UVLC(0,"slice_segment_header_extension_length"); } } void HLSWriter::codePTL( const PTL* pcPTL, bool profilePresentFlag, int maxNumSubLayersMinus1) { if(profilePresentFlag) { codeProfileTier(pcPTL->getGeneralPTL(), false); // general_... } WRITE_CODE( int(pcPTL->getGeneralPTL()->getLevelIdc()), 8, "general_level_idc" ); for (int i = 0; i < maxNumSubLayersMinus1; i++) { WRITE_FLAG( pcPTL->getSubLayerProfilePresentFlag(i), "sub_layer_profile_present_flag[i]" ); WRITE_FLAG( pcPTL->getSubLayerLevelPresentFlag(i), "sub_layer_level_present_flag[i]" ); } if (maxNumSubLayersMinus1 > 0) { for (int i = maxNumSubLayersMinus1; i < 8; i++) { WRITE_CODE(0, 2, "reserved_zero_2bits"); } } for(int i = 0; i < maxNumSubLayersMinus1; i++) { if( pcPTL->getSubLayerProfilePresentFlag(i) ) { codeProfileTier(pcPTL->getSubLayerPTL(i), true); // sub_layer_... } if( pcPTL->getSubLayerLevelPresentFlag(i) ) { WRITE_CODE( int(pcPTL->getSubLayerPTL(i)->getLevelIdc()), 8, "sub_layer_level_idc[i]" ); } } } #if ENABLE_TRACING || RExt__DECODER_DEBUG_BIT_STATISTICS void HLSWriter::codeProfileTier( const ProfileTierLevel* ptl, const bool bIsSubLayer ) #define PTL_TRACE_TEXT(txt) bIsSubLayer?("sub_layer_" txt) : ("general_" txt) #else void HLSWriter::codeProfileTier( const ProfileTierLevel* ptl, const bool /*bIsSubLayer*/ ) #define PTL_TRACE_TEXT(txt) txt #endif { WRITE_CODE( ptl->getProfileSpace(), 2 , PTL_TRACE_TEXT("profile_space" )); WRITE_FLAG( ptl->getTierFlag()==Level::HIGH, PTL_TRACE_TEXT("tier_flag" )); WRITE_CODE( int(ptl->getProfileIdc()), 5 , PTL_TRACE_TEXT("profile_idc" )); for(int j = 0; j < 32; j++) { WRITE_FLAG( ptl->getProfileCompatibilityFlag(j), PTL_TRACE_TEXT("profile_compatibility_flag[][j]" )); } WRITE_FLAG(ptl->getProgressiveSourceFlag(), PTL_TRACE_TEXT("progressive_source_flag" )); WRITE_FLAG(ptl->getInterlacedSourceFlag(), PTL_TRACE_TEXT("interlaced_source_flag" )); WRITE_FLAG(ptl->getNonPackedConstraintFlag(), PTL_TRACE_TEXT("non_packed_constraint_flag" )); WRITE_FLAG(ptl->getFrameOnlyConstraintFlag(), PTL_TRACE_TEXT("frame_only_constraint_flag" )); if (ptl->getProfileIdc() == Profile::MAINREXT || ptl->getProfileIdc() == Profile::HIGHTHROUGHPUTREXT ) { const uint32_t bitDepthConstraint=ptl->getBitDepthConstraint(); WRITE_FLAG(bitDepthConstraint<=12, PTL_TRACE_TEXT("max_12bit_constraint_flag" )); WRITE_FLAG(bitDepthConstraint<=10, PTL_TRACE_TEXT("max_10bit_constraint_flag" )); WRITE_FLAG(bitDepthConstraint<= 8, PTL_TRACE_TEXT("max_8bit_constraint_flag" )); const ChromaFormat chromaFmtConstraint=ptl->getChromaFormatConstraint(); WRITE_FLAG(chromaFmtConstraint==CHROMA_422||chromaFmtConstraint==CHROMA_420||chromaFmtConstraint==CHROMA_400, PTL_TRACE_TEXT("max_422chroma_constraint_flag" )); WRITE_FLAG(chromaFmtConstraint==CHROMA_420||chromaFmtConstraint==CHROMA_400, PTL_TRACE_TEXT("max_420chroma_constraint_flag" )); WRITE_FLAG(chromaFmtConstraint==CHROMA_400, PTL_TRACE_TEXT("max_monochrome_constraint_flag")); WRITE_FLAG(ptl->getIntraConstraintFlag(), PTL_TRACE_TEXT("intra_constraint_flag" )); WRITE_FLAG(ptl->getOnePictureOnlyConstraintFlag(), PTL_TRACE_TEXT("one_picture_only_constraint_flag")); WRITE_FLAG(ptl->getLowerBitRateConstraintFlag(), PTL_TRACE_TEXT("lower_bit_rate_constraint_flag" )); WRITE_CODE(0 , 16, PTL_TRACE_TEXT("reserved_zero_34bits[0..15]" )); WRITE_CODE(0 , 16, PTL_TRACE_TEXT("reserved_zero_34bits[16..31]" )); WRITE_CODE(0 , 2, PTL_TRACE_TEXT("reserved_zero_34bits[32..33]" )); } else { WRITE_CODE(0x0000 , 16, PTL_TRACE_TEXT("reserved_zero_43bits[0..15]" )); WRITE_CODE(0x0000 , 16, PTL_TRACE_TEXT("reserved_zero_43bits[16..31]" )); WRITE_CODE(0x000 , 11, PTL_TRACE_TEXT("reserved_zero_43bits[32..42]" )); } WRITE_FLAG(false, PTL_TRACE_TEXT("reserved_zero_bit" )); #undef PTL_TRACE_TEXT } #if HEVC_TILES_WPP /** * Write tiles and wavefront substreams sizes for the slice header (entry points). * * \param pSlice Slice structure that contains the substream size information. */ void HLSWriter::codeTilesWPPEntryPoint( Slice* pSlice ) { if (!pSlice->getPPS()->getTilesEnabledFlag() && !pSlice->getPPS()->getEntropyCodingSyncEnabledFlag()) { return; } uint32_t maxOffset = 0; for(int idx=0; idx<pSlice->getNumberOfSubstreamSizes(); idx++) { uint32_t offset=pSlice->getSubstreamSize(idx); if ( offset > maxOffset ) { maxOffset = offset; } } // Determine number of bits "offsetLenMinus1+1" required for entry point information uint32_t offsetLenMinus1 = 0; while (maxOffset >= (1u << (offsetLenMinus1 + 1))) { offsetLenMinus1++; CHECK(offsetLenMinus1 + 1 >= 32, "Invalid offset lenght minus 1"); } WRITE_UVLC(pSlice->getNumberOfSubstreamSizes(), "num_entry_point_offsets"); if (pSlice->getNumberOfSubstreamSizes()>0) { WRITE_UVLC(offsetLenMinus1, "offset_len_minus1"); for (uint32_t idx=0; idx<pSlice->getNumberOfSubstreamSizes(); idx++) { WRITE_CODE(pSlice->getSubstreamSize(idx)-1, offsetLenMinus1+1, "entry_point_offset_minus1"); } } } #endif // ==================================================================================================================== // Protected member functions // ==================================================================================================================== //! Code weighted prediction tables void HLSWriter::xCodePredWeightTable( Slice* pcSlice ) { WPScalingParam *wp; const ChromaFormat format = pcSlice->getSPS()->getChromaFormatIdc(); const uint32_t numberValidComponents = getNumberValidComponents(format); const bool bChroma = isChromaEnabled(format); const int iNbRef = (pcSlice->getSliceType() == B_SLICE ) ? (2) : (1); bool bDenomCoded = false; uint32_t uiTotalSignalledWeightFlags = 0; if ( (pcSlice->getSliceType()==P_SLICE && pcSlice->getPPS()->getUseWP()) || (pcSlice->getSliceType()==B_SLICE && pcSlice->getPPS()->getWPBiPred()) ) { for ( int iNumRef=0 ; iNumRef<iNbRef ; iNumRef++ ) // loop over l0 and l1 syntax elements { RefPicList eRefPicList = ( iNumRef ? REF_PIC_LIST_1 : REF_PIC_LIST_0 ); // NOTE: wp[].uiLog2WeightDenom and wp[].bPresentFlag are actually per-channel-type settings. for ( int iRefIdx=0 ; iRefIdx<pcSlice->getNumRefIdx(eRefPicList) ; iRefIdx++ ) { pcSlice->getWpScaling(eRefPicList, iRefIdx, wp); if ( !bDenomCoded ) { int iDeltaDenom; WRITE_UVLC( wp[COMPONENT_Y].uiLog2WeightDenom, "luma_log2_weight_denom" ); if( bChroma ) { CHECK( wp[COMPONENT_Cb].uiLog2WeightDenom != wp[COMPONENT_Cr].uiLog2WeightDenom, "Chroma blocks of different size not supported" ); iDeltaDenom = (wp[COMPONENT_Cb].uiLog2WeightDenom - wp[COMPONENT_Y].uiLog2WeightDenom); WRITE_SVLC( iDeltaDenom, "delta_chroma_log2_weight_denom" ); } bDenomCoded = true; } WRITE_FLAG( wp[COMPONENT_Y].bPresentFlag, iNumRef==0?"luma_weight_l0_flag[i]":"luma_weight_l1_flag[i]" ); uiTotalSignalledWeightFlags += wp[COMPONENT_Y].bPresentFlag; } if (bChroma) { for ( int iRefIdx=0 ; iRefIdx<pcSlice->getNumRefIdx(eRefPicList) ; iRefIdx++ ) { pcSlice->getWpScaling( eRefPicList, iRefIdx, wp ); CHECK( wp[COMPONENT_Cb].bPresentFlag != wp[COMPONENT_Cr].bPresentFlag, "Inconsistent settings for chroma channels" ); WRITE_FLAG( wp[COMPONENT_Cb].bPresentFlag, iNumRef==0?"chroma_weight_l0_flag[i]":"chroma_weight_l1_flag[i]" ); uiTotalSignalledWeightFlags += 2*wp[COMPONENT_Cb].bPresentFlag; } } for ( int iRefIdx=0 ; iRefIdx<pcSlice->getNumRefIdx(eRefPicList) ; iRefIdx++ ) { pcSlice->getWpScaling(eRefPicList, iRefIdx, wp); if ( wp[COMPONENT_Y].bPresentFlag ) { int iDeltaWeight = (wp[COMPONENT_Y].iWeight - (1<<wp[COMPONENT_Y].uiLog2WeightDenom)); WRITE_SVLC( iDeltaWeight, iNumRef==0?"delta_luma_weight_l0[i]":"delta_luma_weight_l1[i]" ); WRITE_SVLC( wp[COMPONENT_Y].iOffset, iNumRef==0?"luma_offset_l0[i]":"luma_offset_l1[i]" ); } if ( bChroma ) { if ( wp[COMPONENT_Cb].bPresentFlag ) { for ( int j = COMPONENT_Cb ; j < numberValidComponents ; j++ ) { CHECK(wp[COMPONENT_Cb].uiLog2WeightDenom != wp[COMPONENT_Cr].uiLog2WeightDenom, "Chroma blocks of different size not supported"); int iDeltaWeight = (wp[j].iWeight - (1<<wp[COMPONENT_Cb].uiLog2WeightDenom)); WRITE_SVLC( iDeltaWeight, iNumRef==0?"delta_chroma_weight_l0[i]":"delta_chroma_weight_l1[i]" ); int range=pcSlice->getSPS()->getSpsRangeExtension().getHighPrecisionOffsetsEnabledFlag() ? (1<<pcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_CHROMA))/2 : 128; int pred = ( range - ( ( range*wp[j].iWeight)>>(wp[j].uiLog2WeightDenom) ) ); int iDeltaChroma = (wp[j].iOffset - pred); WRITE_SVLC( iDeltaChroma, iNumRef==0?"delta_chroma_offset_l0[i]":"delta_chroma_offset_l1[i]" ); } } } } } CHECK(uiTotalSignalledWeightFlags>24, "Too many signalled weight flags"); } } #if HEVC_USE_SCALING_LISTS /** code quantization matrix * \param scalingList quantization matrix information */ void HLSWriter::codeScalingList( const ScalingList &scalingList ) { //for each size for(uint32_t sizeId = SCALING_LIST_FIRST_CODED; sizeId <= SCALING_LIST_LAST_CODED; sizeId++) { const int predListStep = (sizeId == SCALING_LIST_32x32? (SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) : 1); // if 32x32, skip over chroma entries. for(uint32_t listId = 0; listId < SCALING_LIST_NUM; listId+=predListStep) { bool scalingListPredModeFlag = scalingList.getScalingListPredModeFlag(sizeId, listId); WRITE_FLAG( scalingListPredModeFlag, "scaling_list_pred_mode_flag" ); if(!scalingListPredModeFlag)// Copy Mode { if (sizeId == SCALING_LIST_32x32) { // adjust the code, to cope with the missing chroma entries WRITE_UVLC( ((int)listId - (int)scalingList.getRefMatrixId (sizeId,listId)) / (SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES), "scaling_list_pred_matrix_id_delta"); } else { WRITE_UVLC( (int)listId - (int)scalingList.getRefMatrixId (sizeId,listId), "scaling_list_pred_matrix_id_delta"); } } else// DPCM Mode { xCodeScalingList(&scalingList, sizeId, listId); } } } return; } /** code DPCM * \param scalingList quantization matrix information * \param sizeId size index * \param listId list index */ void HLSWriter::xCodeScalingList(const ScalingList* scalingList, uint32_t sizeId, uint32_t listId) { int coefNum = std::min( MAX_MATRIX_COEF_NUM, ( int ) g_scalingListSize[sizeId] ); uint32_t* scan = g_scanOrder[SCAN_UNGROUPED][SCAN_DIAG][gp_sizeIdxInfo->idxFrom( 1 << ( sizeId == SCALING_LIST_FIRST_CODED ? 2 : 3 ) )][gp_sizeIdxInfo->idxFrom( 1 << ( sizeId == SCALING_LIST_FIRST_CODED ? 2 : 3 ) )]; int nextCoef = SCALING_LIST_START_VALUE; int data; const int *src = scalingList->getScalingListAddress(sizeId, listId); if( sizeId > SCALING_LIST_8x8 ) { WRITE_SVLC( scalingList->getScalingListDC(sizeId,listId) - 8, "scaling_list_dc_coef_minus8"); nextCoef = scalingList->getScalingListDC(sizeId,listId); } for(int i=0;i<coefNum;i++) { data = src[scan[i]] - nextCoef; nextCoef = src[scan[i]]; if(data > 127) { data = data - 256; } if(data < -128) { data = data + 256; } WRITE_SVLC( data, "scaling_list_delta_coef"); } } #endif bool HLSWriter::xFindMatchingLTRP(Slice* pcSlice, uint32_t *ltrpsIndex, int ltrpPOC, bool usedFlag) { // bool state = true, state2 = false; int lsb = ltrpPOC & ((1<<pcSlice->getSPS()->getBitsForPOC())-1); for (int k = 0; k < pcSlice->getSPS()->getNumLongTermRefPicSPS(); k++) { if ( (lsb == pcSlice->getSPS()->getLtRefPicPocLsbSps(k)) && (usedFlag == pcSlice->getSPS()->getUsedByCurrPicLtSPSFlag(k)) ) { *ltrpsIndex = k; return true; } } return false; } void HLSWriter::alf( const AlfSliceParam& alfSliceParam ) { WRITE_FLAG( alfSliceParam.enabledFlag[COMPONENT_Y], "alf_slice_enable_flag" ); if( !alfSliceParam.enabledFlag[COMPONENT_Y] ) { return; } const int alfChromaIdc = alfSliceParam.enabledFlag[COMPONENT_Cb] * 2 + alfSliceParam.enabledFlag[COMPONENT_Cr]; truncatedUnaryEqProb( alfChromaIdc, 3 ); // alf_chroma_idc xWriteTruncBinCode( alfSliceParam.numLumaFilters - 1, MAX_NUM_ALF_CLASSES ); //number_of_filters_minus1 #if !JVET_L0664_ALF_REMOVE_LUMA_5x5 WRITE_FLAG( alfSliceParam.lumaFilterType == ALF_FILTER_5 ? 1 : 0, "filter_type_flag" ); #endif if( alfSliceParam.numLumaFilters > 1 ) { for( int i = 0; i < MAX_NUM_ALF_CLASSES; i++ ) { xWriteTruncBinCode( (uint32_t)alfSliceParam.filterCoeffDeltaIdx[i], alfSliceParam.numLumaFilters ); //filter_coeff_delta[i] } } alfFilter( alfSliceParam, false ); if( alfChromaIdc ) { alfFilter( alfSliceParam, true ); } } void HLSWriter::alfGolombEncode( int coeff, int k ) { int symbol = abs( coeff ); int m = (int)pow( 2.0, k ); int q = symbol / m; for( int i = 0; i < q; i++ ) { xWriteFlag( 1 ); } xWriteFlag( 0 ); // write one zero for( int i = 0; i < k; i++ ) { xWriteFlag( symbol & 0x01 ); symbol >>= 1; } if( coeff != 0 ) { int sign = ( coeff > 0 ) ? 1 : 0; xWriteFlag( sign ); } } void HLSWriter::alfFilter( const AlfSliceParam& alfSliceParam, const bool isChroma ) { if( !isChroma ) { WRITE_FLAG( alfSliceParam.coeffDeltaFlag, "alf_coefficients_delta_flag" ); if( !alfSliceParam.coeffDeltaFlag ) { if( alfSliceParam.numLumaFilters > 1 ) { WRITE_FLAG( alfSliceParam.coeffDeltaPredModeFlag, "coeff_delta_pred_mode_flag" ); } } } static int bitsCoeffScan[EncAdaptiveLoopFilter::m_MAX_SCAN_VAL][EncAdaptiveLoopFilter::m_MAX_EXP_GOLOMB]; memset( bitsCoeffScan, 0, sizeof( bitsCoeffScan ) ); #if JVET_L0664_ALF_REMOVE_LUMA_5x5 AlfFilterShape alfShape( isChroma ? 5 : 7 ); #else AlfFilterShape alfShape( isChroma ? 5 : ( alfSliceParam.lumaFilterType == ALF_FILTER_5 ? 5 : 7 ) ); #endif const int maxGolombIdx = AdaptiveLoopFilter::getMaxGolombIdx( alfShape.filterType ); const short* coeff = isChroma ? alfSliceParam.chromaCoeff : alfSliceParam.lumaCoeff; const int numFilters = isChroma ? 1 : alfSliceParam.numLumaFilters; // vlc for all for( int ind = 0; ind < numFilters; ++ind ) { if( isChroma || !alfSliceParam.coeffDeltaFlag || alfSliceParam.filterCoeffFlag[ind] ) { for( int i = 0; i < alfShape.numCoeff - 1; i++ ) { int coeffVal = abs( coeff[ind * MAX_NUM_ALF_LUMA_COEFF + i] ); for( int k = 1; k < 15; k++ ) { bitsCoeffScan[alfShape.golombIdx[i]][k] += EncAdaptiveLoopFilter::lengthGolomb( coeffVal, k ); } } } } static int kMinTab[MAX_NUM_ALF_COEFF]; int kMin = EncAdaptiveLoopFilter::getGolombKMin( alfShape, numFilters, kMinTab, bitsCoeffScan ); // Golomb parameters WRITE_UVLC( kMin - 1, "min_golomb_order" ); for( int idx = 0; idx < maxGolombIdx; idx++ ) { bool golombOrderIncreaseFlag = ( kMinTab[idx] != kMin ) ? true : false; CHECK( !( kMinTab[idx] <= kMin + 1 ), "ALF Golomb parameter not consistent" ); WRITE_FLAG( golombOrderIncreaseFlag, "golomb_order_increase_flag" ); kMin = kMinTab[idx]; } if( !isChroma ) { if( alfSliceParam.coeffDeltaFlag ) { for( int ind = 0; ind < numFilters; ++ind ) { WRITE_FLAG( alfSliceParam.filterCoeffFlag[ind], "filter_coefficient_flag[i]" ); } } } // Filter coefficients for( int ind = 0; ind < numFilters; ++ind ) { if( !isChroma && !alfSliceParam.filterCoeffFlag[ind] && alfSliceParam.coeffDeltaFlag ) { continue; } for( int i = 0; i < alfShape.numCoeff - 1; i++ ) { alfGolombEncode( coeff[ind* MAX_NUM_ALF_LUMA_COEFF + i], kMinTab[alfShape.golombIdx[i]] ); // alf_coeff_chroma[i], alf_coeff_luma_delta[i][j] } } } void HLSWriter::xWriteTruncBinCode( uint32_t uiSymbol, const int uiMaxSymbol ) { int uiThresh; if( uiMaxSymbol > 256 ) { int uiThreshVal = 1 << 8; uiThresh = 8; while( uiThreshVal <= uiMaxSymbol ) { uiThresh++; uiThreshVal <<= 1; } uiThresh--; } else { uiThresh = g_tbMax[uiMaxSymbol]; } int uiVal = 1 << uiThresh; assert( uiVal <= uiMaxSymbol ); assert( ( uiVal << 1 ) > uiMaxSymbol ); assert( uiSymbol < uiMaxSymbol ); int b = uiMaxSymbol - uiVal; assert( b < uiVal ); if( uiSymbol < uiVal - b ) { xWriteCode( uiSymbol, uiThresh ); } else { uiSymbol += uiVal - b; assert( uiSymbol < ( uiVal << 1 ) ); assert( ( uiSymbol >> 1 ) >= uiVal - b ); xWriteCode( uiSymbol, uiThresh + 1 ); } } void HLSWriter::truncatedUnaryEqProb( int symbol, const int maxSymbol ) { if( maxSymbol == 0 ) { return; } bool codeLast = ( maxSymbol > symbol ); int bins = 0; int numBins = 0; while( symbol-- ) { bins <<= 1; bins++; numBins++; } if( codeLast ) { bins <<= 1; numBins++; } CHECK( !( numBins <= 32 ), "Unspecified error" ); xWriteCode( bins, numBins ); } //! \}