/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2019, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file EncLib.cpp \brief encoder class */ #include "EncLib.h" #include "EncModeCtrl.h" #include "AQp.h" #include "EncCu.h" #include "CommonLib/Picture.h" #include "CommonLib/CommonDef.h" #include "CommonLib/ChromaFormat.h" #if ENABLE_SPLIT_PARALLELISM #include <omp.h> #endif //! \ingroup EncoderLib //! \{ // ==================================================================================================================== // Constructor / destructor / create / destroy // ==================================================================================================================== EncLib::EncLib() : m_spsMap( MAX_NUM_SPS ) , m_ppsMap( MAX_NUM_PPS ) , m_apsMap( MAX_NUM_APS ) , m_AUWriterIf( nullptr ) #if JVET_J0090_MEMORY_BANDWITH_MEASURE , m_cacheModel() #endif { m_iPOCLast = -1; m_iNumPicRcvd = 0; m_uiNumAllPicCoded = 0; m_iMaxRefPicNum = 0; #if ENABLE_SIMD_OPT_BUFFER g_pelBufOP.initPelBufOpsX86(); #endif } EncLib::~EncLib() { } void EncLib::create () { // initialize global variables initROM(); TComHash::initBlockSizeToIndex(); m_iPOCLast = m_compositeRefEnabled ? -2 : -1; // create processing unit classes m_cGOPEncoder. create( ); m_cSliceEncoder. create( getSourceWidth(), getSourceHeight(), m_chromaFormatIDC, m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth ); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM #if ENABLE_SPLIT_PARALLELISM m_numCuEncStacks = m_numSplitThreads == 1 ? 1 : NUM_RESERVERD_SPLIT_JOBS; #else m_numCuEncStacks = 1; #endif #if ENABLE_WPP_PARALLELISM m_numCuEncStacks *= ( m_numWppThreads + m_numWppExtraLines ); #endif m_cCuEncoder = new EncCu [m_numCuEncStacks]; m_cInterSearch = new InterSearch [m_numCuEncStacks]; m_cIntraSearch = new IntraSearch [m_numCuEncStacks]; m_cTrQuant = new TrQuant [m_numCuEncStacks]; m_CABACEncoder = new CABACEncoder [m_numCuEncStacks]; m_cRdCost = new RdCost [m_numCuEncStacks]; m_CtxCache = new CtxCache [m_numCuEncStacks]; for( int jId = 0; jId < m_numCuEncStacks; jId++ ) { m_cCuEncoder[jId]. create( this ); } #else m_cCuEncoder. create( this ); #endif #if JVET_J0090_MEMORY_BANDWITH_MEASURE m_cInterSearch.cacheAssign( &m_cacheModel ); #endif const uint32_t widthInCtus = (getSourceWidth() + m_maxCUWidth - 1) / m_maxCUWidth; const uint32_t heightInCtus = (getSourceHeight() + m_maxCUHeight - 1) / m_maxCUHeight; const uint32_t numCtuInFrame = widthInCtus * heightInCtus; if (m_bUseSAO) { m_cEncSAO.create( getSourceWidth(), getSourceHeight(), m_chromaFormatIDC, m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth, m_log2SaoOffsetScale[CHANNEL_TYPE_LUMA], m_log2SaoOffsetScale[CHANNEL_TYPE_CHROMA] ); m_cEncSAO.createEncData(getSaoCtuBoundary(), numCtuInFrame); } m_cLoopFilter.create( m_maxTotalCUDepth ); if ( !m_bLoopFilterDisable ) { m_cLoopFilter.initEncPicYuvBuffer( m_chromaFormatIDC, getSourceWidth(), getSourceHeight() ); } if( m_alf ) { #if JVET_N0242_NON_LINEAR_ALF m_cEncALF.create( this, getSourceWidth(), getSourceHeight(), m_chromaFormatIDC, m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth, m_bitDepth, m_inputBitDepth ); #else m_cEncALF.create( getSourceWidth(), getSourceHeight(), m_chromaFormatIDC, m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth, m_bitDepth, m_inputBitDepth ); #endif } #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM m_cReshaper = new EncReshape[m_numCuEncStacks]; #endif if (m_lumaReshapeEnable) { #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for (int jId = 0; jId < m_numCuEncStacks; jId++) { m_cReshaper[jId].createEnc(getSourceWidth(), getSourceHeight(), m_maxCUWidth, m_maxCUHeight, m_bitDepth[COMPONENT_Y]); } #else m_cReshaper.createEnc( getSourceWidth(), getSourceHeight(), m_maxCUWidth, m_maxCUHeight, m_bitDepth[COMPONENT_Y]); #endif } if ( m_RCEnableRateControl ) { m_cRateCtrl.init(m_framesToBeEncoded, m_RCTargetBitrate, (int)((double)m_iFrameRate / m_temporalSubsampleRatio + 0.5), m_iGOPSize, m_iSourceWidth, m_iSourceHeight, m_maxCUWidth, m_maxCUHeight, getBitDepth(CHANNEL_TYPE_LUMA), m_RCKeepHierarchicalBit, m_RCUseLCUSeparateModel, m_GOPList); } } void EncLib::destroy () { // destroy processing unit classes m_cGOPEncoder. destroy(); m_cSliceEncoder. destroy(); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 0; jId < m_numCuEncStacks; jId++ ) { m_cCuEncoder[jId].destroy(); } #else m_cCuEncoder. destroy(); #endif if( m_alf ) { m_cEncALF.destroy(); } m_cEncSAO. destroyEncData(); m_cEncSAO. destroy(); m_cLoopFilter. destroy(); m_cRateCtrl. destroy(); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for (int jId = 0; jId < m_numCuEncStacks; jId++) { m_cReshaper[jId]. destroy(); } #else m_cReshaper. destroy(); #endif #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 0; jId < m_numCuEncStacks; jId++ ) { m_cInterSearch[jId]. destroy(); m_cIntraSearch[jId]. destroy(); } #else m_cInterSearch. destroy(); m_cIntraSearch. destroy(); #endif #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM delete[] m_cCuEncoder; delete[] m_cInterSearch; delete[] m_cIntraSearch; delete[] m_cTrQuant; delete[] m_CABACEncoder; delete[] m_cRdCost; delete[] m_CtxCache; #endif // destroy ROM destroyROM(); return; } void EncLib::init( bool isFieldCoding, AUWriterIf* auWriterIf ) { m_AUWriterIf = auWriterIf; SPS &sps0=*(m_spsMap.allocatePS(0)); // NOTE: implementations that use more than 1 SPS need to be aware of activation issues. PPS &pps0=*(m_ppsMap.allocatePS(0)); APS &aps0=*(m_apsMap.allocatePS(0)); // initialize SPS xInitSPS(sps0); #if HEVC_VPS xInitVPS(m_cVPS, sps0); #endif #if ENABLE_SPLIT_PARALLELISM if( omp_get_dynamic() ) { omp_set_dynamic( false ); } omp_set_nested( true ); #endif if (getUseCompositeRef()) { sps0.setLongTermRefsPresent(true); } #if U0132_TARGET_BITS_SATURATION if (m_RCCpbSaturationEnabled) { m_cRateCtrl.initHrdParam(sps0.getVuiParameters()->getHrdParameters(), m_iFrameRate, m_RCInitialCpbFullness); } #endif #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 0; jId < m_numCuEncStacks; jId++ ) { m_cRdCost[jId].setCostMode ( m_costMode ); } #else m_cRdCost.setCostMode ( m_costMode ); #endif // initialize PPS xInitPPS(pps0, sps0); // initialize APS xInitAPS(aps0); xInitRPS(sps0, isFieldCoding); #if ER_CHROMA_QP_WCG_PPS if (m_wcgChromaQpControl.isEnabled()) { PPS &pps1=*(m_ppsMap.allocatePS(1)); xInitPPS(pps1, sps0); } #endif if (getUseCompositeRef()) { PPS &pps2 = *(m_ppsMap.allocatePS(2)); xInitPPS(pps2, sps0); xInitPPSforLT(pps2); } // initialize processing unit classes m_cGOPEncoder. init( this ); m_cSliceEncoder.init( this, sps0 ); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 0; jId < m_numCuEncStacks; jId++ ) { // precache a few objects for( int i = 0; i < 10; i++ ) { auto x = m_CtxCache[jId].get(); m_CtxCache[jId].cache( x ); } m_cCuEncoder[jId].init( this, sps0, jId ); // initialize transform & quantization class m_cTrQuant[jId].init( jId == 0 ? nullptr : m_cTrQuant[0].getQuant(), #if MAX_TB_SIZE_SIGNALLING 1 << m_log2MaxTbSize, #else MAX_TB_SIZEY, #endif m_useRDOQ, m_useRDOQTS, #if T0196_SELECTIVE_RDOQ m_useSelectiveRDOQ, #endif true, m_useTransformSkipFast ); // initialize encoder search class CABACWriter* cabacEstimator = m_CABACEncoder[jId].getCABACEstimator( &sps0 ); m_cIntraSearch[jId].init( this, &m_cTrQuant[jId], &m_cRdCost[jId], cabacEstimator, getCtxCache( jId ), m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth , &m_cReshaper[jId] ); m_cInterSearch[jId].init( this, &m_cTrQuant[jId], m_iSearchRange, m_bipredSearchRange, m_motionEstimationSearchMethod, getUseCompositeRef(), m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth, &m_cRdCost[jId], cabacEstimator, getCtxCache( jId ) , &m_cReshaper[jId] ); // link temporary buffets from intra search with inter search to avoid unnecessary memory overhead m_cInterSearch[jId].setTempBuffers( m_cIntraSearch[jId].getSplitCSBuf(), m_cIntraSearch[jId].getFullCSBuf(), m_cIntraSearch[jId].getSaveCSBuf() ); } #else // ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM m_cCuEncoder. init( this, sps0 ); // initialize transform & quantization class m_cTrQuant.init( nullptr, #if MAX_TB_SIZE_SIGNALLING 1 << m_log2MaxTbSize, #else MAX_TB_SIZEY, #endif m_useRDOQ, m_useRDOQTS, #if T0196_SELECTIVE_RDOQ m_useSelectiveRDOQ, #endif true, m_useTransformSkipFast ); // initialize encoder search class CABACWriter* cabacEstimator = m_CABACEncoder.getCABACEstimator(&sps0); m_cIntraSearch.init( this, &m_cTrQuant, &m_cRdCost, cabacEstimator, getCtxCache(), m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth , &m_cReshaper ); m_cInterSearch.init( this, &m_cTrQuant, m_iSearchRange, m_bipredSearchRange, m_motionEstimationSearchMethod, getUseCompositeRef(), m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth, &m_cRdCost, cabacEstimator, getCtxCache() , &m_cReshaper ); // link temporary buffets from intra search with inter search to avoid unneccessary memory overhead m_cInterSearch.setTempBuffers( m_cIntraSearch.getSplitCSBuf(), m_cIntraSearch.getFullCSBuf(), m_cIntraSearch.getSaveCSBuf() ); #endif // ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM m_iMaxRefPicNum = 0; #if HEVC_USE_SCALING_LISTS #if ER_CHROMA_QP_WCG_PPS if( m_wcgChromaQpControl.isEnabled() ) { xInitScalingLists( sps0, *m_ppsMap.getPS(1) ); xInitScalingLists( sps0, pps0 ); } else #endif { xInitScalingLists( sps0, pps0 ); } #endif #if ENABLE_WPP_PARALLELISM m_entropyCodingSyncContextStateVec.resize( pps0.pcv->heightInCtus ); #endif if (getUseCompositeRef()) { Picture *picBg = new Picture; picBg->create(sps0.getChromaFormatIdc(), Size(sps0.getPicWidthInLumaSamples(), sps0.getPicHeightInLumaSamples()), sps0.getMaxCUWidth(), sps0.getMaxCUWidth() + 16, false); picBg->getRecoBuf().fill(0); picBg->finalInit(sps0, pps0, aps0); picBg->allocateNewSlice(); picBg->createSpliceIdx(pps0.pcv->sizeInCtus); m_cGOPEncoder.setPicBg(picBg); Picture *picOrig = new Picture; picOrig->create(sps0.getChromaFormatIdc(), Size(sps0.getPicWidthInLumaSamples(), sps0.getPicHeightInLumaSamples()), sps0.getMaxCUWidth(), sps0.getMaxCUWidth() + 16, false); picOrig->getOrigBuf().fill(0); m_cGOPEncoder.setPicOrig(picOrig); } } #if HEVC_USE_SCALING_LISTS void EncLib::xInitScalingLists(SPS &sps, PPS &pps) { // Initialise scaling lists // The encoder will only use the SPS scaling lists. The PPS will never be marked present. const int maxLog2TrDynamicRange[MAX_NUM_CHANNEL_TYPE] = { sps.getMaxLog2TrDynamicRange(CHANNEL_TYPE_LUMA), sps.getMaxLog2TrDynamicRange(CHANNEL_TYPE_CHROMA) }; Quant* quant = getTrQuant()->getQuant(); if(getUseScalingListId() == SCALING_LIST_OFF) { quant->setFlatScalingList(maxLog2TrDynamicRange, sps.getBitDepths()); quant->setUseScalingList(false); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 1; jId < m_numCuEncStacks; jId++ ) { getTrQuant( jId )->getQuant()->setFlatScalingList( maxLog2TrDynamicRange, sps.getBitDepths() ); getTrQuant( jId )->getQuant()->setUseScalingList( false ); } #endif sps.setScalingListPresentFlag(false); pps.setScalingListPresentFlag(false); } else if(getUseScalingListId() == SCALING_LIST_DEFAULT) { sps.getScalingList().setDefaultScalingList (); sps.setScalingListPresentFlag(false); pps.setScalingListPresentFlag(false); quant->setScalingList(&(sps.getScalingList()), maxLog2TrDynamicRange, sps.getBitDepths()); quant->setUseScalingList(true); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 1; jId < m_numCuEncStacks; jId++ ) { getTrQuant( jId )->getQuant()->setUseScalingList( true ); } #endif } else if(getUseScalingListId() == SCALING_LIST_FILE_READ) { sps.getScalingList().setDefaultScalingList (); if(sps.getScalingList().xParseScalingList(getScalingListFileName())) { THROW( "parse scaling list"); } sps.getScalingList().checkDcOfMatrix(); sps.setScalingListPresentFlag(sps.getScalingList().checkDefaultScalingList()); pps.setScalingListPresentFlag(false); quant->setScalingList(&(sps.getScalingList()), maxLog2TrDynamicRange, sps.getBitDepths()); quant->setUseScalingList(true); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 1; jId < m_numCuEncStacks; jId++ ) { getTrQuant( jId )->getQuant()->setUseScalingList( true ); } #endif } else { THROW("error : ScalingList == " << getUseScalingListId() << " not supported\n"); } if (getUseScalingListId() != SCALING_LIST_OFF) { // Prepare delta's: for(uint32_t sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++) { const int predListStep = (sizeId == SCALING_LIST_32x32? (SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) : 1); // if 32x32, skip over chroma entries. for(uint32_t listId = 0; listId < SCALING_LIST_NUM; listId+=predListStep) { sps.getScalingList().checkPredMode( sizeId, listId ); } } } } #endif void EncLib::xInitPPSforLT(PPS& pps) { pps.setOutputFlagPresentFlag(true); pps.setDeblockingFilterControlPresentFlag(true); pps.setPPSDeblockingFilterDisabledFlag(true); } // ==================================================================================================================== // Public member functions // ==================================================================================================================== void EncLib::deletePicBuffer() { PicList::iterator iterPic = m_cListPic.begin(); int iSize = int( m_cListPic.size() ); for ( int i = 0; i < iSize; i++ ) { Picture* pcPic = *(iterPic++); pcPic->destroy(); // get rid of the qpadaption layer while( pcPic->aqlayer.size() ) { delete pcPic->aqlayer.back(); pcPic->aqlayer.pop_back(); } delete pcPic; pcPic = NULL; } } /** - Application has picture buffer list with size of GOP + 1 - Picture buffer list acts like as ring buffer - End of the list has the latest picture . \param flush cause encoder to encode a partial GOP \param pcPicYuvOrg original YUV picture \param pcPicYuvTrueOrg \param snrCSC \retval rcListPicYuvRecOut list of reconstruction YUV pictures \retval accessUnitsOut list of output access units \retval iNumEncoded number of encoded pictures */ void EncLib::encode( bool flush, PelStorage* pcPicYuvOrg, PelStorage* cPicYuvTrueOrg, const InputColourSpaceConversion snrCSC, std::list<PelUnitBuf*>& rcListPicYuvRecOut, int& iNumEncoded ) { if (m_compositeRefEnabled && m_cGOPEncoder.getPicBg()->getSpliceFull() && m_iPOCLast >= 10 && m_iNumPicRcvd == 0 && m_cGOPEncoder.getEncodedLTRef() == false) { Picture* picCurr = NULL; xGetNewPicBuffer(rcListPicYuvRecOut, picCurr, 2); const PPS *pps = m_ppsMap.getPS(2); const SPS *sps = m_spsMap.getPS(pps->getSPSId()); picCurr->M_BUFS(0, PIC_ORIGINAL).copyFrom(m_cGOPEncoder.getPicBg()->getRecoBuf()); APS *aps = m_apsMap.getPS(0); picCurr->finalInit(*sps, *pps, *aps); picCurr->poc = m_iPOCLast - 1; m_iPOCLast -= 2; if (getUseAdaptiveQP()) { AQpPreanalyzer::preanalyze(picCurr); } if (m_RCEnableRateControl) { m_cRateCtrl.initRCGOP(m_iNumPicRcvd); } m_cGOPEncoder.compressGOP(m_iPOCLast, m_iNumPicRcvd, m_cListPic, rcListPicYuvRecOut, false, false, snrCSC, m_printFrameMSE, true); m_cGOPEncoder.setEncodedLTRef(true); if (m_RCEnableRateControl) { m_cRateCtrl.destroyRCGOP(); } iNumEncoded = 0; m_iNumPicRcvd = 0; } //PROF_ACCUM_AND_START_NEW_SET( getProfilerPic(), P_GOP_LEVEL ); if (pcPicYuvOrg != NULL) { // get original YUV Picture* pcPicCurr = NULL; #if ER_CHROMA_QP_WCG_PPS int ppsID=-1; // Use default PPS ID if (getWCGChromaQPControl().isEnabled()) { ppsID = getdQPs()[m_iPOCLast / (m_compositeRefEnabled ? 2 : 1) + 1]; ppsID+=(getSwitchPOC() != -1 && (m_iPOCLast+1 >= getSwitchPOC())?1:0); } xGetNewPicBuffer( rcListPicYuvRecOut, pcPicCurr, ppsID ); #else xGetNewPicBuffer( rcListPicYuvRecOut, pcPicCurr, -1 ); // Uses default PPS ID. However, could be modified, for example, to use a PPS ID as a function of POC (m_iPOCLast+1) #endif { const PPS *pPPS=(ppsID<0) ? m_ppsMap.getFirstPS() : m_ppsMap.getPS(ppsID); const SPS *pSPS=m_spsMap.getPS(pPPS->getSPSId()); pcPicCurr->M_BUFS( 0, PIC_ORIGINAL ).swap( *pcPicYuvOrg ); pcPicCurr->M_BUFS( 0, PIC_TRUE_ORIGINAL ).swap(*cPicYuvTrueOrg ); APS *pAPS = m_apsMap.getPS(0); pcPicCurr->finalInit(*pSPS, *pPPS, *pAPS); } pcPicCurr->poc = m_iPOCLast; // compute image characteristics if ( getUseAdaptiveQP() ) { AQpPreanalyzer::preanalyze( pcPicCurr ); } } if ((m_iNumPicRcvd == 0) || (!flush && (m_iPOCLast != 0) && (m_iNumPicRcvd != m_iGOPSize) && (m_iGOPSize != 0))) { iNumEncoded = 0; return; } if ( m_RCEnableRateControl ) { m_cRateCtrl.initRCGOP( m_iNumPicRcvd ); } // compress GOP m_cGOPEncoder.compressGOP(m_iPOCLast, m_iNumPicRcvd, m_cListPic, rcListPicYuvRecOut, false, false, snrCSC, m_printFrameMSE , false ); if ( m_RCEnableRateControl ) { m_cRateCtrl.destroyRCGOP(); } iNumEncoded = m_iNumPicRcvd; m_iNumPicRcvd = 0; m_uiNumAllPicCoded += iNumEncoded; } /**------------------------------------------------ Separate interlaced frame into two fields -------------------------------------------------**/ void separateFields(Pel* org, Pel* dstField, uint32_t stride, uint32_t width, uint32_t height, bool isTop) { if (!isTop) { org += stride; } for (int y = 0; y < height>>1; y++) { for (int x = 0; x < width; x++) { dstField[x] = org[x]; } dstField += stride; org += stride*2; } } void EncLib::encode( bool flush, PelStorage* pcPicYuvOrg, PelStorage* pcPicYuvTrueOrg, const InputColourSpaceConversion snrCSC, std::list<PelUnitBuf*>& rcListPicYuvRecOut, int& iNumEncoded, bool isTff ) { iNumEncoded = 0; for (int fieldNum=0; fieldNum<2; fieldNum++) { if (pcPicYuvOrg) { /* -- field initialization -- */ const bool isTopField=isTff==(fieldNum==0); Picture *pcField; xGetNewPicBuffer( rcListPicYuvRecOut, pcField, -1 ); for (uint32_t comp = 0; comp < ::getNumberValidComponents(pcPicYuvOrg->chromaFormat); comp++) { const ComponentID compID = ComponentID(comp); { PelBuf compBuf = pcPicYuvOrg->get( compID ); separateFields( compBuf.buf, pcField->getOrigBuf().get(compID).buf, compBuf.stride, compBuf.width, compBuf.height, isTopField); } } { int ppsID=-1; // Use default PPS ID const PPS *pPPS=(ppsID<0) ? m_ppsMap.getFirstPS() : m_ppsMap.getPS(ppsID); const SPS *pSPS=m_spsMap.getPS(pPPS->getSPSId()); APS *pAPS = m_apsMap.getPS(0); pcField->finalInit(*pSPS, *pPPS, *pAPS); } pcField->poc = m_iPOCLast; pcField->reconstructed = false; pcField->setBorderExtension(false);// where is this normally? pcField->topField = isTopField; // interlaced requirement // compute image characteristics if ( getUseAdaptiveQP() ) { AQpPreanalyzer::preanalyze( pcField ); } } if ( m_iNumPicRcvd && ((flush&&fieldNum==1) || (m_iPOCLast/2)==0 || m_iNumPicRcvd==m_iGOPSize ) ) { // compress GOP m_cGOPEncoder.compressGOP(m_iPOCLast, m_iNumPicRcvd, m_cListPic, rcListPicYuvRecOut, true, isTff, snrCSC, m_printFrameMSE , false ); iNumEncoded += m_iNumPicRcvd; m_uiNumAllPicCoded += m_iNumPicRcvd; m_iNumPicRcvd = 0; } } } // ==================================================================================================================== // Protected member functions // ==================================================================================================================== /** - Application has picture buffer list with size of GOP + 1 - Picture buffer list acts like as ring buffer - End of the list has the latest picture . \retval rpcPic obtained picture buffer */ void EncLib::xGetNewPicBuffer ( std::list<PelUnitBuf*>& rcListPicYuvRecOut, Picture*& rpcPic, int ppsId ) { // rotate he output buffer rcListPicYuvRecOut.push_back( rcListPicYuvRecOut.front() ); rcListPicYuvRecOut.pop_front(); rpcPic=0; // At this point, the SPS and PPS can be considered activated - they are copied to the new Pic. const PPS *pPPS=(ppsId<0) ? m_ppsMap.getFirstPS() : m_ppsMap.getPS(ppsId); CHECK(!(pPPS!=0), "Unspecified error"); const PPS &pps=*pPPS; const SPS *pSPS=m_spsMap.getPS(pps.getSPSId()); CHECK(!(pSPS!=0), "Unspecified error"); const SPS &sps=*pSPS; Slice::sortPicList(m_cListPic); // use an entry in the buffered list if the maximum number that need buffering has been reached: if (m_cListPic.size() >= (uint32_t)(m_iGOPSize + getMaxDecPicBuffering(MAX_TLAYER-1) + 2) ) { PicList::iterator iterPic = m_cListPic.begin(); int iSize = int( m_cListPic.size() ); for ( int i = 0; i < iSize; i++ ) { rpcPic = *iterPic; if( ! rpcPic->referenced ) { break; } iterPic++; } // If PPS ID is the same, we will assume that it has not changed since it was last used // and return the old object. if (pps.getPPSId() != rpcPic->cs->pps->getPPSId()) { // the IDs differ - free up an entry in the list, and then create a new one, as with the case where the max buffering state has not been reached. rpcPic->destroy(); delete rpcPic; m_cListPic.erase(iterPic); rpcPic=0; } } if (rpcPic==0) { rpcPic = new Picture; rpcPic->create( sps.getChromaFormatIdc(), Size( sps.getPicWidthInLumaSamples(), sps.getPicHeightInLumaSamples()), sps.getMaxCUWidth(), sps.getMaxCUWidth()+16, false ); if ( getUseAdaptiveQP() ) { const uint32_t iMaxDQPLayer = pps.getCuQpDeltaSubdiv()/2+1; rpcPic->aqlayer.resize( iMaxDQPLayer ); for (uint32_t d = 0; d < iMaxDQPLayer; d++) { rpcPic->aqlayer[d] = new AQpLayer( sps.getPicWidthInLumaSamples(), sps.getPicHeightInLumaSamples(), sps.getMaxCUWidth()>>d, sps.getMaxCUHeight()>>d ); } } m_cListPic.push_back( rpcPic ); } rpcPic->setBorderExtension( false ); rpcPic->reconstructed = false; rpcPic->referenced = true; rpcPic->getHashMap()->clearAll(); m_iPOCLast += (m_compositeRefEnabled ? 2 : 1); m_iNumPicRcvd++; } #if HEVC_VPS void EncLib::xInitVPS(VPS &vps, const SPS &sps) { // The SPS must have already been set up. // set the VPS profile information. *vps.getPTL() = *sps.getPTL(); vps.setMaxOpSets(1); vps.getTimingInfo()->setTimingInfoPresentFlag ( false ); vps.setNumHrdParameters( 0 ); vps.createHrdParamBuffer(); for( uint32_t i = 0; i < vps.getNumHrdParameters(); i ++ ) { vps.setHrdOpSetIdx( 0, i ); vps.setCprmsPresentFlag( false, i ); // Set up HrdParameters here. } } #endif void EncLib::xInitSPS(SPS &sps) { #if !JVET_M0101_HLS sps.setIntraOnlyConstraintFlag(m_bIntraOnlyConstraintFlag); sps.setMaxBitDepthConstraintIdc(m_maxBitDepthConstraintIdc); sps.setMaxChromaFormatConstraintIdc(m_maxChromaFormatConstraintIdc); sps.setFrameConstraintFlag(m_frameOnlyConstraintFlag); sps.setNoQtbttDualTreeIntraConstraintFlag(m_bNoQtbttDualTreeIntraConstraintFlag); sps.setNoSaoConstraintFlag(m_bNoSaoConstraintFlag); sps.setNoAlfConstraintFlag(m_bNoAlfConstraintFlag); sps.setNoPcmConstraintFlag(m_bNoPcmConstraintFlag); sps.setNoRefWraparoundConstraintFlag(m_bNoRefWraparoundConstraintFlag); sps.setNoTemporalMvpConstraintFlag(m_bNoTemporalMvpConstraintFlag); sps.setNoSbtmvpConstraintFlag(m_bNoSbtmvpConstraintFlag); sps.setNoAmvrConstraintFlag(m_bNoAmvrConstraintFlag); sps.setNoBdofConstraintFlag(m_bNoBdofConstraintFlag); sps.setNoCclmConstraintFlag(m_bNoCclmConstraintFlag); sps.setNoMtsConstraintFlag(m_bNoMtsConstraintFlag); sps.setNoAffineMotionConstraintFlag(m_bNoAffineMotionConstraintFlag); sps.setNoGbiConstraintFlag(m_bNoGbiConstraintFlag); sps.setNoMhIntraConstraintFlag(m_bNoMhIntraConstraintFlag); sps.setNoTriangleConstraintFlag(m_bNoTriangleConstraintFlag); sps.setNoLadfConstraintFlag(m_bNoLadfConstraintFlag); sps.setNoCurrPicRefConstraintFlag(m_bNoCurrPicRefConstraintFlag); sps.setNoQpDeltaConstraintFlag(m_bNoQpDeltaConstraintFlag); sps.setNoDepQuantConstraintFlag(m_bNoDepQuantConstraintFlag); sps.setNoSignDataHidingConstraintFlag(m_bNoSignDataHidingConstraintFlag); ProfileTierLevel& profileTierLevel = *sps.getPTL()->getGeneralPTL(); profileTierLevel.setLevelIdc (m_level); profileTierLevel.setTierFlag (m_levelTier); profileTierLevel.setProfileIdc (m_profile); profileTierLevel.setProfileCompatibilityFlag (m_profile, 1); profileTierLevel.setProgressiveSourceFlag (m_progressiveSourceFlag); profileTierLevel.setInterlacedSourceFlag (m_interlacedSourceFlag); profileTierLevel.setNonPackedConstraintFlag (m_nonPackedConstraintFlag); profileTierLevel.setFrameOnlyConstraintFlag (m_frameOnlyConstraintFlag); profileTierLevel.setBitDepthConstraint (m_bitDepthConstraintValue); profileTierLevel.setChromaFormatConstraint (m_chromaFormatConstraintValue); profileTierLevel.setIntraConstraintFlag (m_intraConstraintFlag); profileTierLevel.setOnePictureOnlyConstraintFlag(m_onePictureOnlyConstraintFlag); profileTierLevel.setLowerBitRateConstraintFlag (m_lowerBitRateConstraintFlag); if ((m_profile == Profile::MAIN10) && (m_bitDepth[CHANNEL_TYPE_LUMA] == 8) && (m_bitDepth[CHANNEL_TYPE_CHROMA] == 8)) { /* The above constraint is equal to Profile::MAIN */ profileTierLevel.setProfileCompatibilityFlag(Profile::MAIN, 1); } if (m_profile == Profile::MAIN) { /* A Profile::MAIN10 decoder can always decode Profile::MAIN */ profileTierLevel.setProfileCompatibilityFlag( Profile::MAIN10, 1 ); } #else ProfileTierLevel* profileTierLevel = sps.getProfileTierLevel(); ConstraintInfo* cinfo = profileTierLevel->getConstraintInfo(); cinfo->setProgressiveSourceFlag (m_progressiveSourceFlag); cinfo->setInterlacedSourceFlag (m_interlacedSourceFlag); cinfo->setNonPackedConstraintFlag (m_nonPackedConstraintFlag); cinfo->setFrameOnlyConstraintFlag (m_frameOnlyConstraintFlag); cinfo->setIntraOnlyConstraintFlag (m_intraConstraintFlag); cinfo->setMaxBitDepthConstraintIdc (m_maxBitDepthConstraintIdc); cinfo->setMaxChromaFormatConstraintIdc((ChromaFormat)m_maxChromaFormatConstraintIdc); cinfo->setNoQtbttDualTreeIntraConstraintFlag(m_bNoQtbttDualTreeIntraConstraintFlag); cinfo->setNoSaoConstraintFlag(m_bNoSaoConstraintFlag); cinfo->setNoAlfConstraintFlag(m_bNoAlfConstraintFlag); cinfo->setNoPcmConstraintFlag(m_bNoPcmConstraintFlag); cinfo->setNoRefWraparoundConstraintFlag(m_bNoRefWraparoundConstraintFlag); cinfo->setNoTemporalMvpConstraintFlag(m_bNoTemporalMvpConstraintFlag); cinfo->setNoSbtmvpConstraintFlag(m_bNoSbtmvpConstraintFlag); cinfo->setNoAmvrConstraintFlag(m_bNoAmvrConstraintFlag); cinfo->setNoBdofConstraintFlag(m_bNoBdofConstraintFlag); cinfo->setNoCclmConstraintFlag(m_bNoCclmConstraintFlag); cinfo->setNoMtsConstraintFlag(m_bNoMtsConstraintFlag); cinfo->setNoAffineMotionConstraintFlag(m_bNoAffineMotionConstraintFlag); cinfo->setNoGbiConstraintFlag(m_bNoGbiConstraintFlag); cinfo->setNoMhIntraConstraintFlag(m_bNoMhIntraConstraintFlag); cinfo->setNoTriangleConstraintFlag(m_bNoTriangleConstraintFlag); cinfo->setNoLadfConstraintFlag(m_bNoLadfConstraintFlag); cinfo->setNoCurrPicRefConstraintFlag(m_bNoCurrPicRefConstraintFlag); cinfo->setNoQpDeltaConstraintFlag(m_bNoQpDeltaConstraintFlag); cinfo->setNoDepQuantConstraintFlag(m_bNoDepQuantConstraintFlag); cinfo->setNoSignDataHidingConstraintFlag(m_bNoSignDataHidingConstraintFlag); profileTierLevel->setLevelIdc (m_level); profileTierLevel->setTierFlag (m_levelTier); profileTierLevel->setProfileIdc (m_profile); #endif /* XXX: should Main be marked as compatible with still picture? */ /* XXX: may be a good idea to refactor the above into a function * that chooses the actual compatibility based upon options */ sps.setPicWidthInLumaSamples ( m_iSourceWidth ); sps.setPicHeightInLumaSamples ( m_iSourceHeight ); sps.setConformanceWindow ( m_conformanceWindow ); sps.setMaxCUWidth ( m_maxCUWidth ); sps.setMaxCUHeight ( m_maxCUHeight ); sps.setMaxCodingDepth ( m_maxTotalCUDepth ); sps.setChromaFormatIdc ( m_chromaFormatIDC ); sps.setLog2DiffMaxMinCodingBlockSize(m_log2DiffMaxMinCodingBlockSize); sps.setCTUSize ( m_CTUSize ); sps.setSplitConsOverrideEnabledFlag ( m_useSplitConsOverride ); sps.setMinQTSizes ( m_uiMinQT ); sps.setMaxBTDepth ( m_uiMaxBTDepth, m_uiMaxBTDepthI, m_uiMaxBTDepthIChroma ); sps.setUseDualITree ( m_dualITree ); sps.setSBTMVPEnabledFlag ( m_SubPuMvpMode ); sps.setAMVREnabledFlag ( m_ImvMode != IMV_OFF ); sps.setBDOFEnabledFlag ( m_BIO ); sps.setUseAffine ( m_Affine ); sps.setUseAffineType ( m_AffineType ); sps.setUseLMChroma ( m_LMChroma ? true : false ); sps.setCclmCollocatedChromaFlag( m_cclmCollocatedChromaFlag ); sps.setUseMTS ( m_IntraMTS || m_InterMTS || m_ImplicitMTS ); sps.setUseIntraMTS ( m_IntraMTS ); sps.setUseInterMTS ( m_InterMTS ); sps.setUseSBT ( m_SBT ); if( sps.getUseSBT() ) { sps.setMaxSbtSize ( m_iSourceWidth >= 1920 ? 64 : 32 ); } sps.setUseGBi ( m_GBi ); #if LUMA_ADAPTIVE_DEBLOCKING_FILTER_QP_OFFSET sps.setLadfEnabled ( m_LadfEnabled ); if ( m_LadfEnabled ) { sps.setLadfNumIntervals ( m_LadfNumIntervals ); for ( int k = 0; k < m_LadfNumIntervals; k++ ) { sps.setLadfQpOffset( m_LadfQpOffset[k], k ); sps.setLadfIntervalLowerBound( m_LadfIntervalLowerBound[k], k ); } CHECK( m_LadfIntervalLowerBound[0] != 0, "abnormal value set to LadfIntervalLowerBound[0]" ); } #endif sps.setUseMHIntra ( m_MHIntra ); sps.setUseTriangle ( m_Triangle ); sps.setDisFracMmvdEnabledFlag ( m_allowDisFracMMVD ); sps.setAffineAmvrEnabledFlag ( m_AffineAmvr ); sps.setUseDMVR ( m_DMVR ); sps.setIBCFlag ( m_IBCMode); sps.setWrapAroundEnabledFlag ( m_wrapAround ); sps.setWrapAroundOffset ( m_wrapAroundOffset ); // ADD_NEW_TOOL : (encoder lib) set tool enabling flags and associated parameters here sps.setUseReshaper ( m_lumaReshapeEnable ); int minCUSize = sps.getMaxCUWidth() >> sps.getLog2DiffMaxMinCodingBlockSize(); int log2MinCUSize = 0; while(minCUSize > 1) { minCUSize >>= 1; log2MinCUSize++; } sps.setLog2MinCodingBlockSize(log2MinCUSize); sps.setPCMLog2MinSize (m_uiPCMLog2MinSize); sps.setPCMEnabledFlag ( m_usePCM ); sps.setPCMLog2MaxSize( m_pcmLog2MaxSize ); sps.setSPSTemporalMVPEnabledFlag((getTMVPModeId() == 2 || getTMVPModeId() == 1)); #if MAX_TB_SIZE_SIGNALLING sps.setLog2MaxTbSize ( m_log2MaxTbSize ); #endif for (uint32_t channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++) { sps.setBitDepth (ChannelType(channelType), m_bitDepth[channelType] ); sps.setQpBDOffset (ChannelType(channelType), (6 * (m_bitDepth[channelType] - 8))); sps.setPCMBitDepth (ChannelType(channelType), m_PCMBitDepth[channelType] ); } sps.setSAOEnabledFlag( m_bUseSAO ); sps.setMaxTLayers( m_maxTempLayer ); sps.setTemporalIdNestingFlag( ( m_maxTempLayer == 1 ) ? true : false ); for (int i = 0; i < std::min(sps.getMaxTLayers(), (uint32_t) MAX_TLAYER); i++ ) { sps.setMaxDecPicBuffering(m_maxDecPicBuffering[i], i); sps.setNumReorderPics(m_numReorderPics[i], i); } sps.setPCMFilterDisableFlag ( m_bPCMFilterDisableFlag ); #if HEVC_USE_SCALING_LISTS sps.setScalingListFlag ( (m_useScalingListId == SCALING_LIST_OFF) ? 0 : 1 ); #endif #if HEVC_USE_INTRA_SMOOTHING_T32 || HEVC_USE_INTRA_SMOOTHING_T64 sps.setUseStrongIntraSmoothing( m_useStrongIntraSmoothing ); #endif sps.setALFEnabledFlag( m_alf ); sps.setVuiParametersPresentFlag(getVuiParametersPresentFlag()); if (sps.getVuiParametersPresentFlag()) { VUI* pcVUI = sps.getVuiParameters(); pcVUI->setAspectRatioInfoPresentFlag(getAspectRatioInfoPresentFlag()); pcVUI->setAspectRatioIdc(getAspectRatioIdc()); pcVUI->setSarWidth(getSarWidth()); pcVUI->setSarHeight(getSarHeight()); pcVUI->setOverscanInfoPresentFlag(getOverscanInfoPresentFlag()); pcVUI->setOverscanAppropriateFlag(getOverscanAppropriateFlag()); pcVUI->setVideoSignalTypePresentFlag(getVideoSignalTypePresentFlag()); pcVUI->setVideoFormat(getVideoFormat()); pcVUI->setVideoFullRangeFlag(getVideoFullRangeFlag()); pcVUI->setColourDescriptionPresentFlag(getColourDescriptionPresentFlag()); pcVUI->setColourPrimaries(getColourPrimaries()); pcVUI->setTransferCharacteristics(getTransferCharacteristics()); pcVUI->setMatrixCoefficients(getMatrixCoefficients()); pcVUI->setChromaLocInfoPresentFlag(getChromaLocInfoPresentFlag()); pcVUI->setChromaSampleLocTypeTopField(getChromaSampleLocTypeTopField()); pcVUI->setChromaSampleLocTypeBottomField(getChromaSampleLocTypeBottomField()); pcVUI->setNeutralChromaIndicationFlag(getNeutralChromaIndicationFlag()); pcVUI->setDefaultDisplayWindow(getDefaultDisplayWindow()); pcVUI->setFrameFieldInfoPresentFlag(getFrameFieldInfoPresentFlag()); pcVUI->setFieldSeqFlag(false); pcVUI->setHrdParametersPresentFlag(false); pcVUI->getTimingInfo()->setPocProportionalToTimingFlag(getPocProportionalToTimingFlag()); pcVUI->getTimingInfo()->setNumTicksPocDiffOneMinus1 (getNumTicksPocDiffOneMinus1() ); pcVUI->setBitstreamRestrictionFlag(getBitstreamRestrictionFlag()); pcVUI->setTilesFixedStructureFlag(getTilesFixedStructureFlag()); pcVUI->setMotionVectorsOverPicBoundariesFlag(getMotionVectorsOverPicBoundariesFlag()); pcVUI->setMinSpatialSegmentationIdc(getMinSpatialSegmentationIdc()); pcVUI->setMaxBytesPerPicDenom(getMaxBytesPerPicDenom()); pcVUI->setMaxBitsPerMinCuDenom(getMaxBitsPerMinCuDenom()); pcVUI->setLog2MaxMvLengthHorizontal(getLog2MaxMvLengthHorizontal()); pcVUI->setLog2MaxMvLengthVertical(getLog2MaxMvLengthVertical()); } sps.setNumLongTermRefPicSPS(NUM_LONG_TERM_REF_PIC_SPS); CHECK(!(NUM_LONG_TERM_REF_PIC_SPS <= MAX_NUM_LONG_TERM_REF_PICS), "Unspecified error"); for (int k = 0; k < NUM_LONG_TERM_REF_PIC_SPS; k++) { sps.setLtRefPicPocLsbSps(k, 0); sps.setUsedByCurrPicLtSPSFlag(k, 0); } #if U0132_TARGET_BITS_SATURATION if( getPictureTimingSEIEnabled() || getDecodingUnitInfoSEIEnabled() || getCpbSaturationEnabled() ) #else if( getPictureTimingSEIEnabled() || getDecodingUnitInfoSEIEnabled() ) #endif { xInitHrdParameters(sps); } if( getBufferingPeriodSEIEnabled() || getPictureTimingSEIEnabled() || getDecodingUnitInfoSEIEnabled() ) { sps.getVuiParameters()->setHrdParametersPresentFlag( true ); } // Set up SPS range extension settings sps.getSpsRangeExtension().setTransformSkipRotationEnabledFlag(m_transformSkipRotationEnabledFlag); sps.getSpsRangeExtension().setTransformSkipContextEnabledFlag(m_transformSkipContextEnabledFlag); for (uint32_t signallingModeIndex = 0; signallingModeIndex < NUMBER_OF_RDPCM_SIGNALLING_MODES; signallingModeIndex++) { sps.getSpsRangeExtension().setRdpcmEnabledFlag(RDPCMSignallingMode(signallingModeIndex), m_rdpcmEnabledFlag[signallingModeIndex]); } sps.getSpsRangeExtension().setExtendedPrecisionProcessingFlag(m_extendedPrecisionProcessingFlag); sps.getSpsRangeExtension().setIntraSmoothingDisabledFlag( m_intraSmoothingDisabledFlag ); sps.getSpsRangeExtension().setHighPrecisionOffsetsEnabledFlag(m_highPrecisionOffsetsEnabledFlag); sps.getSpsRangeExtension().setPersistentRiceAdaptationEnabledFlag(m_persistentRiceAdaptationEnabledFlag); sps.getSpsRangeExtension().setCabacBypassAlignmentEnabledFlag(m_cabacBypassAlignmentEnabledFlag); } #if U0132_TARGET_BITS_SATURATION // calculate scale value of bitrate and initial delay int calcScale(int x) { if (x==0) { return 0; } uint32_t iMask = 0xffffffff; int ScaleValue = 32; while ((x&iMask) != 0) { ScaleValue--; iMask = (iMask >> 1); } return ScaleValue; } #endif void EncLib::xInitHrdParameters(SPS &sps) { bool useSubCpbParams = (getSliceMode() > 0) || (getSliceSegmentMode() > 0); int bitRate = getTargetBitrate(); bool isRandomAccess = getIntraPeriod() > 0; # if U0132_TARGET_BITS_SATURATION int cpbSize = getCpbSize(); CHECK(!(cpbSize!=0), "Unspecified error"); // CPB size may not be equal to zero. ToDo: have a better default and check for level constraints if( !getVuiParametersPresentFlag() && !getCpbSaturationEnabled() ) #else if( !getVuiParametersPresentFlag() ) #endif { return; } VUI *vui = sps.getVuiParameters(); HRD *hrd = vui->getHrdParameters(); TimingInfo *timingInfo = vui->getTimingInfo(); timingInfo->setTimingInfoPresentFlag( true ); switch( getFrameRate() ) { case 24: timingInfo->setNumUnitsInTick( 1125000 ); timingInfo->setTimeScale ( 27000000 ); break; case 25: timingInfo->setNumUnitsInTick( 1080000 ); timingInfo->setTimeScale ( 27000000 ); break; case 30: timingInfo->setNumUnitsInTick( 900900 ); timingInfo->setTimeScale ( 27000000 ); break; case 50: timingInfo->setNumUnitsInTick( 540000 ); timingInfo->setTimeScale ( 27000000 ); break; case 60: timingInfo->setNumUnitsInTick( 450450 ); timingInfo->setTimeScale ( 27000000 ); break; default: timingInfo->setNumUnitsInTick( 1001 ); timingInfo->setTimeScale ( 60000 ); break; } if (getTemporalSubsampleRatio()>1) { uint32_t temporalSubsampleRatio = getTemporalSubsampleRatio(); if ( double(timingInfo->getNumUnitsInTick()) * temporalSubsampleRatio > std::numeric_limits<uint32_t>::max() ) { timingInfo->setTimeScale( timingInfo->getTimeScale() / temporalSubsampleRatio ); } else { timingInfo->setNumUnitsInTick( timingInfo->getNumUnitsInTick() * temporalSubsampleRatio ); } } bool rateCnt = ( bitRate > 0 ); hrd->setNalHrdParametersPresentFlag( rateCnt ); hrd->setVclHrdParametersPresentFlag( rateCnt ); hrd->setSubPicCpbParamsPresentFlag( useSubCpbParams ); if( hrd->getSubPicCpbParamsPresentFlag() ) { hrd->setTickDivisorMinus2( 100 - 2 ); // hrd->setDuCpbRemovalDelayLengthMinus1( 7 ); // 8-bit precision ( plus 1 for last DU in AU ) hrd->setSubPicCpbParamsInPicTimingSEIFlag( true ); hrd->setDpbOutputDelayDuLengthMinus1( 5 + 7 ); // With sub-clock tick factor of 100, at least 7 bits to have the same value as AU dpb delay } else { hrd->setSubPicCpbParamsInPicTimingSEIFlag( false ); } #if U0132_TARGET_BITS_SATURATION if (calcScale(bitRate) <= 6) { hrd->setBitRateScale(0); } else { hrd->setBitRateScale(calcScale(bitRate) - 6); } if (calcScale(cpbSize) <= 4) { hrd->setCpbSizeScale(0); } else { hrd->setCpbSizeScale(calcScale(cpbSize) - 4); } #else hrd->setBitRateScale( 4 ); // in units of 2^( 6 + 4 ) = 1,024 bps hrd->setCpbSizeScale( 6 ); // in units of 2^( 4 + 6 ) = 1,024 bit #endif hrd->setDuCpbSizeScale( 6 ); // in units of 2^( 4 + 6 ) = 1,024 bit hrd->setInitialCpbRemovalDelayLengthMinus1(15); // assuming 0.5 sec, log2( 90,000 * 0.5 ) = 16-bit if( isRandomAccess ) { hrd->setCpbRemovalDelayLengthMinus1(5); // 32 = 2^5 (plus 1) hrd->setDpbOutputDelayLengthMinus1 (5); // 32 + 3 = 2^6 } else { hrd->setCpbRemovalDelayLengthMinus1(9); // max. 2^10 hrd->setDpbOutputDelayLengthMinus1 (9); // max. 2^10 } // Note: parameters for all temporal layers are initialized with the same values int i, j; uint32_t bitrateValue, cpbSizeValue; uint32_t duCpbSizeValue; uint32_t duBitRateValue = 0; for( i = 0; i < MAX_TLAYER; i ++ ) { hrd->setFixedPicRateFlag( i, 1 ); hrd->setPicDurationInTcMinus1( i, 0 ); hrd->setLowDelayHrdFlag( i, 0 ); hrd->setCpbCntMinus1( i, 0 ); //! \todo check for possible PTL violations // BitRate[ i ] = ( bit_rate_value_minus1[ i ] + 1 ) * 2^( 6 + bit_rate_scale ) bitrateValue = bitRate / (1 << (6 + hrd->getBitRateScale()) ); // bitRate is in bits, so it needs to be scaled down // CpbSize[ i ] = ( cpb_size_value_minus1[ i ] + 1 ) * 2^( 4 + cpb_size_scale ) #if U0132_TARGET_BITS_SATURATION cpbSizeValue = cpbSize / (1 << (4 + hrd->getCpbSizeScale()) ); // using bitRate results in 1 second CPB size #else cpbSizeValue = bitRate / (1 << (4 + hrd->getCpbSizeScale()) ); // using bitRate results in 1 second CPB size #endif // DU CPB size could be smaller (i.e. bitrateValue / number of DUs), but we don't know // in how many DUs the slice segment settings will result duCpbSizeValue = bitrateValue; duBitRateValue = cpbSizeValue; for( j = 0; j < ( hrd->getCpbCntMinus1( i ) + 1 ); j ++ ) { hrd->setBitRateValueMinus1( i, j, 0, ( bitrateValue - 1 ) ); hrd->setCpbSizeValueMinus1( i, j, 0, ( cpbSizeValue - 1 ) ); hrd->setDuCpbSizeValueMinus1( i, j, 0, ( duCpbSizeValue - 1 ) ); hrd->setDuBitRateValueMinus1( i, j, 0, ( duBitRateValue - 1 ) ); hrd->setCbrFlag( i, j, 0, false ); hrd->setBitRateValueMinus1( i, j, 1, ( bitrateValue - 1) ); hrd->setCpbSizeValueMinus1( i, j, 1, ( cpbSizeValue - 1 ) ); hrd->setDuCpbSizeValueMinus1( i, j, 1, ( duCpbSizeValue - 1 ) ); hrd->setDuBitRateValueMinus1( i, j, 1, ( duBitRateValue - 1 ) ); hrd->setCbrFlag( i, j, 1, false ); } } } void EncLib::xInitPPS(PPS &pps, const SPS &sps) { // pps ID already initialised. pps.setSPSId(sps.getSPSId()); pps.setConstrainedIntraPred( m_bUseConstrainedIntraPred ); bool bUseDQP = (getCuQpDeltaSubdiv() > 0)? true : false; if((getMaxDeltaQP() != 0 )|| getUseAdaptiveQP()) { bUseDQP = true; } #if SHARP_LUMA_DELTA_QP if ( getLumaLevelToDeltaQPMapping().isEnabled() ) { bUseDQP = true; } #endif #if ENABLE_QPA if (getUsePerceptQPA() && !bUseDQP) { CHECK( m_cuQpDeltaSubdiv != 0, "max. delta-QP subdiv must be zero!" ); bUseDQP = (getBaseQP() < 38) && (getSourceWidth() > 512 || getSourceHeight() > 320); } #endif if (m_costMode==COST_SEQUENCE_LEVEL_LOSSLESS || m_costMode==COST_LOSSLESS_CODING) { bUseDQP=false; } if ( m_RCEnableRateControl ) { pps.setUseDQP(true); pps.setCuQpDeltaSubdiv( 0 ); } else if(bUseDQP) { pps.setUseDQP(true); pps.setCuQpDeltaSubdiv( m_cuQpDeltaSubdiv ); } else { pps.setUseDQP(false); pps.setCuQpDeltaSubdiv( 0 ); } if ( m_cuChromaQpOffsetSubdiv >= 0 ) { pps.getPpsRangeExtension().setCuChromaQpOffsetSubdiv(m_cuChromaQpOffsetSubdiv); pps.getPpsRangeExtension().clearChromaQpOffsetList(); pps.getPpsRangeExtension().setChromaQpOffsetListEntry(1, 6, 6); /* todo, insert table entries from command line (NB, 0 should not be touched) */ } else { pps.getPpsRangeExtension().setCuChromaQpOffsetSubdiv(0); pps.getPpsRangeExtension().clearChromaQpOffsetList(); } pps.getPpsRangeExtension().setCrossComponentPredictionEnabledFlag(m_crossComponentPredictionEnabledFlag); pps.getPpsRangeExtension().setLog2SaoOffsetScale(CHANNEL_TYPE_LUMA, m_log2SaoOffsetScale[CHANNEL_TYPE_LUMA ]); pps.getPpsRangeExtension().setLog2SaoOffsetScale(CHANNEL_TYPE_CHROMA, m_log2SaoOffsetScale[CHANNEL_TYPE_CHROMA]); { int baseQp = 26; if( 16 == getGOPSize() ) { baseQp = getBaseQP()-24; } else { baseQp = getBaseQP()-26; } const int maxDQP = 37; const int minDQP = -26 + sps.getQpBDOffset(CHANNEL_TYPE_LUMA); pps.setPicInitQPMinus26( std::min( maxDQP, std::max( minDQP, baseQp ) )); } #if ER_CHROMA_QP_WCG_PPS if (getWCGChromaQPControl().isEnabled()) { const int baseQp=m_iQP+pps.getPPSId(); const double chromaQp = m_wcgChromaQpControl.chromaQpScale * baseQp + m_wcgChromaQpControl.chromaQpOffset; const double dcbQP = m_wcgChromaQpControl.chromaCbQpScale * chromaQp; const double dcrQP = m_wcgChromaQpControl.chromaCrQpScale * chromaQp; const int cbQP =(int)(dcbQP + ( dcbQP < 0 ? -0.5 : 0.5) ); const int crQP =(int)(dcrQP + ( dcrQP < 0 ? -0.5 : 0.5) ); pps.setQpOffset(COMPONENT_Cb, Clip3( -12, 12, min(0, cbQP) + m_chromaCbQpOffset )); pps.setQpOffset(COMPONENT_Cr, Clip3( -12, 12, min(0, crQP) + m_chromaCrQpOffset)); } else { #endif pps.setQpOffset(COMPONENT_Cb, m_chromaCbQpOffset ); pps.setQpOffset(COMPONENT_Cr, m_chromaCrQpOffset ); #if ER_CHROMA_QP_WCG_PPS } #endif #if W0038_CQP_ADJ bool bChromaDeltaQPEnabled = false; { bChromaDeltaQPEnabled = ( m_sliceChromaQpOffsetIntraOrPeriodic[0] || m_sliceChromaQpOffsetIntraOrPeriodic[1] ); if( !bChromaDeltaQPEnabled ) { for( int i=0; i<m_iGOPSize; i++ ) { if( m_GOPList[i].m_CbQPoffset || m_GOPList[i].m_CrQPoffset ) { bChromaDeltaQPEnabled = true; break; } } } } #if ENABLE_QPA if ((getUsePerceptQPA() || getSliceChromaOffsetQpPeriodicity() > 0) && (getChromaFormatIdc() != CHROMA_400)) { bChromaDeltaQPEnabled = true; } #endif pps.setSliceChromaQpFlag(bChromaDeltaQPEnabled); #endif if ( !pps.getSliceChromaQpFlag() && sps.getUseDualITree() && (getChromaFormatIdc() != CHROMA_400)) { pps.setSliceChromaQpFlag(m_chromaCbQpOffsetDualTree != 0 || m_chromaCrQpOffsetDualTree != 0); } pps.setEntropyCodingSyncEnabledFlag( m_entropyCodingSyncEnabledFlag ); pps.setTilesEnabledFlag( (m_iNumColumnsMinus1 > 0 || m_iNumRowsMinus1 > 0) ); pps.setUseWP( m_useWeightedPred ); pps.setWPBiPred( m_useWeightedBiPred ); pps.setOutputFlagPresentFlag( false ); if ( getDeblockingFilterMetric() ) { pps.setDeblockingFilterOverrideEnabledFlag(true); pps.setPPSDeblockingFilterDisabledFlag(false); } else { pps.setDeblockingFilterOverrideEnabledFlag( !getLoopFilterOffsetInPPS() ); pps.setPPSDeblockingFilterDisabledFlag( getLoopFilterDisable() ); } if (! pps.getPPSDeblockingFilterDisabledFlag()) { pps.setDeblockingFilterBetaOffsetDiv2( getLoopFilterBetaOffset() ); pps.setDeblockingFilterTcOffsetDiv2( getLoopFilterTcOffset() ); } else { pps.setDeblockingFilterBetaOffsetDiv2(0); pps.setDeblockingFilterTcOffsetDiv2(0); } // deblockingFilterControlPresentFlag is true if any of the settings differ from the inferred values: const bool deblockingFilterControlPresentFlag = pps.getDeblockingFilterOverrideEnabledFlag() || pps.getPPSDeblockingFilterDisabledFlag() || pps.getDeblockingFilterBetaOffsetDiv2() != 0 || pps.getDeblockingFilterTcOffsetDiv2() != 0; pps.setDeblockingFilterControlPresentFlag(deblockingFilterControlPresentFlag); pps.setLog2ParallelMergeLevelMinus2 (m_log2ParallelMergeLevelMinus2 ); pps.setCabacInitPresentFlag(CABAC_INIT_PRESENT_FLAG); pps.setLoopFilterAcrossSlicesEnabledFlag( m_bLFCrossSliceBoundaryFlag ); int histogram[MAX_NUM_REF + 1]; for( int i = 0; i <= MAX_NUM_REF; i++ ) { histogram[i]=0; } for( int i = 0; i < getGOPSize(); i++) { CHECK(!(getGOPEntry(i).m_numRefPicsActive >= 0 && getGOPEntry(i).m_numRefPicsActive <= MAX_NUM_REF), "Unspecified error"); histogram[getGOPEntry(i).m_numRefPicsActive]++; } int maxHist=-1; int bestPos=0; for( int i = 0; i <= MAX_NUM_REF; i++ ) { if(histogram[i]>maxHist) { maxHist=histogram[i]; bestPos=i; } } CHECK(!(bestPos <= 15), "Unspecified error"); pps.setNumRefIdxL0DefaultActive(bestPos); pps.setNumRefIdxL1DefaultActive(bestPos); pps.setTransquantBypassEnabledFlag(getTransquantBypassEnabledFlag()); pps.setUseTransformSkip( m_useTransformSkip ); pps.getPpsRangeExtension().setLog2MaxTransformSkipBlockSize( m_log2MaxTransformSkipBlockSize ); #if HEVC_DEPENDENT_SLICES if (m_sliceSegmentMode != NO_SLICES) { pps.setDependentSliceSegmentsEnabledFlag( true ); } #endif xInitPPSforTiles(pps); pps.pcv = new PreCalcValues( sps, pps, true ); } void EncLib::xInitAPS(APS &aps) { //Do nothing now } //Function for initializing m_RPSList, a list of ReferencePictureSet, based on the GOPEntry objects read from the config file. void EncLib::xInitRPS(SPS &sps, bool isFieldCoding) { ReferencePictureSet* rps; sps.createRPSList(getGOPSize() + m_extraRPSs + 1); RPSList* rpsList = sps.getRPSList(); for( int i = 0; i < getGOPSize()+m_extraRPSs; i++) { const GOPEntry &ge = getGOPEntry(i); rps = rpsList->getReferencePictureSet(i); rps->setNumberOfPictures(ge.m_numRefPics); rps->setNumRefIdc(ge.m_numRefIdc); int numNeg = 0; int numPos = 0; for( int j = 0; j < ge.m_numRefPics; j++) { rps->setDeltaPOC(j,ge.m_referencePics[j]); rps->setUsed(j,ge.m_usedByCurrPic[j]); if(ge.m_referencePics[j]>0) { numPos++; } else { numNeg++; } } rps->setNumberOfNegativePictures(numNeg); rps->setNumberOfPositivePictures(numPos); // handle inter RPS intialization from the config file. rps->setInterRPSPrediction(ge.m_interRPSPrediction > 0); // not very clean, converting anything > 0 to true. rps->setDeltaRIdxMinus1(0); // index to the Reference RPS is always the previous one. ReferencePictureSet* RPSRef = i>0 ? rpsList->getReferencePictureSet(i-1): NULL; // get the reference RPS if (ge.m_interRPSPrediction == 2) // Automatic generation of the inter RPS idc based on the RIdx provided. { CHECK(!(RPSRef!=NULL), "Unspecified error"); int deltaRPS = getGOPEntry(i-1).m_POC - ge.m_POC; // the ref POC - current POC int numRefDeltaPOC = RPSRef->getNumberOfPictures(); rps->setDeltaRPS(deltaRPS); // set delta RPS rps->setNumRefIdc(numRefDeltaPOC+1); // set the numRefIdc to the number of pictures in the reference RPS + 1. int count=0; for (int j = 0; j <= numRefDeltaPOC; j++ ) // cycle through pics in reference RPS. { int RefDeltaPOC = (j<numRefDeltaPOC)? RPSRef->getDeltaPOC(j): 0; // if it is the last decoded picture, set RefDeltaPOC = 0 rps->setRefIdc(j, 0); for (int k = 0; k < rps->getNumberOfPictures(); k++ ) // cycle through pics in current RPS. { if (rps->getDeltaPOC(k) == ( RefDeltaPOC + deltaRPS)) // if the current RPS has a same picture as the reference RPS. { rps->setRefIdc(j, (rps->getUsed(k)?1:2)); count++; break; } } } if (count != rps->getNumberOfPictures()) { msg( WARNING, "Warning: Unable fully predict all delta POCs using the reference RPS index given in the config file. Setting Inter RPS to false for this RPS.\n"); rps->setInterRPSPrediction(0); } } else if (ge.m_interRPSPrediction == 1) // inter RPS idc based on the RefIdc values provided in config file. { CHECK(!(RPSRef!=NULL), "Unspecified error"); rps->setDeltaRPS(ge.m_deltaRPS); rps->setNumRefIdc(ge.m_numRefIdc); for (int j = 0; j < ge.m_numRefIdc; j++ ) { rps->setRefIdc(j, ge.m_refIdc[j]); } // the following code overwrite the deltaPOC and Used by current values read from the config file with the ones // computed from the RefIdc. A warning is printed if they are not identical. numNeg = 0; numPos = 0; ReferencePictureSet RPSTemp; // temporary variable for (int j = 0; j < ge.m_numRefIdc; j++ ) { if (ge.m_refIdc[j]) { int deltaPOC = ge.m_deltaRPS + ((j < RPSRef->getNumberOfPictures())? RPSRef->getDeltaPOC(j) : 0); RPSTemp.setDeltaPOC((numNeg+numPos),deltaPOC); RPSTemp.setUsed((numNeg+numPos),ge.m_refIdc[j]==1?1:0); if (deltaPOC<0) { numNeg++; } else { numPos++; } } } if (numNeg != rps->getNumberOfNegativePictures()) { msg( WARNING, "Warning: number of negative pictures in RPS is different between intra and inter RPS specified in the config file.\n"); rps->setNumberOfNegativePictures(numNeg); rps->setNumberOfPictures(numNeg+numPos); } if (numPos != rps->getNumberOfPositivePictures()) { msg( WARNING, "Warning: number of positive pictures in RPS is different between intra and inter RPS specified in the config file.\n"); rps->setNumberOfPositivePictures(numPos); rps->setNumberOfPictures(numNeg+numPos); } RPSTemp.setNumberOfPictures(numNeg+numPos); RPSTemp.setNumberOfNegativePictures(numNeg); RPSTemp.sortDeltaPOC(); // sort the created delta POC before comparing // check if Delta POC and Used are the same // print warning if they are not. for (int j = 0; j < ge.m_numRefIdc; j++ ) { if (RPSTemp.getDeltaPOC(j) != rps->getDeltaPOC(j)) { msg( WARNING, "Warning: delta POC is different between intra RPS and inter RPS specified in the config file.\n"); rps->setDeltaPOC(j,RPSTemp.getDeltaPOC(j)); } if (RPSTemp.getUsed(j) != rps->getUsed(j)) { msg( WARNING, "Warning: Used by Current in RPS is different between intra and inter RPS specified in the config file.\n"); rps->setUsed(j,RPSTemp.getUsed(j)); } } } } //In case of field coding, we need to set special parameters for the first bottom field of the sequence, since it is not specified in the cfg file. //The position = GOPSize + extraRPSs which is (a priori) unused is reserved for this field in the RPS. if (isFieldCoding) { rps = rpsList->getReferencePictureSet(getGOPSize()+m_extraRPSs); rps->setNumberOfPictures(1); rps->setNumberOfNegativePictures(1); rps->setNumberOfPositivePictures(0); rps->setNumberOfLongtermPictures(0); rps->setDeltaPOC(0,-1); rps->setPOC(0,0); rps->setUsed(0,true); rps->setInterRPSPrediction(false); rps->setDeltaRIdxMinus1(0); rps->setDeltaRPS(0); rps->setNumRefIdc(0); } } // This is a function that // determines what Reference Picture Set to use // for a specific slice (with POC = POCCurr) void EncLib::selectReferencePictureSet(Slice* slice, int POCCurr, int GOPid , int ltPoc ) { bool isEncodeLtRef = (POCCurr == ltPoc); if (m_compositeRefEnabled && isEncodeLtRef) { POCCurr++; } int rIdx = GOPid; slice->setRPSidx(GOPid); for(int extraNum=m_iGOPSize; extraNum<m_extraRPSs+m_iGOPSize; extraNum++) { if(m_uiIntraPeriod > 0 && getDecodingRefreshType() > 0) { int POCIndex = POCCurr%m_uiIntraPeriod; if(POCIndex == 0) { POCIndex = m_uiIntraPeriod; } if(POCIndex == m_GOPList[extraNum].m_POC) { slice->setRPSidx(extraNum); rIdx = extraNum; } } else { if(POCCurr==m_GOPList[extraNum].m_POC) { slice->setRPSidx(extraNum); rIdx = extraNum; } } } if(POCCurr == 1 && slice->getPic()->fieldPic) { slice->setRPSidx(m_iGOPSize+m_extraRPSs); rIdx = m_iGOPSize + m_extraRPSs; } ReferencePictureSet *rps = const_cast<ReferencePictureSet *>(slice->getSPS()->getRPSList()->getReferencePictureSet(slice->getRPSidx())); if (m_compositeRefEnabled && ltPoc != -1 && !isEncodeLtRef) { if (ltPoc != -1 && rps->getNumberOfLongtermPictures() != 1 && !isEncodeLtRef) { int idx = rps->getNumberOfPictures(); int maxPicOrderCntLSB = 1 << slice->getSPS()->getBitsForPOC(); int ltPocLsb = ltPoc % maxPicOrderCntLSB; rps->setNumberOfPictures(rps->getNumberOfPictures() + 1); rps->setNumberOfLongtermPictures(1); rps->setPOC(idx, ltPoc); rps->setPocLSBLT(idx, ltPocLsb); rps->setDeltaPOC(idx, -POCCurr + ltPoc); rps->setUsed(idx, true); } } else if (m_compositeRefEnabled && isEncodeLtRef) { ReferencePictureSet* localRPS = slice->getLocalRPS(); (*localRPS) = ReferencePictureSet(); int refPics = rps->getNumberOfPictures(); localRPS->setNumberOfPictures(rps->getNumberOfPictures()); for (int i = 0; i < refPics; i++) { localRPS->setDeltaPOC(i, rps->getDeltaPOC(i) + 1); localRPS->setUsed(i, rps->getUsed(i)); } localRPS->setNumberOfNegativePictures(rps->getNumberOfNegativePictures()); localRPS->setNumberOfPositivePictures(rps->getNumberOfPositivePictures()); localRPS->setInterRPSPrediction(true); int deltaRPS = 1; int newIdc = 0; for (int i = 0; i < refPics; i++) { int deltaPOC = ((i != refPics) ? rps->getDeltaPOC(i) : 0); // check if the reference abs POC is >= 0 int refIdc = 0; for (int j = 0; j < localRPS->getNumberOfPictures(); j++) // loop through the pictures in the new RPS { if ((deltaPOC + deltaRPS) == localRPS->getDeltaPOC(j)) { if (localRPS->getUsed(j)) { refIdc = 1; } else { refIdc = 2; } } } localRPS->setRefIdc(i, refIdc); newIdc++; } localRPS->setNumRefIdc(newIdc + 1); localRPS->setRefIdc(newIdc, 0); localRPS->setDeltaRPS(deltaRPS); localRPS->setDeltaRIdxMinus1(slice->getSPS()->getRPSList()->getNumberOfReferencePictureSets() - 1 - rIdx); slice->setRPS(localRPS); slice->setRPSidx(-1); return; } slice->setRPS(rps); } int EncLib::getReferencePictureSetIdxForSOP(int POCCurr, int GOPid ) { int rpsIdx = GOPid; for(int extraNum=m_iGOPSize; extraNum<m_extraRPSs+m_iGOPSize; extraNum++) { if(m_uiIntraPeriod > 0 && getDecodingRefreshType() > 0) { int POCIndex = POCCurr%m_uiIntraPeriod; if(POCIndex == 0) { POCIndex = m_uiIntraPeriod; } if(POCIndex == m_GOPList[extraNum].m_POC) { rpsIdx = extraNum; } } else { if(POCCurr==m_GOPList[extraNum].m_POC) { rpsIdx = extraNum; } } } return rpsIdx; } void EncLib::xInitPPSforTiles(PPS &pps) { pps.setTileUniformSpacingFlag( m_tileUniformSpacingFlag ); pps.setNumTileColumnsMinus1( m_iNumColumnsMinus1 ); pps.setNumTileRowsMinus1( m_iNumRowsMinus1 ); if( !m_tileUniformSpacingFlag ) { pps.setTileColumnWidth( m_tileColumnWidth ); pps.setTileRowHeight( m_tileRowHeight ); } pps.setLoopFilterAcrossTilesEnabledFlag( m_loopFilterAcrossTilesEnabledFlag ); // # substreams is "per tile" when tiles are independent. } void EncCfg::xCheckGSParameters() { int iWidthInCU = ( m_iSourceWidth%m_maxCUWidth ) ? m_iSourceWidth/m_maxCUWidth + 1 : m_iSourceWidth/m_maxCUWidth; int iHeightInCU = ( m_iSourceHeight%m_maxCUHeight ) ? m_iSourceHeight/m_maxCUHeight + 1 : m_iSourceHeight/m_maxCUHeight; uint32_t uiCummulativeColumnWidth = 0; uint32_t uiCummulativeRowHeight = 0; //check the column relative parameters if( m_iNumColumnsMinus1 >= (1<<(LOG2_MAX_NUM_COLUMNS_MINUS1+1)) ) { EXIT( "The number of columns is larger than the maximum allowed number of columns." ); } if( m_iNumColumnsMinus1 >= iWidthInCU ) { EXIT( "The current picture can not have so many columns." ); } if( m_iNumColumnsMinus1 && !m_tileUniformSpacingFlag ) { for(int i=0; i<m_iNumColumnsMinus1; i++) { uiCummulativeColumnWidth += m_tileColumnWidth[i]; } if( uiCummulativeColumnWidth >= iWidthInCU ) { EXIT( "The width of the column is too large." ); } } //check the row relative parameters if( m_iNumRowsMinus1 >= (1<<(LOG2_MAX_NUM_ROWS_MINUS1+1)) ) { EXIT( "The number of rows is larger than the maximum allowed number of rows." ); } if( m_iNumRowsMinus1 >= iHeightInCU ) { EXIT( "The current picture can not have so many rows." ); } if( m_iNumRowsMinus1 && !m_tileUniformSpacingFlag ) { for(int i=0; i<m_iNumRowsMinus1; i++) { uiCummulativeRowHeight += m_tileRowHeight[i]; } if( uiCummulativeRowHeight >= iHeightInCU ) { EXIT( "The height of the row is too large." ); } } } #if JCTVC_Y0038_PARAMS void EncLib::setParamSetChanged(int spsId, int ppsId) { m_ppsMap.setChangedFlag(ppsId); m_spsMap.setChangedFlag(spsId); } #endif bool EncLib::APSNeedsWriting(int apsId) { bool isChanged = m_apsMap.getChangedFlag(apsId); m_apsMap.clearChangedFlag(apsId); return isChanged; } bool EncLib::PPSNeedsWriting(int ppsId) { bool bChanged=m_ppsMap.getChangedFlag(ppsId); m_ppsMap.clearChangedFlag(ppsId); return bChanged; } bool EncLib::SPSNeedsWriting(int spsId) { bool bChanged=m_spsMap.getChangedFlag(spsId); m_spsMap.clearChangedFlag(spsId); return bChanged; } #if X0038_LAMBDA_FROM_QP_CAPABILITY int EncCfg::getQPForPicture(const uint32_t gopIndex, const Slice *pSlice) const { const int lumaQpBDOffset = pSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA); int qp; if (getCostMode()==COST_LOSSLESS_CODING) { qp=LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP; } else { const SliceType sliceType=pSlice->getSliceType(); qp = getBaseQP(); // switch at specific qp and keep this qp offset static int appliedSwitchDQQ = 0; /* TODO: MT */ if( pSlice->getPOC() == getSwitchPOC() ) { appliedSwitchDQQ = getSwitchDQP(); } qp += appliedSwitchDQQ; #if QP_SWITCHING_FOR_PARALLEL const int* pdQPs = getdQPs(); if ( pdQPs ) { qp += pdQPs[pSlice->getPOC() / (m_compositeRefEnabled ? 2 : 1)]; } #endif if(sliceType==I_SLICE) { qp += getIntraQPOffset(); } else { #if SHARP_LUMA_DELTA_QP // Only adjust QP when not lossless if (!(( getMaxDeltaQP() == 0 ) && (!getLumaLevelToDeltaQPMapping().isEnabled()) && (qp == -lumaQpBDOffset ) && (pSlice->getPPS()->getTransquantBypassEnabledFlag()))) #else if (!(( getMaxDeltaQP() == 0 ) && (qp == -lumaQpBDOffset ) && (pSlice->getPPS()->getTransquantBypassEnabledFlag()))) #endif { const GOPEntry &gopEntry=getGOPEntry(gopIndex); // adjust QP according to the QP offset for the GOP entry. qp +=gopEntry.m_QPOffset; // adjust QP according to QPOffsetModel for the GOP entry. double dqpOffset=qp*gopEntry.m_QPOffsetModelScale+gopEntry.m_QPOffsetModelOffset+0.5; int qpOffset = (int)floor(Clip3<double>(0.0, 3.0, dqpOffset)); qp += qpOffset ; } } #if !QP_SWITCHING_FOR_PARALLEL // modify QP if a fractional QP was originally specified, cause dQPs to be 0 or 1. const int* pdQPs = getdQPs(); if ( pdQPs ) { qp += pdQPs[ pSlice->getPOC() ]; } #endif } qp = Clip3( -lumaQpBDOffset, MAX_QP, qp ); return qp; } #endif //! \}