EncSlice.cpp 80 KB
Newer Older
1 2 3 4 5
/* The copyright in this software is being made available under the BSD
 * License, included below. This software may be subject to other third party
 * and contributor rights, including patent rights, and no such rights are
 * granted under this license.
 *
6
 * Copyright (c) 2010-2019, ITU/ISO/IEC
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
 *    be used to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/** \file     EncSlice.cpp
    \brief    slice encoder class
*/

#include "EncSlice.h"

#include "EncLib.h"
#include "CommonLib/UnitTools.h"
#include "CommonLib/Picture.h"
43 44 45
#if K0149_BLOCK_STATISTICS
#include "CommonLib/dtrace_blockstatistics.h"
#endif
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

#if ENABLE_WPP_PARALLELISM
#include <mutex>
extern recursive_mutex g_cache_mutex;
#endif

#include <math.h>

//! \ingroup EncoderLib
//! \{

// ====================================================================================================================
// Constructor / destructor / create / destroy
// ====================================================================================================================

EncSlice::EncSlice()
 : m_encCABACTableIdx(I_SLICE)
63 64 65
#if ENABLE_QPA
 , m_adaptedLumaQP(-1)
#endif
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
{
}

EncSlice::~EncSlice()
{
  destroy();
}

void EncSlice::create( int iWidth, int iHeight, ChromaFormat chromaFormat, uint32_t iMaxCUWidth, uint32_t iMaxCUHeight, uint8_t uhTotalDepth )
{
}

void EncSlice::destroy()
{
  // free lambda and QP arrays
  m_vdRdPicLambda.clear();
  m_vdRdPicQp.clear();
  m_viRdPicQp.clear();
}

void EncSlice::init( EncLib* pcEncLib, const SPS& sps )
{
  m_pcCfg             = pcEncLib;
  m_pcLib             = pcEncLib;
  m_pcListPic         = pcEncLib->getListPic();

  m_pcGOPEncoder      = pcEncLib->getGOPEncoder();
  m_pcCuEncoder       = pcEncLib->getCuEncoder();
  m_pcInterSearch     = pcEncLib->getInterSearch();
  m_CABACWriter       = pcEncLib->getCABACEncoder()->getCABACWriter   (&sps);
  m_CABACEstimator    = pcEncLib->getCABACEncoder()->getCABACEstimator(&sps);
  m_pcTrQuant         = pcEncLib->getTrQuant();
  m_pcRdCost          = pcEncLib->getRdCost();

  // create lambda and QP arrays
  m_vdRdPicLambda.resize(m_pcCfg->getDeltaQpRD() * 2 + 1 );
  m_vdRdPicQp.resize(    m_pcCfg->getDeltaQpRD() * 2 + 1 );
  m_viRdPicQp.resize(    m_pcCfg->getDeltaQpRD() * 2 + 1 );
  m_pcRateCtrl        = pcEncLib->getRateCtrl();
}

void
EncSlice::setUpLambda( Slice* slice, const double dLambda, int iQP)
{
  // store lambda
  m_pcRdCost ->setLambda( dLambda, slice->getSPS()->getBitDepths() );

  // for RDO
  // in RdCost there is only one lambda because the luma and chroma bits are not separated, instead we weight the distortion of chroma.
  double dLambdas[MAX_NUM_COMPONENT] = { dLambda };
  for( uint32_t compIdx = 1; compIdx < MAX_NUM_COMPONENT; compIdx++ )
  {
    const ComponentID compID = ComponentID( compIdx );
    int chromaQPOffset       = slice->getPPS()->getQpOffset( compID ) + slice->getSliceChromaQpDelta( compID );
    int qpc                  = ( iQP + chromaQPOffset < 0 ) ? iQP : getScaledChromaQP( iQP + chromaQPOffset, m_pcCfg->getChromaFormatIdc() );
    double tmpWeight         = pow( 2.0, ( iQP - qpc ) / 3.0 );  // takes into account of the chroma qp mapping and chroma qp Offset
122
    if( m_pcCfg->getDepQuantEnabledFlag() && !( m_pcCfg->getLFNST() ) )
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    {
      tmpWeight *= ( m_pcCfg->getGOPSize() >= 8 ? pow( 2.0, 0.1/3.0 ) : pow( 2.0, 0.2/3.0 ) );  // increase chroma weight for dependent quantization (in order to reduce bit rate shift from chroma to luma)
    }
    m_pcRdCost->setDistortionWeight( compID, tmpWeight );
#if ENABLE_WPP_PARALLELISM
    for( int jId = 1; jId < ( m_pcLib->getNumWppThreads() + m_pcLib->getNumWppExtraLines() ); jId++ )
    {
      m_pcLib->getRdCost( slice->getPic()->scheduler.getWppDataId( jId ) )->setDistortionWeight( compID, tmpWeight );
    }
#endif
    dLambdas[compIdx] = dLambda / tmpWeight;
  }

#if RDOQ_CHROMA_LAMBDA
  // for RDOQ
  m_pcTrQuant->setLambdas( dLambdas );
#else
  m_pcTrQuant->setLambda( dLambda );
#endif

  // for SAO
  slice->setLambdas( dLambdas );
}

147 148 149 150 151 152 153
#if ENABLE_QPA

static inline int apprI3Log2 (const double d) // rounded 3*log2(d)
{
  return d < 1.5e-13 ? -128 : int (floor (3.0 * log (d) / log (2.0) + 0.5));
}

154 155 156 157 158
static inline int lumaDQPOffset (const uint32_t avgLumaValue, const int bitDepth)
{
  return (1 - int ((3 * uint64_t (avgLumaValue * avgLumaValue)) >> uint64_t (2 * bitDepth - 1)));
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static void filterAndCalculateAverageEnergies (const Pel* pSrc, const int  iSrcStride,
                                               double &hpEner,  const int  iHeight,    const int iWidth,
                                               const uint32_t uBitDepth /* luma bit-depth (4-16) */)
{
  uint64_t saAct = 0;

  // skip first row as there may be a black border frame
  pSrc += iSrcStride;
  // center rows
  for (int y = 1; y < iHeight - 1; y++)
  {
    // skip column as there may be a black border frame

    for (int x = 1; x < iWidth - 1; x++) // and columns
    {
      const int f = 12 * (int)pSrc[x  ] - 2 * ((int)pSrc[x-1] + (int)pSrc[x+1] + (int)pSrc[x  -iSrcStride] + (int)pSrc[x  +iSrcStride])
                       - (int)pSrc[x-1-iSrcStride] - (int)pSrc[x+1-iSrcStride] - (int)pSrc[x-1+iSrcStride] - (int)pSrc[x+1+iSrcStride];
      saAct += abs (f);
    }
    // skip column as there may be a black border frame
    pSrc += iSrcStride;
  }
  // skip last row as there may be a black border frame

  hpEner = double(saAct) / double((iWidth - 2) * (iHeight - 2));

  // lower limit, compensate for highpass amplification
  if (hpEner < double(1 << (uBitDepth - 4))) hpEner = double(1 << (uBitDepth - 4));
}

#ifndef GLOBAL_AVERAGING
  #define GLOBAL_AVERAGING 1 // "global" averaging of a_k across a set instead of one picture
#endif

#if GLOBAL_AVERAGING
static double getAveragePictureEnergy (const CPelBuf picOrig, const uint32_t uBitDepth)
{
196
  const double hpEnerPic = 16.0 * sqrt ((3840.0 * 2160.0) / double(picOrig.width * picOrig.height)) * double(1 << uBitDepth);
197

198
  return sqrt (hpEnerPic); // square-root of a_pic value
199 200 201
}
#endif

202 203 204 205 206 207 208 209 210
static int getGlaringColorQPOffset (Picture* const pcPic, const int ctuAddr, const uint32_t startAddr, const uint32_t boundingAddr,
                                    const int bitDepth,   uint32_t &avgLumaValue)
{
  const PreCalcValues& pcv  = *pcPic->cs->pcv;
  const ChromaFormat chrFmt = pcPic->chromaFormat;
  const uint32_t chrWidth   = pcv.maxCUWidth  >> getChannelTypeScaleX (CH_C, chrFmt);
  const uint32_t chrHeight  = pcv.maxCUHeight >> getChannelTypeScaleY (CH_C, chrFmt);
  const int      midLevel   = 1 << (bitDepth - 1);
  int chrValue = MAX_INT;
211
  avgLumaValue = (startAddr < boundingAddr) ? 0 : (uint32_t)pcPic->getOrigBuf().Y().computeAvg();
212 213 214 215 216 217 218 219 220

  if (ctuAddr >= 0) // luma
  {
    avgLumaValue = (uint32_t)pcPic->m_iOffsetCtu[ctuAddr];
  }
  else if (startAddr < boundingAddr)
  {
    for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
    {
Karsten Suehring's avatar
Karsten Suehring committed
221
      const uint32_t ctuRsAddr = pcPic->brickMap->getCtuBsToRsAddrMap (ctuTsAddr);
222 223 224 225 226 227 228 229 230 231 232 233 234 235
      avgLumaValue += pcPic->m_iOffsetCtu[ctuRsAddr];
    }
    avgLumaValue = (avgLumaValue + ((boundingAddr - startAddr) >> 1)) / (boundingAddr - startAddr);
  }

  for (uint32_t comp = COMPONENT_Cb; comp < MAX_NUM_COMPONENT; comp++)
  {
    const ComponentID compID = (ComponentID)comp;
    int avgCompValue;

    if (ctuAddr >= 0) // chroma
    {
      const CompArea chrArea = clipArea (CompArea (compID, chrFmt, Area ((ctuAddr % pcv.widthInCtus) * chrWidth, (ctuAddr / pcv.widthInCtus) * chrHeight, chrWidth, chrHeight)), pcPic->block (compID));

236
      avgCompValue = pcPic->getOrigBuf (chrArea).computeAvg();
237
    }
238
    else avgCompValue = pcPic->getOrigBuf (pcPic->block (compID)).computeAvg();
239 240 241 242 243 244 245 246 247 248 249 250

    if (chrValue > avgCompValue) chrValue = avgCompValue; // minimum of the DC offsets
  }
  CHECK (chrValue < 0, "DC offset cannot be negative!");

  chrValue = (int)avgLumaValue - chrValue;

  if (chrValue > midLevel) return apprI3Log2 (double (chrValue * chrValue) / double (midLevel * midLevel));

  return 0;
}

251 252
static int applyQPAdaptationChroma (Picture* const pcPic, Slice* const pcSlice, EncCfg* const pcEncCfg, const int sliceQP)
{
253
  const int bitDepth               = pcSlice->getSPS()->getBitDepth (CHANNEL_TYPE_LUMA); // overall image bit-depth
254 255 256
  double hpEner[MAX_NUM_COMPONENT] = {0.0, 0.0, 0.0};
  int    optSliceChromaQpOffset[2] = {0, 0};
  int    savedLumaQP               = -1;
257
  uint32_t meanLuma                = MAX_UINT;
258 259 260 261 262 263

  for (uint32_t comp = 0; comp < getNumberValidComponents (pcPic->chromaFormat); comp++)
  {
    const ComponentID compID = (ComponentID)comp;
    const CPelBuf    picOrig = pcPic->getOrigBuf (pcPic->block (compID));

264
    filterAndCalculateAverageEnergies (picOrig.buf,    picOrig.stride, hpEner[comp],
265
                                       picOrig.height, picOrig.width,  bitDepth - (isChroma (compID) ? 1 : 0));
266 267 268
    if (isChroma (compID))
    {
      const int  adaptChromaQPOffset = 2.0 * hpEner[comp] <= hpEner[0] ? 0 : apprI3Log2 (2.0 * hpEner[comp] / hpEner[0]);
269 270

      if (savedLumaQP < 0)
271
      {
272
#if GLOBAL_AVERAGING
273
        int     averageAdaptedLumaQP = Clip3 (0, MAX_QP, sliceQP + apprI3Log2 (hpEner[0] / getAveragePictureEnergy (pcPic->getOrigBuf().Y(), bitDepth)));
274 275 276 277
#else
        int     averageAdaptedLumaQP = Clip3 (0, MAX_QP, sliceQP); // mean slice QP
#endif

278
        averageAdaptedLumaQP += getGlaringColorQPOffset (pcPic, -1 /*ctuRsAddr*/, 0 /*startAddr*/, 0 /*boundingAddr*/, bitDepth, meanLuma);
279

280 281 282 283 284 285 286 287 288
        if (averageAdaptedLumaQP > MAX_QP
#if SHARP_LUMA_DELTA_QP
            && (pcEncCfg->getLumaLevelToDeltaQPMapping().mode != LUMALVL_TO_DQP_NUM_MODES)
#endif
            ) averageAdaptedLumaQP = MAX_QP;
#if SHARP_LUMA_DELTA_QP

        // change mean picture QP index based on picture's average luma value (Sharp)
        if (pcEncCfg->getLumaLevelToDeltaQPMapping().mode == LUMALVL_TO_DQP_NUM_MODES)
289
        {
290
          if (meanLuma == MAX_UINT) meanLuma = pcPic->getOrigBuf().Y().computeAvg();
291

292
          averageAdaptedLumaQP = Clip3 (0, MAX_QP, averageAdaptedLumaQP + lumaDQPOffset (meanLuma, bitDepth));
293
        }
294
#endif
295

296 297
        savedLumaQP = averageAdaptedLumaQP;
      } // savedLumaQP < 0
298

299
      const int lumaChromaMappingDQP = savedLumaQP - getScaledChromaQP (savedLumaQP, pcEncCfg->getChromaFormatIdc());
300

301
      optSliceChromaQpOffset[comp-1] = std::min (3 + lumaChromaMappingDQP, adaptChromaQPOffset + lumaChromaMappingDQP);
302 303 304 305 306 307 308 309 310
    }
  }

  pcEncCfg->setSliceChromaOffsetQpIntraOrPeriodic (pcEncCfg->getSliceChromaOffsetQpPeriodicity(), optSliceChromaQpOffset);

  return savedLumaQP;
}

#endif // ENABLE_QPA
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

/**
 - non-referenced frame marking
 - QP computation based on temporal structure
 - lambda computation based on QP
 - set temporal layer ID and the parameter sets
 .
 \param pcPic         picture class
 \param pocLast       POC of last picture
 \param pocCurr       current POC
 \param iNumPicRcvd   number of received pictures
 \param iGOPid        POC offset for hierarchical structure
 \param rpcSlice      slice header class
 \param isField       true for field coding
 */
326 327 328
void EncSlice::initEncSlice(Picture* pcPic, const int pocLast, const int pocCurr, const int iGOPid, Slice*& rpcSlice, const bool isField
  , bool isEncodeLtRef
)
329 330 331 332 333 334 335 336
{
  double dQP;
  double dLambda;

  rpcSlice = pcPic->slices[0];
  rpcSlice->setSliceBits(0);
  rpcSlice->setPic( pcPic );
  rpcSlice->initSlice();
337 338
  int multipleFactor = m_pcCfg->getUseCompositeRef() ? 2 : 1;
  if (m_pcCfg->getUseCompositeRef() && isEncodeLtRef)
339 340 341 342 343 344 345
  {
    rpcSlice->setPicOutputFlag(false);
  }
  else
  {
    rpcSlice->setPicOutputFlag(true);
  }
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
  rpcSlice->setPOC( pocCurr );
  rpcSlice->setDepQuantEnabledFlag( m_pcCfg->getDepQuantEnabledFlag() );
  rpcSlice->setSignDataHidingEnabledFlag( m_pcCfg->getSignDataHidingEnabledFlag() );

#if SHARP_LUMA_DELTA_QP
  pcPic->fieldPic = isField;
  m_gopID = iGOPid;
#endif

  // depth computation based on GOP size
  int depth;
  {
    int poc = rpcSlice->getPOC();
    if(isField)
    {
      poc = (poc/2) % (m_pcCfg->getGOPSize()/2);
    }
    else
    {
365
      poc = poc % (m_pcCfg->getGOPSize() * multipleFactor);
366 367 368 369 370 371 372 373
    }

    if ( poc == 0 )
    {
      depth = 0;
    }
    else
    {
374
      int step = m_pcCfg->getGOPSize() * multipleFactor;
375 376 377
      depth    = 0;
      for( int i=step>>1; i>=1; i>>=1 )
      {
378
        for (int j = i; j<(m_pcCfg->getGOPSize() * multipleFactor); j += step)
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        {
          if ( j == poc )
          {
            i=0;
            break;
          }
        }
        step >>= 1;
        depth++;
      }
    }

    if(m_pcCfg->getHarmonizeGopFirstFieldCoupleEnabled() && poc != 0)
    {
      if (isField && ((rpcSlice->getPOC() % 2) == 1))
      {
        depth++;
      }
    }
  }

  // slice type
  SliceType eSliceType;

  eSliceType=B_SLICE;
  if(!(isField && pocLast == 1) || !m_pcCfg->getEfficientFieldIRAPEnabled())
  {
    if(m_pcCfg->getDecodingRefreshType() == 3)
    {
408
      eSliceType = (pocLast == 0 || pocCurr % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
409 410 411
    }
    else
    {
412
      eSliceType = (pocLast == 0 || (pocCurr - (isField ? 1 : 0)) % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
    }
  }

  rpcSlice->setSliceType    ( eSliceType );

  // ------------------------------------------------------------------------------------------------------------------
  // Non-referenced frame marking
  // ------------------------------------------------------------------------------------------------------------------

  pcPic->referenced = true;

  // ------------------------------------------------------------------------------------------------------------------
  // QP setting
  // ------------------------------------------------------------------------------------------------------------------

#if X0038_LAMBDA_FROM_QP_CAPABILITY
  dQP = m_pcCfg->getQPForPicture(iGOPid, rpcSlice);
#else
  dQP = m_pcCfg->getBaseQP();
  if(eSliceType!=I_SLICE)
  {
#if SHARP_LUMA_DELTA_QP
    if (!(( m_pcCfg->getMaxDeltaQP() == 0) && (!m_pcCfg->getLumaLevelToDeltaQPMapping().isEnabled()) && (dQP == -rpcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA) ) && (rpcSlice->getPPS()->getTransquantBypassEnabledFlag())))
#else
    if (!(( m_pcCfg->getMaxDeltaQP() == 0 ) && (dQP == -rpcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA) ) && (rpcSlice->getPPS()->getTransquantBypassEnabledFlag())))
#endif
    {
      dQP += m_pcCfg->getGOPEntry(iGOPid).m_QPOffset;
    }
  }

  // modify QP
  const int* pdQPs = m_pcCfg->getdQPs();
  if ( pdQPs )
  {
    dQP += pdQPs[ rpcSlice->getPOC() ];
  }

  if (m_pcCfg->getCostMode()==COST_LOSSLESS_CODING)
  {
    dQP=LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP;
    m_pcCfg->setDeltaQpRD(0);
  }
#endif

  // ------------------------------------------------------------------------------------------------------------------
  // Lambda computation
  // ------------------------------------------------------------------------------------------------------------------

#if X0038_LAMBDA_FROM_QP_CAPABILITY
  const int temporalId=m_pcCfg->getGOPEntry(iGOPid).m_temporalId;
#if !SHARP_LUMA_DELTA_QP
  const std::vector<double> &intraLambdaModifiers=m_pcCfg->getIntraLambdaModifier();
#endif
#endif
  int iQP;
  double dOrigQP = dQP;

  // pre-compute lambda and QP values for all possible QP candidates
  for ( int iDQpIdx = 0; iDQpIdx < 2 * m_pcCfg->getDeltaQpRD() + 1; iDQpIdx++ )
  {
    // compute QP value
    dQP = dOrigQP + ((iDQpIdx+1)>>1)*(iDQpIdx%2 ? -1 : 1);
#if SHARP_LUMA_DELTA_QP
    dLambda = calculateLambda(rpcSlice, iGOPid, depth, dQP, dQP, iQP );
#else
    // compute lambda value
    int    NumberBFrames = ( m_pcCfg->getGOPSize() - 1 );
    int    SHIFT_QP = 12;

    int    bitdepth_luma_qp_scale =
      6
      * (rpcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 8
         - DISTORTION_PRECISION_ADJUSTMENT(rpcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA)));
    double qp_temp = (double) dQP + bitdepth_luma_qp_scale - SHIFT_QP;
#if FULL_NBIT
    double qp_temp_orig = (double) dQP - SHIFT_QP;
#endif
    // Case #1: I or P-slices (key-frame)
    double dQPFactor = m_pcCfg->getGOPEntry(iGOPid).m_QPFactor;
    if ( eSliceType==I_SLICE )
    {
      if (m_pcCfg->getIntraQpFactor()>=0.0 && m_pcCfg->getGOPEntry(iGOPid).m_sliceType != I_SLICE)
      {
        dQPFactor=m_pcCfg->getIntraQpFactor();
      }
      else
      {
#if X0038_LAMBDA_FROM_QP_CAPABILITY
        if(m_pcCfg->getLambdaFromQPEnable())
        {
          dQPFactor=0.57;
        }
        else
        {
#endif
        double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(double)(isField ? NumberBFrames/2 : NumberBFrames) );

        dQPFactor=0.57*dLambda_scale;
#if X0038_LAMBDA_FROM_QP_CAPABILITY
        }
#endif
      }
    }
#if X0038_LAMBDA_FROM_QP_CAPABILITY
    else if( m_pcCfg->getLambdaFromQPEnable() )
    {
      dQPFactor=0.57;
    }
#endif

    dLambda = dQPFactor*pow( 2.0, qp_temp/3.0 );

#if X0038_LAMBDA_FROM_QP_CAPABILITY
    if(!m_pcCfg->getLambdaFromQPEnable() && depth>0)
#else
    if ( depth>0 )
#endif
    {
#if FULL_NBIT
        dLambda *= Clip3( 2.00, 4.00, (qp_temp_orig / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 )
#else
        dLambda *= Clip3( 2.00, 4.00, (qp_temp / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 )
#endif
    }

    // if hadamard is used in ME process
    if ( !m_pcCfg->getUseHADME() && rpcSlice->getSliceType( ) != I_SLICE )
    {
      dLambda *= 0.95;
    }

#if X0038_LAMBDA_FROM_QP_CAPABILITY
    double lambdaModifier;
    if( rpcSlice->getSliceType( ) != I_SLICE || intraLambdaModifiers.empty())
    {
      lambdaModifier = m_pcCfg->getLambdaModifier( temporalId );
    }
    else
    {
      lambdaModifier = intraLambdaModifiers[ (temporalId < intraLambdaModifiers.size()) ? temporalId : (intraLambdaModifiers.size()-1) ];
    }
    dLambda *= lambdaModifier;
#endif

558
    iQP = Clip3( -rpcSlice->getSPS()->getQpBDOffset( CHANNEL_TYPE_LUMA ), MAX_QP, (int) floor( dQP + 0.5 ) );
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
#endif

    m_vdRdPicLambda[iDQpIdx] = dLambda;
    m_vdRdPicQp    [iDQpIdx] = dQP;
    m_viRdPicQp    [iDQpIdx] = iQP;
  }

  // obtain dQP = 0 case
  dLambda = m_vdRdPicLambda[0];
  dQP     = m_vdRdPicQp    [0];
  iQP     = m_viRdPicQp    [0];

#if !X0038_LAMBDA_FROM_QP_CAPABILITY
  const int temporalId=m_pcCfg->getGOPEntry(iGOPid).m_temporalId;
  const std::vector<double> &intraLambdaModifiers=m_pcCfg->getIntraLambdaModifier();
#endif

#if W0038_CQP_ADJ
577 578 579 580 581 582 583 584 585
 #if ENABLE_QPA
  m_adaptedLumaQP = -1;

  if ((m_pcCfg->getUsePerceptQPA() || m_pcCfg->getSliceChromaOffsetQpPeriodicity() > 0) && !m_pcCfg->getUseRateCtrl() && rpcSlice->getPPS()->getSliceChromaQpFlag() &&
      (rpcSlice->isIntra() || (m_pcCfg->getSliceChromaOffsetQpPeriodicity() > 0 && (rpcSlice->getPOC() % m_pcCfg->getSliceChromaOffsetQpPeriodicity()) == 0)))
  {
    m_adaptedLumaQP = applyQPAdaptationChroma (pcPic, rpcSlice, m_pcCfg, iQP);
  }
 #endif
586 587
  if(rpcSlice->getPPS()->getSliceChromaQpFlag())
  {
Yu Han's avatar
Yu Han committed
588
    const bool bUseIntraOrPeriodicOffset = (rpcSlice->isIntra() && !rpcSlice->getSPS()->getIBCFlag()) || (m_pcCfg->getSliceChromaOffsetQpPeriodicity() > 0 && (rpcSlice->getPOC() % m_pcCfg->getSliceChromaOffsetQpPeriodicity()) == 0);
589 590
    int cbQP = bUseIntraOrPeriodicOffset ? m_pcCfg->getSliceChromaOffsetQpIntraOrPeriodic(false) : m_pcCfg->getGOPEntry(iGOPid).m_CbQPoffset;
    int crQP = bUseIntraOrPeriodicOffset ? m_pcCfg->getSliceChromaOffsetQpIntraOrPeriodic(true)  : m_pcCfg->getGOPEntry(iGOPid).m_CrQPoffset;
591 592 593 594 595 596 597 598 599 600 601 602

    cbQP = Clip3( -12, 12, cbQP + rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb) ) - rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb);
    crQP = Clip3( -12, 12, crQP + rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr) ) - rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr);
    rpcSlice->setSliceChromaQpDelta(COMPONENT_Cb, Clip3( -12, 12, cbQP));
    CHECK(!(rpcSlice->getSliceChromaQpDelta(COMPONENT_Cb)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb)<=12 && rpcSlice->getSliceChromaQpDelta(COMPONENT_Cb)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb)>=-12), "Unspecified error");
    rpcSlice->setSliceChromaQpDelta(COMPONENT_Cr, Clip3( -12, 12, crQP));
    CHECK(!(rpcSlice->getSliceChromaQpDelta(COMPONENT_Cr)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr)<=12 && rpcSlice->getSliceChromaQpDelta(COMPONENT_Cr)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr)>=-12), "Unspecified error");
  }
  else
  {
    rpcSlice->setSliceChromaQpDelta( COMPONENT_Cb, 0 );
    rpcSlice->setSliceChromaQpDelta( COMPONENT_Cr, 0 );
603
    rpcSlice->setSliceChromaQpDelta( JOINT_CbCr, 0 );
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
  }
#endif

#if !X0038_LAMBDA_FROM_QP_CAPABILITY
  double lambdaModifier;
  if( rpcSlice->getSliceType( ) != I_SLICE || intraLambdaModifiers.empty())
  {
    lambdaModifier = m_pcCfg->getLambdaModifier( temporalId );
  }
  else
  {
    lambdaModifier = intraLambdaModifiers[ (temporalId < intraLambdaModifiers.size()) ? temporalId : (intraLambdaModifiers.size()-1) ];
  }

  dLambda *= lambdaModifier;
#endif

  setUpLambda(rpcSlice, dLambda, iQP);
622

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
#if WCG_EXT
  // cost = Distortion + Lambda*R,
  // when QP is adjusted by luma, distortion is changed, so we have to adjust lambda to match the distortion, then the cost function becomes
  // costA = Distortion + AdjustedLambda * R          -- currently, costA is still used when calculating intermediate cost of using SAD, HAD, resisual etc.
  // an alternative way is to weight the distortion to before the luma QP adjustment, then the cost function becomes
  // costB = weightedDistortion + Lambda * R          -- currently, costB is used to calculat final cost, and when DF_FUNC is DF_DEFAULT
  m_pcRdCost->saveUnadjustedLambda();
#endif

  if (m_pcCfg->getFastMEForGenBLowDelayEnabled())
  {
    // restore original slice type

    if(!(isField && pocLast == 1) || !m_pcCfg->getEfficientFieldIRAPEnabled())
    {
      if(m_pcCfg->getDecodingRefreshType() == 3)
      {
640
        eSliceType = (pocLast == 0 || (pocCurr) % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
641 642 643
      }
      else
      {
644
        eSliceType = (pocLast == 0 || (pocCurr - (isField ? 1 : 0)) % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
645 646 647 648 649 650 651 652 653
      }
    }

    rpcSlice->setSliceType        ( eSliceType );
  }

  if (m_pcCfg->getUseRecalculateQPAccordingToLambda())
  {
    dQP = xGetQPValueAccordingToLambda( dLambda );
654
    iQP = Clip3( -rpcSlice->getSPS()->getQpBDOffset( CHANNEL_TYPE_LUMA ), MAX_QP, (int) floor( dQP + 0.5 ) );
655 656 657 658 659 660 661
  }

  rpcSlice->setSliceQp           ( iQP );
  rpcSlice->setSliceQpDelta      ( 0 );
#if !W0038_CQP_ADJ
  rpcSlice->setSliceChromaQpDelta( COMPONENT_Cb, 0 );
  rpcSlice->setSliceChromaQpDelta( COMPONENT_Cr, 0 );
662
  rpcSlice->setSliceChromaQpDelta( JOINT_CbCr,   0 );
663 664
#endif
  rpcSlice->setUseChromaQpAdj( rpcSlice->getPPS()->getPpsRangeExtension().getChromaQpOffsetListEnabledFlag() );
Hendry's avatar
Hendry committed
665 666
  rpcSlice->setNumRefIdx(REF_PIC_LIST_0, m_pcCfg->getRPLEntry(0, iGOPid).m_numRefPicsActive);
  rpcSlice->setNumRefIdx(REF_PIC_LIST_1, m_pcCfg->getRPLEntry(1, iGOPid).m_numRefPicsActive);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712

  if ( m_pcCfg->getDeblockingFilterMetric() )
  {
    rpcSlice->setDeblockingFilterOverrideFlag(true);
    rpcSlice->setDeblockingFilterDisable(false);
    rpcSlice->setDeblockingFilterBetaOffsetDiv2( 0 );
    rpcSlice->setDeblockingFilterTcOffsetDiv2( 0 );
  }
  else if (rpcSlice->getPPS()->getDeblockingFilterControlPresentFlag())
  {
    rpcSlice->setDeblockingFilterOverrideFlag( rpcSlice->getPPS()->getDeblockingFilterOverrideEnabledFlag() );
    rpcSlice->setDeblockingFilterDisable( rpcSlice->getPPS()->getPPSDeblockingFilterDisabledFlag() );
    if ( !rpcSlice->getDeblockingFilterDisable())
    {
      if ( rpcSlice->getDeblockingFilterOverrideFlag() && eSliceType!=I_SLICE)
      {
        rpcSlice->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_betaOffsetDiv2 + m_pcCfg->getLoopFilterBetaOffset()  );
        rpcSlice->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_tcOffsetDiv2 + m_pcCfg->getLoopFilterTcOffset() );
      }
      else
      {
        rpcSlice->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getLoopFilterBetaOffset() );
        rpcSlice->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getLoopFilterTcOffset() );
      }
    }
  }
  else
  {
    rpcSlice->setDeblockingFilterOverrideFlag( false );
    rpcSlice->setDeblockingFilterDisable( false );
    rpcSlice->setDeblockingFilterBetaOffsetDiv2( 0 );
    rpcSlice->setDeblockingFilterTcOffsetDiv2( 0 );
  }

  rpcSlice->setDepth            ( depth );

  pcPic->layer =  temporalId;
  if(eSliceType==I_SLICE)
  {
    pcPic->layer = 0;
  }
  rpcSlice->setTLayer( pcPic->layer );

  rpcSlice->setSliceMode            ( m_pcCfg->getSliceMode()            );
  rpcSlice->setSliceArgument        ( m_pcCfg->getSliceArgument()        );
  rpcSlice->setMaxNumMergeCand      ( m_pcCfg->getMaxNumMergeCand()      );
713
  rpcSlice->setMaxNumAffineMergeCand( m_pcCfg->getMaxNumAffineMergeCand() );
714
  rpcSlice->setMaxNumTriangleCand   ( m_pcCfg->getMaxNumTriangleCand() );
715
  rpcSlice->setSplitConsOverrideFlag(false);
716 717 718 719 720
  rpcSlice->setMinQTSize( rpcSlice->getSPS()->getMinQTSize(eSliceType));
  rpcSlice->setMaxBTDepth( rpcSlice->isIntra() ? rpcSlice->getSPS()->getMaxBTDepthI() : rpcSlice->getSPS()->getMaxBTDepth() );
  rpcSlice->setMaxBTSize( rpcSlice->isIntra() ? rpcSlice->getSPS()->getMaxBTSizeI() : rpcSlice->getSPS()->getMaxBTSize() );
  rpcSlice->setMaxTTSize( rpcSlice->isIntra() ? rpcSlice->getSPS()->getMaxTTSizeI() : rpcSlice->getSPS()->getMaxTTSize() );
  if ( eSliceType == I_SLICE && rpcSlice->getSPS()->getUseDualITree() )
721
  {
722 723 724 725
    rpcSlice->setMinQTSizeIChroma( rpcSlice->getSPS()->getMinQTSize(eSliceType, CHANNEL_TYPE_CHROMA) );
    rpcSlice->setMaxBTDepthIChroma( rpcSlice->getSPS()->getMaxBTDepthIChroma() );
    rpcSlice->setMaxBTSizeIChroma( rpcSlice->getSPS()->getMaxBTSizeIChroma() );
    rpcSlice->setMaxTTSizeIChroma( rpcSlice->getSPS()->getMaxTTSizeIChroma() );
726
  }
727
  rpcSlice->setDisableSATDForRD(false);
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
}


#if SHARP_LUMA_DELTA_QP
double EncSlice::calculateLambda( const Slice*     slice,
                                  const int        GOPid, // entry in the GOP table
                                  const int        depth, // slice GOP hierarchical depth.
                                  const double     refQP, // initial slice-level QP
                                  const double     dQP,   // initial double-precision QP
                                        int       &iQP )  // returned integer QP.
{
  enum   SliceType eSliceType    = slice->getSliceType();
  const  bool      isField       = slice->getPic()->fieldPic;
  const  int       NumberBFrames = ( m_pcCfg->getGOPSize() - 1 );
  const  int       SHIFT_QP      = 12;
#if X0038_LAMBDA_FROM_QP_CAPABILITY
  const int temporalId=m_pcCfg->getGOPEntry(GOPid).m_temporalId;
  const std::vector<double> &intraLambdaModifiers=m_pcCfg->getIntraLambdaModifier();
#endif

  int bitdepth_luma_qp_scale = 6
                               * (slice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 8
                                  - DISTORTION_PRECISION_ADJUSTMENT(slice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA)));
  double qp_temp = dQP + bitdepth_luma_qp_scale - SHIFT_QP;
  // Case #1: I or P-slices (key-frame)
  double dQPFactor = m_pcCfg->getGOPEntry(GOPid).m_QPFactor;
  if ( eSliceType==I_SLICE )
  {
    if (m_pcCfg->getIntraQpFactor()>=0.0 && m_pcCfg->getGOPEntry(GOPid).m_sliceType != I_SLICE)
    {
      dQPFactor=m_pcCfg->getIntraQpFactor();
    }
    else
    {
#if X0038_LAMBDA_FROM_QP_CAPABILITY
      if(m_pcCfg->getLambdaFromQPEnable())
      {
        dQPFactor=0.57;
      }
      else
      {
#endif
        double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(double)(isField ? NumberBFrames/2 : NumberBFrames) );
        dQPFactor=0.57*dLambda_scale;
#if X0038_LAMBDA_FROM_QP_CAPABILITY
      }
#endif
    }
  }
#if X0038_LAMBDA_FROM_QP_CAPABILITY
  else if( m_pcCfg->getLambdaFromQPEnable() )
  {
    dQPFactor=0.57;
  }
#endif

  double dLambda = dQPFactor*pow( 2.0, qp_temp/3.0 );

#if X0038_LAMBDA_FROM_QP_CAPABILITY
  if( !(m_pcCfg->getLambdaFromQPEnable()) && depth>0 )
#else
  if ( depth>0 )
#endif
  {
    double qp_temp_ref = refQP + bitdepth_luma_qp_scale - SHIFT_QP;
    dLambda *= Clip3(2.00, 4.00, (qp_temp_ref / 6.0));   // (j == B_SLICE && p_cur_frm->layer != 0 )
  }

  // if hadamard is used in ME process
  if ( !m_pcCfg->getUseHADME() && slice->getSliceType( ) != I_SLICE )
  {
    dLambda *= 0.95;
  }

#if X0038_LAMBDA_FROM_QP_CAPABILITY
  double lambdaModifier;
  if( eSliceType != I_SLICE || intraLambdaModifiers.empty())
  {
    lambdaModifier = m_pcCfg->getLambdaModifier( temporalId );
  }
  else
  {
    lambdaModifier = intraLambdaModifiers[ (temporalId < intraLambdaModifiers.size()) ? temporalId : (intraLambdaModifiers.size()-1) ];
  }
  dLambda *= lambdaModifier;
#endif

815
  iQP = Clip3( -slice->getSPS()->getQpBDOffset( CHANNEL_TYPE_LUMA ), MAX_QP, (int) floor( dQP + 0.5 ) );
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

  if( m_pcCfg->getDepQuantEnabledFlag() )
  {
    dLambda *= pow( 2.0, 0.25/3.0 ); // slight lambda adjustment for dependent quantization (due to different slope of quantizer)
  }

  // NOTE: the lambda modifiers that are sometimes applied later might be best always applied in here.
  return dLambda;
}
#endif

void EncSlice::resetQP( Picture* pic, int sliceQP, double lambda )
{
  Slice* slice = pic->slices[0];

  // store lambda
  slice->setSliceQp( sliceQP );
  setUpLambda(slice, lambda, sliceQP);
}

#if ENABLE_QPA
837 838 839
static bool applyQPAdaptation (Picture* const pcPic,       Slice* const pcSlice,        const PreCalcValues& pcv,
                               const uint32_t startAddr,   const uint32_t boundingAddr, const bool useSharpLumaDQP,
                               const bool useFrameWiseQPA, const int previouslyAdaptedLumaQP = -1)
840
{
841
  const int  bitDepth    = pcSlice->getSPS()->getBitDepth (CHANNEL_TYPE_LUMA);
842
  const int  iQPIndex    = pcSlice->getSliceQp(); // initial QP index for current slice, used in following loops
Karsten Suehring's avatar
Karsten Suehring committed
843
  const BrickMap& tileMap = *pcPic->brickMap;
844
  bool   sliceQPModified = false;
845 846 847
  uint32_t   meanLuma    = MAX_UINT;
  double     hpEnerAvg   = 0.0;

848
#if GLOBAL_AVERAGING
849 850 851 852 853
  if (!useFrameWiseQPA || previouslyAdaptedLumaQP < 0)  // mean visual activity value and luma value in each CTU
#endif
  {
    for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
    {
Karsten Suehring's avatar
Karsten Suehring committed
854
      const uint32_t ctuRsAddr  = tileMap.getCtuBsToRsAddrMap (ctuTsAddr);
855 856 857 858 859 860 861
      const Position pos ((ctuRsAddr % pcv.widthInCtus) * pcv.maxCUWidth, (ctuRsAddr / pcv.widthInCtus) * pcv.maxCUHeight);
      const CompArea ctuArea    = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area (pos.x, pos.y, pcv.maxCUWidth, pcv.maxCUHeight)), pcPic->Y());
      const CompArea fltArea    = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area (pos.x > 0 ? pos.x - 1 : 0, pos.y > 0 ? pos.y - 1 : 0, pcv.maxCUWidth + (pos.x > 0 ? 2 : 1), pcv.maxCUHeight + (pos.y > 0 ? 2 : 1))), pcPic->Y());
      const CPelBuf  picOrig    = pcPic->getOrigBuf (fltArea);
      double hpEner = 0.0;

      filterAndCalculateAverageEnergies (picOrig.buf,    picOrig.stride, hpEner,
862
                                         picOrig.height, picOrig.width,  bitDepth);
863 864
      hpEnerAvg += hpEner;
      pcPic->m_uEnerHpCtu[ctuRsAddr] = hpEner;
865
      pcPic->m_iOffsetCtu[ctuRsAddr] = pcPic->getOrigBuf (ctuArea).computeAvg();
866 867 868 869
    }

    hpEnerAvg /= double (boundingAddr - startAddr);
  }
870
#if GLOBAL_AVERAGING
871
  const double hpEnerPic = 1.0 / getAveragePictureEnergy (pcPic->getOrigBuf().Y(), bitDepth);  // inverse, speed
872 873 874
#else
  const double hpEnerPic = 1.0 / hpEnerAvg; // speedup: multiply instead of divide in loop below; 1.0 for tuning
#endif
875

876
  if (useFrameWiseQPA || (iQPIndex >= MAX_QP))
877
  {
878
    int iQPFixed = (previouslyAdaptedLumaQP < 0) ? Clip3 (0, MAX_QP, iQPIndex + apprI3Log2 (hpEnerAvg * hpEnerPic)) : previouslyAdaptedLumaQP;
879

880
    if (isChromaEnabled (pcPic->chromaFormat) && (iQPIndex < MAX_QP) && (previouslyAdaptedLumaQP < 0))
881
    {
882
      iQPFixed += getGlaringColorQPOffset (pcPic, -1 /*ctuRsAddr*/, startAddr, boundingAddr, bitDepth, meanLuma);
883 884 885 886 887 888

      if (iQPFixed > MAX_QP
#if SHARP_LUMA_DELTA_QP
          && !useSharpLumaDQP
#endif
          ) iQPFixed = MAX_QP;
889
    }
890 891 892
#if SHARP_LUMA_DELTA_QP

    // change new fixed QP based on average CTU luma value (Sharp)
893
    if (useSharpLumaDQP && (iQPIndex < MAX_QP) && (previouslyAdaptedLumaQP < 0))
894
    {
895
      if (meanLuma == MAX_UINT) // collect picture mean luma value
896
      {
897
        meanLuma = 0;
898

899 900
        for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
        {
Karsten Suehring's avatar
Karsten Suehring committed
901
          const uint32_t ctuRsAddr = tileMap.getCtuBsToRsAddrMap (ctuTsAddr);
902

903 904 905 906
          meanLuma += pcPic->m_iOffsetCtu[ctuRsAddr];  // CTU mean
        }
        meanLuma = (meanLuma + ((boundingAddr - startAddr) >> 1)) / (boundingAddr - startAddr);
      }
907
      iQPFixed = Clip3 (0, MAX_QP, iQPFixed + lumaDQPOffset (meanLuma, bitDepth));
908 909 910
    }
#endif

911
    if (iQPIndex >= MAX_QP) iQPFixed = MAX_QP;
912
    else
913
    if (iQPFixed != iQPIndex)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    {
      const double* oldLambdas = pcSlice->getLambdas();
      const double  corrFactor = pow (2.0, double(iQPFixed - iQPIndex) / 3.0);
      const double  newLambdas[MAX_NUM_COMPONENT] = {oldLambdas[0] * corrFactor, oldLambdas[1] * corrFactor, oldLambdas[2] * corrFactor};

      CHECK (iQPIndex != pcSlice->getSliceQpBase(), "Invalid slice QP!");
      pcSlice->setLambdas (newLambdas);
      pcSlice->setSliceQp (iQPFixed); // update the slice/base QPs
      pcSlice->setSliceQpBase (iQPFixed);

      sliceQPModified = true;
    }

    for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
    {
Karsten Suehring's avatar
Karsten Suehring committed
929
      const uint32_t ctuRsAddr = tileMap.getCtuBsToRsAddrMap (ctuTsAddr);
930 931 932 933

      pcPic->m_iOffsetCtu[ctuRsAddr] = (Pel)iQPFixed; // fixed QPs
    }
  }
934
  else // CTU-wise QPA
935 936 937
  {
    for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
    {
Karsten Suehring's avatar
Karsten Suehring committed
938
      const uint32_t ctuRsAddr = tileMap.getCtuBsToRsAddrMap (ctuTsAddr);
939

940
      int iQPAdapt = Clip3 (0, MAX_QP, iQPIndex + apprI3Log2 (pcPic->m_uEnerHpCtu[ctuRsAddr] * hpEnerPic));
941

942
      if (pcv.widthInCtus > 1) // try to enforce CTU SNR greater than zero dB
943
      {
944 945 946 947
        meanLuma = (uint32_t)pcPic->m_iOffsetCtu[ctuRsAddr];

        if (isChromaEnabled (pcPic->chromaFormat))
        {
948
          iQPAdapt += getGlaringColorQPOffset (pcPic, (int)ctuRsAddr, startAddr, boundingAddr, bitDepth, meanLuma);
949 950 951 952 953 954 955 956

          if (iQPAdapt > MAX_QP
#if SHARP_LUMA_DELTA_QP
              && !useSharpLumaDQP
#endif
              ) iQPAdapt = MAX_QP;
          CHECK (meanLuma != (uint32_t)pcPic->m_iOffsetCtu[ctuRsAddr], "luma DC offsets don't match");
        }
957 958 959 960 961
#if SHARP_LUMA_DELTA_QP

        // change adaptive QP based on mean CTU luma value (Sharp)
        if (useSharpLumaDQP)
        {
962 963 964
 #if ENABLE_QPA_SUB_CTU
          pcPic->m_uEnerHpCtu[ctuRsAddr] = (double)meanLuma; // for sub-CTU QPA
 #endif
965
          iQPAdapt = Clip3 (0, MAX_QP, iQPAdapt + lumaDQPOffset (meanLuma, bitDepth));
966 967 968
        }

#endif
969
        const uint32_t uRefScale  = g_invQuantScales[0][iQPAdapt % 6] << ((iQPAdapt / 6) + bitDepth - 4);
970 971 972 973 974 975 976 977 978 979 980 981
        const CompArea subArea    = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area ((ctuRsAddr % pcv.widthInCtus) * pcv.maxCUWidth, (ctuRsAddr / pcv.widthInCtus) * pcv.maxCUHeight, pcv.maxCUWidth, pcv.maxCUHeight)), pcPic->Y());
        const Pel*     pSrc       = pcPic->getOrigBuf (subArea).buf;
        const SizeType iSrcStride = pcPic->getOrigBuf (subArea).stride;
        const SizeType iSrcHeight = pcPic->getOrigBuf (subArea).height;
        const SizeType iSrcWidth  = pcPic->getOrigBuf (subArea).width;
        uint32_t uAbsDCless = 0;

        // compute sum of absolute DC-less (high-pass) luma values
        for (SizeType h = 0; h < iSrcHeight; h++)
        {
          for (SizeType w = 0; w < iSrcWidth; w++)
          {
982
            uAbsDCless += (uint32_t)abs (pSrc[w] - (Pel)meanLuma);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
          }
          pSrc += iSrcStride;
        }

        if (iSrcHeight >= 64 || iSrcWidth >= 64)  // normalization
        {
          const uint64_t blockSize = uint64_t(iSrcWidth * iSrcHeight);

          uAbsDCless = uint32_t((uint64_t(uAbsDCless) * 64*64 + (blockSize >> 1)) / blockSize);
        }

        if (uAbsDCless < 64*64) uAbsDCless = 64*64;  // limit to 1

        // reduce QP index if CTU would be fully quantized to zero
        if (uAbsDCless < uRefScale)
        {
999 1000
          const int limit  = std::min (0, ((iQPIndex + 4) >> 3) - 6);
          const int redVal = std::max (limit, apprI3Log2 ((double)uAbsDCless / (double)uRefScale));
1001

1002
          iQPAdapt = std::max (0, iQPAdapt + redVal);
1003 1004 1005 1006 1007
        }
      }

      pcPic->m_iOffsetCtu[ctuRsAddr] = (Pel)iQPAdapt; // adapted QPs

Karsten Suehring's avatar
Karsten Suehring committed
1008
#if ENABLE_QPA_SUB_CTU
1009 1010
      if (pcv.widthInCtus > 1 && pcSlice->getPPS()->getCuQpDeltaSubdiv() == 0)  // reduce local DQP rate peaks
#elif ENABLE_QPA_SUB_CTU
1011 1012
      if (pcv.widthInCtus > 1 && pcSlice->getPPS()->getMaxCuDQPDepth() == 0)  // reduce local DQP rate peaks
#else
1013
      if (pcv.widthInCtus > 1) // try to reduce local bitrate peaks via minimum smoothing of the adapted QPs
1014
#endif
1015 1016 1017 1018 1019 1020 1021 1022
      {
        iQPAdapt = ctuRsAddr % pcv.widthInCtus; // horizontal offset
        if (iQPAdapt == 0)
        {
          iQPAdapt = (ctuRsAddr > 1) ? pcPic->m_iOffsetCtu[ctuRsAddr - 2] : 0;
        }
        else // iQPAdapt >= 1
        {
1023
          iQPAdapt = (iQPAdapt > 1) ? std::min (pcPic->m_iOffsetCtu[ctuRsAddr - 2], pcPic->m_iOffsetCtu[ctuRsAddr]) : pcPic->m_iOffsetCtu[ctuRsAddr];
1024 1025 1026
        }
        if (ctuRsAddr > pcv.widthInCtus)
        {
1027
          iQPAdapt = std::min (iQPAdapt, (int)pcPic->m_iOffsetCtu[ctuRsAddr - 1 - pcv.widthInCtus]);
1028 1029 1030 1031 1032 1033 1034
        }
        if ((ctuRsAddr > 0) && (pcPic->m_iOffsetCtu[ctuRsAddr - 1] < (Pel)iQPAdapt))
        {
          pcPic->m_iOffsetCtu[ctuRsAddr - 1] = (Pel)iQPAdapt;
        }
        if ((ctuTsAddr == boundingAddr - 1) && (ctuRsAddr > pcv.widthInCtus)) // last CTU in the given slice
        {
1035
          iQPAdapt = std::min (pcPic->m_iOffsetCtu[ctuRsAddr - 1], pcPic->m_iOffsetCtu[ctuRsAddr - pcv.widthInCtus]);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
          if (pcPic->m_iOffsetCtu[ctuRsAddr] < (Pel)iQPAdapt)
          {
            pcPic->m_iOffsetCtu[ctuRsAddr] = (Pel)iQPAdapt;
          }
        }
      }
    } // end iteration over all CTUs in current slice
  }

  return sliceQPModified;
}
1047 1048 1049 1050 1051 1052

#if ENABLE_QPA_SUB_CTU
static int applyQPAdaptationSubCtu (CodingStructure &cs, const UnitArea ctuArea, const uint32_t ctuAddr, const bool useSharpLumaDQP)
{
  const PreCalcValues &pcv = *cs.pcv;
  const Picture     *pcPic = cs.picture;
1053
  const int       bitDepth = cs.slice->getSPS()->getBitDepth (CHANNEL_TYPE_LUMA); // overall image bit-depth
1054 1055
  const int   adaptedCtuQP = pcPic ? pcPic->m_iOffsetCtu[ctuAddr] : cs.slice->getSliceQpBase();

1056
  if (!pcPic || cs.pps->getCuQpDeltaSubdiv() == 0) return adaptedCtuQP;
1057 1058 1059 1060 1061 1062 1063 1064

  for (unsigned addr = 0; addr < cs.picture->m_subCtuQP.size(); addr++)
  {
    cs.picture->m_subCtuQP[addr] = (int8_t)adaptedCtuQP;
  }
  if (cs.slice->getSliceQp() < MAX_QP && pcv.widthInCtus > 1)
  {
#if SHARP_LUMA_DELTA_QP
1065
    const int   lumaCtuDQP = useSharpLumaDQP ? lumaDQPOffset ((uint32_t)pcPic->m_uEnerHpCtu[ctuAddr], bitDepth) : 0;
1066
#endif
1067 1068 1069 1070 1071
#if MAX_TB_SIZE_SIGNALLING
    const unsigned     mts = std::min (cs.sps->getMaxTbSize(), pcv.maxCUWidth);
#else
    const unsigned     mts = std::min<uint32_t> (MAX_TB_SIZEY, pcv.maxCUWidth);
#endif
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    const unsigned mtsLog2 = (unsigned)g_aucLog2[mts];
    const unsigned  stride = pcv.maxCUWidth >> mtsLog2;
    unsigned numAct = 0;    // number of block activities
    double   sumAct = 0.0; // sum of all block activities
    double   subAct[16];   // individual block activities
#if SHARP_LUMA_DELTA_QP
    uint32_t subMLV[16];   // individual mean luma values
#endif

    CHECK (mts * 4 < pcv.maxCUWidth || mts * 4 < pcv.maxCUHeight, "max. transform size is too small for given CTU size");

    for (unsigned h = 0; h < (pcv.maxCUHeight >> mtsLog2); h++)
    {
      for (unsigned w = 0; w < stride; w++)
      {
        const unsigned addr    = w + h * stride;
        const PosType  x       = ctuArea.lx() + w * mts;
        const PosType  y       = ctuArea.ly() + h * mts;
        const CompArea fltArea = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area (x > 0 ? x - 1 : 0, y > 0 ? y - 1 : 0, mts + (x > 0 ? 2 : 1), mts + (y > 0 ? 2 : 1))), pcPic->Y());
        const CPelBuf  picOrig = pcPic->getOrigBuf (fltArea);

        if (x >= pcPic->lwidth() || y >= pcPic->lheight())
        {
          continue;
        }
        filterAndCalculateAverageEnergies (picOrig.buf,    picOrig.stride, subAct[addr],
1098
                                           picOrig.height, picOrig.width,  bitDepth);
1099 1100 1101 1102 1103 1104 1105 1106
        numAct++;
        sumAct += subAct[addr];
#if SHARP_LUMA_DELTA_QP

        if (useSharpLumaDQP)
        {
          const CompArea subArea = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area (x, y, mts, mts)), pcPic->Y());

1107
          subMLV[addr] = pcPic->getOrigBuf (subArea).computeAvg();
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        }
#endif
      }
    }
    if (sumAct <= 0.0) return adaptedCtuQP;

    sumAct = double(numAct) / sumAct; // 1.0 / (average CTU activity)

    for (unsigned h = 0; h < (pcv.maxCUHeight >> mtsLog2); h++)
    {
      for (unsigned w = 0; w < stride; w++)
      {
        const unsigned addr = w + h * stride;

        if (ctuArea.lx() + w * mts >= pcPic->lwidth() || ctuArea.ly() + h * mts >= pcPic->lheight())
        {
          continue;
        }
        cs.picture->m_subCtuQP[addr] = (int8_t)Clip3 (0, MAX_QP, adaptedCtuQP + apprI3Log2 (subAct[addr] * sumAct));
#if SHARP_LUMA_DELTA_QP

        // change adapted QP based on mean sub-CTU luma value (Sharp)
        if (useSharpLumaDQP)
        {
1132
          cs.picture->m_subCtuQP[addr] = (int8_t)Clip3 (0, MAX_QP, (int)cs.picture->m_subCtuQP[addr] - lumaCtuDQP + lumaDQPOffset (subMLV[addr], bitDepth));
1133 1134 1135 1136 1137 1138 1139 1140 1141
        }
#endif
      }
    }
  }

  return adaptedCtuQP;
}
#endif // ENABLE_QPA_SUB_CTU
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
#endif // ENABLE_QPA

// ====================================================================================================================
// Public member functions
// ====================================================================================================================

//! set adaptive search range based on poc difference
void EncSlice::setSearchRange( Slice* pcSlice )
{
  int iCurrPOC = pcSlice->getPOC();
  int iRefPOC;
  int iGOPSize = m_pcCfg->getGOPSize();
  int iOffset = (iGOPSize >> 1);
  int iMaxSR = m_pcCfg->getSearchRange();
  int iNumPredDir = pcSlice->isInterP() ? 1 : 2;

  for (int iDir = 0; iDir < iNumPredDir; iDir++)
  {
    RefPicList  e = ( iDir ? REF_PIC_LIST_1 : REF_PIC_LIST_0 );
    for (int iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(e); iRefIdx++)
    {
      iRefPOC = pcSlice->getRefPic(e, iRefIdx)->getPOC();
      int newSearchRange = Clip3(m_pcCfg->getMinSearchWindow(), iMaxSR, (iMaxSR*ADAPT_SR_SCALE*abs(iCurrPOC - iRefPOC)+iOffset)/iGOPSize);
      m_pcInterSearch->setAdaptiveSearchRange(iDir, iRefIdx, newSearchRange);
#if ENABLE_WPP_PARALLELISM
      for( int jId = 1; jId < m_pcLib->getNumCuEncStacks(); jId++ )
      {
        m_pcLib->getInterSearch( jId )->setAdaptiveSearchRange( iDir, iRefIdx, newSearchRange );
      }
#endif
    }
  }
}

/**
 Multi-loop slice encoding for different slice QP

 \param pcPic    picture class
 */
void EncSlice::precompressSlice( Picture* pcPic )
{
  // if deltaQP RD is not used, simply return
  if ( m_pcCfg->getDeltaQpRD() == 0 )
  {
    return;
  }

  if ( m_pcCfg->getUseRateCtrl() )
  {
    THROW("\nMultiple QP optimization is not allowed when rate control is enabled." );
  }

  Slice* pcSlice        = pcPic->slices[getSliceSegmentIdx()];


  if (pcSlice->getSliceMode()==FIXED_NUMBER_OF_BYTES)
  {
    // TODO: investigate use of average cost per CTU so that this Slice Mode can be used.
    THROW( "Unable to optimise Slice-level QP if Slice Mode is set to FIXED_NUMBER_OF_BYTES\n" );
  }

  double     dPicRdCostBest = MAX_DOUBLE;
  uint32_t       uiQpIdxBest = 0;

  double dFrameLambda;
  int SHIFT_QP = 12
                 + 6
                     * (pcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 8
                        - DISTORTION_PRECISION_ADJUSTMENT(pcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA)));

  // set frame lambda
  if (m_pcCfg->getGOPSize() > 1)
  {
    dFrameLambda = 0.68 * pow (2, (m_viRdPicQp[0]  - SHIFT_QP) / 3.0) * (pcSlice->isInterB()? 2 : 1);
  }
  else
  {
    dFrameLambda = 0.68 * pow (2, (m_viRdPicQp[0] - SHIFT_QP) / 3.0);
  }

  // for each QP candidate
  for ( uint32_t uiQpIdx = 0; uiQpIdx < 2 * m_pcCfg->getDeltaQpRD() + 1; uiQpIdx++ )
  {
    pcSlice       ->setSliceQp             ( m_viRdPicQp    [uiQpIdx] );
    setUpLambda(pcSlice, m_vdRdPicLambda[uiQpIdx], m_viRdPicQp    [uiQpIdx]);

    // try compress
    compressSlice   ( pcPic, true, m_pcCfg->getFastDeltaQp());

    uint64_t uiPicDist        = m_uiPicDist; // Distortion, as calculated by compressSlice.
    // NOTE: This distortion is the chroma-weighted SSE distortion for the slice.
    //       Previously a standard SSE distortion was calculated (for the entire frame).
    //       Which is correct?
#if W0038_DB_OPT
    // TODO: Update loop filter, SAO and distortion calculation to work on one slice only.
    // uiPicDist = m_pcGOPEncoder->preLoopFilterPicAndCalcDist( pcPic );
#endif
    // compute RD cost and choose the best
    double dPicRdCost = double( uiPicDist ) + dFrameLambda * double( m_uiPicTotalBits );

    if ( dPicRdCost < dPicRdCostBest )
    {
      uiQpIdxBest    = uiQpIdx;
      dPicRdCostBest = dPicRdCost;
    }
  }

  // set best values
  pcSlice       ->setSliceQp             ( m_viRdPicQp    [uiQpIdxBest] );
  setUpLambda(pcSlice, m_vdRdPicLambda[uiQpIdxBest], m_viRdPicQp    [uiQpIdxBest]);
}

void EncSlice::calCostSliceI(Picture* pcPic) // TODO: this only analyses the first slice segment. What about the others?
{
  double         iSumHadSlice      = 0;
  Slice * const  pcSlice           = pcPic->slices[getSliceSegmentIdx()];
Karsten Suehring's avatar
Karsten Suehring committed
1258
  const BrickMap &tileMap          = *pcPic->brickMap;
1259 1260 1261 1262 1263 1264 1265 1266
  const PreCalcValues& pcv         = *pcPic->cs->pcv;
  const SPS     &sps               = *(pcSlice->getSPS());
  const int      shift             = sps.getBitDepth(CHANNEL_TYPE_LUMA)-8;
  const int      offset            = (shift>0)?(1<<(shift-1)):0;


  uint32_t startCtuTsAddr, boundingCtuTsAddr;
  xDetermineStartAndBoundingCtuTsAddr ( startCtuTsAddr, boundingCtuTsAddr, pcPic );
Karsten Suehring's avatar
Karsten Suehring committed
1267 1268 1269
  for( uint32_t ctuTsAddr = startCtuTsAddr, ctuRsAddr = tileMap.getCtuBsToRsAddrMap( startCtuTsAddr);
       ctuTsAddr < boundingCtuTsAddr;
       ctuRsAddr = tileMap.getCtuBsToRsAddrMap(++ctuTsAddr) )
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
  {
    Position pos( (ctuRsAddr % pcv.widthInCtus) * pcv.maxCUWidth, (ctuRsAddr / pcv.widthInCtus) * pcv.maxCUHeight);

    const int height  = std::min( pcv.maxCUHeight, pcv.lumaHeight - pos.y );
    const int width   = std::min( pcv.maxCUWidth,  pcv.lumaWidth  - pos.x );
    const CompArea blk( COMPONENT_Y, pcv.chrFormat, pos, Size( width, height));
    int iSumHad = m_pcCuEncoder->updateCtuDataISlice( pcPic->getOrigBuf( blk ) );

    (m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr)).m_costIntra=(iSumHad+offset)>>shift;
    iSumHadSlice += (m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr)).m_costIntra;

  }
  m_pcRateCtrl->getRCPic()->setTotalIntraCost(iSumHadSlice);
}

/** \param pcPic   picture class
 */
void EncSlice::compressSlice( Picture* pcPic, const bool bCompressEntireSlice, const bool bFastDeltaQP )
{
  // if bCompressEntireSlice is true, then the entire slice (not slice segment) is compressed,
  //   effectively disabling the slice-segment-mode.

  Slice* const pcSlice    = pcPic->slices[getSliceSegmentIdx()];
  uint32_t  startCtuTsAddr;
  uint32_t  boundingCtuTsAddr;

  xDetermineStartAndBoundingCtuTsAddr ( startCtuTsAddr, boundingCtuTsAddr, pcPic );
  if (bCompressEntireSlice)
  {
    boundingCtuTsAddr = pcSlice->getSliceCurEndCtuTsAddr();
  }

  // initialize cost values - these are used by precompressSlice (they should be parameters).
  m_uiPicTotalBits  = 0;
  m_uiPicDist       = 0;

  pcSlice->setSliceQpBase( pcSlice->getSliceQp() );

  m_CABACEstimator->initCtxModels( *pcSlice );

#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
  for( int jId = 1; jId < m_pcLib->getNumCuEncStacks(); jId++ )
  {
    CABACWriter* cw = m_pcLib->getCABACEncoder( jId )->getCABACEstimator( pcSlice->getSPS() );
    cw->initCtxModels( *pcSlice );
  }

#endif
  m_pcCuEncoder->getModeCtrl()->setFastDeltaQp(bFastDeltaQP);


  //------------------------------------------------------------------------------
  //  Weighted Prediction parameters estimation.
  //------------------------------------------------------------------------------
  // calculate AC/DC values for current picture
  if( pcSlice->getPPS()->getUseWP() || pcSlice->getPPS()->getWPBiPred() )
  {
    xCalcACDCParamSlice(pcSlice);
  }

  const bool bWp_explicit = (pcSlice->getSliceType()==P_SLICE && pcSlice->getPPS()->getUseWP()) || (pcSlice->getSliceType()==B_SLICE && pcSlice->getPPS()->getWPBiPred());

  if ( bWp_explicit )
  {
    //------------------------------------------------------------------------------
    //  Weighted Prediction implemented at Slice level. SliceMode=2 is not supported yet.
    //------------------------------------------------------------------------------
    if(pcSlice->getSliceMode() == FIXED_NUMBER_OF_BYTES)
    {
      EXIT("Weighted Prediction is not yet supported with slice mode determined by max number of bins.");
    }

    xEstimateWPParamSlice( pcSlice, m_pcCfg->getWeightedPredictionMethod() );
    pcSlice->initWpScaling(pcSlice->getSPS());

    // check WP on/off
    xCheckWPEnable( pcSlice );
  }



    pcPic->m_prevQP[0] = pcPic->m_prevQP[1] = pcSlice->getSliceQp();

  CHECK( pcPic->m_prevQP[0] == std::numeric_limits<int>::max(), "Invalid previous QP" );

  CodingStructure&  cs          = *pcPic->cs;
1356 1357 1358
  cs.slice    = pcSlice;
  cs.pcv      = pcSlice->getPPS()->pcv;
  cs.fracBits = 0;
1359

Tobias Hinz's avatar
Tobias Hinz committed
1360
  if( startCtuTsAddr == 0 && ( pcSlice->getPOC() != m_pcCfg->getSwitchPOC() || -1 == m_pcCfg->getDebugCTU() ) )
1361 1362 1363 1364 1365
  {
    cs.initStructData (pcSlice->getSliceQp(), pcSlice->getPPS()->getTransquantBypassEnabledFlag());
  }

#if ENABLE_QPA
1366
  if (m_pcCfg->getUsePerceptQPA() && !m_pcCfg->getUseRateCtrl() && (boundingCtuTsAddr > startCtuTsAddr))
1367
  {
1368 1369
    if (applyQPAdaptation (pcPic, pcSlice, *cs.pcv, startCtuTsAddr, boundingCtuTsAddr, m_pcCfg->getLumaLevelToDeltaQPMapping().mode == LUMALVL_TO_DQP_NUM_MODES,
                           (m_pcCfg->getBaseQP() >= 38) || (m_pcCfg->getSourceWidth() <= 512 && m_pcCfg->getSourceHeight() <= 320), m_adaptedLumaQP))
1370 1371
    {
      m_CABACEstimator->initCtxModels (*pcSlice);
1372
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
      for (int jId = 1; jId < m_pcLib->getNumCuEncStacks(); jId++)
      {
        CABACWriter* cw = m_pcLib->getCABACEncoder (jId)->getCABACEstimator (pcSlice->getSPS());
        cw->initCtxModels (*pcSlice);
      }
#endif
        pcPic->m_prevQP[0] = pcPic->m_prevQP[1] = pcSlice->getSliceQp();
      if (startCtuTsAddr == 0)
      {
        cs.currQP[0] = cs.currQP[1] = pcSlice->getSliceQp(); // cf code above
      }
    }
  }
1386
#endif // ENABLE_QPA
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410

#if ENABLE_WPP_PARALLELISM
  bool bUseThreads = m_pcCfg->getNumWppThreads() > 1;
  if( bUseThreads )
  {
    CHECK( startCtuTsAddr != 0 || boundingCtuTsAddr != pcPic->cs->pcv->sizeInCtus, "not intended" );

    pcPic->cs->allocateVectorsAtPicLevel();

    omp_set_num_threads( m_pcCfg->getNumWppThreads() + m_pcCfg->getNumWppExtraLines() );

    #pragma omp parallel for schedule(static,1) if(bUseThreads)
    for( int ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ctuTsAddr += widthInCtus )
    {
      // wpp thread start
      pcPic->scheduler.setWppThreadId();
#if ENABLE_SPLIT_PARALLELISM
      pcPic->scheduler.setSplitThreadId( 0 );
#endif
      encodeCtus( pcPic, bCompressEntireSlice, bFastDeltaQP, ctuTsAddr, ctuTsAddr + widthInCtus, m_pcLib );
      // wpp thread stop
    }
  }
  else
1411 1412 1413 1414 1415
#endif
#if K0149_BLOCK_STATISTICS
  const SPS *sps = pcSlice->getSPS();
  CHECK(sps == 0, "No SPS present");
  writeBlockStatisticsHeader(sps);
1416 1417
#endif
  m_pcInterSearch->resetAffineMVList();
1418 1419 1420
#if JVET_O0592_ENC_ME_IMP
  m_pcInterSearch->resetUniMvList();
#endif 
1421 1422 1423 1424 1425
  encodeCtus( pcPic, bCompressEntireSlice, bFastDeltaQP, startCtuTsAddr, boundingCtuTsAddr, m_pcLib );


}

1426 1427 1428 1429 1430 1431
void EncSlice::checkDisFracMmvd( Picture* pcPic, uint32_t startCtuTsAddr, uint32_t boundingCtuTsAddr )
{
  CodingStructure&  cs            = *pcPic->cs;
  Slice* pcSlice                  = cs.slice;
  const PreCalcValues& pcv        = *cs.pcv;
  const uint32_t    widthInCtus   = pcv.widthInCtus;
Karsten Suehring's avatar
Karsten Suehring committed
1432
  const BrickMap&  tileMap         = *pcPic->brickMap;
1433 1434 1435
  const uint32_t hashThreshold    = 20;
  uint32_t totalCtu               = 0;
  uint32_t hashRatio              = 0;
1436

1437
  if ( !pcSlice->getSPS()->getFpelMmvdEnabledFlag() )
1438 1439 1440
  {
    return;
  }
1441

1442 1443
  for ( uint32_t ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ctuTsAddr++ )
  {
Karsten Suehring's avatar
Karsten Suehring committed
1444
    const uint32_t ctuRsAddr = tileMap.getCtuBsToRsAddrMap( ctuTsAddr );
1445 1446 1447 1448 1449 1450
    const uint32_t ctuXPosInCtus        = ctuRsAddr % widthInCtus;
    const uint32_t ctuYPosInCtus        = ctuRsAddr / widthInCtus;

    const Position pos ( ctuXPosInCtus * pcv.maxCUWidth, ctuYPosInCtus * pcv.maxCUHeight );
    const UnitArea ctuArea( cs.area.chromaFormat, Area( pos.x, pos.y, pcv.maxCUWidth, pcv.maxCUHeight ) );

1451
    hashRatio += m_pcCuEncoder->getIbcHashMap().getHashHitRatio( ctuArea.Y() );
1452 1453 1454 1455 1456 1457 1458
    totalCtu++;
  }

  if ( hashRatio > totalCtu * hashThreshold )
  {
    pcSlice->setDisFracMMVD( true );
  }
LI JINGYA's avatar
M0854  
LI JINGYA committed
1459 1460 1461 1462
  if (!pcSlice->getDisFracMMVD()) {
    bool useIntegerMVD = (pcPic->lwidth()*pcPic->lheight() > 1920 * 1080);
    pcSlice->setDisFracMMVD( useIntegerMVD );
  }
1463
}
1464

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

#if JVET_O0105_ICT
void setJointCbCrModes( CodingStructure& cs, const Position topLeftLuma, const Size sizeLuma )
{
  bool              sgnFlag = true;

  if( isChromaEnabled( cs.picture->chromaFormat) )
  {
    const CompArea  cbArea  = CompArea( COMPONENT_Cb, cs.picture->chromaFormat, Area(topLeftLuma,sizeLuma), true );
    const CompArea  crArea  = CompArea( COMPONENT_Cr, cs.picture->chromaFormat, Area(topLeftLuma,sizeLuma), true );
    const CPelBuf   orgCb   = cs.picture->getOrigBuf( cbArea );
    const CPelBuf   orgCr   = cs.picture->getOrigBuf( crArea );
    const int       x0      = ( cbArea.x > 0 ? 0 : 1 );
    const int       y0      = ( cbArea.y > 0 ? 0 : 1 );
    const int       x1      = ( cbArea.x + cbArea.width  < cs.picture->Cb().width  ? cbArea.width  : cbArea.width  - 1 );
    const int       y1      = ( cbArea.y + cbArea.height < cs.picture->Cb().height ? cbArea.height : cbArea.height - 1 );
    const int       cbs     = orgCb.stride;
    const int       crs     = orgCr.stride;
    const Pel*      pCb     = orgCb.buf + y0 * cbs;
    const Pel*      pCr     = orgCr.buf + y0 * crs;
    int64_t         sumCbCr = 0;

    // determine inter-chroma transform sign from correlation between high-pass filtered (i.e., zero-mean) Cb and Cr planes
    for( int y = y0; y < y1; y++, pCb += cbs, pCr += crs )
    {
      for( int x = x0; x < x1; x++ )
      {
        int cb = ( 12*(int)pCb[x] - 2*((int)pCb[x-1] + (int)pCb[x+1] + (int)pCb[x-cbs] + (int)pCb[x+cbs]) - ((int)pCb[x-1-cbs] + (int)pCb[x+1-cbs] + (int)pCb[x-1+cbs] + (int)pCb[x+1+cbs]) );
        int cr = ( 12*(int)pCr[x] - 2*((int)pCr[x-1] + (int)pCr[x+1] + (int)pCr[x-crs] + (int)pCr[x+crs]) - ((int)pCr[x-1-crs] + (int)pCr[x+1-crs] + (int)pCr[x-1+crs] + (int)pCr[x+1+crs]) );
        sumCbCr += cb*cr;
      }
    }

    sgnFlag = ( sumCbCr < 0 );
  }

  cs.slice->setJointCbCrSignFlag( sgnFlag );
}
#endif


1506 1507 1508 1509 1510 1511
void EncSlice::encodeCtus( Picture* pcPic, const bool bCompressEntireSlice, const bool bFastDeltaQP, uint32_t startCtuTsAddr, uint32_t boundingCtuTsAddr, EncLib* pEncLib )
{
  CodingStructure&  cs            = *pcPic->cs;
  Slice* pcSlice                  = cs.slice;
  const PreCalcValues& pcv        = *cs.pcv;
  const uint32_t        widthInCtus   = pcv.widthInCtus;
Karsten Suehring's avatar
Karsten Suehring committed
1512
  const BrickMap&  tileMap        = *pcPic->brickMap;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
#if ENABLE_QPA
  const int iQPIndex              = pcSlice->getSliceQpBase();
#endif

#if ENABLE_WPP_PARALLELISM
  const int       dataId          = pcPic->scheduler.getWppDataId();
#elif ENABLE_SPLIT_PARALLELISM
  const int       dataId          = 0;
#endif
  CABACWriter*    pCABACWriter    = pEncLib->getCABACEncoder( PARL_PARAM0( dataId ) )->getCABACEstimator( pcSlice->getSPS() );
  TrQuant*        pTrQuant        = pEncLib->getTrQuant( PARL_PARAM0( dataId ) );
  RdCost*         pRdCost         = pEncLib->getRdCost( PARL_PARAM0( dataId ) );
  EncCfg*         pCfg            = pEncLib;
  RateCtrl*       pRateCtrl       = pEncLib->getRateCtrl();
#if ENABLE_WPP_PARALLELISM
  // first version dont use ctx from above
  pCABACWriter->initCtxModels( *pcSlice );
#endif
#if RDOQ_CHROMA_LAMBDA
  pTrQuant    ->setLambdas( pcSlice->getLambdas() );
#else
  pTrQuant    ->setLambda ( pcSlice->getLambdas()[0] );
#endif
  pRdCost     ->setLambda ( pcSlice->getLambdas()[0], pcSlice->getSPS()->getBitDepths() );

  int prevQP[2];
  int currQP[2];
  prevQP[0] = prevQP[1] = pcSlice->getSliceQp();
  currQP[0] = currQP[1] = pcSlice->getSliceQp();

    prevQP[0] = prevQP[1] = pcSlice->getSliceQp();
1544
  if ( pcSlice->getSPS()->getFpelMmvdEnabledFlag() ||
Yu Han's avatar
Yu Han committed
1545
      (pcSlice->getSPS()->getIBCFlag() && m_pcCuEncoder->getEncCfg()->getIBCHashSearch()))
1546
  {
1547 1548 1549 1550 1551 1552
    m_pcCuEncoder->getIbcHashMap().rebuildPicHashMap(cs.picture->getTrueOrigBuf());
    if (m_pcCfg->getIntraPeriod() != -1)
    {
      int hashBlkHitPerc = m_pcCuEncoder->getIbcHashMap().calHashBlkMatchPerc(cs.area.Y());
      cs.slice->setDisableSATDForRD(hashBlkHitPerc > 59);
    }
1553 1554
  }
  checkDisFracMmvd( pcPic, startCtuTsAddr, boundingCtuTsAddr );
1555 1556 1557 1558 1559

#if JVET_O0105_ICT
  setJointCbCrModes( cs, Position(0, 0), cs.area.lumaSize() );
#endif

1560
  // for every CTU in the slice segment (may terminate sooner if there is a byte limit on the slice-segment)
1561 1562 1563 1564
  uint32_t startSliceRsRow = tileMap.getCtuBsToRsAddrMap(startCtuTsAddr) / widthInCtus;
  uint32_t startSliceRsCol = tileMap.getCtuBsToRsAddrMap(startCtuTsAddr) % widthInCtus;
  uint32_t endSliceRsRow = tileMap.getCtuBsToRsAddrMap(boundingCtuTsAddr - 1) / widthInCtus;
  uint32_t endSliceRsCol = tileMap.getCtuBsToRsAddrMap(boundingCtuTsAddr - 1) % widthInCtus;
1565 1566
  for( uint32_t ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ctuTsAddr++ )
  {
Karsten Suehring's avatar
Karsten Suehring committed
1567
    const int32_t ctuRsAddr = tileMap.getCtuBsToRsAddrMap( ctuTsAddr );
1568 1569 1570 1571
    if (pcSlice->getPPS()->getRectSliceFlag() &&
      ((ctuRsAddr / widthInCtus) < startSliceRsRow || (ctuRsAddr / widthInCtus) > endSliceRsRow ||
      (ctuRsAddr % widthInCtus) < startSliceRsCol || (ctuRsAddr % widthInCtus) > endSliceRsCol))
      continue;
1572 1573

    // update CABAC state
Karsten Suehring's avatar
Karsten Suehring committed
1574
    const uint32_t firstCtuRsAddrOfTile = tileMap.bricks[tileMap.getBrickIdxRsMap(ctuRsAddr)].getFirstCtuRsAddr();
1575 1576 1577 1578 1579 1580 1581 1582
    const uint32_t tileXPosInCtus       = firstCtuRsAddrOfTile % widthInCtus;
    const uint32_t ctuXPosInCtus        = ctuRsAddr % widthInCtus;
    const uint32_t ctuYPosInCtus        = ctuRsAddr / widthInCtus;

    const Position pos (ctuXPosInCtus * pcv.maxCUWidth, ctuYPosInCtus * pcv.maxCUHeight);
    const UnitArea ctuArea( cs.area.chromaFormat, Area( pos.x, pos.y, pcv.maxCUWidth, pcv.maxCUHeight ) );
    DTRACE_UPDATE( g_trace_ctx, std::make_pair( "ctu", ctuRsAddr ) );

Tobias Hinz's avatar
Tobias Hinz committed
1583
    if( pCfg->getSwitchPOC() != pcPic->poc || -1 == pCfg->getDebugCTU() )
1584
    if ((cs.slice->getSliceType() != I_SLICE || cs.sps->getIBCFlag()) && ctuXPosInCtus == tileXPosInCtus)
1585
    {
1586 1587
      cs.motionLut.lut.resize(0);
      cs.motionLut.lutIbc.resize(0);
1588
#if !JVET_O0078_SINGLE_HMVPLUT
1589
      cs.motionLut.lutShareIbc.resize(0);
1590
#endif
1591 1592
    }

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
#if ENABLE_WPP_PARALLELISM
    pcPic->scheduler.wait( ctuXPosInCtus, ctuYPosInCtus );
#endif

    if (ctuRsAddr == firstCtuRsAddrOfTile)
    {
      pCABACWriter->initCtxModels( *pcSlice );
      prevQP[0] = prevQP[1] = pcSlice->getSliceQp();
    }
    else if (ctuXPosInCtus == tileXPosInCtus && pEncLib->getEntropyCodingSyncEnabledFlag())
    {
      // reset and then update contexts to the state at the end of the top-right CTU (if within current slice and tile).
      pCABACWriter->initCtxModels( *pcSlice );
1606
      if( cs.getCURestricted( pos.offset(0, -1), pos, pcSlice->getIndependentSliceIdx(), tileMap.getBrickIdxRsMap( pos ), CH_L ) )
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
      {
        // Top-right is available, we use it.
        pCABACWriter->getCtx() = pEncLib->m_entropyCodingSyncContextState;
      }
      prevQP[0] = prevQP[1] = pcSlice->getSliceQp();
    }

#if ENABLE_WPP_PARALLELISM
    if( ctuXPosInCtus == 0 && ctuYPosInCtus > 0 && widthInCtus > 1 && ( pEncLib->getNumWppThreads() > 1 || pEncLib->getEnsureWppBitEqual() ) )
    {
      pCABACWriter->getCtx() = pEncLib->m_entropyCodingSyncContextStateVec[ctuYPosInCtus-1];  // last line
    }
#else
#endif

1622
#if RDOQ_CHROMA_LAMBDA && ENABLE_QPA && !ENABLE_QPA_SUB_CTU
1623 1624 1625 1626 1627 1628 1629 1630 1631
    double oldLambdaArray[MAX_NUM_COMPONENT] = {0.0};
#endif
    const double oldLambda = pRdCost->getLambda();
    if ( pCfg->getUseRateCtrl() )
    {
      int estQP        = pcSlice->getSliceQp();
      double estLambda = -1.0;
      double bpp       = -1.0;

1632
      if( ( pcPic->slices[0]->isIRAP() && pCfg->getForceIntraQP() ) || !pCfg->getLCULevelRC() )
1633 1634 1635 1636 1637
      {
        estQP = pcSlice->getSliceQp();
      }
      else
      {
1638 1639
        bpp = pRateCtrl->getRCPic()->getLCUTargetBpp(pcSlice->isIRAP());
        if ( pcPic->slices[0]->isIRAP())
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
        {
          estLambda = pRateCtrl->getRCPic()->getLCUEstLambdaAndQP(bpp, pcSlice->getSliceQp(), &estQP);
        }
        else
        {
          estLambda = pRateCtrl->getRCPic()->getLCUEstLambda( bpp );
          estQP     = pRateCtrl->getRCPic()->getLCUEstQP    ( estLambda, pcSlice->getSliceQp() );
        }

        estQP     = Clip3( -pcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, estQP );

1651 1652 1653
#if WCG_EXT
        pRdCost->saveUnadjustedLambda();
#endif
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
        pRdCost->setLambda(estLambda, pcSlice->getSPS()->getBitDepths());

#if RDOQ_CHROMA_LAMBDA
        // set lambda for RDOQ
        const double chromaLambda = estLambda / pRdCost->getChromaWeight();
        const double lambdaArray[MAX_NUM_COMPONENT] = { estLambda, chromaLambda, chromaLambda };
        pTrQuant->setLambdas( lambdaArray );
#else
        pTrQuant->setLambda( estLambda );
#endif
      }

      pRateCtrl->setRCQP( estQP );
    }
#if ENABLE_QPA
    else if (pCfg->getUsePerceptQPA() && pcSlice->getPPS()->getUseDQP())
    {
1671 1672 1673
#if ENABLE_QPA_SUB_CTU
      const int adaptedQP    = applyQPAdaptationSubCtu (cs, ctuArea, ctuRsAddr, m_pcCfg->getLumaLevelToDeltaQPMapping().mode == LUMALVL_TO_DQP_NUM_MODES);
#else
1674
      const int adaptedQP    = pcPic->m_iOffsetCtu[ctuRsAddr];
1675 1676 1677 1678
#endif
      const double newLambda = pcSlice->getLambdas()[0] * pow (2.0, double (adaptedQP - iQPIndex) / 3.0);
      pcPic->m_uEnerHpCtu[ctuRsAddr] = newLambda; // for ALF and SAO
#if !ENABLE_QPA_SUB_CTU
1679 1680 1681 1682 1683 1684 1685 1686 1687
#if RDOQ_CHROMA_LAMBDA
      pTrQuant->getLambdas (oldLambdaArray); // save the old lambdas
      const double chromaLambda = newLambda / pRdCost->getChromaWeight();
      const double lambdaArray[MAX_NUM_COMPONENT] = {newLambda, chromaLambda, chromaLambda};
      pTrQuant->setLambdas (lambdaArray);
#else
      pTrQuant->setLambda (newLambda);
#endif
      pRdCost->setLambda (newLambda, pcSlice->getSPS()->getBitDepths());
1688
#endif
1689
      currQP[0] = currQP[1] = adaptedQP;
1690 1691 1692
    }
#endif

1693 1694 1695 1696 1697