/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2019, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file Prediction.cpp \brief prediction class */ #include "InterPrediction.h" #include "Buffer.h" #include "UnitTools.h" #include "MCTS.h" #include <memory.h> #include <algorithm> //! \ingroup CommonLib //! \{ // ==================================================================================================================== // Constructor / destructor / initialize // ==================================================================================================================== InterPrediction::InterPrediction() : m_currChromaFormat( NUM_CHROMA_FORMAT ) , m_maxCompIDToPred ( MAX_NUM_COMPONENT ) , m_pcRdCost ( nullptr ) , m_storedMv ( nullptr ) , m_gradX0(nullptr) , m_gradY0(nullptr) , m_gradX1(nullptr) , m_gradY1(nullptr) , m_subPuMC(false) { for( uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++ ) { for( uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++ ) { m_acYuvPred[refList][ch] = nullptr; } } for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ ) { for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ ) { for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ ) { m_filteredBlock[i][j][c] = nullptr; } m_filteredBlockTmp[i][c] = nullptr; } } m_cYuvPredTempDMVRL1 = nullptr; m_cYuvPredTempDMVRL0 = nullptr; for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++) { m_cRefSamplesDMVRL0[ch] = nullptr; m_cRefSamplesDMVRL1[ch] = nullptr; } } InterPrediction::~InterPrediction() { destroy(); } void InterPrediction::destroy() { for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ ) { for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ ) { xFree( m_acYuvPred[i][c] ); m_acYuvPred[i][c] = nullptr; } } for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ ) { for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ ) { for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ ) { xFree( m_filteredBlock[i][j][c] ); m_filteredBlock[i][j][c] = nullptr; } xFree( m_filteredBlockTmp[i][c] ); m_filteredBlockTmp[i][c] = nullptr; } } m_triangleBuf.destroy(); if (m_storedMv != nullptr) { delete[]m_storedMv; m_storedMv = nullptr; } xFree(m_gradX0); m_gradX0 = nullptr; xFree(m_gradY0); m_gradY0 = nullptr; xFree(m_gradX1); m_gradX1 = nullptr; xFree(m_gradY1); m_gradY1 = nullptr; xFree(m_cYuvPredTempDMVRL0); m_cYuvPredTempDMVRL0 = nullptr; xFree(m_cYuvPredTempDMVRL1); m_cYuvPredTempDMVRL1 = nullptr; for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++) { xFree(m_cRefSamplesDMVRL0[ch]); m_cRefSamplesDMVRL0[ch] = nullptr; xFree(m_cRefSamplesDMVRL1[ch]); m_cRefSamplesDMVRL1[ch] = nullptr; } } void InterPrediction::init( RdCost* pcRdCost, ChromaFormat chromaFormatIDC ) { m_pcRdCost = pcRdCost; // if it has been initialised before, but the chroma format has changed, release the memory and start again. if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] != nullptr && m_currChromaFormat != chromaFormatIDC ) { destroy(); } m_currChromaFormat = chromaFormatIDC; if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] == nullptr ) // check if first is null (in which case, nothing initialised yet) { for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ ) { int extWidth = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 16; int extHeight = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 1; extWidth = extWidth > (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 16) ? extWidth : MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 16; extHeight = extHeight > (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 1) ? extHeight : MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 1; for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ ) { m_filteredBlockTmp[i][c] = ( Pel* ) xMalloc( Pel, ( extWidth + 4 ) * ( extHeight + 7 + 4 ) ); for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ ) { m_filteredBlock[i][j][c] = ( Pel* ) xMalloc( Pel, extWidth * extHeight ); } } // new structure for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ ) { m_acYuvPred[i][c] = ( Pel* ) xMalloc( Pel, MAX_CU_SIZE * MAX_CU_SIZE ); } } m_triangleBuf.create(UnitArea(chromaFormatIDC, Area(0, 0, MAX_CU_SIZE, MAX_CU_SIZE))); m_iRefListIdx = -1; m_gradX0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE); m_gradY0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE); m_gradX1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE); m_gradY1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE); } if (m_cYuvPredTempDMVRL0 == nullptr && m_cYuvPredTempDMVRL1 == nullptr) { m_cYuvPredTempDMVRL0 = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION))); m_cYuvPredTempDMVRL1 = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION))); for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++) { m_cRefSamplesDMVRL0[ch] = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA)); m_cRefSamplesDMVRL1[ch] = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA)); } } #if !JVET_J0090_MEMORY_BANDWITH_MEASURE m_if.initInterpolationFilter( true ); #endif if (m_storedMv == nullptr) { const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE; m_storedMv = new Mv[MVBUFFER_SIZE*MVBUFFER_SIZE]; } } // ==================================================================================================================== // Public member functions // ==================================================================================================================== bool InterPrediction::xCheckIdenticalMotion( const PredictionUnit &pu ) { const Slice &slice = *pu.cs->slice; if( slice.isInterB() && !pu.cs->pps->getWPBiPred() ) { if( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 ) { int RefPOCL0 = slice.getRefPic( REF_PIC_LIST_0, pu.refIdx[0] )->getPOC(); int RefPOCL1 = slice.getRefPic( REF_PIC_LIST_1, pu.refIdx[1] )->getPOC(); if( RefPOCL0 == RefPOCL1 ) { if( !pu.cu->affine ) { if( pu.mv[0] == pu.mv[1] ) { return true; } } else { if ( (pu.cu->affineType == AFFINEMODEL_4PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1])) || (pu.cu->affineType == AFFINEMODEL_6PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]) && (pu.mvAffi[0][2] == pu.mvAffi[1][2])) ) { return true; } } } } } return false; } void InterPrediction::xSubPuMC( PredictionUnit& pu, PelUnitBuf& predBuf, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/ ) { // compute the location of the current PU Position puPos = pu.lumaPos(); Size puSize = pu.lumaSize(); int numPartLine, numPartCol, puHeight, puWidth; { numPartLine = std::max(puSize.width >> ATMVP_SUB_BLOCK_SIZE, 1u); numPartCol = std::max(puSize.height >> ATMVP_SUB_BLOCK_SIZE, 1u); puHeight = numPartCol == 1 ? puSize.height : 1 << ATMVP_SUB_BLOCK_SIZE; puWidth = numPartLine == 1 ? puSize.width : 1 << ATMVP_SUB_BLOCK_SIZE; } PredictionUnit subPu; subPu.cs = pu.cs; subPu.cu = pu.cu; subPu.mergeType = MRG_TYPE_DEFAULT_N; bool isAffine = pu.cu->affine; subPu.cu->affine = false; // join sub-pus containing the same motion bool verMC = puSize.height > puSize.width; int fstStart = (!verMC ? puPos.y : puPos.x); int secStart = (!verMC ? puPos.x : puPos.y); int fstEnd = (!verMC ? puPos.y + puSize.height : puPos.x + puSize.width); int secEnd = (!verMC ? puPos.x + puSize.width : puPos.y + puSize.height); int fstStep = (!verMC ? puHeight : puWidth); int secStep = (!verMC ? puWidth : puHeight); m_subPuMC = true; for (int fstDim = fstStart; fstDim < fstEnd; fstDim += fstStep) { for (int secDim = secStart; secDim < secEnd; secDim += secStep) { int x = !verMC ? secDim : fstDim; int y = !verMC ? fstDim : secDim; const MotionInfo &curMi = pu.getMotionInfo(Position{ x, y }); int length = secStep; int later = secDim + secStep; while (later < secEnd) { const MotionInfo &laterMi = !verMC ? pu.getMotionInfo(Position{ later, fstDim }) : pu.getMotionInfo(Position{ fstDim, later }); if (laterMi == curMi) { length += secStep; } else { break; } later += secStep; } int dx = !verMC ? length : puWidth; int dy = !verMC ? puHeight : length; subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy))); subPu = curMi; PelUnitBuf subPredBuf = predBuf.subBuf(UnitAreaRelative(pu, subPu)); subPu.mmvdEncOptMode = 0; subPu.mvRefine = false; motionCompensation(subPu, subPredBuf, eRefPicList); secDim = later - secStep; } } m_subPuMC = false; pu.cu->affine = isAffine; } #if JVET_N0178_IMPLICIT_BDOF_SPLIT void InterPrediction::xSubPuBio(PredictionUnit& pu, PelUnitBuf& predBuf, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/) { // compute the location of the current PU Position puPos = pu.lumaPos(); Size puSize = pu.lumaSize(); PredictionUnit subPu; subPu.cs = pu.cs; subPu.cu = pu.cu; subPu.mergeType = pu.mergeType; subPu.mmvdMergeFlag = pu.mmvdMergeFlag; subPu.mmvdEncOptMode = pu.mmvdEncOptMode; subPu.mergeFlag = pu.mergeFlag; subPu.mvRefine = pu.mvRefine; subPu.refIdx[0] = pu.refIdx[0]; subPu.refIdx[1] = pu.refIdx[1]; int fstStart = puPos.y; int secStart = puPos.x; int fstEnd = puPos.y + puSize.height; int secEnd = puPos.x + puSize.width; int fstStep = std::min((int)MAX_BDOF_APPLICATION_REGION, (int)puSize.height); int secStep = std::min((int)MAX_BDOF_APPLICATION_REGION, (int)puSize.width); for (int fstDim = fstStart; fstDim < fstEnd; fstDim += fstStep) { for (int secDim = secStart; secDim < secEnd; secDim += secStep) { int x = secDim; int y = fstDim; int dx = secStep; int dy = fstStep; const MotionInfo &curMi = pu.getMotionInfo(Position{ x, y }); subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy))); subPu = curMi; PelUnitBuf subPredBuf = predBuf.subBuf(UnitAreaRelative(pu, subPu)); motionCompensation(subPu, subPredBuf, eRefPicList); } } } #endif void InterPrediction::xChromaMC(PredictionUnit &pu, PelUnitBuf& pcYuvPred) { // separated tree, chroma const CompArea lumaArea = CompArea(COMPONENT_Y, pu.chromaFormat, pu.Cb().lumaPos(), recalcSize(pu.chromaFormat, CHANNEL_TYPE_CHROMA, CHANNEL_TYPE_LUMA, pu.Cb().size())); PredictionUnit subPu; subPu.cs = pu.cs; subPu.cu = pu.cu; Picture * refPic = pu.cu->slice->getPic(); for (int y = lumaArea.y; y < lumaArea.y + lumaArea.height; y += MIN_PU_SIZE) { for (int x = lumaArea.x; x < lumaArea.x + lumaArea.width; x += MIN_PU_SIZE) { const MotionInfo &curMi = pu.cs->picture->cs->getMotionInfo(Position{ x, y }); subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, MIN_PU_SIZE, MIN_PU_SIZE))); PelUnitBuf subPredBuf = pcYuvPred.subBuf(UnitAreaRelative(pu, subPu)); xPredInterBlk(COMPONENT_Cb, subPu, refPic, curMi.mv[0], subPredBuf, false, pu.cu->slice->clpRng(COMPONENT_Cb) , false , true); xPredInterBlk(COMPONENT_Cr, subPu, refPic, curMi.mv[0], subPredBuf, false, pu.cu->slice->clpRng(COMPONENT_Cr) , false , true); } } } void InterPrediction::xPredInterUni(const PredictionUnit& pu, const RefPicList& eRefPicList, PelUnitBuf& pcYuvPred, const bool& bi , const bool& bioApplied , const bool luma, const bool chroma ) { const SPS &sps = *pu.cs->sps; int iRefIdx = pu.refIdx[eRefPicList]; Mv mv[3]; bool isIBC = false; #if JVET_N0266_SMALL_BLOCKS CHECK( !CU::isIBC( *pu.cu ) && pu.lwidth() == 4 && pu.lheight() == 4, "invalid 4x4 inter blocks" ); #endif if (CU::isIBC(*pu.cu)) { isIBC = true; } if( pu.cu->affine ) { CHECK( iRefIdx < 0, "iRefIdx incorrect." ); mv[0] = pu.mvAffi[eRefPicList][0]; mv[1] = pu.mvAffi[eRefPicList][1]; mv[2] = pu.mvAffi[eRefPicList][2]; } else { mv[0] = pu.mv[eRefPicList]; } if ( !pu.cu->affine ) clipMv(mv[0], pu.cu->lumaPos(), pu.cu->lumaSize(), sps); for( uint32_t comp = COMPONENT_Y; comp < pcYuvPred.bufs.size() && comp <= m_maxCompIDToPred; comp++ ) { const ComponentID compID = ComponentID( comp ); if (compID == COMPONENT_Y && !luma) continue; if (compID != COMPONENT_Y && !chroma) continue; if ( pu.cu->affine ) { CHECK( bioApplied, "BIO is not allowed with affine" ); xPredAffineBlk( compID, pu, pu.cu->slice->getRefPic( eRefPicList, iRefIdx ), mv, pcYuvPred, bi, pu.cu->slice->clpRng( compID ) ); } else { if (isIBC) { xPredInterBlk(compID, pu, pu.cu->slice->getPic(), mv[0], pcYuvPred, bi, pu.cu->slice->clpRng(compID) , bioApplied , isIBC ); } else { xPredInterBlk(compID, pu, pu.cu->slice->getRefPic(eRefPicList, iRefIdx), mv[0], pcYuvPred, bi, pu.cu->slice->clpRng(compID) , bioApplied , isIBC ); } } } } void InterPrediction::xPredInterBi(PredictionUnit& pu, PelUnitBuf &pcYuvPred) { const PPS &pps = *pu.cs->pps; const Slice &slice = *pu.cs->slice; #if JVET_N0266_SMALL_BLOCKS CHECK( !pu.cu->affine && pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 && ( pu.lwidth() + pu.lheight() == 12 ), "invalid 4x8/8x4 bi-predicted blocks" ); #endif #if JVET_N0146_DMVR_BDOF_CONDITION WPScalingParam *wp0; WPScalingParam *wp1; int refIdx0 = pu.refIdx[REF_PIC_LIST_0]; int refIdx1 = pu.refIdx[REF_PIC_LIST_1]; pu.cs->slice->getWpScaling(REF_PIC_LIST_0, refIdx0, wp0); pu.cs->slice->getWpScaling(REF_PIC_LIST_1, refIdx1, wp1); #endif bool bioApplied = false; if (pu.cs->sps->getBDOFEnabledFlag()) { if (pu.cu->affine || m_subPuMC) { bioApplied = false; } else { #if JVET_N0146_DMVR_BDOF_CONDITION const bool biocheck0 = !((wp0[COMPONENT_Y].bPresentFlag || wp1[COMPONENT_Y].bPresentFlag) && slice.getSliceType() == B_SLICE); #else const bool biocheck0 = !(pps.getWPBiPred() && slice.getSliceType() == B_SLICE); #endif const bool biocheck1 = !(pps.getUseWP() && slice.getSliceType() == P_SLICE); if (biocheck0 && biocheck1 && PU::isBiPredFromDifferentDir(pu) #if JVET_N0266_SMALL_BLOCKS && pu.Y().height != 4 #else && !(pu.Y().height == 4 || (pu.Y().width == 4 && pu.Y().height == 8)) #endif ) { bioApplied = true; } } if (bioApplied && pu.cu->smvdMode) { bioApplied = false; } if (pu.cu->cs->sps->getUseGBi() && bioApplied && pu.cu->GBiIdx != GBI_DEFAULT) { bioApplied = false; } } if (pu.mmvdEncOptMode == 2 && pu.mmvdMergeFlag) { bioApplied = false; } bool dmvrApplied = false; dmvrApplied = (pu.mvRefine) && PU::checkDMVRCondition(pu); for (uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++) { if( pu.refIdx[refList] < 0) { continue; } RefPicList eRefPicList = (refList ? REF_PIC_LIST_1 : REF_PIC_LIST_0); CHECK(CU::isIBC(*pu.cu) && eRefPicList != REF_PIC_LIST_0, "Invalid interdir for ibc mode"); CHECK(CU::isIBC(*pu.cu) && pu.refIdx[refList] != MAX_NUM_REF, "Invalid reference index for ibc mode"); CHECK((CU::isInter(*pu.cu) && pu.refIdx[refList] >= slice.getNumRefIdx(eRefPicList)), "Invalid reference index"); m_iRefListIdx = refList; PelUnitBuf pcMbBuf = ( pu.chromaFormat == CHROMA_400 ? PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y())) : PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[refList][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[refList][2], pcYuvPred.Cr())) ); if (pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0) { if (dmvrApplied) continue; // mc will happen in processDMVR xPredInterUni ( pu, eRefPicList, pcMbBuf, true , bioApplied , true, true ); } else { if( ( (pps.getUseWP() && slice.getSliceType() == P_SLICE) || (pps.getWPBiPred() && slice.getSliceType() == B_SLICE) ) ) { xPredInterUni ( pu, eRefPicList, pcMbBuf, true , bioApplied , true, true ); } else { xPredInterUni( pu, eRefPicList, pcMbBuf, pu.cu->triangle , bioApplied , true, true ); } } } #if JVET_N0146_DMVR_BDOF_CONDITION CPelUnitBuf srcPred0 = ( pu.chromaFormat == CHROMA_400 ? CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y())) : CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[0][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[0][2], pcYuvPred.Cr())) ); CPelUnitBuf srcPred1 = ( pu.chromaFormat == CHROMA_400 ? CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y())) : CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[1][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[1][2], pcYuvPred.Cr())) ); if( (!dmvrApplied) && (!bioApplied) && pps.getWPBiPred() && slice.getSliceType() == B_SLICE && pu.cu->GBiIdx==GBI_DEFAULT) { xWeightedPredictionBi( pu, srcPred0, srcPred1, pcYuvPred, m_maxCompIDToPred ); } else if( pps.getUseWP() && slice.getSliceType() == P_SLICE ) { xWeightedPredictionUni( pu, srcPred0, REF_PIC_LIST_0, pcYuvPred, -1, m_maxCompIDToPred ); } else { if (dmvrApplied) { xProcessDMVR(pu, pcYuvPred, slice.clpRngs(), bioApplied); } else { xWeightedAverage( pu, srcPred0, srcPred1, pcYuvPred, slice.getSPS()->getBitDepths(), slice.clpRngs(), bioApplied ); } } #else if (dmvrApplied) { xProcessDMVR(pu, pcYuvPred, slice.clpRngs(), bioApplied); } CPelUnitBuf srcPred0 = ( pu.chromaFormat == CHROMA_400 ? CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y())) : CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[0][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[0][2], pcYuvPred.Cr())) ); CPelUnitBuf srcPred1 = ( pu.chromaFormat == CHROMA_400 ? CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y())) : CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[1][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[1][2], pcYuvPred.Cr())) ); if( pps.getWPBiPred() && slice.getSliceType() == B_SLICE ) { xWeightedPredictionBi( pu, srcPred0, srcPred1, pcYuvPred, m_maxCompIDToPred ); } else if( pps.getUseWP() && slice.getSliceType() == P_SLICE ) { xWeightedPredictionUni( pu, srcPred0, REF_PIC_LIST_0, pcYuvPred, -1, m_maxCompIDToPred ); } else { if (dmvrApplied == false) { xWeightedAverage( pu, srcPred0, srcPred1, pcYuvPred, slice.getSPS()->getBitDepths(), slice.clpRngs(), bioApplied ); } } #endif } void InterPrediction::xPredInterBlk ( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv& _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng , const bool& bioApplied , bool isIBC , SizeType dmvrWidth , SizeType dmvrHeight , bool bilinearMC , Pel *srcPadBuf , int32_t srcPadStride ) { JVET_J0090_SET_REF_PICTURE( refPic, compID ); const ChromaFormat chFmt = pu.chromaFormat; const bool rndRes = !bi; int shiftHor = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleX(compID, chFmt); int shiftVer = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleY(compID, chFmt); int xFrac = _mv.hor & ((1 << shiftHor) - 1); int yFrac = _mv.ver & ((1 << shiftVer) - 1); if (isIBC) { xFrac = yFrac = 0; JVET_J0090_SET_CACHE_ENABLE( false ); } PelBuf &dstBuf = dstPic.bufs[compID]; unsigned width = dstBuf.width; unsigned height = dstBuf.height; CPelBuf refBuf; { Position offset = pu.blocks[compID].pos().offset( _mv.getHor() >> shiftHor, _mv.getVer() >> shiftVer ); if (dmvrWidth) { refBuf = refPic->getRecoBuf(CompArea(compID, chFmt, offset, Size(dmvrWidth, dmvrHeight))); } else refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, offset, pu.blocks[compID].size() ) ); } if (NULL != srcPadBuf) { refBuf.buf = srcPadBuf; refBuf.stride = srcPadStride; } if (dmvrWidth) { width = dmvrWidth; height = dmvrHeight; } // backup data int backupWidth = width; int backupHeight = height; Pel *backupDstBufPtr = dstBuf.buf; int backupDstBufStride = dstBuf.stride; if (bioApplied && compID == COMPONENT_Y) { width = width + 2 * BIO_EXTEND_SIZE + 2; height = height + 2 * BIO_EXTEND_SIZE + 2; // change MC output dstBuf.stride = width; dstBuf.buf = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + 2 * dstBuf.stride + 2; } if( yFrac == 0 ) { m_if.filterHor(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, xFrac, rndRes, chFmt, clpRng, bilinearMC, bilinearMC); } else if( xFrac == 0 ) { m_if.filterVer(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, true, rndRes, chFmt, clpRng, bilinearMC, bilinearMC); } else { PelBuf tmpBuf = dmvrWidth ? PelBuf(m_filteredBlockTmp[0][compID], Size(dmvrWidth, dmvrHeight)) : PelBuf(m_filteredBlockTmp[0][compID], pu.blocks[compID]); if (dmvrWidth == 0) tmpBuf.stride = dstBuf.stride; int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA; if (bilinearMC) { vFilterSize = NTAPS_BILINEAR; } m_if.filterHor(compID, (Pel*)refBuf.buf - ((vFilterSize >> 1) - 1) * refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, backupWidth, backupHeight + vFilterSize - 1, xFrac, false, chFmt, clpRng, bilinearMC, bilinearMC); JVET_J0090_SET_CACHE_ENABLE( false ); m_if.filterVer(compID, (Pel*)tmpBuf.buf + ((vFilterSize >> 1) - 1) * tmpBuf.stride, tmpBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, false, rndRes, chFmt, clpRng, bilinearMC, bilinearMC); } JVET_J0090_SET_CACHE_ENABLE( true ); if (bioApplied && compID == COMPONENT_Y) { const int shift = std::max<int>(2, (IF_INTERNAL_PREC - clpRng.bd)); const Pel* refPel = refBuf.buf - refBuf.stride - 1; Pel* dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + dstBuf.stride + 1; for (int w = 0; w < (width - 2 * BIO_EXTEND_SIZE); w++) { Pel val = leftShift_round(refPel[w], shift); dstPel[w] = val - (Pel)IF_INTERNAL_OFFS; } refPel = refBuf.buf - 1; dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + 2 * dstBuf.stride + 1; for (int h = 0; h < (height - 2 * BIO_EXTEND_SIZE - 2); h++) { Pel val = leftShift_round(refPel[0], shift); dstPel[0] = val - (Pel)IF_INTERNAL_OFFS; val = leftShift_round(refPel[width - 3], shift); dstPel[width - 3] = val - (Pel)IF_INTERNAL_OFFS; refPel += refBuf.stride; dstPel += dstBuf.stride; } refPel = refBuf.buf + (height - 2 * BIO_EXTEND_SIZE - 2)*refBuf.stride - 1; dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + (height - 2 * BIO_EXTEND_SIZE)*dstBuf.stride + 1; for (int w = 0; w < (width - 2 * BIO_EXTEND_SIZE); w++) { Pel val = leftShift_round(refPel[w], shift); dstPel[w] = val - (Pel)IF_INTERNAL_OFFS; } // restore data width = backupWidth; height = backupHeight; dstBuf.buf = backupDstBufPtr; dstBuf.stride = backupDstBufStride; } } #if JVET_N0068_AFFINE_MEM_BW bool InterPrediction::isSubblockVectorSpreadOverLimit( int a, int b, int c, int d, int predType ) { int s4 = ( 4 << 11 ); int filterTap = 6; if ( predType == 3 ) { int refBlkWidth = std::max( std::max( 0, 4 * a + s4 ), std::max( 4 * c, 4 * a + 4 * c + s4 ) ) - std::min( std::min( 0, 4 * a + s4 ), std::min( 4 * c, 4 * a + 4 * c + s4 ) ); int refBlkHeight = std::max( std::max( 0, 4 * b ), std::max( 4 * d + s4, 4 * b + 4 * d + s4 ) ) - std::min( std::min( 0, 4 * b ), std::min( 4 * d + s4, 4 * b + 4 * d + s4 ) ); refBlkWidth = ( refBlkWidth >> 11 ) + filterTap + 3; refBlkHeight = ( refBlkHeight >> 11 ) + filterTap + 3; if ( refBlkWidth * refBlkHeight > ( filterTap + 9 ) * ( filterTap + 9 ) ) { return true; } } else { int refBlkWidth = std::max( 0, 4 * a + s4 ) - std::min( 0, 4 * a + s4 ); int refBlkHeight = std::max( 0, 4 * b ) - std::min( 0, 4 * b ); refBlkWidth = ( refBlkWidth >> 11 ) + filterTap + 3; refBlkHeight = ( refBlkHeight >> 11 ) + filterTap + 3; if ( refBlkWidth * refBlkHeight > ( filterTap + 9 ) * ( filterTap + 5 ) ) { return true; } refBlkWidth = std::max( 0, 4 * c ) - std::min( 0, 4 * c ); refBlkHeight = std::max( 0, 4 * d + s4 ) - std::min( 0, 4 * d + s4 ); refBlkWidth = ( refBlkWidth >> 11 ) + filterTap + 3; refBlkHeight = ( refBlkHeight >> 11 ) + filterTap + 3; if ( refBlkWidth * refBlkHeight > ( filterTap + 5 ) * ( filterTap + 9 ) ) { return true; } } return false; } #endif void InterPrediction::xPredAffineBlk( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv* _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng ) { #if !JVET_N0196_SIX_TAP_FILTERS if ( (pu.cu->affineType == AFFINEMODEL_6PARAM && _mv[0] == _mv[1] && _mv[0] == _mv[2]) || (pu.cu->affineType == AFFINEMODEL_4PARAM && _mv[0] == _mv[1]) ) { Mv mvTemp = _mv[0]; clipMv( mvTemp, pu.cu->lumaPos(), pu.cu->lumaSize(), *pu.cs->sps ); xPredInterBlk( compID, pu, refPic, mvTemp, dstPic, bi, clpRng , false , false ); return; } #endif JVET_J0090_SET_REF_PICTURE( refPic, compID ); const ChromaFormat chFmt = pu.chromaFormat; int iScaleX = ::getComponentScaleX( compID, chFmt ); int iScaleY = ::getComponentScaleY( compID, chFmt ); Mv mvLT =_mv[0]; Mv mvRT =_mv[1]; Mv mvLB =_mv[2]; // get affine sub-block width and height const int width = pu.Y().width; const int height = pu.Y().height; int blockWidth = AFFINE_MIN_BLOCK_SIZE; int blockHeight = AFFINE_MIN_BLOCK_SIZE; CHECK(blockWidth > (width >> iScaleX ), "Sub Block width > Block width"); #if JVET_N0671_AFFINE CHECK(blockHeight > (height >> iScaleY), "Sub Block height > Block height"); #else CHECK(blockHeight > (height >> iScaleX), "Sub Block height > Block height"); #endif //JVET_N0671_AFFINE const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE; const int cxWidth = width >> iScaleX; const int cxHeight = height >> iScaleY; const int iHalfBW = blockWidth >> 1; const int iHalfBH = blockHeight >> 1; const int iBit = MAX_CU_DEPTH; int iDMvHorX, iDMvHorY, iDMvVerX, iDMvVerY; iDMvHorX = (mvRT - mvLT).getHor() << (iBit - g_aucLog2[cxWidth]); iDMvHorY = (mvRT - mvLT).getVer() << (iBit - g_aucLog2[cxWidth]); if ( pu.cu->affineType == AFFINEMODEL_6PARAM ) { iDMvVerX = (mvLB - mvLT).getHor() << (iBit - g_aucLog2[cxHeight]); iDMvVerY = (mvLB - mvLT).getVer() << (iBit - g_aucLog2[cxHeight]); } else { iDMvVerX = -iDMvHorY; iDMvVerY = iDMvHorX; } int iMvScaleHor = mvLT.getHor() << iBit; int iMvScaleVer = mvLT.getVer() << iBit; const SPS &sps = *pu.cs->sps; const int iMvShift = 4; const int iOffset = 8; const int iHorMax = ( sps.getPicWidthInLumaSamples() + iOffset - pu.Y().x - 1 ) << iMvShift; const int iHorMin = ( -(int)pu.cs->pcv->maxCUWidth - iOffset - (int)pu.Y().x + 1 ) << iMvShift; const int iVerMax = ( sps.getPicHeightInLumaSamples() + iOffset - pu.Y().y - 1 ) << iMvShift; const int iVerMin = ( -(int)pu.cs->pcv->maxCUHeight - iOffset - (int)pu.Y().y + 1 ) << iMvShift; PelBuf tmpBuf = PelBuf(m_filteredBlockTmp[0][compID], pu.blocks[compID]); const int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA; const int shift = iBit - 4 + MV_FRACTIONAL_BITS_INTERNAL; #if JVET_N0068_AFFINE_MEM_BW const bool subblkMVSpreadOverLimit = isSubblockVectorSpreadOverLimit( iDMvHorX, iDMvHorY, iDMvVerX, iDMvVerY, pu.interDir ); #endif // get prediction block by block for ( int h = 0; h < cxHeight; h += blockHeight ) { for ( int w = 0; w < cxWidth; w += blockWidth ) { int iMvScaleTmpHor, iMvScaleTmpVer; #if JVET_N0671_AFFINE if (compID == COMPONENT_Y || pu.chromaFormat == CHROMA_444) #else if(compID == COMPONENT_Y) #endif //JVET_N0671_AFFINE { #if JVET_N0068_AFFINE_MEM_BW if ( !subblkMVSpreadOverLimit ) { #endif iMvScaleTmpHor = iMvScaleHor + iDMvHorX * (iHalfBW + w) + iDMvVerX * (iHalfBH + h); iMvScaleTmpVer = iMvScaleVer + iDMvHorY * (iHalfBW + w) + iDMvVerY * (iHalfBH + h); #if JVET_N0068_AFFINE_MEM_BW } else { iMvScaleTmpHor = iMvScaleHor + iDMvHorX * ( cxWidth >> 1 ) + iDMvVerX * ( cxHeight >> 1 ); iMvScaleTmpVer = iMvScaleVer + iDMvHorY * ( cxWidth >> 1 ) + iDMvVerY * ( cxHeight >> 1 ); } #endif roundAffineMv(iMvScaleTmpHor, iMvScaleTmpVer, shift); Mv tmpMv(iMvScaleTmpHor, iMvScaleTmpVer); tmpMv.clipToStorageBitDepth(); iMvScaleTmpHor = tmpMv.getHor(); iMvScaleTmpVer = tmpMv.getVer(); // clip and scale if (sps.getWrapAroundEnabledFlag()) { m_storedMv[h / AFFINE_MIN_BLOCK_SIZE * MVBUFFER_SIZE + w / AFFINE_MIN_BLOCK_SIZE].set(iMvScaleTmpHor, iMvScaleTmpVer); Mv tmpMv(iMvScaleTmpHor, iMvScaleTmpVer); clipMv(tmpMv, Position(pu.Y().x + w, pu.Y().y + h), Size(blockWidth, blockHeight), sps); iMvScaleTmpHor = tmpMv.getHor(); iMvScaleTmpVer = tmpMv.getVer(); } else { m_storedMv[h / AFFINE_MIN_BLOCK_SIZE * MVBUFFER_SIZE + w / AFFINE_MIN_BLOCK_SIZE].set(iMvScaleTmpHor, iMvScaleTmpVer); iMvScaleTmpHor = std::min<int>(iHorMax, std::max<int>(iHorMin, iMvScaleTmpHor)); iMvScaleTmpVer = std::min<int>(iVerMax, std::max<int>(iVerMin, iMvScaleTmpVer)); } } else { Mv curMv = m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE) * MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE)] + #if JVET_N0671_AFFINE m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE + iScaleY)* MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE + iScaleX)]; #else m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE + 1)* MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE + 1)]; #endif roundAffineMv(curMv.hor, curMv.ver, 1); if (sps.getWrapAroundEnabledFlag()) { clipMv(curMv, Position(pu.Y().x + (w << iScaleX), pu.Y().y + (h << iScaleY)), Size(blockWidth << iScaleX, blockHeight << iScaleY), sps); } else { curMv.hor = std::min<int>(iHorMax, std::max<int>(iHorMin, curMv.hor)); curMv.ver = std::min<int>(iVerMax, std::max<int>(iVerMin, curMv.ver)); } iMvScaleTmpHor = curMv.hor; iMvScaleTmpVer = curMv.ver; } // get the MV in high precision int xFrac, yFrac, xInt, yInt; if (!iScaleX) { xInt = iMvScaleTmpHor >> 4; xFrac = iMvScaleTmpHor & 15; } else { xInt = iMvScaleTmpHor >> 5; xFrac = iMvScaleTmpHor & 31; } if (!iScaleY) { yInt = iMvScaleTmpVer >> 4; yFrac = iMvScaleTmpVer & 15; } else { yInt = iMvScaleTmpVer >> 5; yFrac = iMvScaleTmpVer & 31; } const CPelBuf refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, pu.blocks[compID].offset(xInt + w, yInt + h), pu.blocks[compID] ) ); PelBuf &dstBuf = dstPic.bufs[compID]; if ( yFrac == 0 ) { m_if.filterHor( compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, xFrac, !bi, chFmt, clpRng ); } else if ( xFrac == 0 ) { m_if.filterVer( compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, yFrac, true, !bi, chFmt, clpRng ); } else { m_if.filterHor( compID, (Pel*) refBuf.buf - ((vFilterSize>>1) -1)*refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, blockWidth, blockHeight+vFilterSize-1, xFrac, false, chFmt, clpRng); JVET_J0090_SET_CACHE_ENABLE( false ); m_if.filterVer( compID, tmpBuf.buf + ((vFilterSize>>1) -1)*tmpBuf.stride, tmpBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, yFrac, false, !bi, chFmt, clpRng); JVET_J0090_SET_CACHE_ENABLE( true ); } } } } int getMSB( unsigned x ) { int msb = 0, bits = ( sizeof(int) << 3 ), y = 1; while( x > 1u ) { bits >>= 1; y = x >> bits; if( y ) { x = y; msb += bits; } } msb += y; return msb; } void InterPrediction::applyBiOptFlow(const PredictionUnit &pu, const CPelUnitBuf &yuvSrc0, const CPelUnitBuf &yuvSrc1, const int &refIdx0, const int &refIdx1, PelUnitBuf &yuvDst, const BitDepths &clipBitDepths) { const int height = yuvDst.Y().height; const int width = yuvDst.Y().width; int heightG = height + 2 * BIO_EXTEND_SIZE; int widthG = width + 2 * BIO_EXTEND_SIZE; int offsetPos = widthG*BIO_EXTEND_SIZE + BIO_EXTEND_SIZE; Pel* gradX0 = m_gradX0; Pel* gradX1 = m_gradX1; Pel* gradY0 = m_gradY0; Pel* gradY1 = m_gradY1; int stridePredMC = widthG + 2; const Pel* srcY0 = m_filteredBlockTmp[2][COMPONENT_Y] + stridePredMC + 1; const Pel* srcY1 = m_filteredBlockTmp[3][COMPONENT_Y] + stridePredMC + 1; const int src0Stride = stridePredMC; const int src1Stride = stridePredMC; Pel* dstY = yuvDst.Y().buf; const int dstStride = yuvDst.Y().stride; const Pel* srcY0Temp = srcY0; const Pel* srcY1Temp = srcY1; for (int refList = 0; refList < NUM_REF_PIC_LIST_01; refList++) { Pel* dstTempPtr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + stridePredMC + 1; Pel* gradY = (refList == 0) ? m_gradY0 : m_gradY1; Pel* gradX = (refList == 0) ? m_gradX0 : m_gradX1; xBioGradFilter(dstTempPtr, stridePredMC, widthG, heightG, widthG, gradX, gradY, clipBitDepths.recon[toChannelType(COMPONENT_Y)]); Pel* padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 2; for (int y = 0; y< height; y++) { padStr[-1] = padStr[0]; padStr[width] = padStr[width - 1]; padStr += stridePredMC; } padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 1; ::memcpy(padStr - stridePredMC, padStr, sizeof(Pel)*(widthG)); ::memcpy(padStr + height*stridePredMC, padStr + (height - 1)*stridePredMC, sizeof(Pel)*(widthG)); } const ClpRng& clpRng = pu.cu->cs->slice->clpRng(COMPONENT_Y); const int bitDepth = clipBitDepths.recon[toChannelType(COMPONENT_Y)]; const int shiftNum = IF_INTERNAL_PREC + 1 - bitDepth; const int offset = (1 << (shiftNum - 1)) + 2 * IF_INTERNAL_OFFS; #if JVET_N0325_BDOF const int limit = (1<<(std::max<int>(5, bitDepth - 7))); #else const int limit = (bitDepth>12)? 2 : ((int)1 << (4 + IF_INTERNAL_PREC - bitDepth - 5)); #endif int* dotProductTemp1 = m_dotProduct1; int* dotProductTemp2 = m_dotProduct2; int* dotProductTemp3 = m_dotProduct3; int* dotProductTemp5 = m_dotProduct5; int* dotProductTemp6 = m_dotProduct6; xCalcBIOPar(srcY0Temp, srcY1Temp, gradX0, gradX1, gradY0, gradY1, dotProductTemp1, dotProductTemp2, dotProductTemp3, dotProductTemp5, dotProductTemp6, src0Stride, src1Stride, widthG, widthG, heightG, bitDepth); int xUnit = (width >> 2); int yUnit = (height >> 2); Pel *dstY0 = dstY; gradX0 = m_gradX0; gradX1 = m_gradX1; gradY0 = m_gradY0; gradY1 = m_gradY1; for (int yu = 0; yu < yUnit; yu++) { for (int xu = 0; xu < xUnit; xu++) { if (m_bioPredSubBlkDist[yu*xUnit + xu] < m_bioSubBlkDistThres) { srcY0Temp = srcY0 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2); srcY1Temp = srcY1 + (stridePredMC + 1) + ((yu*src1Stride + xu) << 2); dstY0 = dstY + ((yu*dstStride + xu) << 2); PelBuf dstPelBuf(dstY0, dstStride, Size(4, 4)); dstPelBuf.addAvg(CPelBuf(srcY0Temp, src0Stride, Size(4, 4)), CPelBuf(srcY1Temp, src1Stride, Size(4, 4)), clpRng); continue; } int sGxdI = 0, sGydI = 0, sGxGy = 0, sGx2 = 0, sGy2 = 0; int tmpx = 0, tmpy = 0; dotProductTemp1 = m_dotProduct1 + offsetPos + ((yu*widthG + xu) << 2); dotProductTemp2 = m_dotProduct2 + offsetPos + ((yu*widthG + xu) << 2); dotProductTemp3 = m_dotProduct3 + offsetPos + ((yu*widthG + xu) << 2); dotProductTemp5 = m_dotProduct5 + offsetPos + ((yu*widthG + xu) << 2); dotProductTemp6 = m_dotProduct6 + offsetPos + ((yu*widthG + xu) << 2); xCalcBlkGradient(xu << 2, yu << 2, dotProductTemp1, dotProductTemp2, dotProductTemp3, dotProductTemp5, dotProductTemp6, sGx2, sGy2, sGxGy, sGxdI, sGydI, widthG, heightG, (1 << 2)); if (sGx2 > 0) { tmpx = rightShiftMSB(sGxdI << 3, sGx2); tmpx = Clip3(-limit, limit, tmpx); } if (sGy2 > 0) { int mainsGxGy = sGxGy >> 12; int secsGxGy = sGxGy & ((1 << 12) - 1); int tmpData = tmpx * mainsGxGy; tmpData = ((tmpData << 12) + tmpx*secsGxGy) >> 1; tmpy = rightShiftMSB(((sGydI << 3) - tmpData), sGy2); tmpy = Clip3(-limit, limit, tmpy); } srcY0Temp = srcY0 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2); srcY1Temp = srcY1 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2); gradX0 = m_gradX0 + offsetPos + ((yu*widthG + xu) << 2); gradX1 = m_gradX1 + offsetPos + ((yu*widthG + xu) << 2); gradY0 = m_gradY0 + offsetPos + ((yu*widthG + xu) << 2); gradY1 = m_gradY1 + offsetPos + ((yu*widthG + xu) << 2); dstY0 = dstY + ((yu*dstStride + xu) << 2); xAddBIOAvg4(srcY0Temp, src0Stride, srcY1Temp, src1Stride, dstY0, dstStride, gradX0, gradX1, gradY0, gradY1, widthG, (1 << 2), (1 << 2), (int)tmpx, (int)tmpy, shiftNum, offset, clpRng); } // xu } // yu } bool InterPrediction::xCalcBiPredSubBlkDist(const PredictionUnit &pu, const Pel* pYuvSrc0, const int src0Stride, const Pel* pYuvSrc1, const int src1Stride, const BitDepths &clipBitDepths) { const int width = pu.lwidth(); const int height = pu.lheight(); const int clipbd = clipBitDepths.recon[toChannelType(COMPONENT_Y)]; const uint32_t distortionShift = DISTORTION_PRECISION_ADJUSTMENT(clipbd); const int shift = std::max<int>(2, (IF_INTERNAL_PREC - clipbd)); const int xUnit = (width >> 2); const int yUnit = (height >> 2); m_bioDistThres = (shift <= 5) ? (((32 << (clipbd - 8))*width*height) >> (5 - shift)) : (((32 << (clipbd - 8))*width*height) << (shift - 5)); m_bioSubBlkDistThres = (shift <= 5) ? (((64 << (clipbd - 8)) << 4) >> (5 - shift)) : (((64 << (clipbd - 8)) << 4) << (shift - 5)); m_bioDistThres >>= distortionShift; m_bioSubBlkDistThres >>= distortionShift; DistParam cDistParam; Distortion dist = 0; for (int yu = 0, blkIdx = 0; yu < yUnit; yu++) { for (int xu = 0; xu < xUnit; xu++, blkIdx++) { const Pel* pPred0 = pYuvSrc0 + ((yu*src0Stride + xu) << 2); const Pel* pPred1 = pYuvSrc1 + ((yu*src1Stride + xu) << 2); m_pcRdCost->setDistParam(cDistParam, pPred0, pPred1, src0Stride, src1Stride, clipbd, COMPONENT_Y, (1 << 2), (1 << 2), 0, 1, false, true); m_bioPredSubBlkDist[blkIdx] = cDistParam.distFunc(cDistParam); dist += m_bioPredSubBlkDist[blkIdx]; } } return (dist >= m_bioDistThres); } void InterPrediction::xAddBIOAvg4(const Pel* src0, int src0Stride, const Pel* src1, int src1Stride, Pel *dst, int dstStride, const Pel *gradX0, const Pel *gradX1, const Pel *gradY0, const Pel*gradY1, int gradStride, int width, int height, int tmpx, int tmpy, int shift, int offset, const ClpRng& clpRng) { g_pelBufOP.addBIOAvg4(src0, src0Stride, src1, src1Stride, dst, dstStride, gradX0, gradX1, gradY0, gradY1, gradStride, width, height, tmpx, tmpy, shift, offset, clpRng); } void InterPrediction::xBioGradFilter(Pel* pSrc, int srcStride, int width, int height, int gradStride, Pel* gradX, Pel* gradY, int bitDepth) { g_pelBufOP.bioGradFilter(pSrc, srcStride, width, height, gradStride, gradX, gradY, bitDepth); } void InterPrediction::xCalcBIOPar(const Pel* srcY0Temp, const Pel* srcY1Temp, const Pel* gradX0, const Pel* gradX1, const Pel* gradY0, const Pel* gradY1, int* dotProductTemp1, int* dotProductTemp2, int* dotProductTemp3, int* dotProductTemp5, int* dotProductTemp6, const int src0Stride, const int src1Stride, const int gradStride, const int widthG, const int heightG, int bitDepth) { g_pelBufOP.calcBIOPar(srcY0Temp, srcY1Temp, gradX0, gradX1, gradY0, gradY1, dotProductTemp1, dotProductTemp2, dotProductTemp3, dotProductTemp5, dotProductTemp6, src0Stride, src1Stride, gradStride, widthG, heightG, bitDepth); } void InterPrediction::xCalcBlkGradient(int sx, int sy, int *arraysGx2, int *arraysGxGy, int *arraysGxdI, int *arraysGy2, int *arraysGydI, int &sGx2, int &sGy2, int &sGxGy, int &sGxdI, int &sGydI, int width, int height, int unitSize) { g_pelBufOP.calcBlkGradient(sx, sy, arraysGx2, arraysGxGy, arraysGxdI, arraysGy2, arraysGydI, sGx2, sGy2, sGxGy, sGxdI, sGydI, width, height, unitSize); } void InterPrediction::xWeightedAverage(const PredictionUnit& pu, const CPelUnitBuf& pcYuvSrc0, const CPelUnitBuf& pcYuvSrc1, PelUnitBuf& pcYuvDst, const BitDepths& clipBitDepths, const ClpRngs& clpRngs, const bool& bioApplied ) { const int iRefIdx0 = pu.refIdx[0]; const int iRefIdx1 = pu.refIdx[1]; if( iRefIdx0 >= 0 && iRefIdx1 >= 0 ) { if( pu.cu->GBiIdx != GBI_DEFAULT ) { CHECK(bioApplied, "GBi is disallowed with BIO"); pcYuvDst.addWeightedAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, pu.cu->GBiIdx); return; } if (bioApplied) { const int src0Stride = pu.lwidth() + 2 * BIO_EXTEND_SIZE + 2; const int src1Stride = pu.lwidth() + 2 * BIO_EXTEND_SIZE + 2; const Pel* pSrcY0 = m_filteredBlockTmp[2][COMPONENT_Y] + 2 * src0Stride + 2; const Pel* pSrcY1 = m_filteredBlockTmp[3][COMPONENT_Y] + 2 * src1Stride + 2; bool bioEnabled = xCalcBiPredSubBlkDist(pu, pSrcY0, src0Stride, pSrcY1, src1Stride, clipBitDepths); if (bioEnabled) { applyBiOptFlow(pu, pcYuvSrc0, pcYuvSrc1, iRefIdx0, iRefIdx1, pcYuvDst, clipBitDepths); } else { pcYuvDst.bufs[0].addAvg(CPelBuf(pSrcY0, src0Stride, pu.lumaSize()), CPelBuf(pSrcY1, src1Stride, pu.lumaSize()), clpRngs.comp[0]); } } #if JVET_N0146_DMVR_BDOF_CONDITION if (pu.cs->pps->getWPBiPred()) { const int iRefIdx0 = pu.refIdx[0]; const int iRefIdx1 = pu.refIdx[1]; WPScalingParam *pwp0; WPScalingParam *pwp1; getWpScaling(pu.cu->slice, iRefIdx0, iRefIdx1, pwp0, pwp1); if (!bioApplied) { addWeightBiComponent(pcYuvSrc0, pcYuvSrc1, pu.cu->slice->clpRngs(), pwp0, pwp1, pcYuvDst, true, COMPONENT_Y); } addWeightBiComponent(pcYuvSrc0, pcYuvSrc1, pu.cu->slice->clpRngs(), pwp0, pwp1, pcYuvDst, true, COMPONENT_Cb); addWeightBiComponent(pcYuvSrc0, pcYuvSrc1, pu.cu->slice->clpRngs(), pwp0, pwp1, pcYuvDst, true, COMPONENT_Cr); } else { pcYuvDst.addAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, bioApplied); } #else pcYuvDst.addAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, bioApplied); #endif } else if( iRefIdx0 >= 0 && iRefIdx1 < 0 ) { if( pu.cu->triangle ) { pcYuvDst.copyFrom( pcYuvSrc0 ); } else pcYuvDst.copyClip( pcYuvSrc0, clpRngs ); } else if( iRefIdx0 < 0 && iRefIdx1 >= 0 ) { if( pu.cu->triangle ) { pcYuvDst.copyFrom( pcYuvSrc1 ); } else pcYuvDst.copyClip( pcYuvSrc1, clpRngs ); } } void InterPrediction::motionCompensation( PredictionUnit &pu, PelUnitBuf &predBuf, const RefPicList &eRefPicList , const bool luma, const bool chroma ) { // dual tree handling for IBC as the only ref if ((!luma || !chroma) && eRefPicList == REF_PIC_LIST_0) { if (!luma && chroma) { xChromaMC(pu, predBuf); return; } else // (luma && !chroma) { xPredInterUni(pu, eRefPicList, predBuf, false , false , luma, chroma); return; } } // else, go with regular MC below CodingStructure &cs = *pu.cs; const PPS &pps = *cs.pps; const SliceType sliceType = cs.slice->getSliceType(); if( eRefPicList != REF_PIC_LIST_X ) { if( ( ( sliceType == P_SLICE && pps.getUseWP() ) || ( sliceType == B_SLICE && pps.getWPBiPred() ) ) ) { xPredInterUni ( pu, eRefPicList, predBuf, true , false , true, true ); xWeightedPredictionUni( pu, predBuf, eRefPicList, predBuf, -1, m_maxCompIDToPred ); } else { xPredInterUni( pu, eRefPicList, predBuf, false , false , true, true ); } } else { #if JVET_N0178_IMPLICIT_BDOF_SPLIT bool bioApplied = false; const Slice &slice = *pu.cs->slice; if (pu.cs->sps->getBDOFEnabledFlag()) { if (pu.cu->affine || m_subPuMC) { bioApplied = false; } else { const bool biocheck0 = !(pps.getWPBiPred() && slice.getSliceType() == B_SLICE); const bool biocheck1 = !(pps.getUseWP() && slice.getSliceType() == P_SLICE); if (biocheck0 && biocheck1 && PU::isBiPredFromDifferentDir(pu) && !(pu.Y().height == 4 || (pu.Y().width == 4 && pu.Y().height == 8)) ) { bioApplied = true; } } if (bioApplied && pu.cu->smvdMode) { bioApplied = false; } if (pu.cu->cs->sps->getUseGBi() && bioApplied && pu.cu->GBiIdx != GBI_DEFAULT) { bioApplied = false; } if (pu.mmvdEncOptMode == 2 && pu.mmvdMergeFlag) { bioApplied = false; } } bool dmvrApplied = false; dmvrApplied = (pu.mvRefine) && PU::checkDMVRCondition(pu); if ((pu.lumaSize().width > MAX_BDOF_APPLICATION_REGION || pu.lumaSize().height > MAX_BDOF_APPLICATION_REGION) && pu.mergeType != MRG_TYPE_SUBPU_ATMVP && (bioApplied && !dmvrApplied)) { xSubPuBio(pu, predBuf, eRefPicList); } else #endif if (pu.mergeType != MRG_TYPE_DEFAULT_N && pu.mergeType != MRG_TYPE_IBC) { xSubPuMC( pu, predBuf, eRefPicList ); } else if( xCheckIdenticalMotion( pu ) ) { xPredInterUni( pu, REF_PIC_LIST_0, predBuf, false , false , true, true ); } else { xPredInterBi( pu, predBuf ); } } return; } void InterPrediction::motionCompensation( CodingUnit &cu, const RefPicList &eRefPicList , const bool luma, const bool chroma ) { for( auto &pu : CU::traversePUs( cu ) ) { PelUnitBuf predBuf = cu.cs->getPredBuf( pu ); pu.mvRefine = true; motionCompensation( pu, predBuf, eRefPicList , luma, chroma ); pu.mvRefine = false; } } void InterPrediction::motionCompensation( PredictionUnit &pu, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/ , const bool luma, const bool chroma ) { PelUnitBuf predBuf = pu.cs->getPredBuf( pu ); motionCompensation( pu, predBuf, eRefPicList , luma, chroma ); } int InterPrediction::rightShiftMSB(int numer, int denom) { int d; int msbIdx = 0; for (msbIdx = 0; msbIdx<32; msbIdx++) { if (denom < ((int)1 << msbIdx)) { break; } } int shiftIdx = msbIdx - 1; d = (numer >> shiftIdx); return d; } void InterPrediction::motionCompensation4Triangle( CodingUnit &cu, MergeCtx &triangleMrgCtx, const bool splitDir, const uint8_t candIdx0, const uint8_t candIdx1 ) { for( auto &pu : CU::traversePUs( cu ) ) { const UnitArea localUnitArea( cu.cs->area.chromaFormat, Area( 0, 0, pu.lwidth(), pu.lheight() ) ); PelUnitBuf tmpTriangleBuf = m_triangleBuf.getBuf( localUnitArea ); PelUnitBuf predBuf = cu.cs->getPredBuf( pu ); triangleMrgCtx.setMergeInfo( pu, candIdx0 ); PU::spanMotionInfo( pu ); motionCompensation( pu, tmpTriangleBuf ); { if( g_mctsDecCheckEnabled && !MCTSHelper::checkMvBufferForMCTSConstraint( pu, true ) ) { printf( "DECODER_TRIANGLE_PU: pu motion vector across tile boundaries (%d,%d,%d,%d)\n", pu.lx(), pu.ly(), pu.lwidth(), pu.lheight() ); } } triangleMrgCtx.setMergeInfo( pu, candIdx1 ); PU::spanMotionInfo( pu ); motionCompensation( pu, predBuf ); { if( g_mctsDecCheckEnabled && !MCTSHelper::checkMvBufferForMCTSConstraint( pu, true ) ) { printf( "DECODER_TRIANGLE_PU: pu motion vector across tile boundaries (%d,%d,%d,%d)\n", pu.lx(), pu.ly(), pu.lwidth(), pu.lheight() ); } } weightedTriangleBlk( pu, splitDir, MAX_NUM_CHANNEL_TYPE, predBuf, tmpTriangleBuf, predBuf ); } } void InterPrediction::weightedTriangleBlk( PredictionUnit &pu, const bool splitDir, int32_t channel, PelUnitBuf& predDst, PelUnitBuf& predSrc0, PelUnitBuf& predSrc1 ) { if( channel == CHANNEL_TYPE_LUMA ) { xWeightedTriangleBlk( pu, pu.lumaSize().width, pu.lumaSize().height, COMPONENT_Y, splitDir, predDst, predSrc0, predSrc1 ); } else if( channel == CHANNEL_TYPE_CHROMA ) { xWeightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cb, splitDir, predDst, predSrc0, predSrc1 ); xWeightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cr, splitDir, predDst, predSrc0, predSrc1 ); } else { xWeightedTriangleBlk( pu, pu.lumaSize().width, pu.lumaSize().height, COMPONENT_Y, splitDir, predDst, predSrc0, predSrc1 ); xWeightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cb, splitDir, predDst, predSrc0, predSrc1 ); xWeightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cr, splitDir, predDst, predSrc0, predSrc1 ); } } void InterPrediction::xWeightedTriangleBlk( const PredictionUnit &pu, const uint32_t width, const uint32_t height, const ComponentID compIdx, const bool splitDir, PelUnitBuf& predDst, PelUnitBuf& predSrc0, PelUnitBuf& predSrc1 ) { Pel* dst = predDst .get(compIdx).buf; Pel* src0 = predSrc0.get(compIdx).buf; Pel* src1 = predSrc1.get(compIdx).buf; int32_t strideDst = predDst .get(compIdx).stride - width; int32_t strideSrc0 = predSrc0.get(compIdx).stride - width; int32_t strideSrc1 = predSrc1.get(compIdx).stride - width; const char log2WeightBase = 3; const ClpRng clipRng = pu.cu->slice->clpRngs().comp[compIdx]; const int32_t clipbd = clipRng.bd; const int32_t shiftDefault = std::max<int>(2, (IF_INTERNAL_PREC - clipbd)); const int32_t offsetDefault = (1<<(shiftDefault-1)) + IF_INTERNAL_OFFS; const int32_t shiftWeighted = std::max<int>(2, (IF_INTERNAL_PREC - clipbd)) + log2WeightBase; const int32_t offsetWeighted = (1 << (shiftWeighted - 1)) + (IF_INTERNAL_OFFS << log2WeightBase); const int32_t ratioWH = (width > height) ? (width / height) : 1; const int32_t ratioHW = (width > height) ? 1 : (height / width); #if JVET_N0671_INTRA_TPM_ALIGNWITH420 const bool longWeight = (compIdx == COMPONENT_Y); #else const bool longWeight = (compIdx == COMPONENT_Y) || ( predDst.chromaFormat == CHROMA_444 ); #endif const int32_t weightedLength = longWeight ? 7 : 3; int32_t weightedStartPos = ( splitDir == 0 ) ? ( 0 - (weightedLength >> 1) * ratioWH ) : ( width - ((weightedLength + 1) >> 1) * ratioWH ); int32_t weightedEndPos = weightedStartPos + weightedLength * ratioWH - 1; int32_t weightedPosoffset =( splitDir == 0 ) ? ratioWH : -ratioWH; Pel tmpPelWeighted; int32_t weightIdx; int32_t x, y, tmpX, tmpY, tmpWeightedStart, tmpWeightedEnd; for( y = 0; y < height; y+= ratioHW ) { for( tmpY = ratioHW; tmpY > 0; tmpY-- ) { for( x = 0; x < weightedStartPos; x++ ) { *dst++ = ClipPel( rightShift( (splitDir == 0 ? *src1 : *src0) + offsetDefault, shiftDefault), clipRng ); src0++; src1++; } tmpWeightedStart = std::max((int32_t)0, weightedStartPos); tmpWeightedEnd = std::min(weightedEndPos, (int32_t)(width - 1)); weightIdx = 1; if( weightedStartPos < 0 ) { weightIdx += abs(weightedStartPos) / ratioWH; } for( x = tmpWeightedStart; x <= tmpWeightedEnd; x+= ratioWH ) { for( tmpX = ratioWH; tmpX > 0; tmpX-- ) { tmpPelWeighted = Clip3( 1, 7, longWeight ? weightIdx : (weightIdx * 2)); tmpPelWeighted = splitDir ? ( 8 - tmpPelWeighted ) : tmpPelWeighted; *dst++ = ClipPel( rightShift( (tmpPelWeighted*(*src0++) + ((8 - tmpPelWeighted) * (*src1++)) + offsetWeighted), shiftWeighted ), clipRng ); } weightIdx ++; } for( x = weightedEndPos + 1; x < width; x++ ) { *dst++ = ClipPel( rightShift( (splitDir == 0 ? *src0 : *src1) + offsetDefault, shiftDefault ), clipRng ); src0++; src1++; } dst += strideDst; src0 += strideSrc0; src1 += strideSrc1; } weightedStartPos += weightedPosoffset; weightedEndPos += weightedPosoffset; } } void InterPrediction::xPrefetchPad(PredictionUnit& pu, PelUnitBuf &pcPad, RefPicList refId) { int offset, width, height; int padsize; Mv cMv; const Picture* refPic = pu.cu->slice->getRefPic(refId, pu.refIdx[refId]); int mvShift = (MV_FRACTIONAL_BITS_INTERNAL); for (int compID = 0; compID < MAX_NUM_COMPONENT; compID++) { cMv = Mv(pu.mv[refId].getHor(), pu.mv[refId].getVer()); pcPad.bufs[compID].stride = (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA); int filtersize = (compID == (COMPONENT_Y)) ? NTAPS_LUMA : NTAPS_CHROMA; width = pcPad.bufs[compID].width; height = pcPad.bufs[compID].height; offset = (DMVR_NUM_ITERATION) * (pcPad.bufs[compID].stride + 1); padsize = (DMVR_NUM_ITERATION) >> getComponentScaleX((ComponentID)compID, pu.chromaFormat); int mvshiftTemp = mvShift + getComponentScaleX((ComponentID)compID, pu.chromaFormat); width += (filtersize - 1); height += (filtersize - 1); cMv += Mv(-(((filtersize >> 1) - 1) << mvshiftTemp), -(((filtersize >> 1) - 1) << mvshiftTemp)); clipMv(cMv, pu.lumaPos(), pu.lumaSize(),*pu.cs->sps); /* Pre-fetch similar to HEVC*/ { CPelBuf refBuf; Position Rec_offset = pu.blocks[compID].pos().offset(cMv.getHor() >> mvshiftTemp, cMv.getVer() >> mvshiftTemp); refBuf = refPic->getRecoBuf(CompArea((ComponentID)compID, pu.chromaFormat, Rec_offset, pu.blocks[compID].size())); PelBuf &dstBuf = pcPad.bufs[compID]; g_pelBufOP.copyBuffer((Pel *)refBuf.buf, refBuf.stride, ((Pel *)dstBuf.buf) + offset, dstBuf.stride, width, height); } /*padding on all side of size DMVR_PAD_LENGTH*/ { g_pelBufOP.padding(pcPad.bufs[compID].buf + offset, pcPad.bufs[compID].stride, width, height, padsize); } } } inline int32_t div_for_maxq7(int64_t N, int64_t D) { int32_t sign, q; sign = 0; if (N < 0) { sign = 1; N = -N; } q = 0; D = (D << 3); if (N >= D) { N -= D; q++; } q = (q << 1); D = (D >> 1); if (N >= D) { N -= D; q++; } q = (q << 1); if (N >= (D >> 1)) q++; if (sign) return (-q); return(q); } void xSubPelErrorSrfc(uint64_t *sadBuffer, int32_t *deltaMv) { int64_t numerator, denominator; int32_t mvDeltaSubPel; int32_t mvSubPelLvl = 4;/*1: half pel, 2: Qpel, 3:1/8, 4: 1/16*/ /*horizontal*/ numerator = (int64_t)((sadBuffer[1] - sadBuffer[3]) << mvSubPelLvl); denominator = (int64_t)((sadBuffer[1] + sadBuffer[3] - (sadBuffer[0] << 1))); if (0 != denominator) { if ((sadBuffer[1] != sadBuffer[0]) && (sadBuffer[3] != sadBuffer[0])) { mvDeltaSubPel = div_for_maxq7(numerator, denominator); deltaMv[0] = (mvDeltaSubPel); } else { if (sadBuffer[1] == sadBuffer[0]) { deltaMv[0] = -8;// half pel } else { deltaMv[0] = 8;// half pel } } } /*vertical*/ numerator = (int64_t)((sadBuffer[2] - sadBuffer[4]) << mvSubPelLvl); denominator = (int64_t)((sadBuffer[2] + sadBuffer[4] - (sadBuffer[0] << 1))); if (0 != denominator) { if ((sadBuffer[2] != sadBuffer[0]) && (sadBuffer[4] != sadBuffer[0])) { mvDeltaSubPel = div_for_maxq7(numerator, denominator); deltaMv[1] = (mvDeltaSubPel); } else { if (sadBuffer[2] == sadBuffer[0]) { deltaMv[1] = -8;// half pel } else { deltaMv[1] = 8;// half pel } } } return; } void InterPrediction::xBIPMVRefine(int bd, Pel *pRefL0, Pel *pRefL1, uint64_t& minCost, int16_t *deltaMV, uint64_t *pSADsArray, int width, int height) { const int32_t refStrideL0 = m_biLinearBufStride; const int32_t refStrideL1 = m_biLinearBufStride; Pel *pRefL0Orig = pRefL0; Pel *pRefL1Orig = pRefL1; for (int nIdx = 0; (nIdx < 25); ++nIdx) { int32_t sadOffset = ((m_pSearchOffset[nIdx].getVer() * ((2 * DMVR_NUM_ITERATION) + 1)) + m_pSearchOffset[nIdx].getHor()); pRefL0 = pRefL0Orig + m_pSearchOffset[nIdx].hor + (m_pSearchOffset[nIdx].ver * refStrideL0); pRefL1 = pRefL1Orig - m_pSearchOffset[nIdx].hor - (m_pSearchOffset[nIdx].ver * refStrideL1); if (*(pSADsArray + sadOffset) == MAX_UINT64) { const uint64_t cost = xDMVRCost(bd, pRefL0, refStrideL0, pRefL1, refStrideL1, width, height); *(pSADsArray + sadOffset) = cost; } if (*(pSADsArray + sadOffset) < minCost) { minCost = *(pSADsArray + sadOffset); deltaMV[0] = m_pSearchOffset[nIdx].getHor(); deltaMV[1] = m_pSearchOffset[nIdx].getVer(); } } } void InterPrediction::xFinalPaddedMCForDMVR(PredictionUnit& pu, PelUnitBuf &pcYuvSrc0, PelUnitBuf &pcYuvSrc1, PelUnitBuf &pcPad0, PelUnitBuf &pcPad1, const bool bioApplied , const Mv mergeMV[NUM_REF_PIC_LIST_01] ) { int offset, deltaIntMvX, deltaIntMvY; PelUnitBuf pcYUVTemp = pcYuvSrc0; PelUnitBuf pcPadTemp = pcPad0; /*always high precision MVs are used*/ int mvShift = MV_FRACTIONAL_BITS_INTERNAL; for (int k = 0; k < NUM_REF_PIC_LIST_01; k++) { RefPicList refId = (RefPicList)k; Mv cMv = pu.mv[refId]; m_iRefListIdx = refId; const Picture* refPic = pu.cu->slice->getRefPic(refId, pu.refIdx[refId]); Mv cMvClipped = cMv; clipMv(cMvClipped, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps); Mv startMv = mergeMV[refId]; if( g_mctsDecCheckEnabled && !MCTSHelper::checkMvForMCTSConstraint( pu, startMv, MV_PRECISION_INTERNAL ) ) { const Area& tileArea = pu.cs->picture->mctsInfo.getTileArea(); printf( "Attempt an access over tile boundary at block %d,%d %d,%d with MV %d,%d (in Tile TL: %d,%d BR: %d,%d)\n", pu.lx(), pu.ly(), pu.lwidth(), pu.lheight(), startMv.getHor(), startMv.getVer(), tileArea.topLeft().x, tileArea.topLeft().y, tileArea.bottomRight().x, tileArea.bottomRight().y ); THROW( "MCTS constraint failed!" ); } for (int compID = 0; compID < MAX_NUM_COMPONENT; compID++) { int mvshiftTemp = mvShift + getComponentScaleX((ComponentID)compID, pu.chromaFormat); int leftPixelExtra; if (compID == COMPONENT_Y) { leftPixelExtra = (NTAPS_LUMA >> 1) - 1; } else { leftPixelExtra = (NTAPS_CHROMA >> 1) - 1; } deltaIntMvX = (cMv.getHor() >> mvshiftTemp) - (startMv.getHor() >> mvshiftTemp); deltaIntMvY = (cMv.getVer() >> mvshiftTemp) - (startMv.getVer() >> mvshiftTemp); CHECK((abs(deltaIntMvX) > DMVR_NUM_ITERATION) || (abs(deltaIntMvY) > DMVR_NUM_ITERATION), "not expected DMVR movement"); offset = (DMVR_NUM_ITERATION + leftPixelExtra) * (pcPadTemp.bufs[compID].stride + 1); offset += (deltaIntMvY)* pcPadTemp.bufs[compID].stride; offset += (deltaIntMvX); PelBuf &srcBuf = pcPadTemp.bufs[compID]; xPredInterBlk((ComponentID)compID, pu, refPic, cMvClipped, pcYUVTemp, true, pu.cs->slice->getClpRngs().comp[compID], bioApplied, false, 0, 0, 0, (srcBuf.buf + offset), pcPadTemp.bufs[compID].stride); } pcYUVTemp = pcYuvSrc1; pcPadTemp = pcPad1; } } uint64_t InterPrediction::xDMVRCost(int bitDepth, Pel* pOrg, uint32_t refStride, const Pel* pRef, uint32_t orgStride, int width, int height) { DistParam cDistParam; cDistParam.applyWeight = false; cDistParam.useMR = false; m_pcRdCost->setDistParam(cDistParam, pOrg, pRef, orgStride, refStride, bitDepth, COMPONENT_Y, width, height, 1); uint64_t uiCost = cDistParam.distFunc(cDistParam); return uiCost; } void xDMVRSubPixelErrorSurface(bool notZeroCost, int16_t *totalDeltaMV, int16_t *deltaMV, uint64_t *pSADsArray) { int sadStride = (((2 * DMVR_NUM_ITERATION) + 1)); uint64_t sadbuffer[5]; if (notZeroCost && (abs(totalDeltaMV[0]) != (2 << MV_FRACTIONAL_BITS_INTERNAL)) && (abs(totalDeltaMV[1]) != (2 << MV_FRACTIONAL_BITS_INTERNAL))) { int32_t tempDeltaMv[2] = { 0,0 }; sadbuffer[0] = pSADsArray[0]; sadbuffer[1] = pSADsArray[-1]; sadbuffer[2] = pSADsArray[-sadStride]; sadbuffer[3] = pSADsArray[1]; sadbuffer[4] = pSADsArray[sadStride]; xSubPelErrorSrfc(sadbuffer, tempDeltaMv); totalDeltaMV[0] += tempDeltaMv[0]; totalDeltaMV[1] += tempDeltaMv[1]; } } void InterPrediction::xinitMC(PredictionUnit& pu, const ClpRngs &clpRngs) { const int refIdx0 = pu.refIdx[0]; const int refIdx1 = pu.refIdx[1]; /*use merge MV as starting MV*/ Mv mergeMVL0(pu.mv[REF_PIC_LIST_0]); Mv mergeMVL1(pu.mv[REF_PIC_LIST_1]); /*Clip the starting MVs*/ clipMv(mergeMVL0, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps); clipMv(mergeMVL1, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps); /*L0 MC for refinement*/ { int offset; int leftPixelExtra = (NTAPS_LUMA >> 1) - 1; offset = (DMVR_NUM_ITERATION + leftPixelExtra) * (m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y].stride + 1); offset += (-(int)DMVR_NUM_ITERATION)* (int)m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y].stride; offset += (-(int)DMVR_NUM_ITERATION); PelBuf srcBuf = m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y]; PelUnitBuf yuvPredTempL0 = PelUnitBuf(pu.chromaFormat, PelBuf(m_cYuvPredTempDMVRL0, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)), pu.lwidth() + (2 * DMVR_NUM_ITERATION), pu.lheight() + (2 * DMVR_NUM_ITERATION))); xPredInterBlk(COMPONENT_Y, pu, pu.cu->slice->getRefPic(REF_PIC_LIST_0, refIdx0), mergeMVL0, yuvPredTempL0, true, clpRngs.comp[COMPONENT_Y], false, false, pu.lwidth() + (2 * DMVR_NUM_ITERATION), pu.lheight() + (2 * DMVR_NUM_ITERATION), true, ((Pel *)srcBuf.buf) + offset, srcBuf.stride ); } /*L1 MC for refinement*/ { int offset; int leftPixelExtra = (NTAPS_LUMA >> 1) - 1; offset = (DMVR_NUM_ITERATION + leftPixelExtra) * (m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y].stride + 1); offset += (-(int)DMVR_NUM_ITERATION)* (int)m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y].stride; offset += (-(int)DMVR_NUM_ITERATION); PelBuf srcBuf = m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y]; PelUnitBuf yuvPredTempL1 = PelUnitBuf(pu.chromaFormat, PelBuf(m_cYuvPredTempDMVRL1, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)), pu.lwidth() + (2 * DMVR_NUM_ITERATION), pu.lheight() + (2 * DMVR_NUM_ITERATION))); xPredInterBlk(COMPONENT_Y, pu, pu.cu->slice->getRefPic(REF_PIC_LIST_1, refIdx1), mergeMVL1, yuvPredTempL1, true, clpRngs.comp[COMPONENT_Y], false, false, pu.lwidth() + (2 * DMVR_NUM_ITERATION), pu.lheight() + (2 * DMVR_NUM_ITERATION), true, ((Pel *)srcBuf.buf) + offset, srcBuf.stride ); } } void InterPrediction::xProcessDMVR(PredictionUnit& pu, PelUnitBuf &pcYuvDst, const ClpRngs &clpRngs, const bool bioApplied) { int iterationCount = 1; /*Always High Precision*/ int mvShift = MV_FRACTIONAL_BITS_INTERNAL; /*use merge MV as starting MV*/ Mv mergeMv[] = { pu.mv[REF_PIC_LIST_0] , pu.mv[REF_PIC_LIST_1] }; m_biLinearBufStride = (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)); int dy = std::min<int>(pu.lumaSize().height, DMVR_SUBCU_HEIGHT); int dx = std::min<int>(pu.lumaSize().width, DMVR_SUBCU_WIDTH); /*L0 Padding*/ m_cYuvRefBuffDMVRL0 = (pu.chromaFormat == CHROMA_400 ? PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL0[0], pcYuvDst.Y())) : PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL0[0], pcYuvDst.Y()), PelBuf(m_cRefSamplesDMVRL0[1], pcYuvDst.Cb()), PelBuf(m_cRefSamplesDMVRL0[2], pcYuvDst.Cr()))); xPrefetchPad(pu, m_cYuvRefBuffDMVRL0, REF_PIC_LIST_0); /*L1 Padding*/ m_cYuvRefBuffDMVRL1 = (pu.chromaFormat == CHROMA_400 ? PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL1[0], pcYuvDst.Y())) : PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL1[0], pcYuvDst.Y()), PelBuf(m_cRefSamplesDMVRL1[1], pcYuvDst.Cb()), PelBuf(m_cRefSamplesDMVRL1[2], pcYuvDst.Cr()))); xPrefetchPad(pu, m_cYuvRefBuffDMVRL1, REF_PIC_LIST_1); xinitMC(pu, clpRngs); // point mc buffer to cetre point to avoid multiplication to reach each iteration to the begining Pel *biLinearPredL0 = m_cYuvPredTempDMVRL0 + (DMVR_NUM_ITERATION * m_biLinearBufStride) + DMVR_NUM_ITERATION; Pel *biLinearPredL1 = m_cYuvPredTempDMVRL1 + (DMVR_NUM_ITERATION * m_biLinearBufStride) + DMVR_NUM_ITERATION; Position puPos = pu.lumaPos(); int bd = pu.cs->slice->getClpRngs().comp[COMPONENT_Y].bd; { int num = 0; int yStart = 0; for (int y = puPos.y; y < (puPos.y + pu.lumaSize().height); y = y + dy, yStart = yStart + dy) { for (int x = puPos.x, xStart = 0; x < (puPos.x + pu.lumaSize().width); x = x + dx, xStart = xStart + dx) { uint64_t minCost = MAX_UINT64; bool notZeroCost = true; int16_t totalDeltaMV[2] = { 0,0 }; int16_t deltaMV[2] = { 0, 0 }; uint64_t *pSADsArray; for (int i = 0; i < (((2 * DMVR_NUM_ITERATION) + 1) * ((2 * DMVR_NUM_ITERATION) + 1)); i++) { m_SADsArray[i] = MAX_UINT64; } pSADsArray = &m_SADsArray[(((2 * DMVR_NUM_ITERATION) + 1) * ((2 * DMVR_NUM_ITERATION) + 1)) >> 1]; Pel *addrL0Centre = biLinearPredL0 + yStart * m_biLinearBufStride + xStart; Pel *addrL1Centre = biLinearPredL1 + yStart * m_biLinearBufStride + xStart; for (int i = 0; i < iterationCount; i++) { deltaMV[0] = 0; deltaMV[1] = 0; Pel *addrL0 = addrL0Centre + totalDeltaMV[0] + (totalDeltaMV[1] * m_biLinearBufStride); Pel *addrL1 = addrL1Centre - totalDeltaMV[0] - (totalDeltaMV[1] * m_biLinearBufStride); if (i == 0) { minCost = xDMVRCost(clpRngs.comp[COMPONENT_Y].bd, addrL0, m_biLinearBufStride, addrL1, m_biLinearBufStride, dx, dy); if (minCost < ((4 * dx * (dy >> 1/*for alternate line*/)))) { notZeroCost = false; break; } pSADsArray[0] = minCost; } if (!minCost) { notZeroCost = false; break; } xBIPMVRefine(bd, addrL0, addrL1, minCost, deltaMV, pSADsArray, dx, dy); if (deltaMV[0] == 0 && deltaMV[1] == 0) { break; } totalDeltaMV[0] += deltaMV[0]; totalDeltaMV[1] += deltaMV[1]; pSADsArray += ((deltaMV[1] * (((2 * DMVR_NUM_ITERATION) + 1))) + deltaMV[0]); } totalDeltaMV[0] = (totalDeltaMV[0] << mvShift); totalDeltaMV[1] = (totalDeltaMV[1] << mvShift); xDMVRSubPixelErrorSurface(notZeroCost, totalDeltaMV, deltaMV, pSADsArray); pu.mvdL0SubPu[num] = Mv(totalDeltaMV[0], totalDeltaMV[1]); num++; } } } { PredictionUnit subPu = pu; subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(puPos.x, puPos.y, dx, dy))); PelUnitBuf m_cYuvRefBuffSubCuDMVRL0; PelUnitBuf m_cYuvRefBuffSubCuDMVRL1; PelUnitBuf srcPred0 = (pu.chromaFormat == CHROMA_400 ? PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvDst.Y())) : PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvDst.Y()), PelBuf(m_acYuvPred[0][1], pcYuvDst.Cb()), PelBuf(m_acYuvPred[0][2], pcYuvDst.Cr()))); PelUnitBuf srcPred1 = (pu.chromaFormat == CHROMA_400 ? PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvDst.Y())) : PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvDst.Y()), PelBuf(m_acYuvPred[1][1], pcYuvDst.Cb()), PelBuf(m_acYuvPred[1][2], pcYuvDst.Cr()))); srcPred0 = srcPred0.subBuf(UnitAreaRelative(pu, subPu)); srcPred1 = srcPred1.subBuf(UnitAreaRelative(pu, subPu)); PelUnitBuf subPredBuf = pcYuvDst.subBuf(UnitAreaRelative(pu, subPu)); int x = 0, y = 0; int xStart = 0, yStart = 0; int num = 0; int dstStride[MAX_NUM_COMPONENT] = { pcYuvDst.bufs[COMPONENT_Y].stride, pcYuvDst.bufs[COMPONENT_Cb].stride, pcYuvDst.bufs[COMPONENT_Cr].stride }; for (y = puPos.y; y < (puPos.y + pu.lumaSize().height); y = y + dy, yStart = yStart + dy) { for (x = puPos.x, xStart = 0; x < (puPos.x + pu.lumaSize().width); x = x + dx, xStart = xStart + dx) { subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy))); subPu.mv[0] = mergeMv[REF_PIC_LIST_0] + pu.mvdL0SubPu[num]; subPu.mv[1] = mergeMv[REF_PIC_LIST_1] - pu.mvdL0SubPu[num]; #if JVET_N0334_MVCLIPPING subPu.mv[0].clipToStorageBitDepth(); subPu.mv[1].clipToStorageBitDepth(); #endif m_cYuvRefBuffSubCuDMVRL0 = m_cYuvRefBuffDMVRL0.subBuf(UnitAreaRelative(pu, subPu)); m_cYuvRefBuffSubCuDMVRL1 = m_cYuvRefBuffDMVRL1.subBuf(UnitAreaRelative(pu, subPu)); xFinalPaddedMCForDMVR(subPu, srcPred0, srcPred1, m_cYuvRefBuffSubCuDMVRL0, m_cYuvRefBuffSubCuDMVRL1, bioApplied, mergeMv); subPredBuf.bufs[COMPONENT_Y].buf = pcYuvDst.bufs[COMPONENT_Y].buf + xStart + yStart * dstStride[COMPONENT_Y]; #if !JVET_N0671_DMVR subPredBuf.bufs[COMPONENT_Cb].buf = pcYuvDst.bufs[COMPONENT_Cb].buf + (xStart >> 1) + ((yStart >> 1) * dstStride[COMPONENT_Cb]); subPredBuf.bufs[COMPONENT_Cr].buf = pcYuvDst.bufs[COMPONENT_Cr].buf + (xStart >> 1) + ((yStart >> 1) * dstStride[COMPONENT_Cr]); #else int scaleX = getComponentScaleX(COMPONENT_Cb, pu.chromaFormat); int scaleY = getComponentScaleY(COMPONENT_Cb, pu.chromaFormat); subPredBuf.bufs[COMPONENT_Cb].buf = pcYuvDst.bufs[COMPONENT_Cb].buf + (xStart >> scaleX) + ((yStart >> scaleY) * dstStride[COMPONENT_Cb]); scaleX = getComponentScaleX(COMPONENT_Cr, pu.chromaFormat); scaleY = getComponentScaleY(COMPONENT_Cr, pu.chromaFormat); subPredBuf.bufs[COMPONENT_Cr].buf = pcYuvDst.bufs[COMPONENT_Cr].buf + (xStart >> scaleX) + ((yStart >> scaleY) * dstStride[COMPONENT_Cr]); #endif // !JVET_N0671_DMVR xWeightedAverage(subPu, srcPred0, srcPred1, subPredBuf, subPu.cu->slice->getSPS()->getBitDepths(), subPu.cu->slice->clpRngs(), bioApplied); num++; } } } } #if JVET_J0090_MEMORY_BANDWITH_MEASURE void InterPrediction::cacheAssign( CacheModel *cache ) { m_cacheModel = cache; m_if.cacheAssign( cache ); m_if.initInterpolationFilter( !cache->isCacheEnable() ); } #endif //! \}