/* The copyright in this software is being made available under the BSD
 * License, included below. This software may be subject to other third party
 * and contributor rights, including patent rights, and no such rights are
 * granted under this license.
 *
 * Copyright (c) 2010-2019, ITU/ISO/IEC
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
 *    be used to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/** \file     EncLib.cpp
    \brief    encoder class
*/

#include "EncLib.h"

#include "EncModeCtrl.h"
#include "AQp.h"
#include "EncCu.h"

#include "CommonLib/Picture.h"
#include "CommonLib/CommonDef.h"
#include "CommonLib/ChromaFormat.h"
#if ENABLE_SPLIT_PARALLELISM
#include <omp.h>
#endif

//! \ingroup EncoderLib
//! \{

// ====================================================================================================================
// Constructor / destructor / create / destroy
// ====================================================================================================================



EncLib::EncLib()
  : m_spsMap( MAX_NUM_SPS )
  , m_ppsMap( MAX_NUM_PPS )
  , m_apsMap(MAX_NUM_APS * MAX_NUM_APS_TYPE)
  , m_AUWriterIf( nullptr )
#if JVET_J0090_MEMORY_BANDWITH_MEASURE
  , m_cacheModel()
#endif
  , m_lmcsAPS(nullptr)
  , m_scalinglistAPS( nullptr )
  , m_doPlt( true )
{
  m_iPOCLast          = -1;
  m_iNumPicRcvd       =  0;
  m_uiNumAllPicCoded  =  0;

  m_iMaxRefPicNum     = 0;

#if ENABLE_SIMD_OPT_BUFFER
  g_pelBufOP.initPelBufOpsX86();
#endif

#if JVET_O0756_CALCULATE_HDRMETRICS
  m_metricTime = std::chrono::milliseconds(0);
#endif

  memset(m_apss, 0, sizeof(m_apss));
}

EncLib::~EncLib()
{
}

void EncLib::create ()
{
  // initialize global variables
  initROM();
  TComHash::initBlockSizeToIndex();
  m_iPOCLast = m_compositeRefEnabled ? -2 : -1;
  // create processing unit classes
  m_cGOPEncoder.        create( );
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
#if ENABLE_SPLIT_PARALLELISM
  m_numCuEncStacks  = m_numSplitThreads == 1 ? 1 : NUM_RESERVERD_SPLIT_JOBS;
#else
  m_numCuEncStacks  = 1;
#endif
#if ENABLE_WPP_PARALLELISM
  m_numCuEncStacks *= ( m_numWppThreads + m_numWppExtraLines );
#endif

  m_cCuEncoder      = new EncCu              [m_numCuEncStacks];
  m_cInterSearch    = new InterSearch        [m_numCuEncStacks];
  m_cIntraSearch    = new IntraSearch        [m_numCuEncStacks];
  m_cTrQuant        = new TrQuant            [m_numCuEncStacks];
  m_CABACEncoder    = new CABACEncoder       [m_numCuEncStacks];
  m_cRdCost         = new RdCost             [m_numCuEncStacks];
  m_CtxCache        = new CtxCache           [m_numCuEncStacks];

  for( int jId = 0; jId < m_numCuEncStacks; jId++ )
  {
    m_cCuEncoder[jId].         create( this );
  }
#else
  m_cCuEncoder.         create( this );
#endif
#if JVET_J0090_MEMORY_BANDWITH_MEASURE
  m_cInterSearch.cacheAssign( &m_cacheModel );
#endif

  m_cLoopFilter.create( m_maxTotalCUDepth );

#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
  m_cReshaper = new EncReshape[m_numCuEncStacks];
#endif
  if (m_lumaReshapeEnable)
  {
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
    for (int jId = 0; jId < m_numCuEncStacks; jId++)
    {
      m_cReshaper[jId].createEnc(getSourceWidth(), getSourceHeight(), m_maxCUWidth, m_maxCUHeight, m_bitDepth[COMPONENT_Y]);
    }
#else
    m_cReshaper.createEnc( getSourceWidth(), getSourceHeight(), m_maxCUWidth, m_maxCUHeight, m_bitDepth[COMPONENT_Y]);
#endif
  }
  if ( m_RCEnableRateControl )
  {
    m_cRateCtrl.init(m_framesToBeEncoded, m_RCTargetBitrate, (int)((double)m_iFrameRate / m_temporalSubsampleRatio + 0.5), m_iGOPSize, m_iSourceWidth, m_iSourceHeight,
      m_maxCUWidth, m_maxCUHeight, getBitDepth(CHANNEL_TYPE_LUMA), m_RCKeepHierarchicalBit, m_RCUseLCUSeparateModel, m_GOPList);
  }

}

void EncLib::destroy ()
{
  // destroy processing unit classes
  m_cGOPEncoder.        destroy();
  m_cSliceEncoder.      destroy();
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
  for( int jId = 0; jId < m_numCuEncStacks; jId++ )
  {
    m_cCuEncoder[jId].destroy();
  }
#else
  m_cCuEncoder.         destroy();
#endif
  if( m_alf )
  {
    m_cEncALF.destroy();
  }
  m_cEncSAO.            destroyEncData();
  m_cEncSAO.            destroy();
  m_cLoopFilter.        destroy();
  m_cRateCtrl.          destroy();
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
  for (int jId = 0; jId < m_numCuEncStacks; jId++)
  {
    m_cReshaper[jId].   destroy();
  }
#else
  m_cReshaper.          destroy();
#endif
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
  for( int jId = 0; jId < m_numCuEncStacks; jId++ )
  {
    m_cInterSearch[jId].   destroy();
    m_cIntraSearch[jId].   destroy();
  }
#else
  m_cInterSearch.       destroy();
  m_cIntraSearch.       destroy();
#endif

#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
  delete[] m_cCuEncoder;
  delete[] m_cInterSearch;
  delete[] m_cIntraSearch;
  delete[] m_cTrQuant;
  delete[] m_CABACEncoder;
  delete[] m_cRdCost;
  delete[] m_CtxCache;
#endif




  // destroy ROM
  destroyROM();
  return;
}

void EncLib::init( bool isFieldCoding, AUWriterIf* auWriterIf )
{
  m_AUWriterIf = auWriterIf;

  SPS &sps0=*(m_spsMap.allocatePS(0)); // NOTE: implementations that use more than 1 SPS need to be aware of activation issues.
  PPS &pps0=*(m_ppsMap.allocatePS(0));
  APS &aps0 = *( m_apsMap.allocatePS( SCALING_LIST_APS ) );
  aps0.setAPSId( 0 );
  aps0.setAPSType( SCALING_LIST_APS );

  // initialize SPS
  xInitSPS(sps0);
  xInitVPS(m_cVPS);

  int dpsId = getDecodingParameterSetEnabled() ? 1 : 0;
  xInitDPS(m_dps, sps0, dpsId);
  sps0.setDecodingParameterSetId(m_dps.getDecodingParameterSetId());

#if ENABLE_SPLIT_PARALLELISM
  if( omp_get_dynamic() )
  {
    omp_set_dynamic( false );
  }
  omp_set_nested( true );
#endif

  if (getUseCompositeRef() || getDependentRAPIndicationSEIEnabled())
  {
    sps0.setLongTermRefsPresent(true);
  }

#if U0132_TARGET_BITS_SATURATION
  if (m_RCCpbSaturationEnabled)
  {
    m_cRateCtrl.initHrdParam(sps0.getHrdParameters(), m_iFrameRate, m_RCInitialCpbFullness);
  }
#endif
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
  for( int jId = 0; jId < m_numCuEncStacks; jId++ )
  {
    m_cRdCost[jId].setCostMode ( m_costMode );
  }
#else
  m_cRdCost.setCostMode ( m_costMode );
#endif

  // initialize PPS
  pps0.setPicWidthInLumaSamples( m_iSourceWidth );
  pps0.setPicHeightInLumaSamples( m_iSourceHeight );
  pps0.setConformanceWindow( m_conformanceWindow );
  xInitPPS(pps0, sps0);
  // initialize APS
  xInitRPL(sps0, isFieldCoding);

  if( m_rprEnabled )
  {
    PPS &pps = *( m_ppsMap.allocatePS( ENC_PPS_ID_RPR ) );
    Window& inputConfWindow = pps0.getConformanceWindow();
    int scaledWidth = int((pps0.getPicWidthInLumaSamples() - (inputConfWindow.getWindowLeftOffset() + inputConfWindow.getWindowRightOffset()) * SPS::getWinUnitX(sps0.getChromaFormatIdc())) / m_scalingRatioHor);
    int minSizeUnit = std::max(8, (int)(sps0.getMaxCUHeight() >> (sps0.getMaxCodingDepth() - 1)));
    int temp = scaledWidth / minSizeUnit;
    int width = ( scaledWidth - ( temp * minSizeUnit) > 0 ? temp + 1 : temp ) * minSizeUnit;

    int scaledHeight = int((pps0.getPicHeightInLumaSamples() - (inputConfWindow.getWindowTopOffset() + inputConfWindow.getWindowBottomOffset()) * SPS::getWinUnitY(sps0.getChromaFormatIdc())) / m_scalingRatioVer);
    temp = scaledHeight / minSizeUnit;
    int height = ( scaledHeight - ( temp * minSizeUnit) > 0 ? temp + 1 : temp ) * minSizeUnit;

    pps.setPicWidthInLumaSamples( width );
    pps.setPicHeightInLumaSamples( height );

    Window conformanceWindow;

    conformanceWindow.setWindow( 0, ( width - scaledWidth ) / SPS::getWinUnitX( sps0.getChromaFormatIdc() ), 0, ( height - scaledHeight ) / SPS::getWinUnitY( sps0.getChromaFormatIdc() ) );

    pps.setConformanceWindow( conformanceWindow );

    xInitPPS( pps, sps0 ); // will allocate memory for and initialize pps.pcv inside
  }

#if ER_CHROMA_QP_WCG_PPS
  if (m_wcgChromaQpControl.isEnabled())
  {
    PPS &pps1=*(m_ppsMap.allocatePS(1));
    xInitPPS(pps1, sps0);
  }
#endif
  if (getUseCompositeRef())
  {
    PPS &pps2 = *(m_ppsMap.allocatePS(2));
    xInitPPS(pps2, sps0);
    xInitPPSforLT(pps2);
  }

  // initialize processing unit classes
  m_cGOPEncoder.  init( this );
  m_cSliceEncoder.init( this, sps0 );
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
  for( int jId = 0; jId < m_numCuEncStacks; jId++ )
  {
    // precache a few objects
    for( int i = 0; i < 10; i++ )
    {
      auto x = m_CtxCache[jId].get();
      m_CtxCache[jId].cache( x );
    }

    m_cCuEncoder[jId].init( this, sps0, jId );

    // initialize transform & quantization class
    m_cTrQuant[jId].init( jId == 0 ? nullptr : m_cTrQuant[0].getQuant(),
                          1 << m_log2MaxTbSize,

                          m_useRDOQ,
                          m_useRDOQTS,
#if T0196_SELECTIVE_RDOQ
                          m_useSelectiveRDOQ,
#endif
                          true
    );

    // initialize encoder search class
    CABACWriter* cabacEstimator = m_CABACEncoder[jId].getCABACEstimator( &sps0 );
    m_cIntraSearch[jId].init( this,
                              &m_cTrQuant[jId],
                              &m_cRdCost[jId],
                              cabacEstimator,
                              getCtxCache( jId ), m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth
                            , &m_cReshaper[jId]
    );
    m_cInterSearch[jId].init( this,
                              &m_cTrQuant[jId],
                              m_iSearchRange,
                              m_bipredSearchRange,
                              m_motionEstimationSearchMethod,
                              getUseCompositeRef(),
                              m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth, &m_cRdCost[jId], cabacEstimator, getCtxCache( jId )
                           , &m_cReshaper[jId]
    );

    // link temporary buffets from intra search with inter search to avoid unnecessary memory overhead
    m_cInterSearch[jId].setTempBuffers( m_cIntraSearch[jId].getSplitCSBuf(), m_cIntraSearch[jId].getFullCSBuf(), m_cIntraSearch[jId].getSaveCSBuf() );
  }
#else  // ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
  m_cCuEncoder.   init( this, sps0 );

  // initialize transform & quantization class
  m_cTrQuant.init( nullptr,
                   1 << m_log2MaxTbSize,
                   m_useRDOQ,
                   m_useRDOQTS,
#if T0196_SELECTIVE_RDOQ
                   m_useSelectiveRDOQ,
#endif
                   true
  );

  // initialize encoder search class
  CABACWriter* cabacEstimator = m_CABACEncoder.getCABACEstimator(&sps0);
  m_cIntraSearch.init( this,
                       &m_cTrQuant,
                       &m_cRdCost,
                       cabacEstimator,
                       getCtxCache(), m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth
                     , &m_cReshaper
  );
  m_cInterSearch.init( this,
                       &m_cTrQuant,
                       m_iSearchRange,
                       m_bipredSearchRange,
                       m_motionEstimationSearchMethod,
                       getUseCompositeRef(),
    m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth, &m_cRdCost, cabacEstimator, getCtxCache()
                     , &m_cReshaper
  );

  // link temporary buffets from intra search with inter search to avoid unneccessary memory overhead
  m_cInterSearch.setTempBuffers( m_cIntraSearch.getSplitCSBuf(), m_cIntraSearch.getFullCSBuf(), m_cIntraSearch.getSaveCSBuf() );
#endif // ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM

  m_iMaxRefPicNum = 0;

#if ER_CHROMA_QP_WCG_PPS
  if( m_wcgChromaQpControl.isEnabled() )
  {
    xInitScalingLists( sps0, *m_apsMap.getPS( 1 ) );
    xInitScalingLists( sps0, aps0 );
  }
  else
#endif
  {
    xInitScalingLists( sps0, aps0 );
  }
  if( m_rprEnabled )
  {
    xInitScalingLists( sps0, *m_apsMap.getPS( ENC_PPS_ID_RPR ) );
  }
#if ENABLE_WPP_PARALLELISM
  m_entropyCodingSyncContextStateVec.resize( pps0.pcv->heightInCtus );
#endif
  if (getUseCompositeRef())
  {
    Picture *picBg = new Picture;
    picBg->create( sps0.getChromaFormatIdc(), Size( pps0.getPicWidthInLumaSamples(), pps0.getPicHeightInLumaSamples() ), sps0.getMaxCUWidth(), sps0.getMaxCUWidth() + 16, false );
    picBg->getRecoBuf().fill(0);
    picBg->finalInit( sps0, pps0, m_apss, m_lmcsAPS, m_scalinglistAPS );
    pps0.setNumBricksInPic((int)picBg->brickMap->bricks.size());
    picBg->allocateNewSlice();
    picBg->createSpliceIdx(pps0.pcv->sizeInCtus);
    m_cGOPEncoder.setPicBg(picBg);
    Picture *picOrig = new Picture;
    picOrig->create( sps0.getChromaFormatIdc(), Size( pps0.getPicWidthInLumaSamples(), pps0.getPicHeightInLumaSamples() ), sps0.getMaxCUWidth(), sps0.getMaxCUWidth() + 16, false );
    picOrig->getOrigBuf().fill(0);
    m_cGOPEncoder.setPicOrig(picOrig);
  }
}

void EncLib::xInitScalingLists( SPS &sps, APS &aps )
{
  // Initialise scaling lists
  // The encoder will only use the SPS scaling lists. The PPS will never be marked present.
  const int maxLog2TrDynamicRange[MAX_NUM_CHANNEL_TYPE] =
  {
    sps.getMaxLog2TrDynamicRange(CHANNEL_TYPE_LUMA),
    sps.getMaxLog2TrDynamicRange(CHANNEL_TYPE_CHROMA)
  };

  Quant* quant = getTrQuant()->getQuant();

  if(getUseScalingListId() == SCALING_LIST_OFF)
  {
    quant->setFlatScalingList(maxLog2TrDynamicRange, sps.getBitDepths());
    quant->setUseScalingList(false);
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
    for( int jId = 1; jId < m_numCuEncStacks; jId++ )
    {
      getTrQuant( jId )->getQuant()->setFlatScalingList( maxLog2TrDynamicRange, sps.getBitDepths() );
      getTrQuant( jId )->getQuant()->setUseScalingList( false );
    }
#endif
  }
  else if(getUseScalingListId() == SCALING_LIST_DEFAULT)
  {
    aps.getScalingList().setDefaultScalingList ();
    quant->setScalingList( &( aps.getScalingList() ), maxLog2TrDynamicRange, sps.getBitDepths() );
    quant->setUseScalingList(true);
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
    for( int jId = 1; jId < m_numCuEncStacks; jId++ )
    {
      getTrQuant( jId )->getQuant()->setUseScalingList( true );
    }
#endif
  }
  else if(getUseScalingListId() == SCALING_LIST_FILE_READ)
  {
    aps.getScalingList().setDefaultScalingList();
    CHECK( aps.getScalingList().xParseScalingList( getScalingListFileName() ), "Error Parsing Scaling List Input File" );
    aps.getScalingList().checkDcOfMatrix();
    if( aps.getScalingList().isNotDefaultScalingList() == false )
    {
      setUseScalingListId( SCALING_LIST_DEFAULT );
    }
    quant->setScalingList( &( aps.getScalingList() ), maxLog2TrDynamicRange, sps.getBitDepths() );
    quant->setUseScalingList(true);
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
    for( int jId = 1; jId < m_numCuEncStacks; jId++ )
    {
      getTrQuant( jId )->getQuant()->setUseScalingList( true );
    }
#endif
  }
  else
  {
    THROW("error : ScalingList == " << getUseScalingListId() << " not supported\n");
  }

  if( getUseScalingListId() == SCALING_LIST_FILE_READ )
  {
    // Prepare delta's:
    for (uint32_t sizeId = SCALING_LIST_2x2; sizeId <= SCALING_LIST_64x64; sizeId++)
    {
      for (uint32_t listId = 0; listId < SCALING_LIST_NUM; listId++)
      {
        if (((sizeId == SCALING_LIST_64x64) && (listId % (SCALING_LIST_NUM / SCALING_LIST_PRED_MODES) != 0))
         || ((sizeId == SCALING_LIST_2x2) && (listId % (SCALING_LIST_NUM / SCALING_LIST_PRED_MODES) == 0)))
        {
          continue;
        }
        aps.getScalingList().checkPredMode( sizeId, listId );
      }
    }
  }
}

void EncLib::xInitPPSforLT(PPS& pps)
{
  pps.setOutputFlagPresentFlag(true);
  pps.setDeblockingFilterControlPresentFlag(true);
  pps.setPPSDeblockingFilterDisabledFlag(true);
}

// ====================================================================================================================
// Public member functions
// ====================================================================================================================

void EncLib::deletePicBuffer()
{
  PicList::iterator iterPic = m_cListPic.begin();
  int iSize = int( m_cListPic.size() );

  for ( int i = 0; i < iSize; i++ )
  {
    Picture* pcPic = *(iterPic++);

    pcPic->destroy();

    // get rid of the qpadaption layer
    while( pcPic->aqlayer.size() )
    {
      delete pcPic->aqlayer.back(); pcPic->aqlayer.pop_back();
    }

    delete pcPic;
    pcPic = NULL;
  }
}

/**
 - Application has picture buffer list with size of GOP + 1
 - Picture buffer list acts like as ring buffer
 - End of the list has the latest picture
 .
 \param   flush               cause encoder to encode a partial GOP
 \param   pcPicYuvOrg         original YUV picture
 \param   pcPicYuvTrueOrg
 \param   snrCSC
 \retval  rcListPicYuvRecOut  list of reconstruction YUV pictures
 \retval  accessUnitsOut      list of output access units
 \retval  iNumEncoded         number of encoded pictures
 */
void EncLib::encode( bool flush, PelStorage* pcPicYuvOrg, PelStorage* cPicYuvTrueOrg, const InputColourSpaceConversion snrCSC, std::list<PelUnitBuf*>& rcListPicYuvRecOut,
                     int& iNumEncoded )
{
  if (m_compositeRefEnabled && m_cGOPEncoder.getPicBg()->getSpliceFull() && m_iPOCLast >= 10 && m_iNumPicRcvd == 0 && m_cGOPEncoder.getEncodedLTRef() == false)
  {
    Picture* picCurr = NULL;
    xGetNewPicBuffer(rcListPicYuvRecOut, picCurr, 2);
    const PPS *pps = m_ppsMap.getPS(2);
    const SPS *sps = m_spsMap.getPS(pps->getSPSId());

    Window confWin = pps->getConformanceWindow( );
    picCurr->setPicWidthInLumaSamples( pps->getPicWidthInLumaSamples() );
    picCurr->setPicHeightInLumaSamples( pps->getPicHeightInLumaSamples() );
    picCurr->setConformanceWindow( confWin );

    picCurr->M_BUFS(0, PIC_ORIGINAL).copyFrom(m_cGOPEncoder.getPicBg()->getRecoBuf());
    picCurr->finalInit( *sps, *pps, m_apss, m_lmcsAPS, m_scalinglistAPS );
    picCurr->poc = m_iPOCLast - 1;
    m_iPOCLast -= 2;
    if (getUseAdaptiveQP())
    {
      AQpPreanalyzer::preanalyze(picCurr);
    }
    if (m_RCEnableRateControl)
    {
      m_cRateCtrl.initRCGOP(m_iNumPicRcvd);
    }
    m_cGOPEncoder.compressGOP(m_iPOCLast, m_iNumPicRcvd, m_cListPic, rcListPicYuvRecOut,
      false, false, snrCSC, m_printFrameMSE, true);
#if JVET_O0756_CALCULATE_HDRMETRICS
    m_metricTime = m_cGOPEncoder.getMetricTime();
#endif
    m_cGOPEncoder.setEncodedLTRef(true);
    if (m_RCEnableRateControl)
    {
      m_cRateCtrl.destroyRCGOP();
    }

    iNumEncoded = 0;
    m_iNumPicRcvd = 0;
  }
  //PROF_ACCUM_AND_START_NEW_SET( getProfilerPic(), P_GOP_LEVEL );
  if (pcPicYuvOrg != NULL)
  {
    // get original YUV
    Picture* pcPicCurr = NULL;

    int ppsID=-1; // Use default PPS ID
#if ER_CHROMA_QP_WCG_PPS
    if (getWCGChromaQPControl().isEnabled())
    {
      ppsID = getdQPs()[m_iPOCLast / (m_compositeRefEnabled ? 2 : 1) + 1];
      ppsID+=(getSwitchPOC() != -1 && (m_iPOCLast+1 >= getSwitchPOC())?1:0);
    }
#endif

    if( m_rprEnabled && m_uiIntraPeriod == -1 )
    {
      const int poc = m_iPOCLast + ( m_compositeRefEnabled ? 2 : 1 );

      if( poc / m_switchPocPeriod % 2 )
      {
        ppsID = ENC_PPS_ID_RPR;
      }
      else
      {
        ppsID = 0;
      }
    }
    xGetNewPicBuffer( rcListPicYuvRecOut,
                      pcPicCurr, ppsID );

    {
      const PPS *pPPS=(ppsID<0) ? m_ppsMap.getFirstPS() : m_ppsMap.getPS(ppsID);
      const SPS *pSPS=m_spsMap.getPS(pPPS->getSPSId());

      Window confWin = pPPS->getConformanceWindow( );
      pcPicCurr->setPicWidthInLumaSamples( pPPS->getPicWidthInLumaSamples() );
      pcPicCurr->setPicHeightInLumaSamples( pPPS->getPicHeightInLumaSamples() );
      pcPicCurr->setConformanceWindow( confWin );

      if( m_rprEnabled )
      {
        pcPicCurr->M_BUFS( 0, PIC_ORIGINAL_INPUT ).getBuf( COMPONENT_Y ).copyFrom( pcPicYuvOrg->getBuf( COMPONENT_Y ) );
        pcPicCurr->M_BUFS( 0, PIC_ORIGINAL_INPUT ).getBuf( COMPONENT_Cb ).copyFrom( pcPicYuvOrg->getBuf( COMPONENT_Cb ) );
        pcPicCurr->M_BUFS( 0, PIC_ORIGINAL_INPUT ).getBuf( COMPONENT_Cr ).copyFrom( pcPicYuvOrg->getBuf( COMPONENT_Cr ) );

        pcPicCurr->M_BUFS( 0, PIC_TRUE_ORIGINAL_INPUT ).getBuf( COMPONENT_Y ).copyFrom( cPicYuvTrueOrg->getBuf( COMPONENT_Y ) );
        pcPicCurr->M_BUFS( 0, PIC_TRUE_ORIGINAL_INPUT ).getBuf( COMPONENT_Cb ).copyFrom( cPicYuvTrueOrg->getBuf( COMPONENT_Cb ) );
        pcPicCurr->M_BUFS( 0, PIC_TRUE_ORIGINAL_INPUT ).getBuf( COMPONENT_Cr ).copyFrom( cPicYuvTrueOrg->getBuf( COMPONENT_Cr ) );

        const ChromaFormat chromaFormatIDC = pSPS->getChromaFormatIdc();

        const PPS *refPPS = m_ppsMap.getPS(0);
        Picture::rescalePicture( *pcPicYuvOrg, refPPS->getConformanceWindow(), pcPicCurr->getOrigBuf(), pPPS->getConformanceWindow(), chromaFormatIDC, pSPS->getBitDepths(), true, true );
        Picture::rescalePicture( *cPicYuvTrueOrg, refPPS->getConformanceWindow(), pcPicCurr->getTrueOrigBuf(), pPPS->getConformanceWindow(), chromaFormatIDC, pSPS->getBitDepths(), true, true );
      }
      else
      {
        pcPicCurr->M_BUFS( 0, PIC_ORIGINAL ).swap( *pcPicYuvOrg );
        pcPicCurr->M_BUFS( 0, PIC_TRUE_ORIGINAL ).swap( *cPicYuvTrueOrg );
      }

      pcPicCurr->finalInit( *pSPS, *pPPS, m_apss, m_lmcsAPS, m_scalinglistAPS );
      PPS *ptrPPS = (ppsID<0) ? m_ppsMap.getFirstPS() : m_ppsMap.getPS(ppsID);
      ptrPPS->setNumBricksInPic((int)pcPicCurr->brickMap->bricks.size());
    }

    pcPicCurr->poc = m_iPOCLast;

    // compute image characteristics
    if ( getUseAdaptiveQP() )
    {
      AQpPreanalyzer::preanalyze( pcPicCurr );
    }
  }

  if ((m_iNumPicRcvd == 0) || (!flush && (m_iPOCLast != 0) && (m_iNumPicRcvd != m_iGOPSize) && (m_iGOPSize != 0)))
  {
    iNumEncoded = 0;
    return;
  }

  if ( m_RCEnableRateControl )
  {
    m_cRateCtrl.initRCGOP( m_iNumPicRcvd );
  }

  // compress GOP
  m_cGOPEncoder.compressGOP(m_iPOCLast, m_iNumPicRcvd, m_cListPic, rcListPicYuvRecOut,
                            false, false, snrCSC, m_printFrameMSE
    , false
  );
#if JVET_O0756_CALCULATE_HDRMETRICS
  m_metricTime = m_cGOPEncoder.getMetricTime();
#endif

  if ( m_RCEnableRateControl )
  {
    m_cRateCtrl.destroyRCGOP();
  }

  iNumEncoded         = m_iNumPicRcvd;
  m_iNumPicRcvd       = 0;
  m_uiNumAllPicCoded += iNumEncoded;
}

/**------------------------------------------------
 Separate interlaced frame into two fields
 -------------------------------------------------**/
void separateFields(Pel* org, Pel* dstField, uint32_t stride, uint32_t width, uint32_t height, bool isTop)
{
  if (!isTop)
  {
    org += stride;
  }
  for (int y = 0; y < height>>1; y++)
  {
    for (int x = 0; x < width; x++)
    {
      dstField[x] = org[x];
    }

    dstField += stride;
    org += stride*2;
  }

}

void EncLib::encode( bool flush, PelStorage* pcPicYuvOrg, PelStorage* pcPicYuvTrueOrg, const InputColourSpaceConversion snrCSC, std::list<PelUnitBuf*>& rcListPicYuvRecOut,
                     int& iNumEncoded, bool isTff )
{
  iNumEncoded = 0;

  for (int fieldNum=0; fieldNum<2; fieldNum++)
  {
    if (pcPicYuvOrg)
    {
      /* -- field initialization -- */
      const bool isTopField=isTff==(fieldNum==0);

      Picture *pcField;
      xGetNewPicBuffer( rcListPicYuvRecOut, pcField, -1 );

      for (uint32_t comp = 0; comp < ::getNumberValidComponents(pcPicYuvOrg->chromaFormat); comp++)
      {
        const ComponentID compID = ComponentID(comp);
        {
          PelBuf compBuf = pcPicYuvOrg->get( compID );
          separateFields( compBuf.buf,
                         pcField->getOrigBuf().get(compID).buf,
                         compBuf.stride,
                         compBuf.width,
                         compBuf.height,
                         isTopField);
        }
      }

      {
        int ppsID=-1; // Use default PPS ID
        const PPS *pPPS=(ppsID<0) ? m_ppsMap.getFirstPS() : m_ppsMap.getPS(ppsID);
        const SPS *pSPS=m_spsMap.getPS(pPPS->getSPSId());
        Window confWin = pPPS->getConformanceWindow( );
        pcField->setPicWidthInLumaSamples( pPPS->getPicWidthInLumaSamples() );
        pcField->setPicHeightInLumaSamples( pPPS->getPicHeightInLumaSamples() );
        pcField->setConformanceWindow( confWin );

        pcField->finalInit( *pSPS, *pPPS, m_apss, m_lmcsAPS, m_scalinglistAPS );
      }

      pcField->poc = m_iPOCLast;
      pcField->reconstructed = false;

      pcField->setBorderExtension(false);// where is this normally?

      pcField->topField = isTopField;                  // interlaced requirement

      // compute image characteristics
      if ( getUseAdaptiveQP() )
      {
        AQpPreanalyzer::preanalyze( pcField );
      }
    }

    if ( m_iNumPicRcvd && ((flush&&fieldNum==1) || (m_iPOCLast/2)==0 || m_iNumPicRcvd==m_iGOPSize ) )
    {
      // compress GOP
      m_cGOPEncoder.compressGOP(m_iPOCLast, m_iNumPicRcvd, m_cListPic, rcListPicYuvRecOut, true, isTff, snrCSC, m_printFrameMSE
                              , false
      );
#if JVET_O0756_CALCULATE_HDRMETRICS
      m_metricTime = m_cGOPEncoder.getMetricTime();
#endif

      iNumEncoded += m_iNumPicRcvd;
      m_uiNumAllPicCoded += m_iNumPicRcvd;
      m_iNumPicRcvd = 0;
    }
  }
}


// ====================================================================================================================
// Protected member functions
// ====================================================================================================================

/**
 - Application has picture buffer list with size of GOP + 1
 - Picture buffer list acts like as ring buffer
 - End of the list has the latest picture
 .
 \retval rpcPic obtained picture buffer
 */
void EncLib::xGetNewPicBuffer ( std::list<PelUnitBuf*>& rcListPicYuvRecOut, Picture*& rpcPic, int ppsId )
{
  // rotate he output buffer
  rcListPicYuvRecOut.push_back( rcListPicYuvRecOut.front() ); rcListPicYuvRecOut.pop_front();

  rpcPic=0;

  // At this point, the SPS and PPS can be considered activated - they are copied to the new Pic.
  const PPS *pPPS=(ppsId<0) ? m_ppsMap.getFirstPS() : m_ppsMap.getPS(ppsId);
  CHECK(!(pPPS!=0), "Unspecified error");
  const PPS &pps=*pPPS;

  const SPS *pSPS=m_spsMap.getPS(pps.getSPSId());
  CHECK(!(pSPS!=0), "Unspecified error");
  const SPS &sps=*pSPS;

  Slice::sortPicList(m_cListPic);

  // use an entry in the buffered list if the maximum number that need buffering has been reached:
  if (m_cListPic.size() >= (uint32_t)(m_iGOPSize + getMaxDecPicBuffering(MAX_TLAYER-1) + 2) )
  {
    PicList::iterator iterPic  = m_cListPic.begin();
    int iSize = int( m_cListPic.size() );
    for ( int i = 0; i < iSize; i++ )
    {
      rpcPic = *iterPic;
      if( ! rpcPic->referenced )
      {
        break;
      }
      iterPic++;
    }

    // If PPS ID is the same, we will assume that it has not changed since it was last used
    // and return the old object.
    if (pps.getPPSId() != rpcPic->cs->pps->getPPSId())
    {
      // the IDs differ - free up an entry in the list, and then create a new one, as with the case where the max buffering state has not been reached.
      rpcPic->destroy();
      delete rpcPic;
      m_cListPic.erase(iterPic);
      rpcPic=0;
    }
  }

  if (rpcPic==0)
  {
    rpcPic = new Picture;
    rpcPic->create( sps.getChromaFormatIdc(), Size( pps.getPicWidthInLumaSamples(), pps.getPicHeightInLumaSamples() ), sps.getMaxCUWidth(), sps.getMaxCUWidth() + 16, false );
    if( m_rprEnabled )
    {
      rpcPic->M_BUFS( 0, PIC_ORIGINAL_INPUT ).create( sps.getChromaFormatIdc(), Area( Position(), Size( sps.getMaxPicWidthInLumaSamples(), sps.getMaxPicHeightInLumaSamples() ) ) );
      rpcPic->M_BUFS( 0, PIC_TRUE_ORIGINAL_INPUT ).create( sps.getChromaFormatIdc(), Area( Position(), Size( sps.getMaxPicWidthInLumaSamples(), sps.getMaxPicHeightInLumaSamples() ) ) );
    }
    if ( getUseAdaptiveQP() )
    {
      const uint32_t iMaxDQPLayer = pps.getCuQpDeltaSubdiv()/2+1;
      rpcPic->aqlayer.resize( iMaxDQPLayer );
      for (uint32_t d = 0; d < iMaxDQPLayer; d++)
      {
        rpcPic->aqlayer[d] = new AQpLayer( pps.getPicWidthInLumaSamples(), pps.getPicHeightInLumaSamples(), sps.getMaxCUWidth() >> d, sps.getMaxCUHeight() >> d );
      }
    }

    m_cListPic.push_back( rpcPic );
  }

  rpcPic->setBorderExtension( false );
  rpcPic->reconstructed = false;
  rpcPic->referenced = true;
  rpcPic->getHashMap()->clearAll();

  m_iPOCLast += (m_compositeRefEnabled ? 2 : 1);
  m_iNumPicRcvd++;
}


void EncLib::xInitVPS(VPS &vps)
{
  // The SPS must have already been set up.
  // set the VPS profile information.
  vps.setMaxLayers(1);
  for (uint32_t i = 0; i < vps.getMaxLayers(); i++)
  {
    vps.setVPSIncludedLayerId(0, i);
  }
}

void EncLib::xInitDPS(DPS &dps, const SPS &sps, const int dpsId)
{
  // The SPS must have already been set up.
  // set the DPS profile information.
  dps.setDecodingParameterSetId(dpsId);
  dps.setMaxSubLayersMinus1(sps.getMaxTLayers()-1);
  dps.setProfileTierLevel(*sps.getProfileTierLevel());
}


void EncLib::xInitSPS(SPS &sps)
{
  ProfileTierLevel* profileTierLevel = sps.getProfileTierLevel();
  ConstraintInfo* cinfo = profileTierLevel->getConstraintInfo();
  cinfo->setProgressiveSourceFlag       (m_progressiveSourceFlag);
  cinfo->setInterlacedSourceFlag        (m_interlacedSourceFlag);
  cinfo->setNonPackedConstraintFlag     (m_nonPackedConstraintFlag);
  cinfo->setFrameOnlyConstraintFlag     (m_frameOnlyConstraintFlag);
  cinfo->setIntraOnlyConstraintFlag         (m_intraConstraintFlag);
  cinfo->setMaxBitDepthConstraintIdc    (m_maxBitDepthConstraintIdc);
  cinfo->setMaxChromaFormatConstraintIdc((ChromaFormat)m_maxChromaFormatConstraintIdc);
  cinfo->setNoQtbttDualTreeIntraConstraintFlag(m_bNoQtbttDualTreeIntraConstraintFlag);
  cinfo->setNoPartitionConstraintsOverrideConstraintFlag(m_noPartitionConstraintsOverrideConstraintFlag);
  cinfo->setNoSaoConstraintFlag(m_bNoSaoConstraintFlag);
  cinfo->setNoAlfConstraintFlag(m_bNoAlfConstraintFlag);
  cinfo->setNoRefWraparoundConstraintFlag(m_bNoRefWraparoundConstraintFlag);
  cinfo->setNoTemporalMvpConstraintFlag(m_bNoTemporalMvpConstraintFlag);
  cinfo->setNoSbtmvpConstraintFlag(m_bNoSbtmvpConstraintFlag);
  cinfo->setNoAmvrConstraintFlag(m_bNoAmvrConstraintFlag);
  cinfo->setNoBdofConstraintFlag(m_bNoBdofConstraintFlag);
  cinfo->setNoDmvrConstraintFlag(m_noDmvrConstraintFlag);
  cinfo->setNoCclmConstraintFlag(m_bNoCclmConstraintFlag);
  cinfo->setNoMtsConstraintFlag(m_bNoMtsConstraintFlag);
  cinfo->setNoSbtConstraintFlag(m_noSbtConstraintFlag);
  cinfo->setNoAffineMotionConstraintFlag(m_bNoAffineMotionConstraintFlag);
  cinfo->setNoGbiConstraintFlag(m_bNoGbiConstraintFlag);
  cinfo->setNoIbcConstraintFlag(m_noIbcConstraintFlag);
  cinfo->setNoMhIntraConstraintFlag(m_bNoMhIntraConstraintFlag);
  cinfo->setNoFPelMmvdConstraintFlag(m_noFPelMmvdConstraintFlag);
  cinfo->setNoTriangleConstraintFlag(m_bNoTriangleConstraintFlag);
  cinfo->setNoLadfConstraintFlag(m_bNoLadfConstraintFlag);
  cinfo->setNoTransformSkipConstraintFlag(m_noTransformSkipConstraintFlag);
  cinfo->setNoBDPCMConstraintFlag(m_noBDPCMConstraintFlag);
  cinfo->setNoJointCbCrConstraintFlag(m_noJointCbCrConstraintFlag);
  cinfo->setNoQpDeltaConstraintFlag(m_bNoQpDeltaConstraintFlag);
  cinfo->setNoDepQuantConstraintFlag(m_bNoDepQuantConstraintFlag);
  cinfo->setNoSignDataHidingConstraintFlag(m_bNoSignDataHidingConstraintFlag);

  profileTierLevel->setLevelIdc                    (m_level);
  profileTierLevel->setTierFlag                    (m_levelTier);
  profileTierLevel->setProfileIdc                  (m_profile);
  profileTierLevel->setNumSubProfile(m_numSubProfile);
  for (int k = 0; k < m_numSubProfile; k++)
  {
    profileTierLevel->setSubProfileIdc(k, m_subProfile[k]);
  }
  /* XXX: should Main be marked as compatible with still picture? */
  /* XXX: may be a good idea to refactor the above into a function
   * that chooses the actual compatibility based upon options */

  sps.setMaxPicWidthInLumaSamples( m_iSourceWidth );
  sps.setMaxPicHeightInLumaSamples( m_iSourceHeight );
  sps.setMaxCUWidth             ( m_maxCUWidth        );
  sps.setMaxCUHeight            ( m_maxCUHeight       );
  sps.setMaxCodingDepth         ( m_maxTotalCUDepth   );
  sps.setChromaFormatIdc        ( m_chromaFormatIDC   );
  sps.setLog2DiffMaxMinCodingBlockSize(m_log2DiffMaxMinCodingBlockSize);

  sps.setCTUSize                             ( m_CTUSize );
  sps.setSplitConsOverrideEnabledFlag        ( m_useSplitConsOverride );
  sps.setMinQTSizes                          ( m_uiMinQT );
  sps.setMaxMTTHierarchyDepth                ( m_uiMaxMTTHierarchyDepth, m_uiMaxMTTHierarchyDepthI, m_uiMaxMTTHierarchyDepthIChroma );
  unsigned maxBtSize[3], maxTtSize[3];
  memcpy(maxBtSize, m_uiMinQT, sizeof(maxBtSize));
  memcpy(maxTtSize, m_uiMinQT, sizeof(maxTtSize));
  if (m_uiMaxMTTHierarchyDepth)
  {
    maxBtSize[1] = std::min(m_CTUSize, (unsigned)MAX_BT_SIZE_INTER);
    maxTtSize[1] = std::min(m_CTUSize, (unsigned)MAX_TT_SIZE_INTER);
  }
  if (m_uiMaxMTTHierarchyDepthI)
  {
    maxBtSize[0] = std::min(m_CTUSize, (unsigned)MAX_BT_SIZE);
    maxTtSize[0] = std::min(m_CTUSize, (unsigned)MAX_TT_SIZE);
  }
  if (m_uiMaxMTTHierarchyDepthIChroma)
  {
    maxBtSize[2] = std::min(m_CTUSize, (unsigned)MAX_BT_SIZE_C);
    maxTtSize[2] = std::min(m_CTUSize, (unsigned)MAX_TT_SIZE_C);
  }
  sps.setMaxBTSize                           ( maxBtSize[1], maxBtSize[0], maxBtSize[2] );
  sps.setMaxTTSize                           ( maxTtSize[1], maxTtSize[0], maxTtSize[2] );
  sps.setIDRRefParamListPresent              ( m_idrRefParamList );
  sps.setUseDualITree                        ( m_dualITree );
  sps.setUseLFNST                            ( m_LFNST );
  sps.setSBTMVPEnabledFlag                  ( m_SubPuMvpMode );
  sps.setAMVREnabledFlag                ( m_ImvMode != IMV_OFF );
  sps.setBDOFEnabledFlag                    ( m_BIO );
  sps.setUseAffine             ( m_Affine );
  sps.setUseAffineType         ( m_AffineType );
  sps.setUsePROF               ( m_PROF );
  sps.setUseLMChroma           ( m_LMChroma ? true : false );
  sps.setCclmCollocatedChromaFlag( m_cclmCollocatedChromaFlag );
  sps.setUseMTS                ( m_IntraMTS || m_InterMTS || m_ImplicitMTS );
  sps.setUseIntraMTS           ( m_IntraMTS );
  sps.setUseInterMTS           ( m_InterMTS );
  sps.setUseSBT                             ( m_SBT );
  if( sps.getUseSBT() )
  {
    sps.setMaxSbtSize                       ( std::min((int)(1 << m_log2MaxTbSize), m_iSourceWidth >= 1920 ? 64 : 32) );
  }
  sps.setUseSMVD                ( m_SMVD );
  sps.setUseGBi                ( m_GBi );
#if LUMA_ADAPTIVE_DEBLOCKING_FILTER_QP_OFFSET
  sps.setLadfEnabled           ( m_LadfEnabled );
  if ( m_LadfEnabled )
  {
    sps.setLadfNumIntervals    ( m_LadfNumIntervals );
    for ( int k = 0; k < m_LadfNumIntervals; k++ )
    {
      sps.setLadfQpOffset( m_LadfQpOffset[k], k );
      sps.setLadfIntervalLowerBound( m_LadfIntervalLowerBound[k], k );
    }
    CHECK( m_LadfIntervalLowerBound[0] != 0, "abnormal value set to LadfIntervalLowerBound[0]" );
  }
#endif

  sps.setUseMHIntra            ( m_MHIntra );
  sps.setUseTriangle           ( m_Triangle );
  sps.setUseMMVD               ( m_MMVD );
  sps.setFpelMmvdEnabledFlag   (( m_MMVD ) ? m_allowDisFracMMVD : false);
  sps.setBdofDmvrSlicePresentFlag(m_DMVR || m_BIO);
  sps.setAffineAmvrEnabledFlag              ( m_AffineAmvr );
  sps.setUseDMVR                            ( m_DMVR );
  sps.setPLTMode                            ( m_PLTMode);
  sps.setIBCFlag                            ( m_IBCMode);
  sps.setWrapAroundEnabledFlag                      ( m_wrapAround );
  sps.setWrapAroundOffset                   ( m_wrapAroundOffset );
  // ADD_NEW_TOOL : (encoder lib) set tool enabling flags and associated parameters here
  sps.setUseISP                             ( m_ISP );
  sps.setUseReshaper                        ( m_lumaReshapeEnable );
  sps.setUseMIP                ( m_MIP );
  int minCUSize =  sps.getMaxCUWidth() >> sps.getLog2DiffMaxMinCodingBlockSize();
  int log2MinCUSize = 0;
  while(minCUSize > 1)
  {
    minCUSize >>= 1;
    log2MinCUSize++;
  }

  sps.setLog2MinCodingBlockSize(log2MinCUSize);
#if JVET_P0578_MINIMUM_CU_SIZE_CONSTRAINT
  CHECK(log2MinCUSize > std::min(6, floorLog2(sps.getMaxCUWidth())), "log2_min_luma_coding_block_size_minus2 shall be in the range of 0 to min (4, log2_ctu_size - 2)");
#endif
#if JVET_P0347_MAX_MTT_DEPTH_CONSTRAINT
  CHECK(m_uiMaxMTTHierarchyDepth > 2 * (floorLog2(sps.getCTUSize()) - sps.getLog2MinCodingBlockSize()), "sps_max_mtt_hierarchy_depth_inter_slice shall be in the range 0 to 2*(ctbLog2SizeY - log2MinCUSize)");
  CHECK(m_uiMaxMTTHierarchyDepthI > 2 * (floorLog2(sps.getCTUSize()) - sps.getLog2MinCodingBlockSize()), "sps_max_mtt_hierarchy_depth_intra_slice_luma shall be in the range 0 to 2*(ctbLog2SizeY - log2MinCUSize)");
  CHECK(m_uiMaxMTTHierarchyDepthIChroma > 2 * (floorLog2(sps.getCTUSize()) - sps.getLog2MinCodingBlockSize()), "sps_max_mtt_hierarchy_depth_intra_slice_chroma shall be in the range 0 to 2*(ctbLog2SizeY - log2MinCUSize)");
#endif

  sps.setTransformSkipEnabledFlag(m_useTransformSkip);
  sps.setBDPCMEnabledFlag(m_useBDPCM);

  sps.setSPSTemporalMVPEnabledFlag((getTMVPModeId() == 2 || getTMVPModeId() == 1));

  sps.setLog2MaxTbSize   ( m_log2MaxTbSize );

  for (uint32_t channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++)
  {
    sps.setBitDepth      (ChannelType(channelType), m_bitDepth[channelType] );
    sps.setQpBDOffset  (ChannelType(channelType), (6 * (m_bitDepth[channelType] - 8)));
    sps.setMinQpPrimeTsMinus4(ChannelType(channelType), (6 * (m_bitDepth[channelType] - m_inputBitDepth[channelType])));
  }

  sps.setUseWP( m_useWeightedPred );
  sps.setUseWPBiPred( m_useWeightedBiPred );

  sps.setSAOEnabledFlag( m_bUseSAO );
  sps.setJointCbCrEnabledFlag( m_JointCbCrMode );
  sps.setMaxTLayers( m_maxTempLayer );
  sps.setTemporalIdNestingFlag( ( m_maxTempLayer == 1 ) ? true : false );

  for (int i = 0; i < std::min(sps.getMaxTLayers(), (uint32_t) MAX_TLAYER); i++ )
  {
    sps.setMaxDecPicBuffering(m_maxDecPicBuffering[i], i);
    sps.setNumReorderPics(m_numReorderPics[i], i);
  }

  sps.setScalingListFlag ( (m_useScalingListId == SCALING_LIST_OFF) ? 0 : 1 );
  sps.setALFEnabledFlag( m_alf );
  sps.setVuiParametersPresentFlag(getVuiParametersPresentFlag());

  if (sps.getVuiParametersPresentFlag())
  {
    VUI* pcVUI = sps.getVuiParameters();
    pcVUI->setAspectRatioInfoPresentFlag(getAspectRatioInfoPresentFlag());
    pcVUI->setAspectRatioIdc(getAspectRatioIdc());
    pcVUI->setSarWidth(getSarWidth());
    pcVUI->setSarHeight(getSarHeight());
    pcVUI->setColourDescriptionPresentFlag(getColourDescriptionPresentFlag());
    pcVUI->setColourPrimaries(getColourPrimaries());
    pcVUI->setTransferCharacteristics(getTransferCharacteristics());
    pcVUI->setMatrixCoefficients(getMatrixCoefficients());
    pcVUI->setFieldSeqFlag(false);
    pcVUI->setChromaLocInfoPresentFlag(getChromaLocInfoPresentFlag());
    pcVUI->setChromaSampleLocTypeTopField(getChromaSampleLocTypeTopField());
    pcVUI->setChromaSampleLocTypeBottomField(getChromaSampleLocTypeBottomField());
    pcVUI->setChromaSampleLocType(getChromaSampleLocType());
    pcVUI->setOverscanInfoPresentFlag(getOverscanInfoPresentFlag());
    pcVUI->setOverscanAppropriateFlag(getOverscanAppropriateFlag());
    pcVUI->setVideoSignalTypePresentFlag(getVideoSignalTypePresentFlag());
    pcVUI->setVideoFullRangeFlag(getVideoFullRangeFlag());
  }

  sps.setNumLongTermRefPicSPS(NUM_LONG_TERM_REF_PIC_SPS);
  CHECK(!(NUM_LONG_TERM_REF_PIC_SPS <= MAX_NUM_LONG_TERM_REF_PICS), "Unspecified error");
  for (int k = 0; k < NUM_LONG_TERM_REF_PIC_SPS; k++)
  {
    sps.setLtRefPicPocLsbSps(k, 0);
    sps.setUsedByCurrPicLtSPSFlag(k, 0);
  }
  sps.setChromaQpMappingTableFromParams(m_chromaQpMappingTableParams, sps.getQpBDOffset(CHANNEL_TYPE_CHROMA));
  sps.derivedChromaQPMappingTables();

#if U0132_TARGET_BITS_SATURATION
  if( getPictureTimingSEIEnabled() || getDecodingUnitInfoSEIEnabled() || getCpbSaturationEnabled() )
#else
  if( getPictureTimingSEIEnabled() || getDecodingUnitInfoSEIEnabled() )
#endif
  {
    xInitHrdParameters(sps);
  }
  if( getBufferingPeriodSEIEnabled() || getPictureTimingSEIEnabled() || getDecodingUnitInfoSEIEnabled() )
  {
    sps.setHrdParametersPresentFlag( true );
  }

  // Set up SPS range extension settings
  sps.getSpsRangeExtension().setTransformSkipRotationEnabledFlag(m_transformSkipRotationEnabledFlag);
  sps.getSpsRangeExtension().setTransformSkipContextEnabledFlag(m_transformSkipContextEnabledFlag);
  for (uint32_t signallingModeIndex = 0; signallingModeIndex < NUMBER_OF_RDPCM_SIGNALLING_MODES; signallingModeIndex++)
  {
    sps.getSpsRangeExtension().setRdpcmEnabledFlag(RDPCMSignallingMode(signallingModeIndex), m_rdpcmEnabledFlag[signallingModeIndex]);
  }
  sps.getSpsRangeExtension().setExtendedPrecisionProcessingFlag(m_extendedPrecisionProcessingFlag);
  sps.getSpsRangeExtension().setIntraSmoothingDisabledFlag( m_intraSmoothingDisabledFlag );
  sps.getSpsRangeExtension().setHighPrecisionOffsetsEnabledFlag(m_highPrecisionOffsetsEnabledFlag);
  sps.getSpsRangeExtension().setPersistentRiceAdaptationEnabledFlag(m_persistentRiceAdaptationEnabledFlag);
  sps.getSpsRangeExtension().setCabacBypassAlignmentEnabledFlag(m_cabacBypassAlignmentEnabledFlag);

  if (m_uiIntraPeriod < 0)
    sps.setRPL1CopyFromRPL0Flag(true);
}

void EncLib::xInitHrdParameters(SPS &sps)
{
  m_encHRD.initHRDParameters((EncCfg*) this);

  HRDParameters *hrdParams = sps.getHrdParameters();
  *hrdParams = m_encHRD.getHRDParameters();

  TimingInfo *timingInfo = sps.getTimingInfo();
  *timingInfo = m_encHRD.getTimingInfo();
}

void EncLib::xInitPPS(PPS &pps, const SPS &sps)
{
  // pps ID already initialised.
  pps.setSPSId(sps.getSPSId());

  pps.setConstantSliceHeaderParamsEnabledFlag(getConstantSliceHeaderParamsEnabledFlag());
  pps.setPPSDepQuantEnabledIdc(getPPSDepQuantEnabledIdc());
  pps.setPPSRefPicListSPSIdc0(getPPSRefPicListSPSIdc0());
  pps.setPPSRefPicListSPSIdc1(getPPSRefPicListSPSIdc1());
  pps.setPPSTemporalMVPEnabledIdc(getPPSTemporalMVPEnabledIdc());
  pps.setPPSMvdL1ZeroIdc(getPPSMvdL1ZeroIdc());
  pps.setPPSCollocatedFromL0Idc(getPPSCollocatedFromL0Idc());
  pps.setPPSSixMinusMaxNumMergeCandPlus1(getPPSSixMinusMaxNumMergeCandPlus1());
  pps.setPPSFiveMinusMaxNumSubblockMergeCandPlus1(getPPSFiveMinusMaxNumSubblockMergeCandPlus1());
  pps.setPPSMaxNumMergeCandMinusMaxNumTriangleCandPlus1(getPPSMaxNumMergeCandMinusMaxNumTriangleCandPlus1());

  pps.setConstrainedIntraPred( m_bUseConstrainedIntraPred );
  bool bUseDQP = (getCuQpDeltaSubdiv() > 0)? true : false;

  if((getMaxDeltaQP() != 0 )|| getUseAdaptiveQP())
  {
    bUseDQP = true;
  }

#if SHARP_LUMA_DELTA_QP
  if ( getLumaLevelToDeltaQPMapping().isEnabled() )
  {
    bUseDQP = true;
  }
#endif
#if ENABLE_QPA
  if (getUsePerceptQPA() && !bUseDQP)
  {
    CHECK( m_cuQpDeltaSubdiv != 0, "max. delta-QP subdiv must be zero!" );
    bUseDQP = (getBaseQP() < 38) && (getSourceWidth() > 512 || getSourceHeight() > 320);
  }
#endif

  if (m_costMode==COST_SEQUENCE_LEVEL_LOSSLESS || m_costMode==COST_LOSSLESS_CODING)
  {
    bUseDQP=false;
  }


  if ( m_RCEnableRateControl )
  {
    pps.setUseDQP(true);
    pps.setCuQpDeltaSubdiv( 0 );
  }
  else if(bUseDQP)
  {
    pps.setUseDQP(true);
    pps.setCuQpDeltaSubdiv( m_cuQpDeltaSubdiv );
  }
  else
  {
    pps.setUseDQP(false);
    pps.setCuQpDeltaSubdiv( 0 );
  }

  if ( m_cuChromaQpOffsetSubdiv >= 0 )
  {
    pps.setCuChromaQpOffsetSubdiv(m_cuChromaQpOffsetSubdiv);
    pps.clearChromaQpOffsetList();
    pps.setChromaQpOffsetListEntry(1, 6, 6, 6);
    /* todo, insert table entries from command line (NB, 0 should not be touched) */
  }
  else
  {
    pps.setCuChromaQpOffsetSubdiv(0);
    pps.clearChromaQpOffsetList();
  }
  pps.getPpsRangeExtension().setCrossComponentPredictionEnabledFlag(m_crossComponentPredictionEnabledFlag);
  pps.getPpsRangeExtension().setLog2SaoOffsetScale(CHANNEL_TYPE_LUMA,   m_log2SaoOffsetScale[CHANNEL_TYPE_LUMA  ]);
  pps.getPpsRangeExtension().setLog2SaoOffsetScale(CHANNEL_TYPE_CHROMA, m_log2SaoOffsetScale[CHANNEL_TYPE_CHROMA]);

  {
    int baseQp = 26;
    if( 16 == getGOPSize() )
    {
      baseQp = getBaseQP()-24;
    }
    else
    {
      baseQp = getBaseQP()-26;
    }
    const int maxDQP = 37;
    const int minDQP = -26 + sps.getQpBDOffset(CHANNEL_TYPE_LUMA);

    pps.setPicInitQPMinus26( std::min( maxDQP, std::max( minDQP, baseQp ) ));
  }

#if JVET_P0667_QP_OFFSET_TABLE_SIGNALING_JCCR
  if (sps.getJointCbCrEnabledFlag() == false || getChromaFormatIdc() == CHROMA_400)
  {
    pps.setJointCbCrQpOffsetPresentFlag(false);
  }
  else
  {
    pps.setJointCbCrQpOffsetPresentFlag(true);
  }
#endif

#if ER_CHROMA_QP_WCG_PPS
  if (getWCGChromaQPControl().isEnabled())
  {
    const int baseQp=m_iQP+pps.getPPSId();
    const double chromaQp = m_wcgChromaQpControl.chromaQpScale * baseQp + m_wcgChromaQpControl.chromaQpOffset;
    const double dcbQP = m_wcgChromaQpControl.chromaCbQpScale * chromaQp;
    const double dcrQP = m_wcgChromaQpControl.chromaCrQpScale * chromaQp;
    const int cbQP =(int)(dcbQP + ( dcbQP < 0 ? -0.5 : 0.5) );
    const int crQP =(int)(dcrQP + ( dcrQP < 0 ? -0.5 : 0.5) );
    pps.setQpOffset(COMPONENT_Cb, Clip3( -12, 12, min(0, cbQP) + m_chromaCbQpOffset ));
    pps.setQpOffset(COMPONENT_Cr, Clip3( -12, 12, min(0, crQP) + m_chromaCrQpOffset));
#if JVET_P0667_QP_OFFSET_TABLE_SIGNALING_JCCR
    if(pps.getJointCbCrQpOffsetPresentFlag())
      pps.setQpOffset(JOINT_CbCr, Clip3(-12, 12, (min(0, cbQP) + min(0, crQP)) / 2 + m_chromaCbCrQpOffset));
    else
      pps.setQpOffset(JOINT_CbCr, 0);
#else
    pps.setQpOffset(JOINT_CbCr,   Clip3( -12, 12, ( min(0, cbQP) + min(0, crQP) ) / 2 + m_chromaCbCrQpOffset));
#endif
  }
  else
  {
#endif
  pps.setQpOffset(COMPONENT_Cb, m_chromaCbQpOffset );
  pps.setQpOffset(COMPONENT_Cr, m_chromaCrQpOffset );
#if JVET_P0667_QP_OFFSET_TABLE_SIGNALING_JCCR
  if (pps.getJointCbCrQpOffsetPresentFlag())
    pps.setQpOffset(JOINT_CbCr, m_chromaCbCrQpOffset);
  else
    pps.setQpOffset(JOINT_CbCr, 0);
#else
  pps.setQpOffset(JOINT_CbCr, m_chromaCbCrQpOffset );
#endif
#if ER_CHROMA_QP_WCG_PPS
  }
#endif
#if W0038_CQP_ADJ
  bool bChromaDeltaQPEnabled = false;
  {
    bChromaDeltaQPEnabled = ( m_sliceChromaQpOffsetIntraOrPeriodic[0] || m_sliceChromaQpOffsetIntraOrPeriodic[1] );
    if( !bChromaDeltaQPEnabled )
    {
      for( int i=0; i<m_iGOPSize; i++ )
      {
        if( m_GOPList[i].m_CbQPoffset || m_GOPList[i].m_CrQPoffset )
        {
          bChromaDeltaQPEnabled = true;
          break;
        }
      }
    }
  }
 #if ENABLE_QPA
  if ((getUsePerceptQPA() || getSliceChromaOffsetQpPeriodicity() > 0) && (getChromaFormatIdc() != CHROMA_400))
  {
    bChromaDeltaQPEnabled = true;
  }
 #endif
  pps.setSliceChromaQpFlag(bChromaDeltaQPEnabled);
#endif
  if (
    !pps.getSliceChromaQpFlag() && sps.getUseDualITree()
    && (getChromaFormatIdc() != CHROMA_400))
  {
    pps.setSliceChromaQpFlag(m_chromaCbQpOffsetDualTree != 0 || m_chromaCrQpOffsetDualTree != 0 || m_chromaCbCrQpOffsetDualTree != 0);
  }

  pps.setEntropyCodingSyncEnabledFlag( m_entropyCodingSyncEnabledFlag );

  pps.setSingleTileInPicFlag((m_iNumColumnsMinus1 == 0 && m_iNumRowsMinus1 == 0));

  pps.setUseWP( m_useWeightedPred );
  pps.setWPBiPred( m_useWeightedBiPred );
  pps.setOutputFlagPresentFlag( false );

  if ( getDeblockingFilterMetric() )
  {
    pps.setDeblockingFilterOverrideEnabledFlag(true);
    pps.setPPSDeblockingFilterDisabledFlag(false);
  }
  else
  {
    pps.setDeblockingFilterOverrideEnabledFlag( !getLoopFilterOffsetInPPS() );
    pps.setPPSDeblockingFilterDisabledFlag( getLoopFilterDisable() );
  }

  if (! pps.getPPSDeblockingFilterDisabledFlag())
  {
    pps.setDeblockingFilterBetaOffsetDiv2( getLoopFilterBetaOffset() );
    pps.setDeblockingFilterTcOffsetDiv2( getLoopFilterTcOffset() );
  }
  else
  {
    pps.setDeblockingFilterBetaOffsetDiv2(0);
    pps.setDeblockingFilterTcOffsetDiv2(0);
  }

  // deblockingFilterControlPresentFlag is true if any of the settings differ from the inferred values:
  const bool deblockingFilterControlPresentFlag = pps.getDeblockingFilterOverrideEnabledFlag() ||
                                                  pps.getPPSDeblockingFilterDisabledFlag()     ||
                                                  pps.getDeblockingFilterBetaOffsetDiv2() != 0 ||
                                                  pps.getDeblockingFilterTcOffsetDiv2() != 0;

  pps.setDeblockingFilterControlPresentFlag(deblockingFilterControlPresentFlag);

  pps.setLog2ParallelMergeLevelMinus2   (m_log2ParallelMergeLevelMinus2 );
  pps.setCabacInitPresentFlag(CABAC_INIT_PRESENT_FLAG);
  pps.setLoopFilterAcrossSlicesEnabledFlag( m_bLFCrossSliceBoundaryFlag );


  int histogram[MAX_NUM_REF + 1];
  for( int i = 0; i <= MAX_NUM_REF; i++ )
  {
    histogram[i]=0;
  }
  for( int i = 0; i < getGOPSize(); i++)
  {
    CHECK(!(getRPLEntry(0, i).m_numRefPicsActive >= 0 && getRPLEntry(0, i).m_numRefPicsActive <= MAX_NUM_REF), "Unspecified error");
    histogram[getRPLEntry(0, i).m_numRefPicsActive]++;
  }

  int maxHist=-1;
  int bestPos=0;
  for( int i = 0; i <= MAX_NUM_REF; i++ )
  {
    if(histogram[i]>maxHist)
    {
      maxHist=histogram[i];
      bestPos=i;
    }
  }
  CHECK(!(bestPos <= 15), "Unspecified error");
    pps.setNumRefIdxL0DefaultActive(bestPos);
  pps.setNumRefIdxL1DefaultActive(bestPos);
  pps.setTransquantBypassEnabledFlag(getTransquantBypassEnabledFlag());
  pps.setLog2MaxTransformSkipBlockSize(m_log2MaxTransformSkipBlockSize);


  xInitPPSforTiles(pps);

  pps.setLoopFilterAcrossVirtualBoundariesDisabledFlag( m_loopFilterAcrossVirtualBoundariesDisabledFlag );
  pps.setNumVerVirtualBoundaries            ( m_numVerVirtualBoundaries );
  pps.setNumHorVirtualBoundaries            ( m_numHorVirtualBoundaries );
  for( unsigned int i = 0; i < m_numVerVirtualBoundaries; i++ )
  {
    pps.setVirtualBoundariesPosX            ( m_virtualBoundariesPosX[i], i );
  }
  for( unsigned int i = 0; i < m_numHorVirtualBoundaries; i++ )
  {
    pps.setVirtualBoundariesPosY            ( m_virtualBoundariesPosY[i], i );
  }

  pps.pcv = new PreCalcValues( sps, pps, true );
  pps.setRpl1IdxPresentFlag(sps.getRPL1IdxPresentFlag());
}

void EncLib::xInitAPS(APS &aps)
{
  //Do nothing now
}

void EncLib::xInitRPL(SPS &sps, bool isFieldCoding)
{
  ReferencePictureList*      rpl;

  int numRPLCandidates = getRPLCandidateSize(0);
  sps.createRPLList0(numRPLCandidates);
  sps.createRPLList1(numRPLCandidates);
  RPLList* rplList = 0;

  for (int i = 0; i < 2; i++)
  {
    rplList = (i == 0) ? sps.getRPLList0() : sps.getRPLList1();
    for (int j = 0; j < numRPLCandidates; j++)
    {
      const RPLEntry &ge = getRPLEntry(i, j);
      rpl = rplList->getReferencePictureList(j);
      rpl->setNumberOfShorttermPictures(ge.m_numRefPics);
      rpl->setNumberOfLongtermPictures(0);   //Hardcoded as 0 for now. need to update this when implementing LTRP
      rpl->setNumberOfActivePictures(ge.m_numRefPicsActive);
      rpl->setLtrpInSliceHeaderFlag(ge.m_ltrp_in_slice_header_flag);

      for (int k = 0; k < ge.m_numRefPics; k++)
      {
        rpl->setRefPicIdentifier(k, ge.m_deltaRefPics[k], 0);
      }
    }
  }

  //Check if all delta POC of STRP in each RPL has the same sign
  //Check RPLL0 first
  const RPLList* rplList0 = sps.getRPLList0();
  const RPLList* rplList1 = sps.getRPLList1();
  uint32_t numberOfRPL = sps.getNumRPL0();

  bool isAllEntriesinRPLHasSameSignFlag = true;
  bool isFirstEntry = true;
  bool lastSign = true;        //true = positive ; false = negative
  for (uint32_t ii = 0; isAllEntriesinRPLHasSameSignFlag && ii < numberOfRPL; ii++)
  {
    const ReferencePictureList* rpl = rplList0->getReferencePictureList(ii);
    for (uint32_t jj = 0; isAllEntriesinRPLHasSameSignFlag && jj < rpl->getNumberOfActivePictures(); jj++)
    {
      if (!rpl->isRefPicLongterm(jj) && isFirstEntry)
      {
        lastSign = (rpl->getRefPicIdentifier(jj) >= 0) ? true : false;
        isFirstEntry = false;
      }
      else if (!rpl->isRefPicLongterm(jj) && (((rpl->getRefPicIdentifier(jj) - rpl->getRefPicIdentifier(jj - 1)) >= 0 && lastSign == false) || ((rpl->getRefPicIdentifier(jj) - rpl->getRefPicIdentifier(jj - 1)) < 0 && lastSign == true)))
      {
        isAllEntriesinRPLHasSameSignFlag = false;
      }
    }
  }
  //Check RPLL1. Skip it if it is already found out that this flag is not true for RPL0 or if RPL1 is the same as RPL0
  numberOfRPL = sps.getNumRPL1();
  isFirstEntry = true;
  lastSign = true;
  for (uint32_t ii = 0; isAllEntriesinRPLHasSameSignFlag && !sps.getRPL1CopyFromRPL0Flag() && ii < numberOfRPL; ii++)
  {
    isFirstEntry = true;
    const ReferencePictureList* rpl = rplList1->getReferencePictureList(ii);
    for (uint32_t jj = 0; isAllEntriesinRPLHasSameSignFlag && jj < rpl->getNumberOfActivePictures(); jj++)
    {
      if (!rpl->isRefPicLongterm(jj) && isFirstEntry)
      {
        lastSign = (rpl->getRefPicIdentifier(jj) >= 0) ? true : false;
        isFirstEntry = false;
      }
      else if (!rpl->isRefPicLongterm(jj) && (((rpl->getRefPicIdentifier(jj) - rpl->getRefPicIdentifier(jj - 1)) >= 0 && lastSign == false) || ((rpl->getRefPicIdentifier(jj) - rpl->getRefPicIdentifier(jj - 1)) < 0 && lastSign == true)))
      {
        isAllEntriesinRPLHasSameSignFlag = false;
      }
    }
  }
  sps.setAllActiveRplEntriesHasSameSignFlag(isAllEntriesinRPLHasSameSignFlag);
}

void EncLib::getActiveRefPicListNumForPOC(const SPS *sps, int POCCurr, int GOPid, uint32_t *activeL0, uint32_t *activeL1)
{
  if (m_uiIntraPeriod < 0)  //Only for RA
  {
    *activeL0 = *activeL1 = 0;
    return;
  }
  uint32_t rpl0Idx = GOPid;
  uint32_t rpl1Idx = GOPid;

  int fullListNum = m_iGOPSize;
  int partialListNum = getRPLCandidateSize(0) - m_iGOPSize;
  int extraNum = fullListNum;
  if (m_uiIntraPeriod < 0)
  {
    if (POCCurr < 10)
    {
      rpl0Idx = POCCurr + m_iGOPSize - 1;
      rpl1Idx = POCCurr + m_iGOPSize - 1;
    }
    else
    {
      rpl0Idx = (POCCurr%m_iGOPSize == 0) ? m_iGOPSize - 1 : POCCurr%m_iGOPSize - 1;
      rpl1Idx = (POCCurr%m_iGOPSize == 0) ? m_iGOPSize - 1 : POCCurr%m_iGOPSize - 1;
    }
    extraNum = fullListNum + partialListNum;
  }
  for (; extraNum<fullListNum + partialListNum; extraNum++)
  {
    if (m_uiIntraPeriod > 0 && getDecodingRefreshType() > 0)
    {
      int POCIndex = POCCurr%m_uiIntraPeriod;
      if (POCIndex == 0)
        POCIndex = m_uiIntraPeriod;
      if (POCIndex == m_RPLList0[extraNum].m_POC)
      {
        rpl0Idx = extraNum;
        rpl1Idx = extraNum;
        extraNum++;
      }
    }
  }

  const ReferencePictureList *rpl0 = sps->getRPLList0()->getReferencePictureList(rpl0Idx);
  *activeL0 = rpl0->getNumberOfActivePictures();
  const ReferencePictureList *rpl1 = sps->getRPLList1()->getReferencePictureList(rpl1Idx);
  *activeL1 = rpl1->getNumberOfActivePictures();
}

void EncLib::selectReferencePictureList(Slice* slice, int POCCurr, int GOPid, int ltPoc)
{
  bool isEncodeLtRef = (POCCurr == ltPoc);
  if (m_compositeRefEnabled && isEncodeLtRef)
  {
    POCCurr++;
  }

  slice->setRPL0idx(GOPid);
  slice->setRPL1idx(GOPid);

  int fullListNum = m_iGOPSize;
  int partialListNum = getRPLCandidateSize(0) - m_iGOPSize;
  int extraNum = fullListNum;
  if (m_uiIntraPeriod < 0)
  {
    if (POCCurr < 10)
    {
      slice->setRPL0idx(POCCurr + m_iGOPSize - 1);
      slice->setRPL1idx(POCCurr + m_iGOPSize - 1);
    }
    else
    {
      slice->setRPL0idx((POCCurr%m_iGOPSize == 0) ? m_iGOPSize - 1 : POCCurr%m_iGOPSize - 1);
      slice->setRPL1idx((POCCurr%m_iGOPSize == 0) ? m_iGOPSize - 1 : POCCurr%m_iGOPSize - 1);
    }
    extraNum = fullListNum + partialListNum;
  }
  for (; extraNum < fullListNum + partialListNum; extraNum++)
  {
    if (m_uiIntraPeriod > 0 && getDecodingRefreshType() > 0)
    {
      int POCIndex = POCCurr%m_uiIntraPeriod;
      if (POCIndex == 0)
        POCIndex = m_uiIntraPeriod;
      if (POCIndex == m_RPLList0[extraNum].m_POC)
      {
        slice->setRPL0idx(extraNum);
        slice->setRPL1idx(extraNum);
        extraNum++;
      }
    }
  }

  const ReferencePictureList *rpl0 = (slice->getSPS()->getRPLList0()->getReferencePictureList(slice->getRPL0idx()));
  const ReferencePictureList *rpl1 = (slice->getSPS()->getRPLList1()->getReferencePictureList(slice->getRPL1idx()));
  slice->setRPL0(rpl0);
  slice->setRPL1(rpl1);
}

void  EncLib::xInitPPSforTiles(PPS &pps)
{
  if ( (m_iNumColumnsMinus1==0) && (m_iNumRowsMinus1==0) )
  {
    // one, no bricks
    pps.setSingleTileInPicFlag(true);
    pps.setSingleBrickPerSliceFlag(true);
    pps.setRectSliceFlag(true);
  }
  else
  {
    pps.setSingleTileInPicFlag(false);
    pps.setSingleBrickPerSliceFlag( m_sliceMode==SINGLE_BRICK_PER_SLICE );
    pps.setRectSliceFlag( m_sliceMode==SINGLE_BRICK_PER_SLICE );
    if (m_rectSliceFlag)
      pps.setRectSliceFlag(m_rectSliceFlag);
  }
  pps.setUniformTileSpacingFlag( m_tileUniformSpacingFlag );
  pps.setNumTileColumnsMinus1( m_iNumColumnsMinus1 );
  pps.setNumTileRowsMinus1( m_iNumRowsMinus1 );
  if( !m_tileUniformSpacingFlag )
  {
    pps.setTileColumnWidth( m_tileColumnWidth );
    pps.setTileRowHeight( m_tileRowHeight );
  }
  else
  {
    pps.setTileColsWidthMinus1(m_uniformTileColsWidthMinus1);
    pps.setTileRowsHeightMinus1(m_uniformTileRowHeightMinus1);
  }
  pps.setLoopFilterAcrossBricksEnabledFlag( m_loopFilterAcrossBricksEnabledFlag );

  //pps.setRectSliceFlag( m_rectSliceFlag );
  pps.setNumSlicesInPicMinus1( m_numSlicesInPicMinus1 );
  pps.setTopLeftBrickIdx(m_topLeftBrickIdx);
  pps.setBottomRightBrickIdx(m_bottomRightBrickIdx);
  if (m_numSlicesInPicMinus1 > 0)
  {
    std::vector<int> bottomrightdelta(m_numSlicesInPicMinus1 + 1);
    for (int i = 0; i < m_numSlicesInPicMinus1 + 1; i++)
    {
      bottomrightdelta[i] = (i == 0) ? m_bottomRightBrickIdx[i] : m_bottomRightBrickIdx[i] - m_bottomRightBrickIdx[i - 1];
    }
    pps.setBottomRightBrickIdxDelta(bottomrightdelta);
  }

  pps.setLoopFilterAcrossBricksEnabledFlag( m_loopFilterAcrossBricksEnabledFlag );
  pps.setLoopFilterAcrossSlicesEnabledFlag( m_loopFilterAcrossSlicesEnabledFlag );
  pps.setSignalledSliceIdFlag( m_signalledSliceIdFlag );
  pps.setSignalledSliceIdLengthMinus1( m_signalledSliceIdLengthMinus1 );
  pps.setSignalledSliceIdFlag( m_signalledSliceIdFlag );
  pps.setSignalledSliceIdLengthMinus1( m_signalledSliceIdLengthMinus1 );
  pps.setSliceId( m_sliceId );

  int numTiles= (m_iNumColumnsMinus1 + 1) * (m_iNumRowsMinus1 + 1);
  pps.setNumTilesInPic(numTiles);
  std::vector<int> tileHeight(numTiles);

  if (m_brickSplitMap.empty())
  {
    pps.setBrickSplittingPresentFlag(false);
  }
  else
  {
    pps.setBrickSplittingPresentFlag(true);

    std::vector<bool> brickSplitFlag (numTiles, false);
    std::vector<bool> uniformBrickSpacingFlag (numTiles, false);
    std::vector<int>  brickHeightMinus1 (numTiles, 0);
    std::vector<int> numBrickRowsMinus2(numTiles, 0);
    std::vector<std::vector<int>>  brickRowHeightMinus1 (numTiles);

    for (auto &brickSplit: m_brickSplitMap)
    {
      int tileIdx = brickSplit.first;
      CHECK ( tileIdx >= numTiles, "Brick split specified for undefined tile");

      brickSplitFlag[tileIdx]           = true;
      uniformBrickSpacingFlag [tileIdx] = brickSplit.second.m_uniformSplit;
      if (uniformBrickSpacingFlag [tileIdx])
      {
        brickHeightMinus1[tileIdx]=brickSplit.second.m_uniformHeight - 1;
      }
      else
      {
        numBrickRowsMinus2[tileIdx] = brickSplit.second.m_numSplits - 1;
        brickRowHeightMinus1[tileIdx].resize(brickSplit.second.m_numSplits);
        for (int i=0; i<brickSplit.second.m_numSplits; i++)
        {
          brickRowHeightMinus1[tileIdx][i]=brickSplit.second.m_brickHeight[i] - 1;
        }
      }
    }
    pps.setBrickSplitFlag(brickSplitFlag);
    pps.setUniformBrickSpacingFlag(uniformBrickSpacingFlag);
    pps.setBrickHeightMinus1(brickHeightMinus1);
    pps.setNumBrickRowsMinus2(numBrickRowsMinus2);
    pps.setBrickRowHeightMinus1(brickRowHeightMinus1);

    // check brick dimensions
    std::vector<uint32_t> tileRowHeight (m_iNumRowsMinus1+1);
    int picHeightInCtus = (getSourceHeight() + m_maxCUHeight - 1) / m_maxCUHeight;

    // calculate all tile row heights
    if( pps.getUniformTileSpacingFlag() )
    {
      //set width and height for each (uniform) tile
      for(int row=0; row < m_iNumRowsMinus1 + 1; row++)
      {
        tileRowHeight[row] = (row+1)*picHeightInCtus/(m_iNumRowsMinus1+1)   - (row*picHeightInCtus)/(m_iNumRowsMinus1 + 1);
      }
    }
    else
    {
      tileRowHeight[ m_iNumRowsMinus1 ] = picHeightInCtus;
      for( int j = 0; j < m_iNumRowsMinus1; j++ )
      {
        tileRowHeight[ j ] = pps.getTileRowHeight( j );
        tileRowHeight[ m_iNumRowsMinus1 ]  =  tileRowHeight[ m_iNumRowsMinus1 ] - pps.getTileRowHeight( j );
      }
    }

    // check brick splits for each tile
    for (int tileIdx=0; tileIdx < numTiles; tileIdx++)
    {
      const int tileY = tileIdx / (m_iNumColumnsMinus1 + 1);

      tileHeight[tileIdx] = tileRowHeight[tileY];

      if (tileHeight[tileIdx] <= 1)
      {
        CHECK(pps.getBrickSplitFlag(tileIdx) != 0, "The value of brick_split_flag[ i ] shall be 0 if tileHeight <= 1");
      }
      if (pps.getBrickSplitFlag(tileIdx))
      {
        if (tileHeight[tileIdx] <= 2)
        {
          CHECK(pps.getUniformBrickSpacingFlag(tileIdx) != 1, "The value of uniform_brick_spacing_flag[ i ] shall be 1 if tileHeight <= 2");
        }
        if (pps.getUniformBrickSpacingFlag(tileIdx))
        {
          CHECK((pps.getBrickHeightMinus1(tileIdx) + 1) >= tileHeight[tileIdx], "Brick height larger than or equal to tile height");
        }
        else
        {
          int cumulativeHeight=0;
          for (int i = 0; i <= pps.getNumBrickRowsMinus2(tileIdx); i++)
          {
            cumulativeHeight += pps.getBrickRowHeightMinus1(tileIdx, i) + 1;
          }
          CHECK(cumulativeHeight >= tileHeight[tileIdx], "Cumulative brick height larger than or equal to tile height");
        }
      }
    }
  }
  pps.setTileHeight(tileHeight);
}

void  EncCfg::xCheckGSParameters()
{
  int   iWidthInCU = ( m_iSourceWidth%m_maxCUWidth ) ? m_iSourceWidth/m_maxCUWidth + 1 : m_iSourceWidth/m_maxCUWidth;
  int   iHeightInCU = ( m_iSourceHeight%m_maxCUHeight ) ? m_iSourceHeight/m_maxCUHeight + 1 : m_iSourceHeight/m_maxCUHeight;
  uint32_t  uiCummulativeColumnWidth = 0;
  uint32_t  uiCummulativeRowHeight = 0;

  if (m_tileUniformSpacingFlag && m_uniformTileColsWidthMinus1 == -1)
  {
    EXIT("Uniform tiles specified with unspecified or invalid UniformTileColsWidthMinus1 value");
  }
  if (m_tileUniformSpacingFlag && m_uniformTileRowHeightMinus1 == -1)
  {
    EXIT("Uniform tiles specified with unspecified or invalid UniformTileRowHeightMinus1 value");
  }
  if (m_tileUniformSpacingFlag && m_uniformTileColsWidthMinus1 >= iWidthInCU)
  {
    EXIT("UniformTileColsWidthMinus1 too large");
  }
  if (m_tileUniformSpacingFlag && m_uniformTileRowHeightMinus1 >= iHeightInCU)
  {
    EXIT("UniformTileRowHeightMinus1 too large");
  }

  //check the column relative parameters
  if( m_iNumColumnsMinus1 >= (1<<(LOG2_MAX_NUM_COLUMNS_MINUS1+1)) )
  {
    EXIT( "The number of columns is larger than the maximum allowed number of columns." );
  }

  if( m_iNumColumnsMinus1 >= iWidthInCU )
  {
    EXIT( "The current picture can not have so many columns." );
  }

  if( m_iNumColumnsMinus1 && !m_tileUniformSpacingFlag )
  {
    for(int i=0; i<m_iNumColumnsMinus1; i++)
    {
      uiCummulativeColumnWidth += m_tileColumnWidth[i];
    }

    if( uiCummulativeColumnWidth >= iWidthInCU )
    {
      EXIT( "The width of the column is too large." );
    }
  }

  //check the row relative parameters
  if( m_iNumRowsMinus1 >= (1<<(LOG2_MAX_NUM_ROWS_MINUS1+1)) )
  {
    EXIT( "The number of rows is larger than the maximum allowed number of rows." );
  }

  if( m_iNumRowsMinus1 >= iHeightInCU )
  {
    EXIT( "The current picture can not have so many rows." );
  }

  if( m_iNumRowsMinus1 && !m_tileUniformSpacingFlag )
  {
    for(int i=0; i<m_iNumRowsMinus1; i++)
    {
      uiCummulativeRowHeight += m_tileRowHeight[i];
    }

    if( uiCummulativeRowHeight >= iHeightInCU )
    {
      EXIT( "The height of the row is too large." );
    }
  }
}

void EncLib::setParamSetChanged(int spsId, int ppsId)
{
  m_ppsMap.setChangedFlag(ppsId);
  m_spsMap.setChangedFlag(spsId);
}
bool EncLib::APSNeedsWriting(int apsId)
{
  bool isChanged = m_apsMap.getChangedFlag(apsId);
  m_apsMap.clearChangedFlag(apsId);
  return isChanged;
}

bool EncLib::PPSNeedsWriting(int ppsId)
{
  bool bChanged=m_ppsMap.getChangedFlag(ppsId);
  m_ppsMap.clearChangedFlag(ppsId);
  return bChanged;
}

bool EncLib::SPSNeedsWriting(int spsId)
{
  bool bChanged=m_spsMap.getChangedFlag(spsId);
  m_spsMap.clearChangedFlag(spsId);
  return bChanged;
}

void EncLib::checkPltStats( Picture* pic )
{
  int totalArea = 0;
  int pltArea = 0;
  for (auto apu : pic->cs->pus)
  {
    for (int i = 0; i < MAX_NUM_TBLOCKS; ++i)
    {
      int puArea = apu->blocks[i].width * apu->blocks[i].height;
      if (apu->blocks[i].width > 0 && apu->blocks[i].height > 0)
      {
        totalArea += puArea;
        if (CU::isPLT(*apu->cu) || CU::isIBC(*apu->cu))
        {
          pltArea += puArea;
        }
        break;
      }

    }
  }
  if (pltArea * PLT_FAST_RATIO < totalArea)
  {
    m_doPlt = false;
  }
  else
  {
    m_doPlt = true;
  }
}

#if X0038_LAMBDA_FROM_QP_CAPABILITY
int EncCfg::getQPForPicture(const uint32_t gopIndex, const Slice *pSlice) const
{
  const int lumaQpBDOffset = pSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA);
  int qp;

  if (getCostMode()==COST_LOSSLESS_CODING)
  {
    qp=LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP;
  }
  else
  {
    const SliceType sliceType=pSlice->getSliceType();

    qp = getBaseQP();

    // switch at specific qp and keep this qp offset
    static int appliedSwitchDQQ = 0; /* TODO: MT */
    if( pSlice->getPOC() == getSwitchPOC() )
    {
      appliedSwitchDQQ = getSwitchDQP();
    }
    qp += appliedSwitchDQQ;

#if QP_SWITCHING_FOR_PARALLEL
    const int* pdQPs = getdQPs();
    if ( pdQPs )
    {
      qp += pdQPs[pSlice->getPOC() / (m_compositeRefEnabled ? 2 : 1)];
    }
#endif

    if(sliceType==I_SLICE)
    {
      qp += getIntraQPOffset();
    }
    else
    {
#if SHARP_LUMA_DELTA_QP
      // Only adjust QP when not lossless
      if (!(( getMaxDeltaQP() == 0 ) && (!getLumaLevelToDeltaQPMapping().isEnabled()) && (qp == -lumaQpBDOffset ) && (pSlice->getPPS()->getTransquantBypassEnabledFlag())))
#else
      if (!(( getMaxDeltaQP() == 0 ) && (qp == -lumaQpBDOffset ) && (pSlice->getPPS()->getTransquantBypassEnabledFlag())))
#endif

      {
        const GOPEntry &gopEntry=getGOPEntry(gopIndex);
        // adjust QP according to the QP offset for the GOP entry.
        qp +=gopEntry.m_QPOffset;

        // adjust QP according to QPOffsetModel for the GOP entry.
        double dqpOffset=qp*gopEntry.m_QPOffsetModelScale+gopEntry.m_QPOffsetModelOffset+0.5;
        int qpOffset = (int)floor(Clip3<double>(0.0, 3.0, dqpOffset));
        qp += qpOffset ;
      }
    }

#if !QP_SWITCHING_FOR_PARALLEL
    // modify QP if a fractional QP was originally specified, cause dQPs to be 0 or 1.
    const int* pdQPs = getdQPs();
    if ( pdQPs )
    {
      qp += pdQPs[ pSlice->getPOC() ];
    }
#endif
  }
  qp = Clip3( -lumaQpBDOffset, MAX_QP, qp );
  return qp;
}
#endif


//! \}