/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2019, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file EncLib.cpp \brief encoder class */ #include "EncLib.h" #include "EncModeCtrl.h" #include "AQp.h" #include "EncCu.h" #include "CommonLib/Picture.h" #include "CommonLib/CommonDef.h" #include "CommonLib/ChromaFormat.h" #if ENABLE_SPLIT_PARALLELISM #include <omp.h> #endif //! \ingroup EncoderLib //! \{ // ==================================================================================================================== // Constructor / destructor / create / destroy // ==================================================================================================================== EncLib::EncLib() : m_spsMap( MAX_NUM_SPS ) , m_ppsMap( MAX_NUM_PPS ) , m_apsMap(MAX_NUM_APS * MAX_NUM_APS_TYPE) , m_AUWriterIf( nullptr ) #if JVET_J0090_MEMORY_BANDWITH_MEASURE , m_cacheModel() #endif , m_lmcsAPS(nullptr) #if JVET_O0119_BASE_PALETTE_444 , m_doPlt( true ) #endif { m_iPOCLast = -1; m_iNumPicRcvd = 0; m_uiNumAllPicCoded = 0; m_iMaxRefPicNum = 0; #if ENABLE_SIMD_OPT_BUFFER g_pelBufOP.initPelBufOpsX86(); #endif #if JVET_O0756_CALCULATE_HDRMETRICS m_metricTime = std::chrono::milliseconds(0); #endif memset(m_apss, 0, sizeof(m_apss)); } EncLib::~EncLib() { } void EncLib::create () { // initialize global variables initROM(); TComHash::initBlockSizeToIndex(); m_iPOCLast = m_compositeRefEnabled ? -2 : -1; // create processing unit classes m_cGOPEncoder. create( ); #if !JVET_O1164_PS m_cSliceEncoder. create( getSourceWidth(), getSourceHeight(), m_chromaFormatIDC, m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth ); #endif #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM #if ENABLE_SPLIT_PARALLELISM m_numCuEncStacks = m_numSplitThreads == 1 ? 1 : NUM_RESERVERD_SPLIT_JOBS; #else m_numCuEncStacks = 1; #endif #if ENABLE_WPP_PARALLELISM m_numCuEncStacks *= ( m_numWppThreads + m_numWppExtraLines ); #endif m_cCuEncoder = new EncCu [m_numCuEncStacks]; m_cInterSearch = new InterSearch [m_numCuEncStacks]; m_cIntraSearch = new IntraSearch [m_numCuEncStacks]; m_cTrQuant = new TrQuant [m_numCuEncStacks]; m_CABACEncoder = new CABACEncoder [m_numCuEncStacks]; m_cRdCost = new RdCost [m_numCuEncStacks]; m_CtxCache = new CtxCache [m_numCuEncStacks]; for( int jId = 0; jId < m_numCuEncStacks; jId++ ) { m_cCuEncoder[jId]. create( this ); } #else m_cCuEncoder. create( this ); #endif #if JVET_J0090_MEMORY_BANDWITH_MEASURE m_cInterSearch.cacheAssign( &m_cacheModel ); #endif #if JVET_O1164_PS m_cLoopFilter.create( m_maxTotalCUDepth ); #else const uint32_t widthInCtus = (getSourceWidth() + m_maxCUWidth - 1) / m_maxCUWidth; const uint32_t heightInCtus = (getSourceHeight() + m_maxCUHeight - 1) / m_maxCUHeight; const uint32_t numCtuInFrame = widthInCtus * heightInCtus; if (m_bUseSAO) { m_cEncSAO.create( getSourceWidth(), getSourceHeight(), m_chromaFormatIDC, m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth, m_log2SaoOffsetScale[CHANNEL_TYPE_LUMA], m_log2SaoOffsetScale[CHANNEL_TYPE_CHROMA] ); m_cEncSAO.createEncData(getSaoCtuBoundary(), numCtuInFrame); } m_cLoopFilter.create( m_maxTotalCUDepth ); if ( !m_bLoopFilterDisable ) { m_cLoopFilter.initEncPicYuvBuffer( m_chromaFormatIDC, getSourceWidth(), getSourceHeight() ); } if( m_alf ) { m_cEncALF.create( this, getSourceWidth(), getSourceHeight(), m_chromaFormatIDC, m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth, m_bitDepth, m_inputBitDepth ); } #endif #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM m_cReshaper = new EncReshape[m_numCuEncStacks]; #endif if (m_lumaReshapeEnable) { #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for (int jId = 0; jId < m_numCuEncStacks; jId++) { m_cReshaper[jId].createEnc(getSourceWidth(), getSourceHeight(), m_maxCUWidth, m_maxCUHeight, m_bitDepth[COMPONENT_Y]); } #else m_cReshaper.createEnc( getSourceWidth(), getSourceHeight(), m_maxCUWidth, m_maxCUHeight, m_bitDepth[COMPONENT_Y]); #endif } if ( m_RCEnableRateControl ) { m_cRateCtrl.init(m_framesToBeEncoded, m_RCTargetBitrate, (int)((double)m_iFrameRate / m_temporalSubsampleRatio + 0.5), m_iGOPSize, m_iSourceWidth, m_iSourceHeight, m_maxCUWidth, m_maxCUHeight, getBitDepth(CHANNEL_TYPE_LUMA), m_RCKeepHierarchicalBit, m_RCUseLCUSeparateModel, m_GOPList); } } void EncLib::destroy () { // destroy processing unit classes m_cGOPEncoder. destroy(); m_cSliceEncoder. destroy(); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 0; jId < m_numCuEncStacks; jId++ ) { m_cCuEncoder[jId].destroy(); } #else m_cCuEncoder. destroy(); #endif if( m_alf ) { m_cEncALF.destroy(); } m_cEncSAO. destroyEncData(); m_cEncSAO. destroy(); m_cLoopFilter. destroy(); m_cRateCtrl. destroy(); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for (int jId = 0; jId < m_numCuEncStacks; jId++) { m_cReshaper[jId]. destroy(); } #else m_cReshaper. destroy(); #endif #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 0; jId < m_numCuEncStacks; jId++ ) { m_cInterSearch[jId]. destroy(); m_cIntraSearch[jId]. destroy(); } #else m_cInterSearch. destroy(); m_cIntraSearch. destroy(); #endif #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM delete[] m_cCuEncoder; delete[] m_cInterSearch; delete[] m_cIntraSearch; delete[] m_cTrQuant; delete[] m_CABACEncoder; delete[] m_cRdCost; delete[] m_CtxCache; #endif // destroy ROM destroyROM(); return; } void EncLib::init( bool isFieldCoding, AUWriterIf* auWriterIf ) { m_AUWriterIf = auWriterIf; SPS &sps0=*(m_spsMap.allocatePS(0)); // NOTE: implementations that use more than 1 SPS need to be aware of activation issues. PPS &pps0=*(m_ppsMap.allocatePS(0)); // initialize SPS xInitSPS(sps0); xInitVPS(m_cVPS); int dpsId = getDecodingParameterSetEnabled() ? 1 : 0; xInitDPS(m_dps, sps0, dpsId); sps0.setDecodingParameterSetId(m_dps.getDecodingParameterSetId()); #if ENABLE_SPLIT_PARALLELISM if( omp_get_dynamic() ) { omp_set_dynamic( false ); } omp_set_nested( true ); #endif if (getUseCompositeRef()) { sps0.setLongTermRefsPresent(true); } #if U0132_TARGET_BITS_SATURATION if (m_RCCpbSaturationEnabled) { m_cRateCtrl.initHrdParam(sps0.getHrdParameters(), m_iFrameRate, m_RCInitialCpbFullness); } #endif #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 0; jId < m_numCuEncStacks; jId++ ) { m_cRdCost[jId].setCostMode ( m_costMode ); } #else m_cRdCost.setCostMode ( m_costMode ); #endif // initialize PPS #if JVET_O1164_PS pps0.setPicWidthInLumaSamples( m_iSourceWidth ); pps0.setPicHeightInLumaSamples( m_iSourceHeight ); pps0.setConformanceWindow( m_conformanceWindow ); #endif xInitPPS(pps0, sps0); // initialize APS xInitRPL(sps0, isFieldCoding); #if JVET_O1164_RPR if( m_rprEnabled ) { PPS &pps = *( m_ppsMap.allocatePS( ENC_PPS_ID_RPR ) ); #if RPR_CONF_WINDOW Window& inputConfWindow = pps0.getConformanceWindow(); int scaledWidth = int((pps0.getPicWidthInLumaSamples() - (inputConfWindow.getWindowLeftOffset() + inputConfWindow.getWindowRightOffset()) * SPS::getWinUnitX(sps0.getChromaFormatIdc())) / m_scalingRatioHor); #else int scaledWidth = int(pps0.getPicWidthInLumaSamples() / m_scalingRatioHor); #endif int minSizeUnit = std::max(8, (int)(sps0.getMaxCUHeight() >> (sps0.getMaxCodingDepth() - 1))); int temp = scaledWidth / minSizeUnit; int width = ( scaledWidth - ( temp * minSizeUnit) > 0 ? temp + 1 : temp ) * minSizeUnit; #if RPR_CONF_WINDOW int scaledHeight = int((pps0.getPicHeightInLumaSamples() - (inputConfWindow.getWindowTopOffset() + inputConfWindow.getWindowBottomOffset()) * SPS::getWinUnitY(sps0.getChromaFormatIdc())) / m_scalingRatioVer); #else int scaledHeight = int(pps0.getPicHeightInLumaSamples() / m_scalingRatioVer); #endif temp = scaledHeight / minSizeUnit; int height = ( scaledHeight - ( temp * minSizeUnit) > 0 ? temp + 1 : temp ) * minSizeUnit; pps.setPicWidthInLumaSamples( width ); pps.setPicHeightInLumaSamples( height ); Window conformanceWindow; conformanceWindow.setWindow( 0, ( width - scaledWidth ) / SPS::getWinUnitX( sps0.getChromaFormatIdc() ), 0, ( height - scaledHeight ) / SPS::getWinUnitY( sps0.getChromaFormatIdc() ) ); pps.setConformanceWindow( conformanceWindow ); xInitPPS( pps, sps0 ); // will allocate memory for and initialize pps.pcv inside } #endif #if ER_CHROMA_QP_WCG_PPS if (m_wcgChromaQpControl.isEnabled()) { PPS &pps1=*(m_ppsMap.allocatePS(1)); xInitPPS(pps1, sps0); } #endif if (getUseCompositeRef()) { PPS &pps2 = *(m_ppsMap.allocatePS(2)); xInitPPS(pps2, sps0); xInitPPSforLT(pps2); } // initialize processing unit classes m_cGOPEncoder. init( this ); m_cSliceEncoder.init( this, sps0 ); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 0; jId < m_numCuEncStacks; jId++ ) { // precache a few objects for( int i = 0; i < 10; i++ ) { auto x = m_CtxCache[jId].get(); m_CtxCache[jId].cache( x ); } m_cCuEncoder[jId].init( this, sps0, jId ); // initialize transform & quantization class m_cTrQuant[jId].init( jId == 0 ? nullptr : m_cTrQuant[0].getQuant(), #if MAX_TB_SIZE_SIGNALLING 1 << m_log2MaxTbSize, #else MAX_TB_SIZEY, #endif m_useRDOQ, m_useRDOQTS, #if T0196_SELECTIVE_RDOQ m_useSelectiveRDOQ, #endif true, m_useTransformSkipFast ); // initialize encoder search class CABACWriter* cabacEstimator = m_CABACEncoder[jId].getCABACEstimator( &sps0 ); m_cIntraSearch[jId].init( this, &m_cTrQuant[jId], &m_cRdCost[jId], cabacEstimator, getCtxCache( jId ), m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth , &m_cReshaper[jId] ); m_cInterSearch[jId].init( this, &m_cTrQuant[jId], m_iSearchRange, m_bipredSearchRange, m_motionEstimationSearchMethod, getUseCompositeRef(), m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth, &m_cRdCost[jId], cabacEstimator, getCtxCache( jId ) , &m_cReshaper[jId] ); // link temporary buffets from intra search with inter search to avoid unnecessary memory overhead m_cInterSearch[jId].setTempBuffers( m_cIntraSearch[jId].getSplitCSBuf(), m_cIntraSearch[jId].getFullCSBuf(), m_cIntraSearch[jId].getSaveCSBuf() ); } #else // ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM m_cCuEncoder. init( this, sps0 ); // initialize transform & quantization class m_cTrQuant.init( nullptr, #if MAX_TB_SIZE_SIGNALLING 1 << m_log2MaxTbSize, #else MAX_TB_SIZEY, #endif m_useRDOQ, m_useRDOQTS, #if T0196_SELECTIVE_RDOQ m_useSelectiveRDOQ, #endif true, m_useTransformSkipFast ); // initialize encoder search class CABACWriter* cabacEstimator = m_CABACEncoder.getCABACEstimator(&sps0); m_cIntraSearch.init( this, &m_cTrQuant, &m_cRdCost, cabacEstimator, getCtxCache(), m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth , &m_cReshaper ); m_cInterSearch.init( this, &m_cTrQuant, m_iSearchRange, m_bipredSearchRange, m_motionEstimationSearchMethod, getUseCompositeRef(), m_maxCUWidth, m_maxCUHeight, m_maxTotalCUDepth, &m_cRdCost, cabacEstimator, getCtxCache() , &m_cReshaper ); // link temporary buffets from intra search with inter search to avoid unneccessary memory overhead m_cInterSearch.setTempBuffers( m_cIntraSearch.getSplitCSBuf(), m_cIntraSearch.getFullCSBuf(), m_cIntraSearch.getSaveCSBuf() ); #endif // ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM m_iMaxRefPicNum = 0; #if ER_CHROMA_QP_WCG_PPS if( m_wcgChromaQpControl.isEnabled() ) { xInitScalingLists( sps0, *m_ppsMap.getPS(1) ); xInitScalingLists( sps0, pps0 ); } else #endif { xInitScalingLists( sps0, pps0 ); } #if JVET_O1164_RPR if( m_rprEnabled ) { xInitScalingLists( sps0, *m_ppsMap.getPS( ENC_PPS_ID_RPR ) ); } #endif #if ENABLE_WPP_PARALLELISM m_entropyCodingSyncContextStateVec.resize( pps0.pcv->heightInCtus ); #endif if (getUseCompositeRef()) { Picture *picBg = new Picture; #if JVET_O1164_PS picBg->create( sps0.getChromaFormatIdc(), Size( pps0.getPicWidthInLumaSamples(), pps0.getPicHeightInLumaSamples() ), sps0.getMaxCUWidth(), sps0.getMaxCUWidth() + 16, false ); #else picBg->create(sps0.getChromaFormatIdc(), Size(sps0.getPicWidthInLumaSamples(), sps0.getPicHeightInLumaSamples()), sps0.getMaxCUWidth(), sps0.getMaxCUWidth() + 16, false); #endif picBg->getRecoBuf().fill(0); picBg->finalInit(sps0, pps0, m_apss, *m_lmcsAPS); pps0.setNumBricksInPic((int)picBg->brickMap->bricks.size()); picBg->allocateNewSlice(); picBg->createSpliceIdx(pps0.pcv->sizeInCtus); m_cGOPEncoder.setPicBg(picBg); Picture *picOrig = new Picture; #if JVET_O1164_PS picOrig->create( sps0.getChromaFormatIdc(), Size( pps0.getPicWidthInLumaSamples(), pps0.getPicHeightInLumaSamples() ), sps0.getMaxCUWidth(), sps0.getMaxCUWidth() + 16, false ); #else picOrig->create(sps0.getChromaFormatIdc(), Size(sps0.getPicWidthInLumaSamples(), sps0.getPicHeightInLumaSamples()), sps0.getMaxCUWidth(), sps0.getMaxCUWidth() + 16, false); #endif picOrig->getOrigBuf().fill(0); m_cGOPEncoder.setPicOrig(picOrig); } } void EncLib::xInitScalingLists(SPS &sps, PPS &pps) { // Initialise scaling lists // The encoder will only use the SPS scaling lists. The PPS will never be marked present. const int maxLog2TrDynamicRange[MAX_NUM_CHANNEL_TYPE] = { sps.getMaxLog2TrDynamicRange(CHANNEL_TYPE_LUMA), sps.getMaxLog2TrDynamicRange(CHANNEL_TYPE_CHROMA) }; Quant* quant = getTrQuant()->getQuant(); if(getUseScalingListId() == SCALING_LIST_OFF) { quant->setFlatScalingList(maxLog2TrDynamicRange, sps.getBitDepths()); quant->setUseScalingList(false); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 1; jId < m_numCuEncStacks; jId++ ) { getTrQuant( jId )->getQuant()->setFlatScalingList( maxLog2TrDynamicRange, sps.getBitDepths() ); getTrQuant( jId )->getQuant()->setUseScalingList( false ); } #endif sps.setScalingListPresentFlag(false); pps.setScalingListPresentFlag(false); } else if(getUseScalingListId() == SCALING_LIST_DEFAULT) { sps.getScalingList().setDefaultScalingList (); sps.setScalingListPresentFlag(false); pps.setScalingListPresentFlag(false); quant->setScalingList(&(sps.getScalingList()), maxLog2TrDynamicRange, sps.getBitDepths()); quant->setUseScalingList(true); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 1; jId < m_numCuEncStacks; jId++ ) { getTrQuant( jId )->getQuant()->setUseScalingList( true ); } #endif } else if(getUseScalingListId() == SCALING_LIST_FILE_READ) { sps.getScalingList().setDefaultScalingList (); if(sps.getScalingList().xParseScalingList(getScalingListFileName())) { THROW( "parse scaling list"); } sps.getScalingList().checkDcOfMatrix(); sps.setScalingListPresentFlag(sps.getScalingList().checkDefaultScalingList()); pps.setScalingListPresentFlag(false); quant->setScalingList(&(sps.getScalingList()), maxLog2TrDynamicRange, sps.getBitDepths()); quant->setUseScalingList(true); #if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM for( int jId = 1; jId < m_numCuEncStacks; jId++ ) { getTrQuant( jId )->getQuant()->setUseScalingList( true ); } #endif } else { THROW("error : ScalingList == " << getUseScalingListId() << " not supported\n"); } if (getUseScalingListId() == SCALING_LIST_FILE_READ && sps.getScalingListPresentFlag()) { // Prepare delta's: for (uint32_t sizeId = SCALING_LIST_2x2; sizeId <= SCALING_LIST_64x64; sizeId++) { for (uint32_t listId = 0; listId < SCALING_LIST_NUM; listId++) { if (((sizeId == SCALING_LIST_64x64) && (listId % (SCALING_LIST_NUM / SCALING_LIST_PRED_MODES) != 0)) || ((sizeId == SCALING_LIST_2x2) && (listId % (SCALING_LIST_NUM / SCALING_LIST_PRED_MODES) == 0))) { continue; } sps.getScalingList().checkPredMode( sizeId, listId ); } } } } void EncLib::xInitPPSforLT(PPS& pps) { pps.setOutputFlagPresentFlag(true); pps.setDeblockingFilterControlPresentFlag(true); pps.setPPSDeblockingFilterDisabledFlag(true); } // ==================================================================================================================== // Public member functions // ==================================================================================================================== void EncLib::deletePicBuffer() { PicList::iterator iterPic = m_cListPic.begin(); int iSize = int( m_cListPic.size() ); for ( int i = 0; i < iSize; i++ ) { Picture* pcPic = *(iterPic++); pcPic->destroy(); // get rid of the qpadaption layer while( pcPic->aqlayer.size() ) { delete pcPic->aqlayer.back(); pcPic->aqlayer.pop_back(); } delete pcPic; pcPic = NULL; } } /** - Application has picture buffer list with size of GOP + 1 - Picture buffer list acts like as ring buffer - End of the list has the latest picture . \param flush cause encoder to encode a partial GOP \param pcPicYuvOrg original YUV picture \param pcPicYuvTrueOrg \param snrCSC \retval rcListPicYuvRecOut list of reconstruction YUV pictures \retval accessUnitsOut list of output access units \retval iNumEncoded number of encoded pictures */ void EncLib::encode( bool flush, PelStorage* pcPicYuvOrg, PelStorage* cPicYuvTrueOrg, const InputColourSpaceConversion snrCSC, std::list<PelUnitBuf*>& rcListPicYuvRecOut, int& iNumEncoded ) { if (m_compositeRefEnabled && m_cGOPEncoder.getPicBg()->getSpliceFull() && m_iPOCLast >= 10 && m_iNumPicRcvd == 0 && m_cGOPEncoder.getEncodedLTRef() == false) { Picture* picCurr = NULL; xGetNewPicBuffer(rcListPicYuvRecOut, picCurr, 2); const PPS *pps = m_ppsMap.getPS(2); const SPS *sps = m_spsMap.getPS(pps->getSPSId()); picCurr->M_BUFS(0, PIC_ORIGINAL).copyFrom(m_cGOPEncoder.getPicBg()->getRecoBuf()); picCurr->finalInit(*sps, *pps, m_apss, *m_lmcsAPS); picCurr->poc = m_iPOCLast - 1; m_iPOCLast -= 2; if (getUseAdaptiveQP()) { AQpPreanalyzer::preanalyze(picCurr); } if (m_RCEnableRateControl) { m_cRateCtrl.initRCGOP(m_iNumPicRcvd); } m_cGOPEncoder.compressGOP(m_iPOCLast, m_iNumPicRcvd, m_cListPic, rcListPicYuvRecOut, false, false, snrCSC, m_printFrameMSE, true); #if JVET_O0756_CALCULATE_HDRMETRICS m_metricTime = m_cGOPEncoder.getMetricTime(); #endif m_cGOPEncoder.setEncodedLTRef(true); if (m_RCEnableRateControl) { m_cRateCtrl.destroyRCGOP(); } iNumEncoded = 0; m_iNumPicRcvd = 0; } //PROF_ACCUM_AND_START_NEW_SET( getProfilerPic(), P_GOP_LEVEL ); if (pcPicYuvOrg != NULL) { // get original YUV Picture* pcPicCurr = NULL; int ppsID=-1; // Use default PPS ID #if ER_CHROMA_QP_WCG_PPS if (getWCGChromaQPControl().isEnabled()) { ppsID = getdQPs()[m_iPOCLast / (m_compositeRefEnabled ? 2 : 1) + 1]; ppsID+=(getSwitchPOC() != -1 && (m_iPOCLast+1 >= getSwitchPOC())?1:0); } #endif #if JVET_O1164_RPR if( m_rprEnabled && m_uiIntraPeriod == -1 ) { const int poc = m_iPOCLast + ( m_compositeRefEnabled ? 2 : 1 ); if( poc / m_switchPocPeriod % 2 ) { ppsID = ENC_PPS_ID_RPR; } else { ppsID = 0; } } #endif xGetNewPicBuffer( rcListPicYuvRecOut, pcPicCurr, ppsID ); { const PPS *pPPS=(ppsID<0) ? m_ppsMap.getFirstPS() : m_ppsMap.getPS(ppsID); const SPS *pSPS=m_spsMap.getPS(pPPS->getSPSId()); #if JVET_O1164_RPR if( m_rprEnabled ) { #if RPR_CTC_PRINT pcPicCurr->m_bufs[PIC_ORIGINAL_INPUT].getBuf( COMPONENT_Y ).copyFrom( pcPicYuvOrg->getBuf( COMPONENT_Y ) ); pcPicCurr->m_bufs[PIC_ORIGINAL_INPUT].getBuf( COMPONENT_Cb ).copyFrom( pcPicYuvOrg->getBuf( COMPONENT_Cb ) ); pcPicCurr->m_bufs[PIC_ORIGINAL_INPUT].getBuf( COMPONENT_Cr ).copyFrom( pcPicYuvOrg->getBuf( COMPONENT_Cr ) ); pcPicCurr->m_bufs[PIC_TRUE_ORIGINAL_INPUT].getBuf( COMPONENT_Y ).copyFrom( cPicYuvTrueOrg->getBuf( COMPONENT_Y ) ); pcPicCurr->m_bufs[PIC_TRUE_ORIGINAL_INPUT].getBuf( COMPONENT_Cb ).copyFrom( cPicYuvTrueOrg->getBuf( COMPONENT_Cb ) ); pcPicCurr->m_bufs[PIC_TRUE_ORIGINAL_INPUT].getBuf( COMPONENT_Cr ).copyFrom( cPicYuvTrueOrg->getBuf( COMPONENT_Cr ) ); #endif const ChromaFormat chromaFormatIDC = pSPS->getChromaFormatIdc(); #if RPR_CONF_WINDOW const PPS *refPPS = m_ppsMap.getPS(0); Picture::rescalePicture( *pcPicYuvOrg, refPPS->getConformanceWindow(), pcPicCurr->getOrigBuf(), pPPS->getConformanceWindow(), chromaFormatIDC, pSPS->getBitDepths(), true, true ); Picture::rescalePicture( *cPicYuvTrueOrg, refPPS->getConformanceWindow(), pcPicCurr->getTrueOrigBuf(), pPPS->getConformanceWindow(), chromaFormatIDC, pSPS->getBitDepths(), true, true ); #else Picture::rescalePicture(*pcPicYuvOrg, pcPicCurr->getOrigBuf(), chromaFormatIDC, pSPS->getBitDepths(), true, true); Picture::rescalePicture(*cPicYuvTrueOrg, pcPicCurr->getTrueOrigBuf(), chromaFormatIDC, pSPS->getBitDepths(), true, true); #endif } else { pcPicCurr->M_BUFS( 0, PIC_ORIGINAL ).swap( *pcPicYuvOrg ); pcPicCurr->M_BUFS( 0, PIC_TRUE_ORIGINAL ).swap( *cPicYuvTrueOrg ); } #else pcPicCurr->M_BUFS( 0, PIC_ORIGINAL ).swap( *pcPicYuvOrg ); pcPicCurr->M_BUFS( 0, PIC_TRUE_ORIGINAL ).swap(*cPicYuvTrueOrg ); #endif pcPicCurr->finalInit(*pSPS, *pPPS, m_apss, *m_lmcsAPS); PPS *ptrPPS = (ppsID<0) ? m_ppsMap.getFirstPS() : m_ppsMap.getPS(ppsID); ptrPPS->setNumBricksInPic((int)pcPicCurr->brickMap->bricks.size()); } pcPicCurr->poc = m_iPOCLast; // compute image characteristics if ( getUseAdaptiveQP() ) { AQpPreanalyzer::preanalyze( pcPicCurr ); } } if ((m_iNumPicRcvd == 0) || (!flush && (m_iPOCLast != 0) && (m_iNumPicRcvd != m_iGOPSize) && (m_iGOPSize != 0))) { iNumEncoded = 0; return; } if ( m_RCEnableRateControl ) { m_cRateCtrl.initRCGOP( m_iNumPicRcvd ); } // compress GOP m_cGOPEncoder.compressGOP(m_iPOCLast, m_iNumPicRcvd, m_cListPic, rcListPicYuvRecOut, false, false, snrCSC, m_printFrameMSE , false ); #if JVET_O0756_CALCULATE_HDRMETRICS m_metricTime = m_cGOPEncoder.getMetricTime(); #endif if ( m_RCEnableRateControl ) { m_cRateCtrl.destroyRCGOP(); } iNumEncoded = m_iNumPicRcvd; m_iNumPicRcvd = 0; m_uiNumAllPicCoded += iNumEncoded; } /**------------------------------------------------ Separate interlaced frame into two fields -------------------------------------------------**/ void separateFields(Pel* org, Pel* dstField, uint32_t stride, uint32_t width, uint32_t height, bool isTop) { if (!isTop) { org += stride; } for (int y = 0; y < height>>1; y++) { for (int x = 0; x < width; x++) { dstField[x] = org[x]; } dstField += stride; org += stride*2; } } void EncLib::encode( bool flush, PelStorage* pcPicYuvOrg, PelStorage* pcPicYuvTrueOrg, const InputColourSpaceConversion snrCSC, std::list<PelUnitBuf*>& rcListPicYuvRecOut, int& iNumEncoded, bool isTff ) { iNumEncoded = 0; for (int fieldNum=0; fieldNum<2; fieldNum++) { if (pcPicYuvOrg) { /* -- field initialization -- */ const bool isTopField=isTff==(fieldNum==0); Picture *pcField; xGetNewPicBuffer( rcListPicYuvRecOut, pcField, -1 ); for (uint32_t comp = 0; comp < ::getNumberValidComponents(pcPicYuvOrg->chromaFormat); comp++) { const ComponentID compID = ComponentID(comp); { PelBuf compBuf = pcPicYuvOrg->get( compID ); separateFields( compBuf.buf, pcField->getOrigBuf().get(compID).buf, compBuf.stride, compBuf.width, compBuf.height, isTopField); } } { int ppsID=-1; // Use default PPS ID const PPS *pPPS=(ppsID<0) ? m_ppsMap.getFirstPS() : m_ppsMap.getPS(ppsID); const SPS *pSPS=m_spsMap.getPS(pPPS->getSPSId()); pcField->finalInit(*pSPS, *pPPS, m_apss, *m_lmcsAPS); } pcField->poc = m_iPOCLast; pcField->reconstructed = false; pcField->setBorderExtension(false);// where is this normally? pcField->topField = isTopField; // interlaced requirement // compute image characteristics if ( getUseAdaptiveQP() ) { AQpPreanalyzer::preanalyze( pcField ); } } if ( m_iNumPicRcvd && ((flush&&fieldNum==1) || (m_iPOCLast/2)==0 || m_iNumPicRcvd==m_iGOPSize ) ) { // compress GOP m_cGOPEncoder.compressGOP(m_iPOCLast, m_iNumPicRcvd, m_cListPic, rcListPicYuvRecOut, true, isTff, snrCSC, m_printFrameMSE , false ); #if JVET_O0756_CALCULATE_HDRMETRICS m_metricTime = m_cGOPEncoder.getMetricTime(); #endif iNumEncoded += m_iNumPicRcvd; m_uiNumAllPicCoded += m_iNumPicRcvd; m_iNumPicRcvd = 0; } } } // ==================================================================================================================== // Protected member functions // ==================================================================================================================== /** - Application has picture buffer list with size of GOP + 1 - Picture buffer list acts like as ring buffer - End of the list has the latest picture . \retval rpcPic obtained picture buffer */ void EncLib::xGetNewPicBuffer ( std::list<PelUnitBuf*>& rcListPicYuvRecOut, Picture*& rpcPic, int ppsId ) { // rotate he output buffer rcListPicYuvRecOut.push_back( rcListPicYuvRecOut.front() ); rcListPicYuvRecOut.pop_front(); rpcPic=0; // At this point, the SPS and PPS can be considered activated - they are copied to the new Pic. const PPS *pPPS=(ppsId<0) ? m_ppsMap.getFirstPS() : m_ppsMap.getPS(ppsId); CHECK(!(pPPS!=0), "Unspecified error"); const PPS &pps=*pPPS; const SPS *pSPS=m_spsMap.getPS(pps.getSPSId()); CHECK(!(pSPS!=0), "Unspecified error"); const SPS &sps=*pSPS; Slice::sortPicList(m_cListPic); // use an entry in the buffered list if the maximum number that need buffering has been reached: if (m_cListPic.size() >= (uint32_t)(m_iGOPSize + getMaxDecPicBuffering(MAX_TLAYER-1) + 2) ) { PicList::iterator iterPic = m_cListPic.begin(); int iSize = int( m_cListPic.size() ); for ( int i = 0; i < iSize; i++ ) { rpcPic = *iterPic; if( ! rpcPic->referenced ) { break; } iterPic++; } // If PPS ID is the same, we will assume that it has not changed since it was last used // and return the old object. if (pps.getPPSId() != rpcPic->cs->pps->getPPSId()) { // the IDs differ - free up an entry in the list, and then create a new one, as with the case where the max buffering state has not been reached. rpcPic->destroy(); delete rpcPic; m_cListPic.erase(iterPic); rpcPic=0; } } if (rpcPic==0) { rpcPic = new Picture; #if JVET_O1164_PS rpcPic->create( sps.getChromaFormatIdc(), Size( pps.getPicWidthInLumaSamples(), pps.getPicHeightInLumaSamples() ), sps.getMaxCUWidth(), sps.getMaxCUWidth() + 16, false ); #if RPR_CTC_PRINT if( m_rprEnabled ) { rpcPic->m_bufs[PIC_ORIGINAL_INPUT].create( sps.getChromaFormatIdc(), Area( Position(), Size( sps.getMaxPicWidthInLumaSamples(), sps.getMaxPicHeightInLumaSamples() ) ) ); rpcPic->m_bufs[PIC_TRUE_ORIGINAL_INPUT].create( sps.getChromaFormatIdc(), Area( Position(), Size( sps.getMaxPicWidthInLumaSamples(), sps.getMaxPicHeightInLumaSamples() ) ) ); } #endif #else rpcPic->create( sps.getChromaFormatIdc(), Size( sps.getPicWidthInLumaSamples(), sps.getPicHeightInLumaSamples()), sps.getMaxCUWidth(), sps.getMaxCUWidth()+16, false ); #endif if ( getUseAdaptiveQP() ) { const uint32_t iMaxDQPLayer = pps.getCuQpDeltaSubdiv()/2+1; rpcPic->aqlayer.resize( iMaxDQPLayer ); for (uint32_t d = 0; d < iMaxDQPLayer; d++) { #if JVET_O1164_PS rpcPic->aqlayer[d] = new AQpLayer( pps.getPicWidthInLumaSamples(), pps.getPicHeightInLumaSamples(), sps.getMaxCUWidth() >> d, sps.getMaxCUHeight() >> d ); #else rpcPic->aqlayer[d] = new AQpLayer( sps.getPicWidthInLumaSamples(), sps.getPicHeightInLumaSamples(), sps.getMaxCUWidth()>>d, sps.getMaxCUHeight()>>d ); #endif } } m_cListPic.push_back( rpcPic ); } rpcPic->setBorderExtension( false ); rpcPic->reconstructed = false; rpcPic->referenced = true; rpcPic->getHashMap()->clearAll(); m_iPOCLast += (m_compositeRefEnabled ? 2 : 1); m_iNumPicRcvd++; } void EncLib::xInitVPS(VPS &vps) { // The SPS must have already been set up. // set the VPS profile information. vps.setMaxLayers(1); for (uint32_t i = 0; i < vps.getMaxLayers(); i++) { vps.setVPSIncludedLayerId(0, i); } } void EncLib::xInitDPS(DPS &dps, const SPS &sps, const int dpsId) { // The SPS must have already been set up. // set the DPS profile information. dps.setDecodingParameterSetId(dpsId); dps.setMaxSubLayersMinus1(sps.getMaxTLayers()-1); dps.setProfileTierLevel(*sps.getProfileTierLevel()); } void EncLib::xInitSPS(SPS &sps) { ProfileTierLevel* profileTierLevel = sps.getProfileTierLevel(); ConstraintInfo* cinfo = profileTierLevel->getConstraintInfo(); cinfo->setProgressiveSourceFlag (m_progressiveSourceFlag); cinfo->setInterlacedSourceFlag (m_interlacedSourceFlag); cinfo->setNonPackedConstraintFlag (m_nonPackedConstraintFlag); cinfo->setFrameOnlyConstraintFlag (m_frameOnlyConstraintFlag); cinfo->setIntraOnlyConstraintFlag (m_intraConstraintFlag); cinfo->setMaxBitDepthConstraintIdc (m_maxBitDepthConstraintIdc); cinfo->setMaxChromaFormatConstraintIdc((ChromaFormat)m_maxChromaFormatConstraintIdc); cinfo->setNoQtbttDualTreeIntraConstraintFlag(m_bNoQtbttDualTreeIntraConstraintFlag); cinfo->setNoPartitionConstraintsOverrideConstraintFlag(m_noPartitionConstraintsOverrideConstraintFlag); cinfo->setNoSaoConstraintFlag(m_bNoSaoConstraintFlag); cinfo->setNoAlfConstraintFlag(m_bNoAlfConstraintFlag); #if !JVET_O0525_REMOVE_PCM cinfo->setNoPcmConstraintFlag(m_bNoPcmConstraintFlag); #endif cinfo->setNoRefWraparoundConstraintFlag(m_bNoRefWraparoundConstraintFlag); cinfo->setNoTemporalMvpConstraintFlag(m_bNoTemporalMvpConstraintFlag); cinfo->setNoSbtmvpConstraintFlag(m_bNoSbtmvpConstraintFlag); cinfo->setNoAmvrConstraintFlag(m_bNoAmvrConstraintFlag); cinfo->setNoBdofConstraintFlag(m_bNoBdofConstraintFlag); cinfo->setNoDmvrConstraintFlag(m_noDmvrConstraintFlag); cinfo->setNoCclmConstraintFlag(m_bNoCclmConstraintFlag); cinfo->setNoMtsConstraintFlag(m_bNoMtsConstraintFlag); cinfo->setNoSbtConstraintFlag(m_noSbtConstraintFlag); cinfo->setNoAffineMotionConstraintFlag(m_bNoAffineMotionConstraintFlag); cinfo->setNoGbiConstraintFlag(m_bNoGbiConstraintFlag); cinfo->setNoIbcConstraintFlag(m_noIbcConstraintFlag); cinfo->setNoMhIntraConstraintFlag(m_bNoMhIntraConstraintFlag); cinfo->setNoFPelMmvdConstraintFlag(m_noFPelMmvdConstraintFlag); cinfo->setNoTriangleConstraintFlag(m_bNoTriangleConstraintFlag); cinfo->setNoLadfConstraintFlag(m_bNoLadfConstraintFlag); cinfo->setNoTransformSkipConstraintFlag(m_noTransformSkipConstraintFlag); #if JVET_O1136_TS_BDPCM_SIGNALLING cinfo->setNoBDPCMConstraintFlag(m_noBDPCMConstraintFlag); #endif #if JVET_O0376_SPS_JOINTCBCR_FLAG cinfo->setNoJointCbCrConstraintFlag(m_noJointCbCrConstraintFlag); #endif cinfo->setNoQpDeltaConstraintFlag(m_bNoQpDeltaConstraintFlag); cinfo->setNoDepQuantConstraintFlag(m_bNoDepQuantConstraintFlag); cinfo->setNoSignDataHidingConstraintFlag(m_bNoSignDataHidingConstraintFlag); profileTierLevel->setLevelIdc (m_level); profileTierLevel->setTierFlag (m_levelTier); profileTierLevel->setProfileIdc (m_profile); profileTierLevel->setSubProfileIdc (m_subProfile); /* XXX: should Main be marked as compatible with still picture? */ /* XXX: may be a good idea to refactor the above into a function * that chooses the actual compatibility based upon options */ #if JVET_O1164_PS sps.setMaxPicWidthInLumaSamples( m_iSourceWidth ); sps.setMaxPicHeightInLumaSamples( m_iSourceHeight ); #else sps.setPicWidthInLumaSamples ( m_iSourceWidth ); sps.setPicHeightInLumaSamples ( m_iSourceHeight ); sps.setConformanceWindow ( m_conformanceWindow ); #endif sps.setMaxCUWidth ( m_maxCUWidth ); sps.setMaxCUHeight ( m_maxCUHeight ); sps.setMaxCodingDepth ( m_maxTotalCUDepth ); sps.setChromaFormatIdc ( m_chromaFormatIDC ); sps.setLog2DiffMaxMinCodingBlockSize(m_log2DiffMaxMinCodingBlockSize); sps.setCTUSize ( m_CTUSize ); sps.setSplitConsOverrideEnabledFlag ( m_useSplitConsOverride ); sps.setMinQTSizes ( m_uiMinQT ); sps.setMaxBTDepth ( m_uiMaxBTDepth, m_uiMaxBTDepthI, m_uiMaxBTDepthIChroma ); unsigned maxBtSize[3], maxTtSize[3]; memcpy(maxBtSize, m_uiMinQT, sizeof(maxBtSize)); memcpy(maxTtSize, m_uiMinQT, sizeof(maxTtSize)); if (m_uiMaxBTDepth) { maxBtSize[1] = std::min(m_CTUSize, (unsigned)MAX_BT_SIZE_INTER); maxTtSize[1] = std::min(m_CTUSize, (unsigned)MAX_TT_SIZE_INTER); } if (m_uiMaxBTDepthI) { maxBtSize[0] = std::min(m_CTUSize, (unsigned)MAX_BT_SIZE); maxTtSize[0] = std::min(m_CTUSize, (unsigned)MAX_TT_SIZE); } if (m_uiMaxBTDepthIChroma) { maxBtSize[2] = std::min(m_CTUSize, (unsigned)MAX_BT_SIZE_C); maxTtSize[2] = std::min(m_CTUSize, (unsigned)MAX_TT_SIZE_C); } sps.setMaxBTSize ( maxBtSize[1], maxBtSize[0], maxBtSize[2] ); sps.setMaxTTSize ( maxTtSize[1], maxTtSize[0], maxTtSize[2] ); sps.setIDRRefParamListPresent ( m_idrRefParamList ); sps.setUseDualITree ( m_dualITree ); sps.setUseLFNST ( m_LFNST ); sps.setSBTMVPEnabledFlag ( m_SubPuMvpMode ); sps.setAMVREnabledFlag ( m_ImvMode != IMV_OFF ); sps.setBDOFEnabledFlag ( m_BIO ); sps.setUseAffine ( m_Affine ); sps.setUseAffineType ( m_AffineType ); #if JVET_O0070_PROF sps.setUsePROF ( m_PROF ); #endif sps.setUseLMChroma ( m_LMChroma ? true : false ); sps.setCclmCollocatedChromaFlag( m_cclmCollocatedChromaFlag ); sps.setUseMTS ( m_IntraMTS || m_InterMTS || m_ImplicitMTS ); sps.setUseIntraMTS ( m_IntraMTS ); sps.setUseInterMTS ( m_InterMTS ); sps.setUseSBT ( m_SBT ); if( sps.getUseSBT() ) { #if JVET_O0545_MAX_TB_SIGNALLING sps.setMaxSbtSize ( std::min((int)(1 << m_log2MaxTbSize), m_iSourceWidth >= 1920 ? 64 : 32) ); #else sps.setMaxSbtSize ( m_iSourceWidth >= 1920 ? 64 : 32 ); #endif } sps.setUseSMVD ( m_SMVD ); sps.setUseGBi ( m_GBi ); #if LUMA_ADAPTIVE_DEBLOCKING_FILTER_QP_OFFSET sps.setLadfEnabled ( m_LadfEnabled ); if ( m_LadfEnabled ) { sps.setLadfNumIntervals ( m_LadfNumIntervals ); for ( int k = 0; k < m_LadfNumIntervals; k++ ) { sps.setLadfQpOffset( m_LadfQpOffset[k], k ); sps.setLadfIntervalLowerBound( m_LadfIntervalLowerBound[k], k ); } CHECK( m_LadfIntervalLowerBound[0] != 0, "abnormal value set to LadfIntervalLowerBound[0]" ); } #endif sps.setUseMHIntra ( m_MHIntra ); sps.setUseTriangle ( m_Triangle ); sps.setUseMMVD ( m_MMVD ); sps.setFpelMmvdEnabledFlag (( m_MMVD ) ? m_allowDisFracMMVD : false); #if JVET_O1140_SLICE_DISABLE_BDOF_DMVR_FLAG sps.setBdofDmvrSlicePresentFlag(m_DMVR || m_BIO); #endif sps.setAffineAmvrEnabledFlag ( m_AffineAmvr ); sps.setUseDMVR ( m_DMVR ); #if JVET_O0119_BASE_PALETTE_444 sps.setPLTMode ( m_PLTMode); #endif sps.setIBCFlag ( m_IBCMode); sps.setWrapAroundEnabledFlag ( m_wrapAround ); sps.setWrapAroundOffset ( m_wrapAroundOffset ); // ADD_NEW_TOOL : (encoder lib) set tool enabling flags and associated parameters here sps.setUseISP ( m_ISP ); sps.setUseReshaper ( m_lumaReshapeEnable ); sps.setUseMIP ( m_MIP ); int minCUSize = sps.getMaxCUWidth() >> sps.getLog2DiffMaxMinCodingBlockSize(); int log2MinCUSize = 0; while(minCUSize > 1) { minCUSize >>= 1; log2MinCUSize++; } sps.setLog2MinCodingBlockSize(log2MinCUSize); #if !JVET_O0525_REMOVE_PCM sps.setPCMLog2MinSize (m_uiPCMLog2MinSize); sps.setPCMEnabledFlag ( m_usePCM ); sps.setPCMLog2MaxSize( m_pcmLog2MaxSize ); #endif #if JVET_O1136_TS_BDPCM_SIGNALLING sps.setTransformSkipEnabledFlag(m_useTransformSkip); sps.setBDPCMEnabledFlag(m_useBDPCM); #endif sps.setSPSTemporalMVPEnabledFlag((getTMVPModeId() == 2 || getTMVPModeId() == 1)); #if MAX_TB_SIZE_SIGNALLING sps.setLog2MaxTbSize ( m_log2MaxTbSize ); #endif for (uint32_t channelType = 0; channelType < MAX_NUM_CHANNEL_TYPE; channelType++) { sps.setBitDepth (ChannelType(channelType), m_bitDepth[channelType] ); sps.setQpBDOffset (ChannelType(channelType), (6 * (m_bitDepth[channelType] - 8))); #if JVET_O0919_TS_MIN_QP sps.setMinQpPrimeTsMinus4(ChannelType(channelType), (6 * (m_bitDepth[channelType] - m_inputBitDepth[channelType]))); #endif #if !JVET_O0525_REMOVE_PCM sps.setPCMBitDepth (ChannelType(channelType), m_PCMBitDepth[channelType] ); #endif } #if JVET_O0244_DELTA_POC sps.setUseWP( m_useWeightedPred ); sps.setUseWPBiPred( m_useWeightedBiPred ); #endif sps.setSAOEnabledFlag( m_bUseSAO ); #if JVET_O0376_SPS_JOINTCBCR_FLAG sps.setJointCbCrEnabledFlag( m_JointCbCrMode ); #endif sps.setMaxTLayers( m_maxTempLayer ); sps.setTemporalIdNestingFlag( ( m_maxTempLayer == 1 ) ? true : false ); for (int i = 0; i < std::min(sps.getMaxTLayers(), (uint32_t) MAX_TLAYER); i++ ) { sps.setMaxDecPicBuffering(m_maxDecPicBuffering[i], i); sps.setNumReorderPics(m_numReorderPics[i], i); } #if !JVET_O0525_REMOVE_PCM sps.setPCMFilterDisableFlag ( m_bPCMFilterDisableFlag ); #endif sps.setScalingListFlag ( (m_useScalingListId == SCALING_LIST_OFF) ? 0 : 1 ); sps.setALFEnabledFlag( m_alf ); sps.setVuiParametersPresentFlag(getVuiParametersPresentFlag()); if (sps.getVuiParametersPresentFlag()) { VUI* pcVUI = sps.getVuiParameters(); pcVUI->setAspectRatioInfoPresentFlag(getAspectRatioInfoPresentFlag()); pcVUI->setAspectRatioIdc(getAspectRatioIdc()); pcVUI->setSarWidth(getSarWidth()); pcVUI->setSarHeight(getSarHeight()); pcVUI->setColourDescriptionPresentFlag(getColourDescriptionPresentFlag()); pcVUI->setColourPrimaries(getColourPrimaries()); pcVUI->setTransferCharacteristics(getTransferCharacteristics()); pcVUI->setMatrixCoefficients(getMatrixCoefficients()); pcVUI->setFieldSeqFlag(false); pcVUI->setChromaLocInfoPresentFlag(getChromaLocInfoPresentFlag()); pcVUI->setChromaSampleLocTypeTopField(getChromaSampleLocTypeTopField()); pcVUI->setChromaSampleLocTypeBottomField(getChromaSampleLocTypeBottomField()); pcVUI->setChromaSampleLocType(getChromaSampleLocType()); pcVUI->setOverscanInfoPresentFlag(getOverscanInfoPresentFlag()); pcVUI->setOverscanAppropriateFlag(getOverscanAppropriateFlag()); pcVUI->setVideoSignalTypePresentFlag(getVideoSignalTypePresentFlag()); pcVUI->setVideoFullRangeFlag(getVideoFullRangeFlag()); } sps.setNumLongTermRefPicSPS(NUM_LONG_TERM_REF_PIC_SPS); CHECK(!(NUM_LONG_TERM_REF_PIC_SPS <= MAX_NUM_LONG_TERM_REF_PICS), "Unspecified error"); for (int k = 0; k < NUM_LONG_TERM_REF_PIC_SPS; k++) { sps.setLtRefPicPocLsbSps(k, 0); sps.setUsedByCurrPicLtSPSFlag(k, 0); } #if JVET_O0650_SIGNAL_CHROMAQP_MAPPING_TABLE sps.setChromaQpMappingTableFromParams(m_chromaQpMappingTableParams, sps.getQpBDOffset(CHANNEL_TYPE_CHROMA)); sps.derivedChromaQPMappingTables(); #endif #if U0132_TARGET_BITS_SATURATION if( getPictureTimingSEIEnabled() || getDecodingUnitInfoSEIEnabled() || getCpbSaturationEnabled() ) #else if( getPictureTimingSEIEnabled() || getDecodingUnitInfoSEIEnabled() ) #endif { xInitHrdParameters(sps); } if( getBufferingPeriodSEIEnabled() || getPictureTimingSEIEnabled() || getDecodingUnitInfoSEIEnabled() ) { sps.setHrdParametersPresentFlag( true ); } // Set up SPS range extension settings sps.getSpsRangeExtension().setTransformSkipRotationEnabledFlag(m_transformSkipRotationEnabledFlag); sps.getSpsRangeExtension().setTransformSkipContextEnabledFlag(m_transformSkipContextEnabledFlag); for (uint32_t signallingModeIndex = 0; signallingModeIndex < NUMBER_OF_RDPCM_SIGNALLING_MODES; signallingModeIndex++) { sps.getSpsRangeExtension().setRdpcmEnabledFlag(RDPCMSignallingMode(signallingModeIndex), m_rdpcmEnabledFlag[signallingModeIndex]); } sps.getSpsRangeExtension().setExtendedPrecisionProcessingFlag(m_extendedPrecisionProcessingFlag); sps.getSpsRangeExtension().setIntraSmoothingDisabledFlag( m_intraSmoothingDisabledFlag ); sps.getSpsRangeExtension().setHighPrecisionOffsetsEnabledFlag(m_highPrecisionOffsetsEnabledFlag); sps.getSpsRangeExtension().setPersistentRiceAdaptationEnabledFlag(m_persistentRiceAdaptationEnabledFlag); sps.getSpsRangeExtension().setCabacBypassAlignmentEnabledFlag(m_cabacBypassAlignmentEnabledFlag); if (m_uiIntraPeriod < 0) sps.setRPL1CopyFromRPL0Flag(true); } void EncLib::xInitHrdParameters(SPS &sps) { m_encHRD.initHRDParameters((EncCfg*) this); HRDParameters *hrdParams = sps.getHrdParameters(); *hrdParams = m_encHRD.getHRDParameters(); TimingInfo *timingInfo = sps.getTimingInfo(); *timingInfo = m_encHRD.getTimingInfo(); } void EncLib::xInitPPS(PPS &pps, const SPS &sps) { // pps ID already initialised. pps.setSPSId(sps.getSPSId()); pps.setConstrainedIntraPred( m_bUseConstrainedIntraPred ); bool bUseDQP = (getCuQpDeltaSubdiv() > 0)? true : false; if((getMaxDeltaQP() != 0 )|| getUseAdaptiveQP()) { bUseDQP = true; } #if SHARP_LUMA_DELTA_QP if ( getLumaLevelToDeltaQPMapping().isEnabled() ) { bUseDQP = true; } #endif #if ENABLE_QPA if (getUsePerceptQPA() && !bUseDQP) { CHECK( m_cuQpDeltaSubdiv != 0, "max. delta-QP subdiv must be zero!" ); bUseDQP = (getBaseQP() < 38) && (getSourceWidth() > 512 || getSourceHeight() > 320); } #endif if (m_costMode==COST_SEQUENCE_LEVEL_LOSSLESS || m_costMode==COST_LOSSLESS_CODING) { bUseDQP=false; } if ( m_RCEnableRateControl ) { pps.setUseDQP(true); pps.setCuQpDeltaSubdiv( 0 ); } else if(bUseDQP) { pps.setUseDQP(true); pps.setCuQpDeltaSubdiv( m_cuQpDeltaSubdiv ); } else { pps.setUseDQP(false); pps.setCuQpDeltaSubdiv( 0 ); } if ( m_cuChromaQpOffsetSubdiv >= 0 ) { pps.getPpsRangeExtension().setCuChromaQpOffsetSubdiv(m_cuChromaQpOffsetSubdiv); pps.getPpsRangeExtension().clearChromaQpOffsetList(); #if JVET_O1168_CU_CHROMA_QP_OFFSET pps.getPpsRangeExtension().setChromaQpOffsetListEntry(1, 6, 6, 6); #else pps.getPpsRangeExtension().setChromaQpOffsetListEntry(1, 6, 6); #endif /* todo, insert table entries from command line (NB, 0 should not be touched) */ } else { pps.getPpsRangeExtension().setCuChromaQpOffsetSubdiv(0); pps.getPpsRangeExtension().clearChromaQpOffsetList(); } pps.getPpsRangeExtension().setCrossComponentPredictionEnabledFlag(m_crossComponentPredictionEnabledFlag); pps.getPpsRangeExtension().setLog2SaoOffsetScale(CHANNEL_TYPE_LUMA, m_log2SaoOffsetScale[CHANNEL_TYPE_LUMA ]); pps.getPpsRangeExtension().setLog2SaoOffsetScale(CHANNEL_TYPE_CHROMA, m_log2SaoOffsetScale[CHANNEL_TYPE_CHROMA]); { int baseQp = 26; if( 16 == getGOPSize() ) { baseQp = getBaseQP()-24; } else { baseQp = getBaseQP()-26; } const int maxDQP = 37; const int minDQP = -26 + sps.getQpBDOffset(CHANNEL_TYPE_LUMA); pps.setPicInitQPMinus26( std::min( maxDQP, std::max( minDQP, baseQp ) )); } #if ER_CHROMA_QP_WCG_PPS if (getWCGChromaQPControl().isEnabled()) { const int baseQp=m_iQP+pps.getPPSId(); const double chromaQp = m_wcgChromaQpControl.chromaQpScale * baseQp + m_wcgChromaQpControl.chromaQpOffset; const double dcbQP = m_wcgChromaQpControl.chromaCbQpScale * chromaQp; const double dcrQP = m_wcgChromaQpControl.chromaCrQpScale * chromaQp; const int cbQP =(int)(dcbQP + ( dcbQP < 0 ? -0.5 : 0.5) ); const int crQP =(int)(dcrQP + ( dcrQP < 0 ? -0.5 : 0.5) ); pps.setQpOffset(COMPONENT_Cb, Clip3( -12, 12, min(0, cbQP) + m_chromaCbQpOffset )); pps.setQpOffset(COMPONENT_Cr, Clip3( -12, 12, min(0, crQP) + m_chromaCrQpOffset)); pps.setQpOffset(JOINT_CbCr, Clip3( -12, 12, ( min(0, cbQP) + min(0, crQP) ) / 2 + m_chromaCbCrQpOffset)); } else { #endif pps.setQpOffset(COMPONENT_Cb, m_chromaCbQpOffset ); pps.setQpOffset(COMPONENT_Cr, m_chromaCrQpOffset ); pps.setQpOffset(JOINT_CbCr, m_chromaCbCrQpOffset ); #if ER_CHROMA_QP_WCG_PPS } #endif #if W0038_CQP_ADJ bool bChromaDeltaQPEnabled = false; { bChromaDeltaQPEnabled = ( m_sliceChromaQpOffsetIntraOrPeriodic[0] || m_sliceChromaQpOffsetIntraOrPeriodic[1] ); if( !bChromaDeltaQPEnabled ) { for( int i=0; i<m_iGOPSize; i++ ) { if( m_GOPList[i].m_CbQPoffset || m_GOPList[i].m_CrQPoffset ) { bChromaDeltaQPEnabled = true; break; } } } } #if ENABLE_QPA if ((getUsePerceptQPA() || getSliceChromaOffsetQpPeriodicity() > 0) && (getChromaFormatIdc() != CHROMA_400)) { bChromaDeltaQPEnabled = true; } #endif pps.setSliceChromaQpFlag(bChromaDeltaQPEnabled); #endif if ( !pps.getSliceChromaQpFlag() && sps.getUseDualITree() && (getChromaFormatIdc() != CHROMA_400)) { pps.setSliceChromaQpFlag(m_chromaCbQpOffsetDualTree != 0 || m_chromaCrQpOffsetDualTree != 0 || m_chromaCbCrQpOffsetDualTree != 0); } pps.setEntropyCodingSyncEnabledFlag( m_entropyCodingSyncEnabledFlag ); pps.setSingleTileInPicFlag((m_iNumColumnsMinus1 == 0 && m_iNumRowsMinus1 == 0)); pps.setUseWP( m_useWeightedPred ); pps.setWPBiPred( m_useWeightedBiPred ); pps.setOutputFlagPresentFlag( false ); if ( getDeblockingFilterMetric() ) { pps.setDeblockingFilterOverrideEnabledFlag(true); pps.setPPSDeblockingFilterDisabledFlag(false); } else { pps.setDeblockingFilterOverrideEnabledFlag( !getLoopFilterOffsetInPPS() ); pps.setPPSDeblockingFilterDisabledFlag( getLoopFilterDisable() ); } if (! pps.getPPSDeblockingFilterDisabledFlag()) { pps.setDeblockingFilterBetaOffsetDiv2( getLoopFilterBetaOffset() ); pps.setDeblockingFilterTcOffsetDiv2( getLoopFilterTcOffset() ); } else { pps.setDeblockingFilterBetaOffsetDiv2(0); pps.setDeblockingFilterTcOffsetDiv2(0); } // deblockingFilterControlPresentFlag is true if any of the settings differ from the inferred values: const bool deblockingFilterControlPresentFlag = pps.getDeblockingFilterOverrideEnabledFlag() || pps.getPPSDeblockingFilterDisabledFlag() || pps.getDeblockingFilterBetaOffsetDiv2() != 0 || pps.getDeblockingFilterTcOffsetDiv2() != 0; pps.setDeblockingFilterControlPresentFlag(deblockingFilterControlPresentFlag); pps.setLog2ParallelMergeLevelMinus2 (m_log2ParallelMergeLevelMinus2 ); pps.setCabacInitPresentFlag(CABAC_INIT_PRESENT_FLAG); pps.setLoopFilterAcrossSlicesEnabledFlag( m_bLFCrossSliceBoundaryFlag ); int histogram[MAX_NUM_REF + 1]; for( int i = 0; i <= MAX_NUM_REF; i++ ) { histogram[i]=0; } for( int i = 0; i < getGOPSize(); i++) { CHECK(!(getRPLEntry(0, i).m_numRefPicsActive >= 0 && getRPLEntry(0, i).m_numRefPicsActive <= MAX_NUM_REF), "Unspecified error"); histogram[getRPLEntry(0, i).m_numRefPicsActive]++; } int maxHist=-1; int bestPos=0; for( int i = 0; i <= MAX_NUM_REF; i++ ) { if(histogram[i]>maxHist) { maxHist=histogram[i]; bestPos=i; } } CHECK(!(bestPos <= 15), "Unspecified error"); pps.setNumRefIdxL0DefaultActive(bestPos); pps.setNumRefIdxL1DefaultActive(bestPos); pps.setTransquantBypassEnabledFlag(getTransquantBypassEnabledFlag()); #if !JVET_O1136_TS_BDPCM_SIGNALLING pps.setUseTransformSkip( m_useTransformSkip ); #endif pps.getPpsRangeExtension().setLog2MaxTransformSkipBlockSize( m_log2MaxTransformSkipBlockSize ); xInitPPSforTiles(pps); pps.setLoopFilterAcrossVirtualBoundariesDisabledFlag( m_loopFilterAcrossVirtualBoundariesDisabledFlag ); pps.setNumVerVirtualBoundaries ( m_numVerVirtualBoundaries ); pps.setNumHorVirtualBoundaries ( m_numHorVirtualBoundaries ); for( unsigned int i = 0; i < m_numVerVirtualBoundaries; i++ ) { pps.setVirtualBoundariesPosX ( m_virtualBoundariesPosX[i], i ); } for( unsigned int i = 0; i < m_numHorVirtualBoundaries; i++ ) { pps.setVirtualBoundariesPosY ( m_virtualBoundariesPosY[i], i ); } pps.pcv = new PreCalcValues( sps, pps, true ); pps.setRpl1IdxPresentFlag(sps.getRPL1IdxPresentFlag()); } void EncLib::xInitAPS(APS &aps) { //Do nothing now } void EncLib::xInitRPL(SPS &sps, bool isFieldCoding) { ReferencePictureList* rpl; int numRPLCandidates = getRPLCandidateSize(0); sps.createRPLList0(numRPLCandidates); sps.createRPLList1(numRPLCandidates); RPLList* rplList = 0; for (int i = 0; i < 2; i++) { rplList = (i == 0) ? sps.getRPLList0() : sps.getRPLList1(); for (int j = 0; j < numRPLCandidates; j++) { const RPLEntry &ge = getRPLEntry(i, j); rpl = rplList->getReferencePictureList(j); rpl->setNumberOfShorttermPictures(ge.m_numRefPics); rpl->setNumberOfLongtermPictures(0); //Hardcoded as 0 for now. need to update this when implementing LTRP rpl->setNumberOfActivePictures(ge.m_numRefPicsActive); for (int k = 0; k < ge.m_numRefPics; k++) { rpl->setRefPicIdentifier(k, ge.m_deltaRefPics[k], 0); } } } //Check if all delta POC of STRP in each RPL has the same sign //Check RPLL0 first const RPLList* rplList0 = sps.getRPLList0(); const RPLList* rplList1 = sps.getRPLList1(); uint32_t numberOfRPL = sps.getNumRPL0(); bool isAllEntriesinRPLHasSameSignFlag = true; bool isFirstEntry = true; bool lastSign = true; //true = positive ; false = negative for (uint32_t ii = 0; isAllEntriesinRPLHasSameSignFlag && ii < numberOfRPL; ii++) { const ReferencePictureList* rpl = rplList0->getReferencePictureList(ii); for (uint32_t jj = 0; isAllEntriesinRPLHasSameSignFlag && jj < rpl->getNumberOfActivePictures(); jj++) { if (!rpl->isRefPicLongterm(jj) && isFirstEntry) { lastSign = (rpl->getRefPicIdentifier(jj) >= 0) ? true : false; isFirstEntry = false; } else if (!rpl->isRefPicLongterm(jj) && (((rpl->getRefPicIdentifier(jj) - rpl->getRefPicIdentifier(jj - 1)) >= 0 && lastSign == false) || ((rpl->getRefPicIdentifier(jj) - rpl->getRefPicIdentifier(jj - 1)) < 0 && lastSign == true))) { isAllEntriesinRPLHasSameSignFlag = false; } } } //Check RPLL1. Skip it if it is already found out that this flag is not true for RPL0 or if RPL1 is the same as RPL0 numberOfRPL = sps.getNumRPL1(); isFirstEntry = true; lastSign = true; for (uint32_t ii = 0; isAllEntriesinRPLHasSameSignFlag && !sps.getRPL1CopyFromRPL0Flag() && ii < numberOfRPL; ii++) { isFirstEntry = true; const ReferencePictureList* rpl = rplList1->getReferencePictureList(ii); for (uint32_t jj = 0; isAllEntriesinRPLHasSameSignFlag && jj < rpl->getNumberOfActivePictures(); jj++) { if (!rpl->isRefPicLongterm(jj) && isFirstEntry) { lastSign = (rpl->getRefPicIdentifier(jj) >= 0) ? true : false; isFirstEntry = false; } else if (!rpl->isRefPicLongterm(jj) && (((rpl->getRefPicIdentifier(jj) - rpl->getRefPicIdentifier(jj - 1)) >= 0 && lastSign == false) || ((rpl->getRefPicIdentifier(jj) - rpl->getRefPicIdentifier(jj - 1)) < 0 && lastSign == true))) { isAllEntriesinRPLHasSameSignFlag = false; } } } sps.setAllActiveRplEntriesHasSameSignFlag(isAllEntriesinRPLHasSameSignFlag); } void EncLib::getActiveRefPicListNumForPOC(const SPS *sps, int POCCurr, int GOPid, uint32_t *activeL0, uint32_t *activeL1) { if (m_uiIntraPeriod < 0) //Only for RA { *activeL0 = *activeL1 = 0; return; } uint32_t rpl0Idx = GOPid; uint32_t rpl1Idx = GOPid; int fullListNum = m_iGOPSize; int partialListNum = getRPLCandidateSize(0) - m_iGOPSize; int extraNum = fullListNum; if (m_uiIntraPeriod < 0) { if (POCCurr < 10) { rpl0Idx = POCCurr + m_iGOPSize - 1; rpl1Idx = POCCurr + m_iGOPSize - 1; } else { rpl0Idx = (POCCurr%m_iGOPSize == 0) ? m_iGOPSize - 1 : POCCurr%m_iGOPSize - 1; rpl1Idx = (POCCurr%m_iGOPSize == 0) ? m_iGOPSize - 1 : POCCurr%m_iGOPSize - 1; } extraNum = fullListNum + partialListNum; } for (; extraNum<fullListNum + partialListNum; extraNum++) { if (m_uiIntraPeriod > 0 && getDecodingRefreshType() > 0) { int POCIndex = POCCurr%m_uiIntraPeriod; if (POCIndex == 0) POCIndex = m_uiIntraPeriod; if (POCIndex == m_RPLList0[extraNum].m_POC) { rpl0Idx = extraNum; rpl1Idx = extraNum; extraNum++; } } } const ReferencePictureList *rpl0 = sps->getRPLList0()->getReferencePictureList(rpl0Idx); *activeL0 = rpl0->getNumberOfActivePictures(); const ReferencePictureList *rpl1 = sps->getRPLList1()->getReferencePictureList(rpl1Idx); *activeL1 = rpl1->getNumberOfActivePictures(); } void EncLib::selectReferencePictureList(Slice* slice, int POCCurr, int GOPid, int ltPoc) { bool isEncodeLtRef = (POCCurr == ltPoc); if (m_compositeRefEnabled && isEncodeLtRef) { POCCurr++; } slice->setRPL0idx(GOPid); slice->setRPL1idx(GOPid); int fullListNum = m_iGOPSize; int partialListNum = getRPLCandidateSize(0) - m_iGOPSize; int extraNum = fullListNum; if (m_uiIntraPeriod < 0) { if (POCCurr < 10) { slice->setRPL0idx(POCCurr + m_iGOPSize - 1); slice->setRPL1idx(POCCurr + m_iGOPSize - 1); } else { slice->setRPL0idx((POCCurr%m_iGOPSize == 0) ? m_iGOPSize - 1 : POCCurr%m_iGOPSize - 1); slice->setRPL1idx((POCCurr%m_iGOPSize == 0) ? m_iGOPSize - 1 : POCCurr%m_iGOPSize - 1); } extraNum = fullListNum + partialListNum; } for (; extraNum < fullListNum + partialListNum; extraNum++) { if (m_uiIntraPeriod > 0 && getDecodingRefreshType() > 0) { int POCIndex = POCCurr%m_uiIntraPeriod; if (POCIndex == 0) POCIndex = m_uiIntraPeriod; if (POCIndex == m_RPLList0[extraNum].m_POC) { slice->setRPL0idx(extraNum); slice->setRPL1idx(extraNum); extraNum++; } } } const ReferencePictureList *rpl0 = (slice->getSPS()->getRPLList0()->getReferencePictureList(slice->getRPL0idx())); const ReferencePictureList *rpl1 = (slice->getSPS()->getRPLList1()->getReferencePictureList(slice->getRPL1idx())); slice->setRPL0(rpl0); slice->setRPL1(rpl1); } void EncLib::xInitPPSforTiles(PPS &pps) { if ( (m_iNumColumnsMinus1==0) && (m_iNumRowsMinus1==0) ) { // one, no bricks pps.setSingleTileInPicFlag(true); pps.setSingleBrickPerSliceFlag(true); pps.setRectSliceFlag(true); } else { pps.setSingleTileInPicFlag(false); pps.setSingleBrickPerSliceFlag( m_sliceMode==SINGLE_BRICK_PER_SLICE ); pps.setRectSliceFlag( m_sliceMode==SINGLE_BRICK_PER_SLICE ); if (m_rectSliceFlag) pps.setRectSliceFlag(m_rectSliceFlag); } pps.setUniformTileSpacingFlag( m_tileUniformSpacingFlag ); pps.setNumTileColumnsMinus1( m_iNumColumnsMinus1 ); pps.setNumTileRowsMinus1( m_iNumRowsMinus1 ); if( !m_tileUniformSpacingFlag ) { pps.setTileColumnWidth( m_tileColumnWidth ); pps.setTileRowHeight( m_tileRowHeight ); } pps.setLoopFilterAcrossBricksEnabledFlag( m_loopFilterAcrossBricksEnabledFlag ); //pps.setRectSliceFlag( m_rectSliceFlag ); pps.setNumSlicesInPicMinus1( m_numSlicesInPicMinus1 ); pps.setTopLeftBrickIdx(m_topLeftBrickIdx); pps.setBottomRightBrickIdx(m_bottomRightBrickIdx); pps.setLoopFilterAcrossBricksEnabledFlag( m_loopFilterAcrossBricksEnabledFlag ); pps.setLoopFilterAcrossSlicesEnabledFlag( m_loopFilterAcrossSlicesEnabledFlag ); pps.setSignalledSliceIdFlag( m_signalledSliceIdFlag ); pps.setSignalledSliceIdLengthMinus1( m_signalledSliceIdLengthMinus1 ); pps.setSignalledSliceIdFlag( m_signalledSliceIdFlag ); pps.setSignalledSliceIdLengthMinus1( m_signalledSliceIdLengthMinus1 ); pps.setSliceId( m_sliceId ); int numTiles= (m_iNumColumnsMinus1 + 1) * (m_iNumRowsMinus1 + 1); pps.setNumTilesInPic(numTiles); if (m_brickSplitMap.empty()) { pps.setBrickSplittingPresentFlag(false); } else { pps.setBrickSplittingPresentFlag(true); std::vector<bool> brickSplitFlag (numTiles, false); std::vector<bool> uniformBrickSpacingFlag (numTiles, false); std::vector<int> brickHeightMinus1 (numTiles, 0); std::vector<int> numBrickRowsMinus1 (numTiles, 0); std::vector<std::vector<int>> brickRowHeightMinus1 (numTiles); for (auto &brickSplit: m_brickSplitMap) { int tileIdx = brickSplit.first; CHECK ( tileIdx >= numTiles, "Brick split specified for undefined tile"); brickSplitFlag[tileIdx] = true; uniformBrickSpacingFlag [tileIdx] = brickSplit.second.m_uniformSplit; if (uniformBrickSpacingFlag [tileIdx]) { brickHeightMinus1[tileIdx]=brickSplit.second.m_uniformHeight - 1; } else { numBrickRowsMinus1[tileIdx]=brickSplit.second.m_numSplits; brickRowHeightMinus1[tileIdx].resize(brickSplit.second.m_numSplits); for (int i=0; i<brickSplit.second.m_numSplits; i++) { brickRowHeightMinus1[tileIdx][i]=brickSplit.second.m_brickHeight[i] - 1; } } } pps.setBrickSplitFlag(brickSplitFlag); pps.setUniformBrickSpacingFlag(uniformBrickSpacingFlag); pps.setBrickHeightMinus1(brickHeightMinus1); pps.setNumBrickRowsMinus1(numBrickRowsMinus1); pps.setBrickRowHeightMinus1(brickRowHeightMinus1); // check brick dimensions std::vector<uint32_t> tileRowHeight (m_iNumRowsMinus1+1); int picHeightInCtus = (getSourceHeight() + m_maxCUHeight - 1) / m_maxCUHeight; // calculate all tile row heights if( pps.getUniformTileSpacingFlag() ) { //set width and height for each (uniform) tile for(int row=0; row < m_iNumRowsMinus1 + 1; row++) { tileRowHeight[row] = (row+1)*picHeightInCtus/(m_iNumRowsMinus1+1) - (row*picHeightInCtus)/(m_iNumRowsMinus1 + 1); } } else { tileRowHeight[ m_iNumRowsMinus1 ] = picHeightInCtus; for( int j = 0; j < m_iNumRowsMinus1; j++ ) { tileRowHeight[ j ] = pps.getTileRowHeight( j ); tileRowHeight[ m_iNumRowsMinus1 ] = tileRowHeight[ m_iNumRowsMinus1 ] - pps.getTileRowHeight( j ); } } // check brick splits for each tile for (int tileIdx=0; tileIdx < numTiles; tileIdx++) { if (pps.getBrickSplitFlag(tileIdx)) { const int tileY = tileIdx / (m_iNumColumnsMinus1+1); int tileHeight = tileRowHeight [tileY]; if (pps.getUniformBrickSpacingFlag(tileIdx)) { CHECK((pps.getBrickHeightMinus1(tileIdx) + 1) >= tileHeight, "Brick height larger than or equal to tile height"); } else { int cumulativeHeight=0; for (int i = 0; i < pps.getNumBrickRowsMinus1(tileIdx); i++) { cumulativeHeight += pps.getBrickRowHeightMinus1(tileIdx, i) + 1; } CHECK(cumulativeHeight >= tileHeight, "Cumulative brick height larger than or equal to tile height"); } } } } } void EncCfg::xCheckGSParameters() { int iWidthInCU = ( m_iSourceWidth%m_maxCUWidth ) ? m_iSourceWidth/m_maxCUWidth + 1 : m_iSourceWidth/m_maxCUWidth; int iHeightInCU = ( m_iSourceHeight%m_maxCUHeight ) ? m_iSourceHeight/m_maxCUHeight + 1 : m_iSourceHeight/m_maxCUHeight; uint32_t uiCummulativeColumnWidth = 0; uint32_t uiCummulativeRowHeight = 0; //check the column relative parameters if( m_iNumColumnsMinus1 >= (1<<(LOG2_MAX_NUM_COLUMNS_MINUS1+1)) ) { EXIT( "The number of columns is larger than the maximum allowed number of columns." ); } if( m_iNumColumnsMinus1 >= iWidthInCU ) { EXIT( "The current picture can not have so many columns." ); } if( m_iNumColumnsMinus1 && !m_tileUniformSpacingFlag ) { for(int i=0; i<m_iNumColumnsMinus1; i++) { uiCummulativeColumnWidth += m_tileColumnWidth[i]; } if( uiCummulativeColumnWidth >= iWidthInCU ) { EXIT( "The width of the column is too large." ); } } //check the row relative parameters if( m_iNumRowsMinus1 >= (1<<(LOG2_MAX_NUM_ROWS_MINUS1+1)) ) { EXIT( "The number of rows is larger than the maximum allowed number of rows." ); } if( m_iNumRowsMinus1 >= iHeightInCU ) { EXIT( "The current picture can not have so many rows." ); } if( m_iNumRowsMinus1 && !m_tileUniformSpacingFlag ) { for(int i=0; i<m_iNumRowsMinus1; i++) { uiCummulativeRowHeight += m_tileRowHeight[i]; } if( uiCummulativeRowHeight >= iHeightInCU ) { EXIT( "The height of the row is too large." ); } } } void EncLib::setParamSetChanged(int spsId, int ppsId) { m_ppsMap.setChangedFlag(ppsId); m_spsMap.setChangedFlag(spsId); } bool EncLib::APSNeedsWriting(int apsId) { bool isChanged = m_apsMap.getChangedFlag(apsId); m_apsMap.clearChangedFlag(apsId); return isChanged; } bool EncLib::PPSNeedsWriting(int ppsId) { bool bChanged=m_ppsMap.getChangedFlag(ppsId); m_ppsMap.clearChangedFlag(ppsId); return bChanged; } bool EncLib::SPSNeedsWriting(int spsId) { bool bChanged=m_spsMap.getChangedFlag(spsId); m_spsMap.clearChangedFlag(spsId); return bChanged; } #if JVET_O0119_BASE_PALETTE_444 void EncLib::checkPltStats( Picture* pic ) { int totalArea = 0; int pltArea = 0; for (auto apu : pic->cs->pus) { for (int i = 0; i < MAX_NUM_TBLOCKS; ++i) { int puArea = apu->blocks[i].width * apu->blocks[i].height; if (apu->blocks[i].width > 0 && apu->blocks[i].height > 0) { totalArea += puArea; if (CU::isPLT(*apu->cu) || CU::isIBC(*apu->cu)) { pltArea += puArea; } break; } } } if (pltArea * PLT_FAST_RATIO < totalArea) { m_doPlt = false; } else { m_doPlt = true; } } #endif #if X0038_LAMBDA_FROM_QP_CAPABILITY int EncCfg::getQPForPicture(const uint32_t gopIndex, const Slice *pSlice) const { const int lumaQpBDOffset = pSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA); int qp; if (getCostMode()==COST_LOSSLESS_CODING) { qp=LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP; } else { const SliceType sliceType=pSlice->getSliceType(); qp = getBaseQP(); // switch at specific qp and keep this qp offset static int appliedSwitchDQQ = 0; /* TODO: MT */ if( pSlice->getPOC() == getSwitchPOC() ) { appliedSwitchDQQ = getSwitchDQP(); } qp += appliedSwitchDQQ; #if QP_SWITCHING_FOR_PARALLEL const int* pdQPs = getdQPs(); if ( pdQPs ) { qp += pdQPs[pSlice->getPOC() / (m_compositeRefEnabled ? 2 : 1)]; } #endif if(sliceType==I_SLICE) { qp += getIntraQPOffset(); } else { #if SHARP_LUMA_DELTA_QP // Only adjust QP when not lossless if (!(( getMaxDeltaQP() == 0 ) && (!getLumaLevelToDeltaQPMapping().isEnabled()) && (qp == -lumaQpBDOffset ) && (pSlice->getPPS()->getTransquantBypassEnabledFlag()))) #else if (!(( getMaxDeltaQP() == 0 ) && (qp == -lumaQpBDOffset ) && (pSlice->getPPS()->getTransquantBypassEnabledFlag()))) #endif { const GOPEntry &gopEntry=getGOPEntry(gopIndex); // adjust QP according to the QP offset for the GOP entry. qp +=gopEntry.m_QPOffset; // adjust QP according to QPOffsetModel for the GOP entry. double dqpOffset=qp*gopEntry.m_QPOffsetModelScale+gopEntry.m_QPOffsetModelOffset+0.5; int qpOffset = (int)floor(Clip3<double>(0.0, 3.0, dqpOffset)); qp += qpOffset ; } } #if !QP_SWITCHING_FOR_PARALLEL // modify QP if a fractional QP was originally specified, cause dQPs to be 0 or 1. const int* pdQPs = getdQPs(); if ( pdQPs ) { qp += pdQPs[ pSlice->getPOC() ]; } #endif } qp = Clip3( -lumaQpBDOffset, MAX_QP, qp ); return qp; } #endif //! \}