/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2019, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file MatrixIntraPrediction.h \brief matrix-based intra prediction class (header) */ #ifndef __MATRIXINTRAPPREDICTION__ #define __MATRIXINTRAPPREDICTION__ #include "Unit.h" static const int MIP_MAX_INPUT_SIZE = 8; static const int MIP_MAX_REDUCED_OUTPUT_SAMPLES = 64; class MatrixIntraPrediction { public: MatrixIntraPrediction(); void prepareInputForPred(const CPelBuf &pSrc, const Area& block, const int bitDepth); void predBlock(int* const result, const int modeIdx, const int bitDepth); private: static_vector<int, MIP_MAX_INPUT_SIZE> m_reducedBoundary; // downsampled boundary of a block static_vector<int, MIP_MAX_INPUT_SIZE> m_reducedBoundaryTransposed; // downsampled, transposed boundary of a block int m_inputOffset; int m_inputOffsetTransp; static_vector<int, MIP_MAX_WIDTH> m_refSamplesTop; // top reference samples for upsampling static_vector<int, MIP_MAX_HEIGHT> m_refSamplesLeft; // left reference samples for upsampling Size m_blockSize; int m_numModes; Size m_reducedBoundarySize; Size m_reducedPredictionSize; unsigned int m_upsmpFactorHor; unsigned int m_upsmpFactorVer; void initPredBlockParams(const Size& block); static void boundaryDownsampling1D(int* reducedDst, const int* const fullSrc, const SizeType srcLen, const SizeType dstLen); static void doDownsampling( int* dst, const int* src, const SizeType srcLen, const SizeType dstLen ); void predictionUpsampling( int* const dst, const int* const src, const bool transpose ) const; static void predictionUpsampling1D( int* const dst, const int* const src, const int* const bndry, const SizeType srcSizeUpsmpDim, const SizeType srcSizeOrthDim, const SizeType srcStep, const SizeType srcStride, const SizeType dstStep, const SizeType dstStride, const SizeType bndryStep, const unsigned int upsmpFactor ); void getMatrixData(const uint8_t*& matrix, int &shiftMatrix, int &offsetMatrix, const int modeIdx) const; bool isTransposed( const int modeIdx ) const; int getWeightIdx( const int modeIdx ) const; void computeReducedPred( int*const result, const int* const input, const uint8_t*matrix, const bool leaveHorOut, const bool leaveVerOut, const int shiftMatrix, const int offsetMatrix, const bool transpose, const bool needUpsampling, const int bitDepth ); }; #endif //__MATRIXINTRAPPREDICTION__