Unit.h 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2018, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
*  * Redistributions of source code must retain the above copyright notice,
*    this list of conditions and the following disclaimer.
*  * Redistributions in binary form must reproduce the above copyright notice,
*    this list of conditions and the following disclaimer in the documentation
*    and/or other materials provided with the distribution.
*  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
*    be used to endorse or promote products derived from this software without
*    specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/

/** \file     Unit.h
 *  \brief    defines unit as a set of blocks and basic unit types (coding, prediction, transform)
 */

#ifndef __UNIT__
#define __UNIT__

#include "CommonDef.h"
#include "Common.h"
#include "Mv.h"
#include "MotionInfo.h"
#include "ChromaFormat.h"


// ---------------------------------------------------------------------------
// tools
// ---------------------------------------------------------------------------

inline Position recalcPosition(const ChromaFormat _cf, const ComponentID srcCId, const ComponentID dstCId, const Position &pos)
{
  if( toChannelType( srcCId ) == toChannelType( dstCId ) )
  {
    return pos;
  }
  else if (isLuma(srcCId) && isChroma(dstCId))
  {
    return Position(pos.x >> getComponentScaleX(dstCId, _cf), pos.y >> getComponentScaleY(dstCId, _cf));
  }
  else
  {
    return Position(pos.x << getComponentScaleX(srcCId, _cf), pos.y << getComponentScaleY(srcCId, _cf));
  }
}

inline Position recalcPosition( const ChromaFormat _cf, const ChannelType srcCHt, const ChannelType dstCHt, const Position &pos )
{
  if( srcCHt == dstCHt )
  {
    return pos;
  }
  else if( isLuma( srcCHt ) && isChroma( dstCHt ) )
  {
    return Position( pos.x >> getChannelTypeScaleX( dstCHt, _cf ), pos.y >> getChannelTypeScaleY( dstCHt, _cf ) );
  }
  else
  {
    return Position( pos.x << getChannelTypeScaleX( srcCHt, _cf ), pos.y << getChannelTypeScaleY( srcCHt, _cf ) );
  }
}

inline Size recalcSize( const ChromaFormat _cf, const ComponentID srcCId, const ComponentID dstCId, const Size &size )
{
  if( toChannelType( srcCId ) == toChannelType( dstCId ) )
  {
    return size;
  }
  else if( isLuma( srcCId ) && isChroma( dstCId ) )
  {
    return Size( size.width >> getComponentScaleX( dstCId, _cf ), size.height >> getComponentScaleY( dstCId, _cf ) );
  }
  else
  {
    return Size( size.width << getComponentScaleX( srcCId, _cf ), size.height << getComponentScaleY( srcCId, _cf ) );
  }
}

inline Size recalcSize( const ChromaFormat _cf, const ChannelType srcCHt, const ChannelType dstCHt, const Size &size )
{
  if( srcCHt == dstCHt )
  {
    return size;
  }
  else if( isLuma( srcCHt ) && isChroma( dstCHt ) )
  {
    return Size( size.width >> getChannelTypeScaleX( dstCHt, _cf ), size.height >> getChannelTypeScaleY( dstCHt, _cf ) );
  }
  else
  {
    return Size( size.width << getChannelTypeScaleX( srcCHt, _cf ), size.height << getChannelTypeScaleY( srcCHt, _cf ) );
  }
}

// ---------------------------------------------------------------------------
// block definition
// ---------------------------------------------------------------------------

struct CompArea : public Area
{
  CompArea() : Area(), chromaFormat(NUM_CHROMA_FORMAT), compID(MAX_NUM_TBLOCKS)                                                                                                                                 { }
  CompArea(const ComponentID _compID, const ChromaFormat _cf, const Area &_area, const bool isLuma = false)                                          : Area(_area),          chromaFormat(_cf), compID(_compID) { if (isLuma) xRecalcLumaToChroma(); }
  CompArea(const ComponentID _compID, const ChromaFormat _cf, const Position& _pos, const Size& _size, const bool isLuma = false)                    : Area(_pos, _size),    chromaFormat(_cf), compID(_compID) { if (isLuma) xRecalcLumaToChroma(); }
  CompArea(const ComponentID _compID, const ChromaFormat _cf, const uint32_t _x, const uint32_t _y, const uint32_t _w, const uint32_t _h, const bool isLuma = false) : Area(_x, _y, _w, _h), chromaFormat(_cf), compID(_compID) { if (isLuma) xRecalcLumaToChroma(); }

  ChromaFormat chromaFormat;
  ComponentID compID;

  Position chromaPos() const;
  Position lumaPos()   const;

  Size     chromaSize() const;
  Size     lumaSize()   const;

  Position compPos( const ComponentID compID ) const;
  Position chanPos( const ChannelType chType ) const;

  Position topLeftComp    (const ComponentID _compID) const { return recalcPosition(chromaFormat, compID, _compID, *this);                                                     }
  Position topRightComp   (const ComponentID _compID) const { return recalcPosition(chromaFormat, compID, _compID, { (PosType) (x + width - 1), y                          }); }
  Position bottomLeftComp (const ComponentID _compID) const { return recalcPosition(chromaFormat, compID, _compID, { x                        , (PosType) (y + height - 1 )}); }
  Position bottomRightComp(const ComponentID _compID) const { return recalcPosition(chromaFormat, compID, _compID, { (PosType) (x + width - 1), (PosType) (y + height - 1 )}); }

  bool valid() const { return chromaFormat < NUM_CHROMA_FORMAT && compID < MAX_NUM_TBLOCKS && width != 0 && height != 0; }

  const bool operator==(const CompArea &other) const
  {
    if (chromaFormat != other.chromaFormat) return false;
    if (compID       != other.compID)       return false;

    return Position::operator==(other) && Size::operator==(other);
  }

  const bool operator!=(const CompArea &other) const { return !(operator==(other)); }

  void     repositionTo      (const Position& newPos)       { Position::repositionTo(newPos); }
  void     positionRelativeTo(const CompArea& origCompArea) { Position::relativeTo(origCompArea); }

private:

  void xRecalcLumaToChroma();
};

inline CompArea clipArea(const CompArea &compArea, const Area &boundingBox)
{
  return CompArea(compArea.compID, compArea.chromaFormat, clipArea((const Area&) compArea, boundingBox));
}

// ---------------------------------------------------------------------------
// unit definition
// ---------------------------------------------------------------------------

typedef static_vector<CompArea, MAX_NUM_TBLOCKS> UnitBlocksType;

struct UnitArea
{
  ChromaFormat chromaFormat;
  UnitBlocksType blocks;

  UnitArea() : chromaFormat(NUM_CHROMA_FORMAT) { }
  UnitArea(const ChromaFormat _chromaFormat);
  UnitArea(const ChromaFormat _chromaFormat, const Area &area);
  UnitArea(const ChromaFormat _chromaFormat, const CompArea  &blkY);
  UnitArea(const ChromaFormat _chromaFormat,       CompArea &&blkY);
  UnitArea(const ChromaFormat _chromaFormat, const CompArea  &blkY, const CompArea  &blkCb, const CompArea  &blkCr);
  UnitArea(const ChromaFormat _chromaFormat,       CompArea &&blkY,       CompArea &&blkCb,       CompArea &&blkCr);

        CompArea& Y()                                  { return blocks[COMPONENT_Y];  }
  const CompArea& Y()                            const { return blocks[COMPONENT_Y];  }
        CompArea& Cb()                                 { return blocks[COMPONENT_Cb]; }
  const CompArea& Cb()                           const { return blocks[COMPONENT_Cb]; }
        CompArea& Cr()                                 { return blocks[COMPONENT_Cr]; }
  const CompArea& Cr()                           const { return blocks[COMPONENT_Cr]; }

        CompArea& block(const ComponentID comp)       { return blocks[comp]; }
  const CompArea& block(const ComponentID comp) const { return blocks[comp]; }

  bool contains(const UnitArea& other) const;
  bool contains(const UnitArea& other, const ChannelType chType) const;

        CompArea& operator[]( const int n )       { return blocks[n]; }
  const CompArea& operator[]( const int n ) const { return blocks[n]; }

  const bool operator==(const UnitArea &other) const
  {
    if (chromaFormat != other.chromaFormat)   return false;
    if (blocks.size() != other.blocks.size()) return false;

    for (uint32_t i = 0; i < blocks.size(); i++)
    {
      if (blocks[i] != other.blocks[i]) return false;
    }

    return true;
  }

  void repositionTo(const UnitArea& unit);

  const bool operator!=(const UnitArea &other) const { return !(*this == other); }

  const Position& lumaPos () const { return Y(); }
  const Size&     lumaSize() const { return Y(); }

  const Position& chromaPos () const { return Cb(); }
  const Size&     chromaSize() const { return Cb(); }

  const UnitArea  singleComp(const ComponentID compID) const;
  const UnitArea  singleChan(const ChannelType chType) const;

  const SizeType  lwidth()  const { return Y().width; }  /*! luma width  */
  const SizeType  lheight() const { return Y().height; } /*! luma height */

  const PosType   lx() const { return Y().x; }           /*! luma x-pos */
  const PosType   ly() const { return Y().y; }           /*! luma y-pos */

  bool valid() const { return chromaFormat != NUM_CHROMA_FORMAT && blocks.size() > 0; }
};

inline UnitArea clipArea(const UnitArea &area, const UnitArea &boundingBox)
{
  UnitArea ret(area.chromaFormat);

  for (uint32_t i = 0; i < area.blocks.size(); i++)
  {
    ret.blocks.push_back(clipArea(area.blocks[i], boundingBox.blocks[i]));
  }

  return ret;
}

struct UnitAreaRelative : public UnitArea
{
  UnitAreaRelative(const UnitArea& origUnit, const UnitArea& unit)
  {
    *((UnitArea*)this) = unit;
    for(uint32_t i = 0; i < blocks.size(); i++)
    {
      blocks[i].positionRelativeTo(origUnit.blocks[i]);
    }
  }
};

class SPS;
#if HEVC_VPS
class VPS;
#endif
class PPS;
class Slice;

// ---------------------------------------------------------------------------
// coding unit
// ---------------------------------------------------------------------------

#include "Buffer.h"

struct TransformUnit;
struct PredictionUnit;
class  CodingStructure;

struct CodingUnit : public UnitArea
{
  CodingStructure *cs;
  Slice *slice;
  ChannelType    chType;

  PredMode       predMode;
  PartSize       partSize;

  uint8_t          depth;   // number of all splits, applied with generalized splits
  uint8_t          qtDepth; // number of applied quad-splits, before switching to the multi-type-tree (mtt)
  // a triple split would increase the mtDepth by 1, but the qtDepth by 2 in the first and last part and by 1 in the middle part (because of the 1-2-1 split proportions)
  uint8_t          btDepth; // number of applied binary splits, after switching to the mtt (or it's equivalent)
  uint8_t          mtDepth; // the actual number of splits after switching to mtt (equals btDepth if only binary splits are allowed)
  int8_t          chromaQpAdj;
  int8_t          qp;
  SplitSeries    splitSeries;
  bool           skip;
  bool           affine;
  int            affineType;
  bool           transQuantBypass;
  bool           ipcm;
  uint8_t          imv;
  bool           rootCbf;
#if HEVC_TILES_WPP
  uint32_t           tileIdx;
#endif
  uint8_t          emtFlag;
308 309 310 311
#if JVET_L0646_GBI
  uint8_t         GBiIdx;
  int             refIdxBi[2];
#endif
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
  // needed for fast imv mode decisions
  int8_t          imvNumCand;


  CodingUnit() : chType( CH_L ) { }
  CodingUnit(const UnitArea &unit);
  CodingUnit(const ChromaFormat _chromaFormat, const Area &area);

  CodingUnit& operator=( const CodingUnit& other );

  void initData();

  unsigned    idx;
  CodingUnit *next;

  PredictionUnit *firstPU;
  PredictionUnit *lastPU;

  TransformUnit *firstTU;
  TransformUnit *lastTU;
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM

  int64_t cacheId;
  bool    cacheUsed;
#endif
};

// ---------------------------------------------------------------------------
// prediction unit
// ---------------------------------------------------------------------------

struct IntraPredictionData
{
  uint32_t  intraDir[MAX_NUM_CHANNEL_TYPE];
};

struct InterPredictionData
{
  bool      mergeFlag;
  uint8_t     mergeIdx;
  uint8_t     interDir;
  uint8_t     mvpIdx  [NUM_REF_PIC_LIST_01];
  uint8_t     mvpNum  [NUM_REF_PIC_LIST_01];
  Mv        mvd     [NUM_REF_PIC_LIST_01];
  Mv        mv      [NUM_REF_PIC_LIST_01];
  int16_t     refIdx  [NUM_REF_PIC_LIST_01];
  MergeType mergeType;
  Mv        mvdAffi [NUM_REF_PIC_LIST_01][3];
Shelly Chiang's avatar
Shelly Chiang committed
360 361 362 363
#if JVET_L0100_MULTI_HYPOTHESIS_INTRA
  bool      MHIntraFlag;
  uint32_t  intraDir2[MAX_NUM_CHANNEL_TYPE];
#endif
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
};

struct PredictionUnit : public UnitArea, public IntraPredictionData, public InterPredictionData
{
  CodingUnit      *cu;
  CodingStructure *cs;
  ChannelType      chType;

  // constructors
  PredictionUnit(): chType( CH_L ) { }
  PredictionUnit(const UnitArea &unit);
  PredictionUnit(const ChromaFormat _chromaFormat, const Area &area);

  void initData();

  PredictionUnit& operator=(const IntraPredictionData& predData);
  PredictionUnit& operator=(const InterPredictionData& predData);
  PredictionUnit& operator=(const PredictionUnit& other);
  PredictionUnit& operator=(const MotionInfo& mi);

  unsigned        idx;
  PredictionUnit *next;

  // for accessing motion information, which can have higher resolution than PUs (should always be used, when accessing neighboring motion information)
  const MotionInfo& getMotionInfo() const;
  const MotionInfo& getMotionInfo( const Position& pos ) const;
  MotionBuf         getMotionBuf();
  CMotionBuf        getMotionBuf() const;

#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM

  int64_t cacheId;
  bool    cacheUsed;
#endif
};

// ---------------------------------------------------------------------------
// transform unit
// ---------------------------------------------------------------------------

struct TransformUnit : public UnitArea
{
  CodingUnit      *cu;
  CodingStructure *cs;
  ChannelType      chType;

#if ENABLE_BMS
  uint8_t        depth;
#endif
  uint8_t        emtIdx;
  uint8_t        cbf          [ MAX_NUM_TBLOCKS ];
  RDPCMMode    rdpcm        [ MAX_NUM_TBLOCKS ];
  bool         transformSkip[ MAX_NUM_TBLOCKS ];
  int8_t        compAlpha    [ MAX_NUM_TBLOCKS ];

  TransformUnit() : chType( CH_L ) { }
  TransformUnit(const UnitArea& unit);
  TransformUnit(const ChromaFormat _chromaFormat, const Area &area);

  void initData();

  unsigned       idx;
  TransformUnit *next;

  void init(TCoeff **coeffs, Pel **pcmbuf);

  TransformUnit& operator=(const TransformUnit& other);
  void copyComponentFrom  (const TransformUnit& other, const ComponentID compID);

         CoeffBuf getCoeffs(const ComponentID id);
  const CCoeffBuf getCoeffs(const ComponentID id) const;
         PelBuf   getPcmbuf(const ComponentID id);
  const CPelBuf   getPcmbuf(const ComponentID id) const;

#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
  int64_t cacheId;
  bool    cacheUsed;

#endif
private:
  TCoeff *m_coeffs[ MAX_NUM_TBLOCKS ];
  Pel    *m_pcmbuf[ MAX_NUM_TBLOCKS ];
};

// ---------------------------------------------------------------------------
// Utility class for easy for-each like unit traversing
// ---------------------------------------------------------------------------

#include <iterator>

template<typename T>
class UnitIterator : public std::iterator<std::forward_iterator_tag, T>
{
private:
  T* m_punit;

public:
  UnitIterator(           ) : m_punit( nullptr ) { }
  UnitIterator( T* _punit ) : m_punit( _punit  ) { }

  typedef T&       reference;
  typedef T const& const_reference;
  typedef T*       pointer;
  typedef T const* const_pointer;

  reference        operator*()                                      { return *m_punit; }
  const_reference  operator*()                                const { return *m_punit; }
  pointer          operator->()                                     { return  m_punit; }
  const_pointer    operator->()                               const { return  m_punit; }

  UnitIterator<T>& operator++()                                     { m_punit = m_punit->next; return *this; }
  UnitIterator<T>  operator++( int )                                { auto x = *this; ++( *this ); return x; }
  bool             operator!=( const UnitIterator<T>& other ) const { return m_punit != other.m_punit; }
  bool             operator==( const UnitIterator<T>& other ) const { return m_punit == other.m_punit; }
};

template<typename T>
class UnitTraverser
{
private:
  T* m_begin;
  T* m_end;

public:
  UnitTraverser(                    ) : m_begin( nullptr ), m_end( nullptr ) { }
  UnitTraverser( T* _begin, T* _end ) : m_begin( _begin  ), m_end( _end    ) { }

  typedef T                     value_type;
  typedef size_t                size_type;
  typedef T&                    reference;
  typedef T const&              const_reference;
  typedef T*                    pointer;
  typedef T const*              const_pointer;
  typedef UnitIterator<T>       iterator;
  typedef UnitIterator<const T> const_iterator;

  iterator        begin()        { return UnitIterator<T>( m_begin ); }
  const_iterator  begin()  const { return UnitIterator<T>( m_begin ); }
  const_iterator  cbegin() const { return UnitIterator<T>( m_begin ); }
  iterator        end()          { return UnitIterator<T>( m_end   ); }
  const_iterator  end()    const { return UnitIterator<T>( m_end   ); }
  const_iterator  cend()   const { return UnitIterator<T>( m_end   ); }
};

typedef UnitTraverser<CodingUnit>     CUTraverser;
typedef UnitTraverser<PredictionUnit> PUTraverser;
typedef UnitTraverser<TransformUnit>  TUTraverser;

typedef UnitTraverser<const CodingUnit>     cCUTraverser;
typedef UnitTraverser<const PredictionUnit> cPUTraverser;
typedef UnitTraverser<const TransformUnit>  cTUTraverser;

#endif