/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2018, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file UnitTool.cpp * \brief defines operations for basic units */ #include "UnitTools.h" #include "dtrace_next.h" #include "Unit.h" #include "Slice.h" #include "Picture.h" #include <utility> #include <algorithm> // CS tools uint64_t CS::getEstBits(const CodingStructure &cs) { return cs.fracBits >> SCALE_BITS; } bool CS::isDualITree( const CodingStructure &cs ) { return cs.slice->isIRAP() && !cs.pcv->ISingleTree; } UnitArea CS::getArea( const CodingStructure &cs, const UnitArea &area, const ChannelType chType ) { return isDualITree( cs ) ? area.singleChan( chType ) : area; } #if DMVR_JVET_LOW_LATENCY_K0217 void CS::setRefinedMotionField(CodingStructure &cs) { for (CodingUnit *cu : cs.cus) { for (auto &pu : CU::traversePUs(*cu)) { if (pu.cs->sps->getSpsNext().getUseDMVR() && pu.mergeFlag && pu.mergeType == MRG_TYPE_DEFAULT_N && !pu.frucMrgMode && !pu.cu->LICFlag && !pu.cu->affine && PU::isBiPredFromDifferentDir(pu)) { pu.mv[REF_PIC_LIST_0] += pu.mvd[REF_PIC_LIST_0]; pu.mv[REF_PIC_LIST_1] -= pu.mvd[REF_PIC_LIST_0]; pu.mvd[REF_PIC_LIST_0].setZero(); PU::spanMotionInfo(pu); } } } } #endif // CU tools bool CU::isIntra(const CodingUnit &cu) { return cu.predMode == MODE_INTRA; } bool CU::isInter(const CodingUnit &cu) { return cu.predMode == MODE_INTER; } bool CU::isRDPCMEnabled(const CodingUnit& cu) { return cu.cs->sps->getSpsRangeExtension().getRdpcmEnabledFlag(cu.predMode == MODE_INTRA ? RDPCM_SIGNAL_IMPLICIT : RDPCM_SIGNAL_EXPLICIT); } bool CU::isLosslessCoded(const CodingUnit &cu) { return cu.cs->pps->getTransquantBypassEnabledFlag() && cu.transQuantBypass; } bool CU::isSameSlice(const CodingUnit& cu, const CodingUnit& cu2) { return cu.slice->getIndependentSliceIdx() == cu2.slice->getIndependentSliceIdx(); } #if HEVC_TILES_WPP bool CU::isSameTile(const CodingUnit& cu, const CodingUnit& cu2) { return cu.tileIdx == cu2.tileIdx; } bool CU::isSameSliceAndTile(const CodingUnit& cu, const CodingUnit& cu2) { return ( cu.slice->getIndependentSliceIdx() == cu2.slice->getIndependentSliceIdx() ) && ( cu.tileIdx == cu2.tileIdx ); } #endif bool CU::isSameCtu(const CodingUnit& cu, const CodingUnit& cu2) { uint32_t ctuSizeBit = g_aucLog2[cu.cs->sps->getMaxCUWidth()]; Position pos1Ctu(cu.lumaPos().x >> ctuSizeBit, cu.lumaPos().y >> ctuSizeBit); Position pos2Ctu(cu2.lumaPos().x >> ctuSizeBit, cu2.lumaPos().y >> ctuSizeBit); return pos1Ctu.x == pos2Ctu.x && pos1Ctu.y == pos2Ctu.y; } uint32_t CU::getIntraSizeIdx(const CodingUnit &cu) { uint8_t uiWidth = cu.lumaSize().width; uint32_t uiCnt = 0; while (uiWidth) { uiCnt++; uiWidth >>= 1; } uiCnt -= 2; return uiCnt > 6 ? 6 : uiCnt; } bool CU::isLastSubCUOfCtu( const CodingUnit &cu ) { const SPS &sps = *cu.cs->sps; const Area cuAreaY = CS::isDualITree( *cu.cs ) ? Area( recalcPosition( cu.chromaFormat, cu.chType, CHANNEL_TYPE_LUMA, cu.blocks[cu.chType].pos() ), recalcSize( cu.chromaFormat, cu.chType, CHANNEL_TYPE_LUMA, cu.blocks[cu.chType].size() ) ) : ( const Area& ) cu.Y(); return ( ( ( ( cuAreaY.x + cuAreaY.width ) & cu.cs->pcv->maxCUWidthMask ) == 0 || cuAreaY.x + cuAreaY.width == sps.getPicWidthInLumaSamples() ) && ( ( ( cuAreaY.y + cuAreaY.height ) & cu.cs->pcv->maxCUHeightMask ) == 0 || cuAreaY.y + cuAreaY.height == sps.getPicHeightInLumaSamples() ) ); } uint32_t CU::getCtuAddr( const CodingUnit &cu ) { return getCtuAddr( cu.blocks[cu.chType].lumaPos(), *cu.cs->pcv ); } int CU::predictQP( const CodingUnit& cu, const int prevQP ) { const CodingStructure &cs = *cu.cs; #if ENABLE_WPP_PARALLELISM if( cs.sps->getSpsNext().getUseNextDQP() ) { // Inter-CTU 2D "planar" c(orner) a(bove) // predictor arrangement: b(efore) p(rediction) // restrict the lookup, as it might cross CTU/slice/tile boundaries const CodingUnit *cuA = cs.getCURestricted( cu.blocks[cu.chType].pos().offset( 0, -1 ), cu, cu.chType ); const CodingUnit *cuB = cs.getCURestricted( cu.blocks[cu.chType].pos().offset( -1, 0 ), cu, cu.chType ); const CodingUnit *cuC = cs.getCURestricted( cu.blocks[cu.chType].pos().offset( -1, -1 ), cu, cu.chType ); const int a = cuA ? cuA->qp : cs.slice->getSliceQpBase(); const int b = cuB ? cuB->qp : cs.slice->getSliceQpBase(); const int c = cuC ? cuC->qp : cs.slice->getSliceQpBase(); return Clip3( ( a < b ? a : b ), ( a > b ? a : b ), a + b - c ); // derived from Martucci's Median Adaptive Prediction, 1990 } #endif // only predict within the same CTU, use HEVC's above+left prediction const int a = ( cu.blocks[cu.chType].y & ( cs.pcv->maxCUHeightMask >> getChannelTypeScaleY( cu.chType, cu.chromaFormat ) ) ) ? ( cs.getCU( cu.blocks[cu.chType].pos().offset( 0, -1 ), cu.chType ) )->qp : prevQP; const int b = ( cu.blocks[cu.chType].x & ( cs.pcv->maxCUWidthMask >> getChannelTypeScaleX( cu.chType, cu.chromaFormat ) ) ) ? ( cs.getCU( cu.blocks[cu.chType].pos().offset( -1, 0 ), cu.chType ) )->qp : prevQP; return ( a + b + 1 ) >> 1; } bool CU::isQGStart( const CodingUnit& cu ) { const SPS &sps = *cu.cs->sps; const PPS &pps = *cu.cs->pps; return ( cu.blocks[cu.chType].x % ( ( 1 << ( g_aucLog2[sps.getMaxCUWidth()] - pps.getMaxCuDQPDepth() ) ) >> getChannelTypeScaleX( cu.chType, cu.chromaFormat ) ) ) == 0 && ( cu.blocks[cu.chType].y % ( ( 1 << ( g_aucLog2[sps.getMaxCUHeight()] - pps.getMaxCuDQPDepth() ) ) >> getChannelTypeScaleY( cu.chType, cu.chromaFormat ) ) ) == 0; } uint32_t CU::getNumPUs( const CodingUnit& cu ) { uint32_t cnt = 0; PredictionUnit *pu = cu.firstPU; do { cnt++; } while( ( pu != cu.lastPU ) && ( pu = pu->next ) ); return cnt; } void CU::addPUs( CodingUnit& cu ) { cu.cs->addPU( CS::getArea( *cu.cs, cu, cu.chType ), cu.chType ); } PartSplit CU::getSplitAtDepth( const CodingUnit& cu, const unsigned depth ) { if( depth >= cu.depth ) return CU_DONT_SPLIT; const PartSplit cuSplitType = PartSplit( ( cu.splitSeries >> ( depth * SPLIT_DMULT ) ) & SPLIT_MASK ); if ( cuSplitType == CU_QUAD_SPLIT ) return CU_QUAD_SPLIT; else if( cuSplitType == CU_HORZ_SPLIT ) return CU_HORZ_SPLIT; else if( cuSplitType == CU_VERT_SPLIT ) return CU_VERT_SPLIT; else if( cuSplitType == CU_TRIH_SPLIT ) return CU_TRIH_SPLIT; else if( cuSplitType == CU_TRIV_SPLIT ) return CU_TRIV_SPLIT; else { THROW( "Unknown split mode" ); return CU_QUAD_SPLIT; } } bool CU::hasNonTsCodedBlock( const CodingUnit& cu ) { bool hasAnyNonTSCoded = false; for( auto &currTU : traverseTUs( cu ) ) { for( uint32_t i = 0; i < ::getNumberValidTBlocks( *cu.cs->pcv ); i++ ) { hasAnyNonTSCoded |= ( currTU.blocks[i].valid() && !currTU.transformSkip[i] && TU::getCbf( currTU, ComponentID( i ) ) ); } } return hasAnyNonTSCoded; } uint32_t CU::getNumNonZeroCoeffNonTs( const CodingUnit& cu ) { uint32_t count = 0; for( auto &currTU : traverseTUs( cu ) ) { count += TU::getNumNonZeroCoeffsNonTS( currTU ); } return count; } PUTraverser CU::traversePUs( CodingUnit& cu ) { return PUTraverser( cu.firstPU, cu.lastPU->next ); } TUTraverser CU::traverseTUs( CodingUnit& cu ) { return TUTraverser( cu.firstTU, cu.lastTU->next ); } cPUTraverser CU::traversePUs( const CodingUnit& cu ) { return cPUTraverser( cu.firstPU, cu.lastPU->next ); } cTUTraverser CU::traverseTUs( const CodingUnit& cu ) { return cTUTraverser( cu.firstTU, cu.lastTU->next ); } // PU tools int PU::getIntraMPMs( const PredictionUnit &pu, unsigned* mpm, const ChannelType &channelType /*= CHANNEL_TYPE_LUMA*/ ) { const unsigned numMPMs = pu.cs->pcv->numMPMs; { int numCand = -1; int leftIntraDir = DC_IDX, aboveIntraDir = DC_IDX; const CompArea &area = pu.block(getFirstComponentOfChannel(channelType)); const Position &pos = area.pos(); // Get intra direction of left PU const PredictionUnit *puLeft = pu.cs->getPURestricted(pos.offset(-1, 0), pu, channelType); if (puLeft && CU::isIntra(*puLeft->cu)) { leftIntraDir = puLeft->intraDir[channelType]; if (isChroma(channelType) && leftIntraDir == DM_CHROMA_IDX) { leftIntraDir = puLeft->intraDir[0]; } } // Get intra direction of above PU const PredictionUnit *puAbove = pu.cs->getPURestricted(pos.offset(0, -1), pu, channelType); if (puAbove && CU::isIntra(*puAbove->cu) && CU::isSameCtu(*pu.cu, *puAbove->cu)) { aboveIntraDir = puAbove->intraDir[channelType]; if (isChroma(channelType) && aboveIntraDir == DM_CHROMA_IDX) { aboveIntraDir = puAbove->intraDir[0]; } } CHECK(2 >= numMPMs, "Invalid number of most probable modes"); const int offset = 61; const int mod = 64; if (leftIntraDir == aboveIntraDir) { numCand = 1; if (leftIntraDir > DC_IDX) // angular modes { mpm[0] = leftIntraDir; mpm[1] = ((leftIntraDir + offset) % mod) + 2; mpm[2] = ((leftIntraDir - 1) % mod) + 2; } else // non-angular { mpm[0] = PLANAR_IDX; mpm[1] = DC_IDX; mpm[2] = VER_IDX; } } else { numCand = 2; mpm[0] = leftIntraDir; mpm[1] = aboveIntraDir; if (leftIntraDir && aboveIntraDir) // both modes are non-planar { mpm[2] = PLANAR_IDX; } else { mpm[2] = (leftIntraDir + aboveIntraDir) < 2 ? VER_IDX : DC_IDX; } } for (int i = 0; i < numMPMs; i++) { CHECK(mpm[i] >= NUM_LUMA_MODE, "Invalid MPM"); } CHECK(numCand == 0, "No candidates found"); return numCand; } } void PU::getIntraChromaCandModes( const PredictionUnit &pu, unsigned modeList[NUM_CHROMA_MODE] ) { { modeList[ 0 ] = PLANAR_IDX; modeList[ 1 ] = VER_IDX; modeList[ 2 ] = HOR_IDX; modeList[ 3 ] = DC_IDX; modeList[4] = LM_CHROMA_IDX; #if JVET_L0338_MDLM modeList[5] = MDLM_L_IDX; modeList[6] = MDLM_T_IDX; modeList[7] = DM_CHROMA_IDX; #else modeList[5] = DM_CHROMA_IDX; #endif #if JVET_L0053_L0272_DM Position topLeftPos = pu.blocks[pu.chType].lumaPos(); Position refPos = topLeftPos.offset( pu.blocks[pu.chType].lumaSize().width >> 1, pu.blocks[pu.chType].lumaSize().height >> 1 ); const PredictionUnit *lumaPU = CS::isDualITree( *pu.cs ) ? pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : &pu; #else const PredictionUnit *lumaPU = CS::isDualITree( *pu.cs ) ? pu.cs->picture->cs->getPU( pu.blocks[pu.chType].lumaPos(), CHANNEL_TYPE_LUMA ) : &pu; #endif const uint32_t lumaMode = lumaPU->intraDir[CHANNEL_TYPE_LUMA]; for( int i = 0; i < 4; i++ ) { if( lumaMode == modeList[i] ) { modeList[i] = VDIA_IDX; break; } } } } bool PU::isLMCMode(unsigned mode) { #if JVET_L0338_MDLM return (mode >= LM_CHROMA_IDX && mode <= MDLM_T_IDX); #else return (mode == LM_CHROMA_IDX); #endif } bool PU::isLMCModeEnabled(const PredictionUnit &pu, unsigned mode) { if ( pu.cs->sps->getSpsNext().getUseLMChroma() ) { return true; } return false; } int PU::getLMSymbolList(const PredictionUnit &pu, int *pModeList) { #if !JVET_L0338_MDLM const int iNeighbors = 5; const PredictionUnit* neighboringPUs[ iNeighbors ]; const CompArea& area = pu.Cb(); const Position posLT = area.topLeft(); const Position posRT = area.topRight(); const Position posLB = area.bottomLeft(); neighboringPUs[ 0 ] = pu.cs->getPURestricted( posLB.offset(-1, 0), pu, CHANNEL_TYPE_CHROMA ); //left neighboringPUs[ 1 ] = pu.cs->getPURestricted( posRT.offset( 0, -1), pu, CHANNEL_TYPE_CHROMA ); //above neighboringPUs[ 2 ] = pu.cs->getPURestricted( posRT.offset( 1, -1), pu, CHANNEL_TYPE_CHROMA ); //aboveRight neighboringPUs[ 3 ] = pu.cs->getPURestricted( posLB.offset(-1, 1), pu, CHANNEL_TYPE_CHROMA ); //BelowLeft neighboringPUs[ 4 ] = pu.cs->getPURestricted( posLT.offset(-1, -1), pu, CHANNEL_TYPE_CHROMA ); //AboveLeft int iCount = 0; for ( int i = 0; i < iNeighbors; i++ ) { if ( neighboringPUs[i] && CU::isIntra( *(neighboringPUs[i]->cu) ) ) { int iMode = neighboringPUs[i]->intraDir[CHANNEL_TYPE_CHROMA]; if ( ! PU::isLMCMode( iMode ) ) { iCount++; } } } bool bNonLMInsert = false; #endif int iIdx = 0; pModeList[ iIdx++ ] = LM_CHROMA_IDX; #if !JVET_L0338_MDLM if ( iCount >= g_aiNonLMPosThrs[0] && ! bNonLMInsert ) { #endif pModeList[ iIdx++ ] = -1; #if !JVET_L0338_MDLM bNonLMInsert = true; } #endif #if JVET_L0338_MDLM pModeList[iIdx++] = MDLM_L_IDX; pModeList[iIdx++] = MDLM_T_IDX; #endif #if !JVET_L0338_MDLM if ( iCount >= g_aiNonLMPosThrs[1] && ! bNonLMInsert ) { pModeList[ iIdx++ ] = -1; bNonLMInsert = true; } if ( ! bNonLMInsert ) { pModeList[ iIdx++ ] = -1; bNonLMInsert = true; } #endif return iIdx; } bool PU::isChromaIntraModeCrossCheckMode( const PredictionUnit &pu ) { return pu.intraDir[CHANNEL_TYPE_CHROMA] == DM_CHROMA_IDX; } uint32_t PU::getFinalIntraMode( const PredictionUnit &pu, const ChannelType &chType ) { uint32_t uiIntraMode = pu.intraDir[chType]; if( uiIntraMode == DM_CHROMA_IDX && !isLuma( chType ) ) { #if JVET_L0053_L0272_DM Position topLeftPos = pu.blocks[pu.chType].lumaPos(); Position refPos = topLeftPos.offset( pu.blocks[pu.chType].lumaSize().width >> 1, pu.blocks[pu.chType].lumaSize().height >> 1 ); const PredictionUnit &lumaPU = CS::isDualITree( *pu.cs ) ? *pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : *pu.cs->getPU( topLeftPos, CHANNEL_TYPE_LUMA ); #else const PredictionUnit &lumaPU = CS::isDualITree( *pu.cs ) ? *pu.cs->picture->cs->getPU( pu.blocks[chType].lumaPos(), CHANNEL_TYPE_LUMA ) : *pu.cs->getPU( pu.blocks[chType].lumaPos(), CHANNEL_TYPE_LUMA ); #endif uiIntraMode = lumaPU.intraDir[0]; } if( pu.chromaFormat == CHROMA_422 && !isLuma( chType ) ) { uiIntraMode = g_chroma422IntraAngleMappingTable[uiIntraMode]; } return uiIntraMode; } #if JVET_L0266_HMVP bool PU::xCheckSimilarMotion(const int mergeCandIndex, const int prevCnt, const MergeCtx mergeCandList, bool hasPruned[MRG_MAX_NUM_CANDS]) { for (uint32_t ui = 0; ui < prevCnt; ui++) { if (hasPruned[ui]) { continue; } if (mergeCandList.interDirNeighbours[ui] == mergeCandList.interDirNeighbours[mergeCandIndex]) { if (mergeCandList.interDirNeighbours[ui] == 3) { int offset0 = (ui * 2); int offset1 = (mergeCandIndex * 2); if (mergeCandList.mvFieldNeighbours[offset0].refIdx == mergeCandList.mvFieldNeighbours[offset1].refIdx && mergeCandList.mvFieldNeighbours[offset0 + 1].refIdx == mergeCandList.mvFieldNeighbours[offset1 + 1].refIdx && mergeCandList.mvFieldNeighbours[offset0].mv == mergeCandList.mvFieldNeighbours[offset1].mv && mergeCandList.mvFieldNeighbours[offset0 + 1].mv == mergeCandList.mvFieldNeighbours[offset1 + 1].mv ) { hasPruned[ui] = true; return true; } } else { int offset0 = (ui * 2) + mergeCandList.interDirNeighbours[ui] - 1; int offset1 = (mergeCandIndex * 2) + mergeCandList.interDirNeighbours[ui] - 1; if (mergeCandList.mvFieldNeighbours[offset0].refIdx == mergeCandList.mvFieldNeighbours[offset1].refIdx && mergeCandList.mvFieldNeighbours[offset0].mv == mergeCandList.mvFieldNeighbours[offset1].mv ) { hasPruned[ui] = true; return true; } } } } return false; } #if JVET_L0090_PAIR_AVG bool PU::addMergeHMVPCand(const Slice &slice, MergeCtx& mrgCtx, bool canFastExit, const int& mrgCandIdx, const uint32_t maxNumMergeCandMin1, int &cnt, const int prevCnt, bool isAvailableSubPu, unsigned subPuMvpPos) #else bool PU::addMergeHMVPCand(const Slice &slice, MergeCtx& mrgCtx, bool isCandInter[MRG_MAX_NUM_CANDS], bool canFastExit, const int& mrgCandIdx, const uint32_t maxNumMergeCandMin1, int &cnt, const int prevCnt, bool isAvailableSubPu, unsigned subPuMvpPos) #endif { MotionInfo miNeighbor; bool hasPruned[MRG_MAX_NUM_CANDS]; memset(hasPruned, 0, MRG_MAX_NUM_CANDS * sizeof(bool)); if (isAvailableSubPu) { hasPruned[subPuMvpPos] = true; } int num_avai_candInLUT = slice.getAvailableLUTMrgNum(); for (int mrgIdx = 1; mrgIdx <= num_avai_candInLUT; mrgIdx++) { miNeighbor = slice.getMotionInfoFromLUTs(num_avai_candInLUT - mrgIdx); mrgCtx.interDirNeighbours[cnt] = miNeighbor.interDir; mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miNeighbor.mv[0], miNeighbor.refIdx[0]); if (slice.isInterB()) { mrgCtx.mvFieldNeighbours[(cnt << 1) + 1].setMvField(miNeighbor.mv[1], miNeighbor.refIdx[1]); } if (!xCheckSimilarMotion(cnt, prevCnt, mrgCtx, hasPruned)) { #if !JVET_L0090_PAIR_AVG isCandInter[cnt] = true; #endif if (mrgCandIdx == cnt && canFastExit) { return true; } cnt ++; if (cnt == maxNumMergeCandMin1) { break; } } } return false; } #endif void PU::getInterMergeCandidates( const PredictionUnit &pu, MergeCtx& mrgCtx, #if JVET_L0054_MMVD int mmvdList, #endif const int& mrgCandIdx ) { const CodingStructure &cs = *pu.cs; const Slice &slice = *pu.cs->slice; const uint32_t maxNumMergeCand = slice.getMaxNumMergeCand(); const bool canFastExit = pu.cs->pps->getLog2ParallelMergeLevelMinus2() == 0; #if !JVET_L0090_PAIR_AVG // this variable is unused if remove HEVC combined candidates bool isCandInter[MRG_MAX_NUM_CANDS]; #endif for (uint32_t ui = 0; ui < maxNumMergeCand; ++ui) { #if !JVET_L0090_PAIR_AVG isCandInter[ui] = false; #endif #if JVET_L0646_GBI mrgCtx.GBiIdx[ui] = GBI_DEFAULT; #endif mrgCtx.interDirNeighbours[ui] = 0; mrgCtx.mrgTypeNeighbours [ui] = MRG_TYPE_DEFAULT_N; mrgCtx.mvFieldNeighbours[(ui << 1) ].refIdx = NOT_VALID; mrgCtx.mvFieldNeighbours[(ui << 1) + 1].refIdx = NOT_VALID; } mrgCtx.numValidMergeCand = maxNumMergeCand; // compute the location of the current PU int cnt = 0; const Position posLT = pu.Y().topLeft(); const Position posRT = pu.Y().topRight(); const Position posLB = pu.Y().bottomLeft(); MotionInfo miAbove, miLeft, miAboveLeft, miAboveRight, miBelowLeft; //left const PredictionUnit* puLeft = cs.getPURestricted( posLB.offset( -1, 0 ), pu, pu.chType ); const bool isAvailableA1 = puLeft && isDiffMER( pu, *puLeft ) && pu.cu != puLeft->cu && CU::isInter( *puLeft->cu ); if( isAvailableA1 ) { miLeft = puLeft->getMotionInfo( posLB.offset(-1, 0) ); #if !JVET_L0090_PAIR_AVG isCandInter[cnt] = true; #endif // get Inter Dir mrgCtx.interDirNeighbours[cnt] = miLeft.interDir; #if JVET_L0646_GBI mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? puLeft->cu->GBiIdx : GBI_DEFAULT; #endif // get Mv from Left mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miLeft.mv[0], miLeft.refIdx[0]); if (slice.isInterB()) { mrgCtx.mvFieldNeighbours[(cnt << 1) + 1].setMvField(miLeft.mv[1], miLeft.refIdx[1]); } if( mrgCandIdx == cnt && canFastExit ) { return; } cnt++; } // early termination if (cnt == maxNumMergeCand) { return; } // above const PredictionUnit *puAbove = cs.getPURestricted( posRT.offset( 0, -1 ), pu, pu.chType ); bool isAvailableB1 = puAbove && isDiffMER( pu, *puAbove ) && pu.cu != puAbove->cu && CU::isInter( *puAbove->cu ); if( isAvailableB1 ) { miAbove = puAbove->getMotionInfo( posRT.offset( 0, -1 ) ); if( !isAvailableA1 || ( miAbove != miLeft ) ) { #if !JVET_L0090_PAIR_AVG isCandInter[cnt] = true; #endif // get Inter Dir mrgCtx.interDirNeighbours[cnt] = miAbove.interDir; // get Mv from Above #if JVET_L0646_GBI mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? puAbove->cu->GBiIdx : GBI_DEFAULT; #endif mrgCtx.mvFieldNeighbours[cnt << 1].setMvField( miAbove.mv[0], miAbove.refIdx[0] ); if( slice.isInterB() ) { mrgCtx.mvFieldNeighbours[( cnt << 1 ) + 1].setMvField( miAbove.mv[1], miAbove.refIdx[1] ); } if( mrgCandIdx == cnt && canFastExit ) { return; } cnt++; } } // early termination if( cnt == maxNumMergeCand ) { return; } // above right const PredictionUnit *puAboveRight = cs.getPURestricted( posRT.offset( 1, -1 ), pu, pu.chType ); bool isAvailableB0 = puAboveRight && isDiffMER( pu, *puAboveRight ) && CU::isInter( *puAboveRight->cu ); if( isAvailableB0 ) { miAboveRight = puAboveRight->getMotionInfo( posRT.offset( 1, -1 ) ); #if HM_JEM_MERGE_CANDS if( ( !isAvailableB1 || ( miAbove != miAboveRight ) ) && ( !isAvailableA1 || ( miLeft != miAboveRight ) ) ) #else if( !isAvailableB1 || ( miAbove != miAboveRight ) ) #endif { #if !JVET_L0090_PAIR_AVG isCandInter[cnt] = true; #endif // get Inter Dir mrgCtx.interDirNeighbours[cnt] = miAboveRight.interDir; // get Mv from Above-right #if JVET_L0646_GBI mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? puAboveRight->cu->GBiIdx : GBI_DEFAULT; #endif mrgCtx.mvFieldNeighbours[cnt << 1].setMvField( miAboveRight.mv[0], miAboveRight.refIdx[0] ); if( slice.isInterB() ) { mrgCtx.mvFieldNeighbours[( cnt << 1 ) + 1].setMvField( miAboveRight.mv[1], miAboveRight.refIdx[1] ); } if( mrgCandIdx == cnt && canFastExit ) { return; } cnt++; } } // early termination if( cnt == maxNumMergeCand ) { return; } //left bottom const PredictionUnit *puLeftBottom = cs.getPURestricted( posLB.offset( -1, 1 ), pu, pu.chType ); bool isAvailableA0 = puLeftBottom && isDiffMER( pu, *puLeftBottom ) && CU::isInter( *puLeftBottom->cu ); if( isAvailableA0 ) { miBelowLeft = puLeftBottom->getMotionInfo( posLB.offset( -1, 1 ) ); #if HM_JEM_MERGE_CANDS if( ( !isAvailableA1 || ( miBelowLeft != miLeft ) ) && ( !isAvailableB1 || ( miBelowLeft != miAbove ) ) && ( !isAvailableB0 || ( miBelowLeft != miAboveRight ) ) ) #else if( !isAvailableA1 || ( miBelowLeft != miLeft ) ) #endif { #if !JVET_L0090_PAIR_AVG isCandInter[cnt] = true; #endif // get Inter Dir mrgCtx.interDirNeighbours[cnt] = miBelowLeft.interDir; #if JVET_L0646_GBI mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? puLeftBottom->cu->GBiIdx : GBI_DEFAULT; #endif // get Mv from Bottom-Left mrgCtx.mvFieldNeighbours[cnt << 1].setMvField( miBelowLeft.mv[0], miBelowLeft.refIdx[0] ); if( slice.isInterB() ) { mrgCtx.mvFieldNeighbours[( cnt << 1 ) + 1].setMvField( miBelowLeft.mv[1], miBelowLeft.refIdx[1] ); } if( mrgCandIdx == cnt && canFastExit ) { return; } cnt++; } } // early termination if( cnt == maxNumMergeCand ) { return; } #if !JVET_L0369_SUBBLOCK_MERGE bool enableSubPuMvp = slice.getSPS()->getSpsNext().getUseSubPuMvp(); bool isAvailableSubPu = false; unsigned subPuMvpPos = 0; if( enableSubPuMvp ) { CHECK( mrgCtx.subPuMvpMiBuf .area() == 0 || !mrgCtx.subPuMvpMiBuf .buf, "Buffer not initialized" ); mrgCtx.subPuMvpMiBuf .fill( MotionInfo() ); } if( enableSubPuMvp && slice.getEnableTMVPFlag() ) { bool bMrgIdxMatchATMVPCan = ( mrgCandIdx == cnt ); bool tmpLICFlag = false; isAvailableSubPu = cs.sps->getSpsNext().getUseATMVP() && getInterMergeSubPuMvpCand( pu, mrgCtx, tmpLICFlag, cnt #if JVET_L0054_MMVD , mmvdList #endif ); if( isAvailableSubPu ) { #if !JVET_L0090_PAIR_AVG isCandInter[cnt] = true; #endif mrgCtx.mrgTypeNeighbours[cnt] = MRG_TYPE_SUBPU_ATMVP; if( bMrgIdxMatchATMVPCan ) { return; } subPuMvpPos = cnt; cnt++; if( cnt == maxNumMergeCand ) { return; } } } #endif // above left #if JVET_L0369_SUBBLOCK_MERGE if ( cnt < 4 ) #else if( cnt < ( enableSubPuMvp ? 6 : 4 ) ) #endif { const PredictionUnit *puAboveLeft = cs.getPURestricted( posLT.offset( -1, -1 ), pu, pu.chType ); bool isAvailableB2 = puAboveLeft && isDiffMER( pu, *puAboveLeft ) && CU::isInter( *puAboveLeft->cu ); if( isAvailableB2 ) { miAboveLeft = puAboveLeft->getMotionInfo( posLT.offset( -1, -1 ) ); #if HM_JEM_MERGE_CANDS if( ( !isAvailableA1 || ( miLeft != miAboveLeft ) ) && ( !isAvailableB1 || ( miAbove != miAboveLeft ) ) && ( !isAvailableA0 || ( miBelowLeft != miAboveLeft ) ) && ( !isAvailableB0 || ( miAboveRight != miAboveLeft ) ) ) #else if( ( !isAvailableA1 || ( miLeft != miAboveLeft ) ) && ( !isAvailableB1 || ( miAbove != miAboveLeft ) ) ) #endif { #if !JVET_L0090_PAIR_AVG isCandInter[cnt] = true; #endif // get Inter Dir mrgCtx.interDirNeighbours[cnt] = miAboveLeft.interDir; #if JVET_L0646_GBI mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? puAboveLeft->cu->GBiIdx : GBI_DEFAULT; #endif // get Mv from Above-Left mrgCtx.mvFieldNeighbours[cnt << 1].setMvField( miAboveLeft.mv[0], miAboveLeft.refIdx[0] ); if( slice.isInterB() ) { mrgCtx.mvFieldNeighbours[( cnt << 1 ) + 1].setMvField( miAboveLeft.mv[1], miAboveLeft.refIdx[1] ); } if( mrgCandIdx == cnt && canFastExit ) { return; } cnt++; } } } // early termination if (cnt == maxNumMergeCand) { return; } if (slice.getEnableTMVPFlag()) { //>> MTK colocated-RightBottom // offset the pos to be sure to "point" to the same position the uiAbsPartIdx would've pointed to Position posRB = pu.Y().bottomRight().offset(-3, -3); const PreCalcValues& pcv = *cs.pcv; Position posC0; Position posC1 = pu.Y().center(); bool C0Avail = false; if (((posRB.x + pcv.minCUWidth) < pcv.lumaWidth) && ((posRB.y + pcv.minCUHeight) < pcv.lumaHeight)) { { Position posInCtu( posRB.x & pcv.maxCUWidthMask, posRB.y & pcv.maxCUHeightMask ); if( ( posInCtu.x + 4 < pcv.maxCUWidth ) && // is not at the last column of CTU ( posInCtu.y + 4 < pcv.maxCUHeight ) ) // is not at the last row of CTU { posC0 = posRB.offset( 4, 4 ); C0Avail = true; } else if( posInCtu.x + 4 < pcv.maxCUWidth ) // is not at the last column of CTU But is last row of CTU { posC0 = posRB.offset( 4, 4 ); // in the reference the CTU address is not set - thus probably resulting in no using this C0 possibility } else if( posInCtu.y + 4 < pcv.maxCUHeight ) // is not at the last row of CTU But is last column of CTU { posC0 = posRB.offset( 4, 4 ); C0Avail = true; } else //is the right bottom corner of CTU { posC0 = posRB.offset( 4, 4 ); // same as for last column but not last row } } } Mv cColMv; int iRefIdx = 0; int dir = 0; unsigned uiArrayAddr = cnt; bool bExistMV = ( C0Avail && getColocatedMVP(pu, REF_PIC_LIST_0, posC0, cColMv, iRefIdx ) ) || getColocatedMVP(pu, REF_PIC_LIST_0, posC1, cColMv, iRefIdx ); if (bExistMV) { dir |= 1; mrgCtx.mvFieldNeighbours[2 * uiArrayAddr].setMvField(cColMv, iRefIdx); } if (slice.isInterB()) { bExistMV = ( C0Avail && getColocatedMVP(pu, REF_PIC_LIST_1, posC0, cColMv, iRefIdx ) ) || getColocatedMVP(pu, REF_PIC_LIST_1, posC1, cColMv, iRefIdx ); if (bExistMV) { dir |= 2; mrgCtx.mvFieldNeighbours[2 * uiArrayAddr + 1].setMvField(cColMv, iRefIdx); } } if( dir != 0 ) { #if JVET_L0369_SUBBLOCK_MERGE bool addTMvp = true; #else bool addTMvp = !( cs.sps->getSpsNext().getUseSubPuMvp() && isAvailableSubPu ); if( !addTMvp ) { if ( dir != mrgCtx.interDirNeighbours[subPuMvpPos] ) { addTMvp = true; } else { for( unsigned refList = 0; refList < NUM_REF_PIC_LIST_01; refList++ ) { if( dir & ( 1 << refList ) ) { if( mrgCtx.mvFieldNeighbours[( cnt << 1 ) + refList] != mrgCtx.mvFieldNeighbours[(subPuMvpPos << 1) + refList] ) { addTMvp = true; break; } } } } } #endif #if HM_JEM_MERGE_CANDS #if JVET_L0369_SUBBLOCK_MERGE int iSpanCand = cnt; #else int iSpanCand = isAvailableSubPu ? cnt - 1 : cnt; #endif for( int i = 0; i < iSpanCand; i++ ) { if( mrgCtx.interDirNeighbours[ i ] == dir && mrgCtx.mvFieldNeighbours [ i << 1 ] == mrgCtx.mvFieldNeighbours[ uiArrayAddr << 1 ] && mrgCtx.mvFieldNeighbours [( i << 1 ) + 1] == mrgCtx.mvFieldNeighbours[( uiArrayAddr << 1 ) + 1] ) { addTMvp = false; } } #endif if( addTMvp ) { mrgCtx.interDirNeighbours[uiArrayAddr] = dir; #if !JVET_L0090_PAIR_AVG isCandInter [uiArrayAddr] = true; #endif #if JVET_L0646_GBI mrgCtx.GBiIdx[uiArrayAddr] = GBI_DEFAULT; #endif if( mrgCandIdx == cnt && canFastExit ) { return; } cnt++; } } } // early termination if (cnt == maxNumMergeCand) { return; } #if JVET_L0266_HMVP int maxNumMergeCandMin1 = maxNumMergeCand - 1; if (cnt != maxNumMergeCandMin1) { #if JVET_L0369_SUBBLOCK_MERGE bool isAvailableSubPu = false; unsigned subPuMvpPos = 0; #endif #if JVET_L0090_PAIR_AVG bool bFound = addMergeHMVPCand(slice, mrgCtx, canFastExit, mrgCandIdx, maxNumMergeCandMin1, cnt, cnt, isAvailableSubPu, subPuMvpPos); #else bool bFound = addMergeHMVPCand(slice, mrgCtx, isCandInter, canFastExit, mrgCandIdx, maxNumMergeCandMin1, cnt, cnt, isAvailableSubPu, subPuMvpPos); #endif if (bFound) { return; } } #endif #if JVET_L0090_PAIR_AVG // pairwise-average candidates { const int cutoff = std::min( cnt, 4 ); const int end = cutoff * (cutoff - 1) / 2; constexpr int PRIORITY_LIST0[] = { 0, 0, 1, 0, 1, 2 }; constexpr int PRIORITY_LIST1[] = { 1, 2, 2, 3, 3, 3 }; for( int idx = 0; idx < end && cnt != maxNumMergeCand; idx++ ) { const int i = PRIORITY_LIST0[idx]; const int j = PRIORITY_LIST1[idx]; mrgCtx.mvFieldNeighbours[cnt * 2].setMvField( Mv( 0, 0 ), NOT_VALID ); mrgCtx.mvFieldNeighbours[cnt * 2 + 1].setMvField( Mv( 0, 0 ), NOT_VALID ); // calculate average MV for L0 and L1 seperately unsigned char interDir = 0; for( int refListId = 0; refListId < (slice.isInterB() ? 2 : 1); refListId++ ) { const short refIdxI = mrgCtx.mvFieldNeighbours[i * 2 + refListId].refIdx; const short refIdxJ = mrgCtx.mvFieldNeighbours[j * 2 + refListId].refIdx; // both MVs are invalid, skip if( (refIdxI == NOT_VALID) && (refIdxJ == NOT_VALID) ) { continue; } interDir += 1 << refListId; // both MVs are valid, average these two MVs if( (refIdxI != NOT_VALID) && (refIdxJ != NOT_VALID) ) { const Mv& MvI = mrgCtx.mvFieldNeighbours[i * 2 + refListId].mv; const Mv& MvJ = mrgCtx.mvFieldNeighbours[j * 2 + refListId].mv; // average two MVs Mv avgMv = MvI; #if !REMOVE_MV_ADAPT_PREC if( pu.cs->sps->getSpsNext().getUseHighPrecMv() ) { avgMv.setHighPrec(); } #endif avgMv += MvJ; avgMv.setHor( avgMv.getHor() / 2 ); avgMv.setVer( avgMv.getVer() / 2 ); mrgCtx.mvFieldNeighbours[cnt * 2 + refListId].setMvField( avgMv, refIdxI ); } // only one MV is valid, take the only one MV else if( refIdxI != NOT_VALID ) { Mv singleMv = mrgCtx.mvFieldNeighbours[i * 2 + refListId].mv; #if !REMOVE_MV_ADAPT_PREC if( pu.cs->sps->getSpsNext().getUseHighPrecMv() ) { singleMv.setHighPrec(); } #endif mrgCtx.mvFieldNeighbours[cnt * 2 + refListId].setMvField( singleMv, refIdxI ); } else if( refIdxJ != NOT_VALID ) { Mv singleMv = mrgCtx.mvFieldNeighbours[j * 2 + refListId].mv; #if !REMOVE_MV_ADAPT_PREC if( pu.cs->sps->getSpsNext().getUseHighPrecMv() ) { singleMv.setHighPrec(); } #endif mrgCtx.mvFieldNeighbours[cnt * 2 + refListId].setMvField( singleMv, refIdxJ ); } } mrgCtx.interDirNeighbours[cnt] = interDir; if( interDir > 0 ) { cnt++; } } // early termination if( cnt == maxNumMergeCand ) { return; } } #endif uint32_t uiArrayAddr = cnt; #if !JVET_L0090_PAIR_AVG #if JVET_L0266_HMVP uint32_t uiCutoff = std::min( uiArrayAddr, 3u ); #else uint32_t uiCutoff = std::min( uiArrayAddr, 4u ); #endif if (slice.isInterB()) { static const uint32_t NUM_PRIORITY_LIST = 12; static const uint32_t uiPriorityList0[NUM_PRIORITY_LIST] = { 0 , 1, 0, 2, 1, 2, 0, 3, 1, 3, 2, 3 }; static const uint32_t uiPriorityList1[NUM_PRIORITY_LIST] = { 1 , 0, 2, 0, 2, 1, 3, 0, 3, 1, 3, 2 }; for (int idx = 0; idx < uiCutoff * (uiCutoff - 1) && uiArrayAddr != maxNumMergeCand; idx++) { CHECK( idx >= NUM_PRIORITY_LIST, "Invalid priority list number" ); int i = uiPriorityList0[idx]; int j = uiPriorityList1[idx]; if (isCandInter[i] && isCandInter[j] && (mrgCtx.interDirNeighbours[i] & 0x1) && (mrgCtx.interDirNeighbours[j] & 0x2)) { isCandInter[uiArrayAddr] = true; mrgCtx.interDirNeighbours[uiArrayAddr] = 3; #if JVET_L0646_GBI mrgCtx.GBiIdx[uiArrayAddr] = ((mrgCtx.interDirNeighbours[uiArrayAddr] == 3)) ? CU::deriveGbiIdx(mrgCtx.GBiIdx[i], mrgCtx.GBiIdx[j]) : GBI_DEFAULT; #endif // get Mv from cand[i] and cand[j] mrgCtx.mvFieldNeighbours[ uiArrayAddr << 1 ].setMvField(mrgCtx.mvFieldNeighbours[ i << 1 ].mv, mrgCtx.mvFieldNeighbours[ i << 1 ].refIdx); mrgCtx.mvFieldNeighbours[(uiArrayAddr << 1) + 1].setMvField(mrgCtx.mvFieldNeighbours[(j << 1) + 1].mv, mrgCtx.mvFieldNeighbours[(j << 1) + 1].refIdx); int iRefPOCL0 = slice.getRefPOC(REF_PIC_LIST_0, mrgCtx.mvFieldNeighbours[(uiArrayAddr << 1) ].refIdx); int iRefPOCL1 = slice.getRefPOC(REF_PIC_LIST_1, mrgCtx.mvFieldNeighbours[(uiArrayAddr << 1) + 1].refIdx); if( iRefPOCL0 == iRefPOCL1 && mrgCtx.mvFieldNeighbours[( uiArrayAddr << 1 )].mv == mrgCtx.mvFieldNeighbours[( uiArrayAddr << 1 ) + 1].mv ) { isCandInter[uiArrayAddr] = false; } else { uiArrayAddr++; } } } } // early termination if (uiArrayAddr == maxNumMergeCand) { return; } #endif int iNumRefIdx = slice.isInterB() ? std::min(slice.getNumRefIdx(REF_PIC_LIST_0), slice.getNumRefIdx(REF_PIC_LIST_1)) : slice.getNumRefIdx(REF_PIC_LIST_0); int r = 0; int refcnt = 0; while (uiArrayAddr < maxNumMergeCand) { #if !JVET_L0090_PAIR_AVG isCandInter [uiArrayAddr ] = true; #endif mrgCtx.interDirNeighbours [uiArrayAddr ] = 1; #if JVET_L0646_GBI mrgCtx.GBiIdx [uiArrayAddr ] = GBI_DEFAULT; #endif mrgCtx.mvFieldNeighbours [uiArrayAddr << 1].setMvField(Mv(0, 0), r); if (slice.isInterB()) { mrgCtx.interDirNeighbours [ uiArrayAddr ] = 3; mrgCtx.mvFieldNeighbours [(uiArrayAddr << 1) + 1].setMvField(Mv(0, 0), r); } uiArrayAddr++; if (refcnt == iNumRefIdx - 1) { r = 0; } else { ++r; ++refcnt; } } mrgCtx.numValidMergeCand = uiArrayAddr; } static int xGetDistScaleFactor(const int &iCurrPOC, const int &iCurrRefPOC, const int &iColPOC, const int &iColRefPOC) { int iDiffPocD = iColPOC - iColRefPOC; int iDiffPocB = iCurrPOC - iCurrRefPOC; if (iDiffPocD == iDiffPocB) { return 4096; } else { int iTDB = Clip3(-128, 127, iDiffPocB); int iTDD = Clip3(-128, 127, iDiffPocD); int iX = (0x4000 + abs(iTDD / 2)) / iTDD; int iScale = Clip3(-4096, 4095, (iTDB * iX + 32) >> 6); return iScale; } } #if JVET_L0054_MMVD int PU::getDistScaleFactor(const int &currPOC, const int &currRefPOC, const int &colPOC, const int &colRefPOC) { return xGetDistScaleFactor(currPOC, currRefPOC, colPOC, colRefPOC); } void PU::getInterMMVDMergeCandidates(const PredictionUnit &pu, MergeCtx& mrgCtx, const int& mrgCandIdx) { int refIdxList0, refIdxList1; int k; int currBaseNum = 0; const uint16_t maxNumMergeCand = mrgCtx.numValidMergeCand; #if !REMOVE_MV_ADAPT_PREC if (pu.cu->slice->getSPS()->getSpsNext().getUseHighPrecMv()) { for (k = 0; k < maxNumMergeCand; k++) { if (mrgCtx.mrgTypeNeighbours[k] == MRG_TYPE_DEFAULT_N) { if ((mrgCtx.mvFieldNeighbours[(k << 1)].mv.highPrec == false) && (mrgCtx.mvFieldNeighbours[(k << 1)].refIdx >= 0)) { mrgCtx.mvFieldNeighbours[(k << 1)].mv.setHighPrec(); } if ((mrgCtx.mvFieldNeighbours[(k << 1) + 1].mv.highPrec == false) && (mrgCtx.mvFieldNeighbours[(k << 1) + 1].refIdx >= 0)) { mrgCtx.mvFieldNeighbours[(k << 1) + 1].mv.setHighPrec(); } } } } #endif for (k = 0; k < maxNumMergeCand; k++) { if (mrgCtx.mrgTypeNeighbours[k] == MRG_TYPE_DEFAULT_N) { refIdxList0 = mrgCtx.mvFieldNeighbours[(k << 1)].refIdx; refIdxList1 = mrgCtx.mvFieldNeighbours[(k << 1) + 1].refIdx; if ((refIdxList0 >= 0) && (refIdxList1 >= 0)) { mrgCtx.mmvdBaseMv[currBaseNum][0] = mrgCtx.mvFieldNeighbours[(k << 1)]; mrgCtx.mmvdBaseMv[currBaseNum][1] = mrgCtx.mvFieldNeighbours[(k << 1) + 1]; } else if (refIdxList0 >= 0) { mrgCtx.mmvdBaseMv[currBaseNum][0] = mrgCtx.mvFieldNeighbours[(k << 1)]; mrgCtx.mmvdBaseMv[currBaseNum][1] = MvField(Mv(0, 0), -1); } else if (refIdxList1 >= 0) { mrgCtx.mmvdBaseMv[currBaseNum][0] = MvField(Mv(0, 0), -1); mrgCtx.mmvdBaseMv[currBaseNum][1] = mrgCtx.mvFieldNeighbours[(k << 1) + 1]; } currBaseNum++; if (currBaseNum == MMVD_BASE_MV_NUM) break; } } if (currBaseNum < MMVD_BASE_MV_NUM) { for (k = currBaseNum; k < MMVD_BASE_MV_NUM; k++) { mrgCtx.mmvdBaseMv[k][0] = MvField(Mv(0, 0), 0); mrgCtx.mmvdBaseMv[k][0] = MvField(Mv(0, 0), 0); } } } #endif bool PU::getColocatedMVP(const PredictionUnit &pu, const RefPicList &eRefPicList, const Position &_pos, Mv& rcMv, const int &refIdx ) { // don't perform MV compression when generally disabled or subPuMvp is used const unsigned scale = ( pu.cs->pcv->noMotComp ? 1 : 4 * std::max<int>(1, 4 * AMVP_DECIMATION_FACTOR / 4) ); const unsigned mask = ~( scale - 1 ); const Position pos = Position{ PosType( _pos.x & mask ), PosType( _pos.y & mask ) }; const Slice &slice = *pu.cs->slice; // use coldir. const Picture* const pColPic = slice.getRefPic(RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0), slice.getColRefIdx()); if( !pColPic ) { return false; } RefPicList eColRefPicList = slice.getCheckLDC() ? eRefPicList : RefPicList(slice.getColFromL0Flag()); const MotionInfo& mi = pColPic->cs->getMotionInfo( pos ); if( !mi.isInter ) { return false; } int iColRefIdx = mi.refIdx[eColRefPicList]; if (iColRefIdx < 0) { eColRefPicList = RefPicList(1 - eColRefPicList); iColRefIdx = mi.refIdx[eColRefPicList]; if (iColRefIdx < 0) { return false; } } const Slice *pColSlice = nullptr; for( const auto s : pColPic->slices ) { if( s->getIndependentSliceIdx() == mi.sliceIdx ) { pColSlice = s; break; } } CHECK( pColSlice == nullptr, "Slice segment not found" ); const Slice &colSlice = *pColSlice; const bool bIsCurrRefLongTerm = slice.getRefPic(eRefPicList, refIdx)->longTerm; const bool bIsColRefLongTerm = colSlice.getIsUsedAsLongTerm(eColRefPicList, iColRefIdx); if (bIsCurrRefLongTerm != bIsColRefLongTerm) { return false; } // Scale the vector. Mv cColMv = mi.mv[eColRefPicList]; if (bIsCurrRefLongTerm /*|| bIsColRefLongTerm*/) { rcMv = cColMv; } else { const int currPOC = slice.getPOC(); const int colPOC = colSlice.getPOC(); const int colRefPOC = colSlice.getRefPOC(eColRefPicList, iColRefIdx); const int currRefPOC = slice.getRefPic(eRefPicList, refIdx)->getPOC(); const int distscale = xGetDistScaleFactor(currPOC, currRefPOC, colPOC, colRefPOC); if (distscale == 4096) { rcMv = cColMv; } else { #if !REMOVE_MV_ADAPT_PREC if( pu.cs->sps->getSpsNext().getUseHighPrecMv() ) { // allow extended precision for temporal scaling cColMv.setHighPrec(); } #endif rcMv = cColMv.scaleMv(distscale); } } return true; } bool PU::isDiffMER(const PredictionUnit &pu1, const PredictionUnit &pu2) { const unsigned xN = pu1.lumaPos().x; const unsigned yN = pu1.lumaPos().y; const unsigned xP = pu2.lumaPos().x; const unsigned yP = pu2.lumaPos().y; unsigned plevel = pu1.cs->pps->getLog2ParallelMergeLevelMinus2() + 2; if ((xN >> plevel) != (xP >> plevel)) { return true; } if ((yN >> plevel) != (yP >> plevel)) { return true; } return false; } /** Constructs a list of candidates for AMVP (See specification, section "Derivation process for motion vector predictor candidates") * \param uiPartIdx * \param uiPartAddr * \param eRefPicList * \param iRefIdx * \param pInfo */ void PU::fillMvpCand(PredictionUnit &pu, const RefPicList &eRefPicList, const int &refIdx, AMVPInfo &amvpInfo) { CodingStructure &cs = *pu.cs; AMVPInfo *pInfo = &amvpInfo; pInfo->numCand = 0; if (refIdx < 0) { return; } //-- Get Spatial MV Position posLT = pu.Y().topLeft(); Position posRT = pu.Y().topRight(); Position posLB = pu.Y().bottomLeft(); bool isScaledFlagLX = false; /// variable name from specification; true when the PUs below left or left are available (availableA0 || availableA1). { const PredictionUnit* tmpPU = cs.getPURestricted( posLB.offset( -1, 1 ), pu, pu.chType ); // getPUBelowLeft(idx, partIdxLB); isScaledFlagLX = tmpPU != NULL && CU::isInter( *tmpPU->cu ); if( !isScaledFlagLX ) { tmpPU = cs.getPURestricted( posLB.offset( -1, 0 ), pu, pu.chType ); isScaledFlagLX = tmpPU != NULL && CU::isInter( *tmpPU->cu ); } } // Left predictor search if( isScaledFlagLX ) { bool bAdded = addMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_BELOW_LEFT, *pInfo ); if( !bAdded ) { bAdded = addMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_LEFT, *pInfo ); if( !bAdded ) { bAdded = addMVPCandWithScaling( pu, eRefPicList, refIdx, posLB, MD_BELOW_LEFT, *pInfo ); if( !bAdded ) { addMVPCandWithScaling( pu, eRefPicList, refIdx, posLB, MD_LEFT, *pInfo ); } } } } // Above predictor search { bool bAdded = addMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE_RIGHT, *pInfo ); if( !bAdded ) { bAdded = addMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE, *pInfo ); if( !bAdded ) { addMVPCandUnscaled( pu, eRefPicList, refIdx, posLT, MD_ABOVE_LEFT, *pInfo ); } } } if( !isScaledFlagLX ) { bool bAdded = addMVPCandWithScaling( pu, eRefPicList, refIdx, posRT, MD_ABOVE_RIGHT, *pInfo ); if( !bAdded ) { bAdded = addMVPCandWithScaling( pu, eRefPicList, refIdx, posRT, MD_ABOVE, *pInfo ); if( !bAdded ) { addMVPCandWithScaling( pu, eRefPicList, refIdx, posLT, MD_ABOVE_LEFT, *pInfo ); } } } if( pu.cu->imv != 0) { unsigned imvShift = pu.cu->imv << 1; #if REMOVE_MV_ADAPT_PREC imvShift += VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; #endif for( int i = 0; i < pInfo->numCand; i++ ) { roundMV( pInfo->mvCand[i], imvShift ); } } if( pInfo->numCand == 2 ) { if( pInfo->mvCand[0] == pInfo->mvCand[1] ) { pInfo->numCand = 1; } } if( cs.slice->getEnableTMVPFlag() ) { // Get Temporal Motion Predictor const int refIdx_Col = refIdx; Position posRB = pu.Y().bottomRight().offset(-3, -3); const PreCalcValues& pcv = *cs.pcv; Position posC0; bool C0Avail = false; Position posC1 = pu.Y().center(); Mv cColMv; if( ( ( posRB.x + pcv.minCUWidth ) < pcv.lumaWidth ) && ( ( posRB.y + pcv.minCUHeight ) < pcv.lumaHeight ) ) { Position posInCtu( posRB.x & pcv.maxCUWidthMask, posRB.y & pcv.maxCUHeightMask ); if ((posInCtu.x + 4 < pcv.maxCUWidth) && // is not at the last column of CTU (posInCtu.y + 4 < pcv.maxCUHeight)) // is not at the last row of CTU { posC0 = posRB.offset(4, 4); C0Avail = true; } else if (posInCtu.x + 4 < pcv.maxCUWidth) // is not at the last column of CTU But is last row of CTU { // in the reference the CTU address is not set - thus probably resulting in no using this C0 possibility posC0 = posRB.offset(4, 4); } else if (posInCtu.y + 4 < pcv.maxCUHeight) // is not at the last row of CTU But is last column of CTU { posC0 = posRB.offset(4, 4); C0Avail = true; } else //is the right bottom corner of CTU { // same as for last column but not last row posC0 = posRB.offset(4, 4); } } if ((C0Avail && getColocatedMVP(pu, eRefPicList, posC0, cColMv, refIdx_Col)) || getColocatedMVP(pu, eRefPicList, posC1, cColMv, refIdx_Col)) { #if JVET_L0266_HMVP if (pu.cu->imv != 0) { unsigned imvShift = pu.cu->imv << 1; roundMV(cColMv, imvShift); } int i = 0; for (i = 0; i < pInfo->numCand; i++) { if (cColMv == pInfo->mvCand[i]) { break; } } if (i == pInfo->numCand) { pInfo->mvCand[pInfo->numCand++] = cColMv; } #else pInfo->mvCand[pInfo->numCand++] = cColMv; #endif } } #if JVET_L0266_HMVP if (pInfo->numCand < AMVP_MAX_NUM_CANDS) { const int currRefPOC = cs.slice->getRefPic(eRefPicList, refIdx)->getPOC(); const RefPicList eRefPicList2nd = (eRefPicList == REF_PIC_LIST_0) ? REF_PIC_LIST_1 : REF_PIC_LIST_0; addAMVPHMVPCand(pu, eRefPicList, eRefPicList2nd, currRefPOC, *pInfo, pu.cu->imv); } #endif if (pInfo->numCand > AMVP_MAX_NUM_CANDS) { pInfo->numCand = AMVP_MAX_NUM_CANDS; } while (pInfo->numCand < AMVP_MAX_NUM_CANDS) { #if !REMOVE_MV_ADAPT_PREC const bool prec = pInfo->mvCand[pInfo->numCand].highPrec; pInfo->mvCand[pInfo->numCand] = Mv( 0, 0, prec ); #else pInfo->mvCand[pInfo->numCand] = Mv( 0, 0 ); #endif pInfo->numCand++; } #if !REMOVE_MV_ADAPT_PREC if (pu.cs->sps->getSpsNext().getUseHighPrecMv()) { #endif for (Mv &mv : pInfo->mvCand) { #if REMOVE_MV_ADAPT_PREC const int nShift = VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; const int nOffset = 1 << (nShift - 1); mv.hor = mv.hor >= 0 ? (mv.hor + nOffset) >> nShift : -((-mv.hor + nOffset) >> nShift); mv.ver = mv.ver >= 0 ? (mv.ver + nOffset) >> nShift : -((-mv.ver + nOffset) >> nShift); #else if (mv.highPrec) mv.setLowPrec(); #endif } #if !REMOVE_MV_ADAPT_PREC } #endif if (pu.cu->imv != 0) { unsigned imvShift = pu.cu->imv << 1; for (int i = 0; i < pInfo->numCand; i++) { roundMV(pInfo->mvCand[i], imvShift); } } #if !REMOVE_MV_ADAPT_PREC if (pu.cs->sps->getSpsNext().getUseHighPrecMv()) { for (Mv &mv : pInfo->mvCand) { if (mv.highPrec) mv.setLowPrec(); } } #endif } #if JVET_L0271_AFFINE_AMVP_SIMPLIFY bool PU::addAffineMVPCandUnscaled( const PredictionUnit &pu, const RefPicList &refPicList, const int &refIdx, const Position &pos, const MvpDir &dir, AffineAMVPInfo &affiAMVPInfo ) { CodingStructure &cs = *pu.cs; const PredictionUnit *neibPU = NULL; Position neibPos; switch ( dir ) { case MD_LEFT: neibPos = pos.offset( -1, 0 ); break; case MD_ABOVE: neibPos = pos.offset( 0, -1 ); break; case MD_ABOVE_RIGHT: neibPos = pos.offset( 1, -1 ); break; case MD_BELOW_LEFT: neibPos = pos.offset( -1, 1 ); break; case MD_ABOVE_LEFT: neibPos = pos.offset( -1, -1 ); break; default: break; } neibPU = cs.getPURestricted( neibPos, pu, pu.chType ); if ( neibPU == NULL || !CU::isInter( *neibPU->cu ) || !neibPU->cu->affine #if JVET_L0369_SUBBLOCK_MERGE || neibPU->mergeType != MRG_TYPE_DEFAULT_N #endif ) { return false; } Mv outputAffineMv[3]; const MotionInfo& neibMi = neibPU->getMotionInfo( neibPos ); const int currRefPOC = cs.slice->getRefPic( refPicList, refIdx )->getPOC(); const RefPicList refPicList2nd = (refPicList == REF_PIC_LIST_0) ? REF_PIC_LIST_1 : REF_PIC_LIST_0; for ( int predictorSource = 0; predictorSource < 2; predictorSource++ ) // examine the indicated reference picture list, then if not available, examine the other list. { const RefPicList eRefPicListIndex = (predictorSource == 0) ? refPicList : refPicList2nd; const int neibRefIdx = neibMi.refIdx[eRefPicListIndex]; if ( ((neibPU->interDir & (eRefPicListIndex + 1)) == 0) || pu.cu->slice->getRefPOC( eRefPicListIndex, neibRefIdx ) != currRefPOC ) { continue; } xInheritedAffineMv( pu, neibPU, eRefPicListIndex, outputAffineMv ); outputAffineMv[0].roundMV2SignalPrecision(); outputAffineMv[1].roundMV2SignalPrecision(); affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand] = outputAffineMv[0]; affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand] = outputAffineMv[1]; if ( pu.cu->affineType == AFFINEMODEL_6PARAM ) { outputAffineMv[2].roundMV2SignalPrecision(); affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand] = outputAffineMv[2]; } affiAMVPInfo.numCand++; return true; } return false; } #else const int getAvailableAffineNeighbours( const PredictionUnit &pu, const PredictionUnit* npu[] ) { const Position posLT = pu.Y().topLeft(); const Position posRT = pu.Y().topRight(); const Position posLB = pu.Y().bottomLeft(); int num = 0; const PredictionUnit* puLeft = pu.cs->getPURestricted( posLB.offset( -1, 0 ), pu, pu.chType ); if ( puLeft && puLeft->cu->affine #if JVET_L0369_SUBBLOCK_MERGE && puLeft->mergeType == MRG_TYPE_DEFAULT_N #endif ) { npu[num++] = puLeft; } const PredictionUnit* puAbove = pu.cs->getPURestricted( posRT.offset( 0, -1 ), pu, pu.chType ); if ( puAbove && puAbove->cu->affine #if JVET_L0369_SUBBLOCK_MERGE && puAbove->mergeType == MRG_TYPE_DEFAULT_N #endif ) { npu[num++] = puAbove; } const PredictionUnit* puAboveRight = pu.cs->getPURestricted( posRT.offset( 1, -1 ), pu, pu.chType ); if ( puAboveRight && puAboveRight->cu->affine #if JVET_L0369_SUBBLOCK_MERGE && puAboveRight->mergeType == MRG_TYPE_DEFAULT_N #endif ) { npu[num++] = puAboveRight; } const PredictionUnit *puLeftBottom = pu.cs->getPURestricted( posLB.offset( -1, 1 ), pu, pu.chType ); if ( puLeftBottom && puLeftBottom->cu->affine #if JVET_L0369_SUBBLOCK_MERGE && puLeftBottom->mergeType == MRG_TYPE_DEFAULT_N #endif ) { npu[num++] = puLeftBottom; } const PredictionUnit *puAboveLeft = pu.cs->getPURestricted( posLT.offset( -1, -1 ), pu, pu.chType ); if ( puAboveLeft && puAboveLeft->cu->affine #if JVET_L0369_SUBBLOCK_MERGE && puAboveLeft->mergeType == MRG_TYPE_DEFAULT_N #endif ) { npu[num++] = puAboveLeft; } return num; } #endif void PU::xInheritedAffineMv( const PredictionUnit &pu, const PredictionUnit* puNeighbour, RefPicList eRefPicList, Mv rcMv[3] ) { int posNeiX = puNeighbour->Y().pos().x; int posNeiY = puNeighbour->Y().pos().y; int posCurX = pu.Y().pos().x; int posCurY = pu.Y().pos().y; int neiW = puNeighbour->Y().width; int curW = pu.Y().width; int neiH = puNeighbour->Y().height; int curH = pu.Y().height; Mv mvLT, mvRT, mvLB; #if JVET_L0694_AFFINE_LINEBUFFER_CLEANUP mvLT = puNeighbour->mvAffi[eRefPicList][0]; mvRT = puNeighbour->mvAffi[eRefPicList][1]; mvLB = puNeighbour->mvAffi[eRefPicList][2]; #else const Position posLT = puNeighbour->Y().topLeft(); const Position posRT = puNeighbour->Y().topRight(); const Position posLB = puNeighbour->Y().bottomLeft(); mvLT = puNeighbour->getMotionInfo( posLT ).mv[eRefPicList]; mvRT = puNeighbour->getMotionInfo( posRT ).mv[eRefPicList]; mvLB = puNeighbour->getMotionInfo( posLB ).mv[eRefPicList]; #endif #if JVET_L0694_AFFINE_LINEBUFFER_CLEANUP bool isTopCtuBoundary = false; if ( (posNeiY + neiH) % pu.cs->sps->getSpsNext().getCTUSize() == 0 && (posNeiY + neiH) == posCurY ) { // use bottom-left and bottom-right sub-block MVs for inheritance const Position posRB = puNeighbour->Y().bottomRight(); const Position posLB = puNeighbour->Y().bottomLeft(); mvLT = puNeighbour->getMotionInfo( posLB ).mv[eRefPicList]; mvRT = puNeighbour->getMotionInfo( posRB ).mv[eRefPicList]; posNeiY += neiH; isTopCtuBoundary = true; } #endif int shift = MAX_CU_DEPTH; int iDMvHorX, iDMvHorY, iDMvVerX, iDMvVerY; iDMvHorX = (mvRT - mvLT).getHor() << (shift - g_aucLog2[neiW]); iDMvHorY = (mvRT - mvLT).getVer() << (shift - g_aucLog2[neiW]); #if JVET_L0694_AFFINE_LINEBUFFER_CLEANUP // degrade to 4-parameter model if ( puNeighbour->cu->affineType == AFFINEMODEL_6PARAM && !isTopCtuBoundary ) #else if ( puNeighbour->cu->affineType == AFFINEMODEL_6PARAM ) #endif { iDMvVerX = (mvLB - mvLT).getHor() << (shift - g_aucLog2[neiH]); iDMvVerY = (mvLB - mvLT).getVer() << (shift - g_aucLog2[neiH]); } else { iDMvVerX = -iDMvHorY; iDMvVerY = iDMvHorX; } int iMvScaleHor = mvLT.getHor() << shift; int iMvScaleVer = mvLT.getVer() << shift; int horTmp, verTmp; // v0 horTmp = iMvScaleHor + iDMvHorX * (posCurX - posNeiX) + iDMvVerX * (posCurY - posNeiY); verTmp = iMvScaleVer + iDMvHorY * (posCurX - posNeiX) + iDMvVerY * (posCurY - posNeiY); roundAffineMv( horTmp, verTmp, shift ); #if REMOVE_MV_ADAPT_PREC rcMv[0].hor = horTmp; rcMv[0].ver = verTmp; #else rcMv[0] = Mv(horTmp, verTmp, true); #endif // v1 horTmp = iMvScaleHor + iDMvHorX * (posCurX + curW - posNeiX) + iDMvVerX * (posCurY - posNeiY); verTmp = iMvScaleVer + iDMvHorY * (posCurX + curW - posNeiX) + iDMvVerY * (posCurY - posNeiY); roundAffineMv( horTmp, verTmp, shift ); #if REMOVE_MV_ADAPT_PREC rcMv[1].hor = horTmp; rcMv[1].ver = verTmp; #else rcMv[1] = Mv(horTmp, verTmp, true); #endif // v2 if ( pu.cu->affineType == AFFINEMODEL_6PARAM ) { horTmp = iMvScaleHor + iDMvHorX * (posCurX - posNeiX) + iDMvVerX * (posCurY + curH - posNeiY); verTmp = iMvScaleVer + iDMvHorY * (posCurX - posNeiX) + iDMvVerY * (posCurY + curH - posNeiY); roundAffineMv( horTmp, verTmp, shift ); #if REMOVE_MV_ADAPT_PREC rcMv[2].hor = horTmp; rcMv[2].ver = verTmp; #else rcMv[2] = Mv(horTmp, verTmp, true); #endif } } void PU::fillAffineMvpCand(PredictionUnit &pu, const RefPicList &eRefPicList, const int &refIdx, AffineAMVPInfo &affiAMVPInfo) { #if REMOVE_MV_ADAPT_PREC const int nShift = VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; const int nOffset = 1 << (nShift - 1); #endif affiAMVPInfo.numCand = 0; if (refIdx < 0) { return; } #if !JVET_L0271_AFFINE_AMVP_SIMPLIFY const int curWidth = pu.Y().width; const int curHeight = pu.Y().height; #endif // insert inherited affine candidates Mv outputAffineMv[3]; #if JVET_L0271_AFFINE_AMVP_SIMPLIFY Position posLT = pu.Y().topLeft(); Position posRT = pu.Y().topRight(); Position posLB = pu.Y().bottomLeft(); // check left neighbor if ( !addAffineMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_BELOW_LEFT, affiAMVPInfo ) ) { addAffineMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_LEFT, affiAMVPInfo ); } // check above neighbor if ( !addAffineMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE_RIGHT, affiAMVPInfo ) ) { if ( !addAffineMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE, affiAMVPInfo ) ) { addAffineMVPCandUnscaled( pu, eRefPicList, refIdx, posLT, MD_ABOVE_LEFT, affiAMVPInfo ); } } #else const int maxNei = 5; const PredictionUnit* npu[maxNei]; int numAffNeigh = getAvailableAffineNeighbours( pu, npu ); int targetRefPOC = pu.cu->slice->getRefPOC( eRefPicList, refIdx ); for ( int refPicList = 0; refPicList < 2 && affiAMVPInfo.numCand < AMVP_MAX_NUM_CANDS; refPicList++ ) { RefPicList eTestRefPicList = (refPicList == 0) ? eRefPicList : RefPicList( 1 - eRefPicList ); for ( int neighIdx = 0; neighIdx < numAffNeigh && affiAMVPInfo.numCand < AMVP_MAX_NUM_CANDS; neighIdx++ ) { const PredictionUnit* puNeighbour = npu[neighIdx]; if ( ((puNeighbour->interDir & (eTestRefPicList + 1)) == 0) || pu.cu->slice->getRefPOC( eTestRefPicList, puNeighbour->refIdx[eTestRefPicList] ) != targetRefPOC ) { continue; } xInheritedAffineMv( pu, puNeighbour, eTestRefPicList, outputAffineMv ); outputAffineMv[0].roundMV2SignalPrecision(); outputAffineMv[1].roundMV2SignalPrecision(); if ( pu.cu->affineType == AFFINEMODEL_6PARAM ) { outputAffineMv[2].roundMV2SignalPrecision(); } if ( affiAMVPInfo.numCand == 0 || (pu.cu->affineType == AFFINEMODEL_4PARAM && (outputAffineMv[0] != affiAMVPInfo.mvCandLT[0] || outputAffineMv[1] != affiAMVPInfo.mvCandRT[0])) || (pu.cu->affineType == AFFINEMODEL_6PARAM && (outputAffineMv[0] != affiAMVPInfo.mvCandLT[0] || outputAffineMv[1] != affiAMVPInfo.mvCandRT[0] || outputAffineMv[2] != affiAMVPInfo.mvCandLB[0])) ) { affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand] = outputAffineMv[0]; affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand] = outputAffineMv[1]; affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand] = outputAffineMv[2]; affiAMVPInfo.numCand++; } } } #endif if ( affiAMVPInfo.numCand >= AMVP_MAX_NUM_CANDS ) { #if REMOVE_MV_ADAPT_PREC for (int i = 0; i < affiAMVPInfo.numCand; i++) { affiAMVPInfo.mvCandLT[i].hor = affiAMVPInfo.mvCandLT[i].hor >= 0 ? (affiAMVPInfo.mvCandLT[i].hor + nOffset) >> nShift : -((-affiAMVPInfo.mvCandLT[i].hor + nOffset) >> nShift); affiAMVPInfo.mvCandLT[i].ver = affiAMVPInfo.mvCandLT[i].ver >= 0 ? (affiAMVPInfo.mvCandLT[i].ver + nOffset) >> nShift : -((-affiAMVPInfo.mvCandLT[i].ver + nOffset) >> nShift); affiAMVPInfo.mvCandRT[i].hor = affiAMVPInfo.mvCandRT[i].hor >= 0 ? (affiAMVPInfo.mvCandRT[i].hor + nOffset) >> nShift : -((-affiAMVPInfo.mvCandRT[i].hor + nOffset) >> nShift); affiAMVPInfo.mvCandRT[i].ver = affiAMVPInfo.mvCandRT[i].ver >= 0 ? (affiAMVPInfo.mvCandRT[i].ver + nOffset) >> nShift : -((-affiAMVPInfo.mvCandRT[i].ver + nOffset) >> nShift); affiAMVPInfo.mvCandLB[i].hor = affiAMVPInfo.mvCandLB[i].hor >= 0 ? (affiAMVPInfo.mvCandLB[i].hor + nOffset) >> nShift : -((-affiAMVPInfo.mvCandLB[i].hor + nOffset) >> nShift); affiAMVPInfo.mvCandLB[i].ver = affiAMVPInfo.mvCandLB[i].ver >= 0 ? (affiAMVPInfo.mvCandLB[i].ver + nOffset) >> nShift : -((-affiAMVPInfo.mvCandLB[i].ver + nOffset) >> nShift); } #endif return; } // insert constructed affine candidates int cornerMVPattern = 0; #if !JVET_L0271_AFFINE_AMVP_SIMPLIFY Position posLT = pu.Y().topLeft(); Position posRT = pu.Y().topRight(); Position posLB = pu.Y().bottomLeft(); #endif //------------------- V0 (START) -------------------// AMVPInfo amvpInfo0; amvpInfo0.numCand = 0; // A->C: Above Left, Above, Left addMVPCandUnscaled( pu, eRefPicList, refIdx, posLT, MD_ABOVE_LEFT, amvpInfo0, true ); if ( amvpInfo0.numCand < 1 ) { addMVPCandUnscaled( pu, eRefPicList, refIdx, posLT, MD_ABOVE, amvpInfo0, true ); } if ( amvpInfo0.numCand < 1 ) { addMVPCandUnscaled( pu, eRefPicList, refIdx, posLT, MD_LEFT, amvpInfo0, true ); } cornerMVPattern = cornerMVPattern | amvpInfo0.numCand; //------------------- V1 (START) -------------------// AMVPInfo amvpInfo1; amvpInfo1.numCand = 0; // D->E: Above, Above Right addMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE, amvpInfo1, true ); if ( amvpInfo1.numCand < 1 ) { addMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE_RIGHT, amvpInfo1, true ); } cornerMVPattern = cornerMVPattern | (amvpInfo1.numCand << 1); //------------------- V2 (START) -------------------// AMVPInfo amvpInfo2; amvpInfo2.numCand = 0; // F->G: Left, Below Left addMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_LEFT, amvpInfo2, true ); if ( amvpInfo2.numCand < 1 ) { addMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_BELOW_LEFT, amvpInfo2, true ); } cornerMVPattern = cornerMVPattern | (amvpInfo2.numCand << 2); outputAffineMv[0] = amvpInfo0.mvCand[0]; outputAffineMv[1] = amvpInfo1.mvCand[0]; outputAffineMv[2] = amvpInfo2.mvCand[0]; #if !REMOVE_MV_ADAPT_PREC outputAffineMv[0].setHighPrec(); outputAffineMv[1].setHighPrec(); outputAffineMv[2].setHighPrec(); #endif outputAffineMv[0].roundMV2SignalPrecision(); outputAffineMv[1].roundMV2SignalPrecision(); outputAffineMv[2].roundMV2SignalPrecision(); #if JVET_L0271_AFFINE_AMVP_SIMPLIFY if ( cornerMVPattern == 7 || (cornerMVPattern == 3 && pu.cu->affineType == AFFINEMODEL_4PARAM) ) { affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand] = outputAffineMv[0]; affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand] = outputAffineMv[1]; affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand] = outputAffineMv[2]; affiAMVPInfo.numCand++; } #else if ( cornerMVPattern == 7 || cornerMVPattern == 3 || cornerMVPattern == 5 ) { if ( cornerMVPattern == 3 && pu.cu->affineType == AFFINEMODEL_6PARAM ) // V0 V1 are available, derived V2 for 6-para { int shift = MAX_CU_DEPTH; int vx2 = (outputAffineMv[0].getHor() << shift) - ((outputAffineMv[1].getVer() - outputAffineMv[0].getVer()) << (shift + g_aucLog2[curHeight] - g_aucLog2[curWidth])); int vy2 = (outputAffineMv[0].getVer() << shift) + ((outputAffineMv[1].getHor() - outputAffineMv[0].getHor()) << (shift + g_aucLog2[curHeight] - g_aucLog2[curWidth])); roundAffineMv( vx2, vy2, shift ); outputAffineMv[2].set( vx2, vy2 ); outputAffineMv[2].roundMV2SignalPrecision(); } if ( cornerMVPattern == 5 ) // V0 V2 are available, derived V1 { int shift = MAX_CU_DEPTH; int vx1 = (outputAffineMv[0].getHor() << shift) + ((outputAffineMv[2].getVer() - outputAffineMv[0].getVer()) << (shift + g_aucLog2[curWidth] - g_aucLog2[curHeight])); int vy1 = (outputAffineMv[0].getVer() << shift) - ((outputAffineMv[2].getHor() - outputAffineMv[0].getHor()) << (shift + g_aucLog2[curWidth] - g_aucLog2[curHeight])); roundAffineMv( vx1, vy1, shift ); outputAffineMv[1].set( vx1, vy1 ); outputAffineMv[1].roundMV2SignalPrecision(); } if ( affiAMVPInfo.numCand == 0 || (pu.cu->affineType == AFFINEMODEL_4PARAM && (outputAffineMv[0] != affiAMVPInfo.mvCandLT[0] || outputAffineMv[1] != affiAMVPInfo.mvCandRT[0])) || (pu.cu->affineType == AFFINEMODEL_6PARAM && (outputAffineMv[0] != affiAMVPInfo.mvCandLT[0] || outputAffineMv[1] != affiAMVPInfo.mvCandRT[0] || outputAffineMv[2] != affiAMVPInfo.mvCandLB[0])) ) { affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand] = outputAffineMv[0]; affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand] = outputAffineMv[1]; affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand] = outputAffineMv[2]; affiAMVPInfo.numCand++; } } #endif #if JVET_L0271_AFFINE_AMVP_SIMPLIFY if ( affiAMVPInfo.numCand < 2 ) { // check corner MVs for ( int i = 2; i >= 0 && affiAMVPInfo.numCand < AMVP_MAX_NUM_CANDS; i-- ) { if ( cornerMVPattern & (1 << i) ) // MV i exist { affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand] = outputAffineMv[i]; affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand] = outputAffineMv[i]; affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand] = outputAffineMv[i]; affiAMVPInfo.numCand++; } } // Get Temporal Motion Predictor if ( affiAMVPInfo.numCand < 2 && pu.cs->slice->getEnableTMVPFlag() ) { const int refIdxCol = refIdx; Position posRB = pu.Y().bottomRight().offset( -3, -3 ); const PreCalcValues& pcv = *pu.cs->pcv; Position posC0; bool C0Avail = false; Position posC1 = pu.Y().center(); Mv cColMv; if ( ((posRB.x + pcv.minCUWidth) < pcv.lumaWidth) && ((posRB.y + pcv.minCUHeight) < pcv.lumaHeight) ) { Position posInCtu( posRB.x & pcv.maxCUWidthMask, posRB.y & pcv.maxCUHeightMask ); if ( (posInCtu.x + 4 < pcv.maxCUWidth) && // is not at the last column of CTU (posInCtu.y + 4 < pcv.maxCUHeight) ) // is not at the last row of CTU { posC0 = posRB.offset( 4, 4 ); C0Avail = true; } else if ( posInCtu.x + 4 < pcv.maxCUWidth ) // is not at the last column of CTU But is last row of CTU { // in the reference the CTU address is not set - thus probably resulting in no using this C0 possibility posC0 = posRB.offset( 4, 4 ); } else if ( posInCtu.y + 4 < pcv.maxCUHeight ) // is not at the last row of CTU But is last column of CTU { posC0 = posRB.offset( 4, 4 ); C0Avail = true; } else //is the right bottom corner of CTU { // same as for last column but not last row posC0 = posRB.offset( 4, 4 ); } } if ( (C0Avail && getColocatedMVP( pu, eRefPicList, posC0, cColMv, refIdxCol )) || getColocatedMVP( pu, eRefPicList, posC1, cColMv, refIdxCol ) ) { #if !REMOVE_MV_ADAPT_PREC cColMv.setHighPrec(); #endif cColMv.roundMV2SignalPrecision(); affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand] = cColMv; affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand] = cColMv; affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand] = cColMv; affiAMVPInfo.numCand++; } } if ( affiAMVPInfo.numCand < 2 ) { // add zero MV for ( int i = affiAMVPInfo.numCand; i < AMVP_MAX_NUM_CANDS; i++ ) { affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand].setZero(); affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand].setZero(); affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand].setZero(); #if !REMOVE_MV_ADAPT_PREC affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand].setHighPrec(); affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand].setHighPrec(); affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand].setHighPrec(); #endif affiAMVPInfo.numCand++; } } } #endif #if REMOVE_MV_ADAPT_PREC for (int i = 0; i < affiAMVPInfo.numCand; i++) { affiAMVPInfo.mvCandLT[i].hor = affiAMVPInfo.mvCandLT[i].hor >= 0 ? (affiAMVPInfo.mvCandLT[i].hor + nOffset) >> nShift : -((-affiAMVPInfo.mvCandLT[i].hor + nOffset) >> nShift); affiAMVPInfo.mvCandLT[i].ver = affiAMVPInfo.mvCandLT[i].ver >= 0 ? (affiAMVPInfo.mvCandLT[i].ver + nOffset) >> nShift : -((-affiAMVPInfo.mvCandLT[i].ver + nOffset) >> nShift); affiAMVPInfo.mvCandRT[i].hor = affiAMVPInfo.mvCandRT[i].hor >= 0 ? (affiAMVPInfo.mvCandRT[i].hor + nOffset) >> nShift : -((-affiAMVPInfo.mvCandRT[i].hor + nOffset) >> nShift); affiAMVPInfo.mvCandRT[i].ver = affiAMVPInfo.mvCandRT[i].ver >= 0 ? (affiAMVPInfo.mvCandRT[i].ver + nOffset) >> nShift : -((-affiAMVPInfo.mvCandRT[i].ver + nOffset) >> nShift); affiAMVPInfo.mvCandLB[i].hor = affiAMVPInfo.mvCandLB[i].hor >= 0 ? (affiAMVPInfo.mvCandLB[i].hor + nOffset) >> nShift : -((-affiAMVPInfo.mvCandLB[i].hor + nOffset) >> nShift); affiAMVPInfo.mvCandLB[i].ver = affiAMVPInfo.mvCandLB[i].ver >= 0 ? (affiAMVPInfo.mvCandLB[i].ver + nOffset) >> nShift : -((-affiAMVPInfo.mvCandLB[i].ver + nOffset) >> nShift); } #endif #if !JVET_L0271_AFFINE_AMVP_SIMPLIFY if ( affiAMVPInfo.numCand < 2 ) { AMVPInfo amvpInfo; PU::fillMvpCand( pu, eRefPicList, refIdx, amvpInfo ); int iAdd = amvpInfo.numCand - affiAMVPInfo.numCand; for ( int i = 0; i < iAdd; i++ ) { #if !REMOVE_MV_ADAPT_PREC amvpInfo.mvCand[i].setHighPrec(); #endif affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand] = amvpInfo.mvCand[i]; affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand] = amvpInfo.mvCand[i]; affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand] = amvpInfo.mvCand[i]; affiAMVPInfo.numCand++; } } #endif } bool PU::addMVPCandUnscaled( const PredictionUnit &pu, const RefPicList &eRefPicList, const int &iRefIdx, const Position &pos, const MvpDir &eDir, AMVPInfo &info, bool affine ) { CodingStructure &cs = *pu.cs; const PredictionUnit *neibPU = NULL; Position neibPos; switch (eDir) { case MD_LEFT: neibPos = pos.offset( -1, 0 ); break; case MD_ABOVE: neibPos = pos.offset( 0, -1 ); break; case MD_ABOVE_RIGHT: neibPos = pos.offset( 1, -1 ); break; case MD_BELOW_LEFT: neibPos = pos.offset( -1, 1 ); break; case MD_ABOVE_LEFT: neibPos = pos.offset( -1, -1 ); break; default: break; } neibPU = cs.getPURestricted( neibPos, pu, pu.chType ); if( neibPU == NULL || !CU::isInter( *neibPU->cu ) ) { return false; } const MotionInfo& neibMi = neibPU->getMotionInfo( neibPos ); const int currRefPOC = cs.slice->getRefPic( eRefPicList, iRefIdx )->getPOC(); const RefPicList eRefPicList2nd = ( eRefPicList == REF_PIC_LIST_0 ) ? REF_PIC_LIST_1 : REF_PIC_LIST_0; for( int predictorSource = 0; predictorSource < 2; predictorSource++ ) // examine the indicated reference picture list, then if not available, examine the other list. { const RefPicList eRefPicListIndex = ( predictorSource == 0 ) ? eRefPicList : eRefPicList2nd; const int neibRefIdx = neibMi.refIdx[eRefPicListIndex]; if( neibRefIdx >= 0 && currRefPOC == cs.slice->getRefPOC( eRefPicListIndex, neibRefIdx ) ) { if( affine ) { int i = 0; for( i = 0; i < info.numCand; i++ ) { if( info.mvCand[i] == neibMi.mv[eRefPicListIndex] ) { break; } } if( i == info.numCand ) { info.mvCand[info.numCand++] = neibMi.mv[eRefPicListIndex]; #if !REMOVE_MV_ADAPT_PREC Mv cMvHigh = neibMi.mv[eRefPicListIndex]; cMvHigh.setHighPrec(); #endif // CHECK( !neibMi.mv[eRefPicListIndex].highPrec, "Unexpected low precision mv."); return true; } } else { info.mvCand[info.numCand++] = neibMi.mv[eRefPicListIndex]; return true; } } } return false; } /** * \param pInfo * \param eRefPicList * \param iRefIdx * \param uiPartUnitIdx * \param eDir * \returns bool */ bool PU::addMVPCandWithScaling( const PredictionUnit &pu, const RefPicList &eRefPicList, const int &iRefIdx, const Position &pos, const MvpDir &eDir, AMVPInfo &info, bool affine ) { CodingStructure &cs = *pu.cs; const Slice &slice = *cs.slice; const PredictionUnit *neibPU = NULL; Position neibPos; switch( eDir ) { case MD_LEFT: neibPos = pos.offset( -1, 0 ); break; case MD_ABOVE: neibPos = pos.offset( 0, -1 ); break; case MD_ABOVE_RIGHT: neibPos = pos.offset( 1, -1 ); break; case MD_BELOW_LEFT: neibPos = pos.offset( -1, 1 ); break; case MD_ABOVE_LEFT: neibPos = pos.offset( -1, -1 ); break; default: break; } neibPU = cs.getPURestricted( neibPos, pu, pu.chType ); if( neibPU == NULL || !CU::isInter( *neibPU->cu ) ) { return false; } const MotionInfo& neibMi = neibPU->getMotionInfo( neibPos ); const RefPicList eRefPicList2nd = ( eRefPicList == REF_PIC_LIST_0 ) ? REF_PIC_LIST_1 : REF_PIC_LIST_0; const int currPOC = slice.getPOC(); const int currRefPOC = slice.getRefPic( eRefPicList, iRefIdx )->poc; const bool bIsCurrRefLongTerm = slice.getRefPic( eRefPicList, iRefIdx )->longTerm; const int neibPOC = currPOC; for( int predictorSource = 0; predictorSource < 2; predictorSource++ ) // examine the indicated reference picture list, then if not available, examine the other list. { const RefPicList eRefPicListIndex = (predictorSource == 0) ? eRefPicList : eRefPicList2nd; const int neibRefIdx = neibMi.refIdx[eRefPicListIndex]; if( neibRefIdx >= 0 ) { const bool bIsNeibRefLongTerm = slice.getRefPic(eRefPicListIndex, neibRefIdx)->longTerm; if (bIsCurrRefLongTerm == bIsNeibRefLongTerm) { Mv cMv = neibMi.mv[eRefPicListIndex]; if( !( bIsCurrRefLongTerm /* || bIsNeibRefLongTerm*/) ) { const int neibRefPOC = slice.getRefPOC( eRefPicListIndex, neibRefIdx ); const int scale = xGetDistScaleFactor( currPOC, currRefPOC, neibPOC, neibRefPOC ); if( scale != 4096 ) { #if !REMOVE_MV_ADAPT_PREC if( slice.getSPS()->getSpsNext().getUseHighPrecMv() ) { cMv.setHighPrec(); } #endif cMv = cMv.scaleMv( scale ); } } if( affine ) { int i; for( i = 0; i < info.numCand; i++ ) { if( info.mvCand[i] == cMv ) { break; } } if( i == info.numCand ) { info.mvCand[info.numCand++] = cMv; // CHECK( !cMv.highPrec, "Unexpected low precision mv."); return true; } } else { info.mvCand[info.numCand++] = cMv; return true; } } } } return false; } #if JVET_L0266_HMVP void PU::addAMVPHMVPCand(const PredictionUnit &pu, const RefPicList eRefPicList, const RefPicList eRefPicList2nd, const int currRefPOC, AMVPInfo &info, uint8_t imv) { const Slice &slice = *(*pu.cs).slice; MotionInfo neibMi; int i = 0; unsigned imvShift = imv << 1; int num_avai_candInLUT = slice.getAvailableLUTMrgNum(); int num_allowedCand = std::min(MAX_NUM_HMVP_AVMPCANDS, num_avai_candInLUT); for (int mrgIdx = 1; mrgIdx <= num_allowedCand; mrgIdx++) { if (info.numCand >= AMVP_MAX_NUM_CANDS) { return; } neibMi = slice.getMotionInfoFromLUTs(num_avai_candInLUT - mrgIdx); for (int predictorSource = 0; predictorSource < 2; predictorSource++) { const RefPicList eRefPicListIndex = (predictorSource == 0) ? eRefPicList : eRefPicList2nd; const int neibRefIdx = neibMi.refIdx[eRefPicListIndex]; if (neibRefIdx >= 0 && currRefPOC == slice.getRefPOC(eRefPicListIndex, neibRefIdx)) { Mv pmv = neibMi.mv[eRefPicListIndex]; if (imv != 0) { roundMV(pmv, imvShift); } for (i = 0; i < info.numCand; i++) { if (pmv == info.mvCand[i]) { break; } } if (i == info.numCand) { info.mvCand[info.numCand++] = pmv; if (info.numCand >= AMVP_MAX_NUM_CANDS) { return; } } } } } } #endif bool PU::isBipredRestriction(const PredictionUnit &pu) { const SPSNext &spsNext = pu.cs->sps->getSpsNext(); #if JVET_L0104_NO_4x4BI_INTER_CU if(pu.cu->lumaSize().width == 4 && pu.cu->lumaSize().height ==4 ) { return true; } #endif if( !pu.cs->pcv->only2Nx2N && !spsNext.getUseSubPuMvp() && pu.cu->lumaSize().width == 8 && ( pu.lumaSize().width < 8 || pu.lumaSize().height < 8 ) ) { return true; } return false; } #if JVET_L0632_AFFINE_MERGE void PU::getAffineControlPointCand( const PredictionUnit &pu, MotionInfo mi[4], bool isAvailable[4], int verIdx[4], int modelIdx, int verNum, AffineMergeCtx& affMrgType ) { int cuW = pu.Y().width; int cuH = pu.Y().height; int vx, vy; int shift = MAX_CU_DEPTH; int shiftHtoW = shift + g_aucLog2[cuW] - g_aucLog2[cuH]; // motion info Mv cMv[2][4]; int refIdx[2] = { -1, -1 }; int dir = 0; EAffineModel curType = (verNum == 2) ? AFFINEMODEL_4PARAM : AFFINEMODEL_6PARAM; if ( verNum == 2 ) { int idx0 = verIdx[0], idx1 = verIdx[1]; if ( !isAvailable[idx0] || !isAvailable[idx1] ) { return; } for ( int l = 0; l < 2; l++ ) { if ( mi[idx0].refIdx[l] >= 0 && mi[idx1].refIdx[l] >= 0 ) { // check same refidx and different mv if ( mi[idx0].refIdx[l] == mi[idx1].refIdx[l] && mi[idx0].mv[l] != mi[idx1].mv[l] ) { dir |= (l + 1); refIdx[l] = mi[idx0].refIdx[l]; } } } } else if ( verNum == 3 ) { int idx0 = verIdx[0], idx1 = verIdx[1], idx2 = verIdx[2]; if ( !isAvailable[idx0] || !isAvailable[idx1] || !isAvailable[idx2] ) { return; } for ( int l = 0; l < 2; l++ ) { if ( mi[idx0].refIdx[l] >= 0 && mi[idx1].refIdx[l] >= 0 && mi[idx2].refIdx[l] >= 0 ) { // check same refidx and different mv if ( mi[idx0].refIdx[l] == mi[idx1].refIdx[l] && mi[idx0].refIdx[l] == mi[idx2].refIdx[l] && (mi[idx0].mv[l] != mi[idx1].mv[l] || mi[idx0].mv[l] != mi[idx2].mv[l]) ) { dir |= (l + 1); refIdx[l] = mi[idx0].refIdx[l]; } } } } if ( dir == 0 ) { return; } #if !REMOVE_MV_ADAPT_PREC for ( int l = 0; l < 2; l++ ) { for ( int i = 0; i < 4; i++ ) { cMv[l][i].highPrec = true; } } #endif for ( int l = 0; l < 2; l++ ) { if ( dir & (l + 1) ) { for ( int i = 0; i < verNum; i++ ) { cMv[l][verIdx[i]] = mi[verIdx[i]].mv[l]; } // convert to LT, RT[, [LB]] switch ( modelIdx ) { case 0: // 0 : LT, RT, LB break; case 1: // 1 : LT, RT, RB cMv[l][2].hor = cMv[l][3].hor + cMv[l][0].hor - cMv[l][1].hor; cMv[l][2].ver = cMv[l][3].ver + cMv[l][0].ver - cMv[l][1].ver; break; case 2: // 2 : LT, LB, RB cMv[l][1].hor = cMv[l][3].hor + cMv[l][0].hor - cMv[l][2].hor; cMv[l][1].ver = cMv[l][3].ver + cMv[l][0].ver - cMv[l][2].ver; break; case 3: // 3 : RT, LB, RB cMv[l][0].hor = cMv[l][1].hor + cMv[l][2].hor - cMv[l][3].hor; cMv[l][0].ver = cMv[l][1].ver + cMv[l][2].ver - cMv[l][3].ver; break; case 4: // 4 : LT, RT break; case 5: // 5 : LT, LB vx = (cMv[l][0].hor << shift) + ((cMv[l][2].ver - cMv[l][0].ver) << shiftHtoW); vy = (cMv[l][0].ver << shift) - ((cMv[l][2].hor - cMv[l][0].hor) << shiftHtoW); roundAffineMv( vx, vy, shift ); cMv[l][1].set( vx, vy ); break; default: CHECK( 1, "Invalid model index!\n" ); break; } } else { for ( int i = 0; i < 4; i++ ) { cMv[l][i].hor = 0; cMv[l][i].ver = 0; } } } for ( int i = 0; i < 3; i++ ) { affMrgType.mvFieldNeighbours[(affMrgType.numValidMergeCand << 1) + 0][i].mv = cMv[0][i]; affMrgType.mvFieldNeighbours[(affMrgType.numValidMergeCand << 1) + 0][i].refIdx = refIdx[0]; affMrgType.mvFieldNeighbours[(affMrgType.numValidMergeCand << 1) + 1][i].mv = cMv[1][i]; affMrgType.mvFieldNeighbours[(affMrgType.numValidMergeCand << 1) + 1][i].refIdx = refIdx[1]; } affMrgType.interDirNeighbours[affMrgType.numValidMergeCand] = dir; affMrgType.affineType[affMrgType.numValidMergeCand] = curType; affMrgType.numValidMergeCand++; return; } const int getAvailableAffineNeighboursForLeftPredictor( const PredictionUnit &pu, const PredictionUnit* npu[] ) { const Position posLB = pu.Y().bottomLeft(); int num = 0; const PredictionUnit *puLeftBottom = pu.cs->getPURestricted( posLB.offset( -1, 1 ), pu, pu.chType ); if ( puLeftBottom && puLeftBottom->cu->affine #if JVET_L0369_SUBBLOCK_MERGE && puLeftBottom->mergeType == MRG_TYPE_DEFAULT_N #endif ) { npu[num++] = puLeftBottom; return num; } const PredictionUnit* puLeft = pu.cs->getPURestricted( posLB.offset( -1, 0 ), pu, pu.chType ); if ( puLeft && puLeft->cu->affine #if JVET_L0369_SUBBLOCK_MERGE && puLeft->mergeType == MRG_TYPE_DEFAULT_N #endif ) { npu[num++] = puLeft; return num; } return num; } const int getAvailableAffineNeighboursForAbovePredictor( const PredictionUnit &pu, const PredictionUnit* npu[], int numAffNeighLeft ) { const Position posLT = pu.Y().topLeft(); const Position posRT = pu.Y().topRight(); int num = numAffNeighLeft; const PredictionUnit* puAboveRight = pu.cs->getPURestricted( posRT.offset( 1, -1 ), pu, pu.chType ); if ( puAboveRight && puAboveRight->cu->affine #if JVET_L0369_SUBBLOCK_MERGE && puAboveRight->mergeType == MRG_TYPE_DEFAULT_N #endif ) { npu[num++] = puAboveRight; return num; } const PredictionUnit* puAbove = pu.cs->getPURestricted( posRT.offset( 0, -1 ), pu, pu.chType ); if ( puAbove && puAbove->cu->affine #if JVET_L0369_SUBBLOCK_MERGE && puAbove->mergeType == MRG_TYPE_DEFAULT_N #endif ) { npu[num++] = puAbove; return num; } const PredictionUnit *puAboveLeft = pu.cs->getPURestricted( posLT.offset( -1, -1 ), pu, pu.chType ); if ( puAboveLeft && puAboveLeft->cu->affine #if JVET_L0369_SUBBLOCK_MERGE && puAboveLeft->mergeType == MRG_TYPE_DEFAULT_N #endif ) { npu[num++] = puAboveLeft; return num; } return num; } void PU::getAffineMergeCand( const PredictionUnit &pu, AffineMergeCtx& affMrgCtx, const int mrgCandIdx ) { const CodingStructure &cs = *pu.cs; const Slice &slice = *pu.cs->slice; const uint32_t maxNumAffineMergeCand = slice.getMaxNumAffineMergeCand(); for ( int i = 0; i < maxNumAffineMergeCand; i++ ) { for ( int mvNum = 0; mvNum < 3; mvNum++ ) { affMrgCtx.mvFieldNeighbours[(i << 1) + 0][mvNum].setMvField( Mv(), -1 ); affMrgCtx.mvFieldNeighbours[(i << 1) + 1][mvNum].setMvField( Mv(), -1 ); } affMrgCtx.interDirNeighbours[i] = 0; affMrgCtx.affineType[i] = AFFINEMODEL_4PARAM; #if JVET_L0369_SUBBLOCK_MERGE affMrgCtx.mergeType[i] = MRG_TYPE_DEFAULT_N; #endif #if JVET_L0646_GBI affMrgCtx.GBiIdx[i] = GBI_DEFAULT; #endif } affMrgCtx.numValidMergeCand = 0; affMrgCtx.maxNumMergeCand = maxNumAffineMergeCand; #if JVET_L0369_SUBBLOCK_MERGE ///> insert ATMVP candidate bool enableSubPuMvp = slice.getSPS()->getSpsNext().getUseSubPuMvp(); bool isAvailableSubPu = false; if ( enableSubPuMvp && slice.getEnableTMVPFlag() ) { MergeCtx mrgCtx = *affMrgCtx.mrgCtx; bool tmpLICFlag = false; CHECK( mrgCtx.subPuMvpMiBuf.area() == 0 || !mrgCtx.subPuMvpMiBuf.buf, "Buffer not initialized" ); mrgCtx.subPuMvpMiBuf.fill( MotionInfo() ); int pos = 0; // Get spatial MV const Position posCurRT = pu.Y().topRight(); const Position posCurLB = pu.Y().bottomLeft(); MotionInfo miAbove, miLeft, miAboveRight, miBelowLeft; //left const PredictionUnit* puLeft = cs.getPURestricted( posCurLB.offset( -1, 0 ), pu, pu.chType ); const bool isAvailableA1 = puLeft && isDiffMER( pu, *puLeft ) && pu.cu != puLeft->cu && CU::isInter( *puLeft->cu ); if ( isAvailableA1 ) { miLeft = puLeft->getMotionInfo( posCurLB.offset( -1, 0 ) ); // get Inter Dir mrgCtx.interDirNeighbours[pos] = miLeft.interDir; // get Mv from Left mrgCtx.mvFieldNeighbours[pos << 1].setMvField( miLeft.mv[0], miLeft.refIdx[0] ); if ( slice.isInterB() ) { mrgCtx.mvFieldNeighbours[(pos << 1) + 1].setMvField( miLeft.mv[1], miLeft.refIdx[1] ); } pos++; } // above const PredictionUnit *puAbove = cs.getPURestricted( posCurRT.offset( 0, -1 ), pu, pu.chType ); bool isAvailableB1 = puAbove && isDiffMER( pu, *puAbove ) && pu.cu != puAbove->cu && CU::isInter( *puAbove->cu ); if ( isAvailableB1 ) { miAbove = puAbove->getMotionInfo( posCurRT.offset( 0, -1 ) ); if ( !isAvailableA1 || (miAbove != miLeft) ) { // get Inter Dir mrgCtx.interDirNeighbours[pos] = miAbove.interDir; // get Mv from Left mrgCtx.mvFieldNeighbours[pos << 1].setMvField( miAbove.mv[0], miAbove.refIdx[0] ); if ( slice.isInterB() ) { mrgCtx.mvFieldNeighbours[(pos << 1) + 1].setMvField( miAbove.mv[1], miAbove.refIdx[1] ); } pos++; } } // above right const PredictionUnit *puAboveRight = cs.getPURestricted( posCurRT.offset( 1, -1 ), pu, pu.chType ); bool isAvailableB0 = puAboveRight && isDiffMER( pu, *puAboveRight ) && CU::isInter( *puAboveRight->cu ); if ( isAvailableB0 ) { miAboveRight = puAboveRight->getMotionInfo( posCurRT.offset( 1, -1 ) ); #if HM_JEM_MERGE_CANDS if ( (!isAvailableB1 || (miAbove != miAboveRight)) && (!isAvailableA1 || (miLeft != miAboveRight)) ) #else if ( !isAvailableB1 || (miAbove != miAboveRight) ) #endif { // get Inter Dir mrgCtx.interDirNeighbours[pos] = miAboveRight.interDir; // get Mv from Left mrgCtx.mvFieldNeighbours[pos << 1].setMvField( miAboveRight.mv[0], miAboveRight.refIdx[0] ); if ( slice.isInterB() ) { mrgCtx.mvFieldNeighbours[(pos << 1) + 1].setMvField( miAboveRight.mv[1], miAboveRight.refIdx[1] ); } pos++; } } //left bottom const PredictionUnit *puLeftBottom = cs.getPURestricted( posCurLB.offset( -1, 1 ), pu, pu.chType ); bool isAvailableA0 = puLeftBottom && isDiffMER( pu, *puLeftBottom ) && CU::isInter( *puLeftBottom->cu ); if ( isAvailableA0 ) { miBelowLeft = puLeftBottom->getMotionInfo( posCurLB.offset( -1, 1 ) ); #if HM_JEM_MERGE_CANDS if ( (!isAvailableA1 || (miBelowLeft != miLeft)) && (!isAvailableB1 || (miBelowLeft != miAbove)) && (!isAvailableB0 || (miBelowLeft != miAboveRight)) ) #else if ( !isAvailableA1 || (miBelowLeft != miLeft) ) #endif { // get Inter Dir mrgCtx.interDirNeighbours[pos] = miBelowLeft.interDir; // get Mv from Bottom-Left mrgCtx.mvFieldNeighbours[pos << 1].setMvField( miBelowLeft.mv[0], miBelowLeft.refIdx[0] ); if ( slice.isInterB() ) { mrgCtx.mvFieldNeighbours[(pos << 1) + 1].setMvField( miBelowLeft.mv[1], miBelowLeft.refIdx[1] ); } pos++; } } mrgCtx.numValidMergeCand = pos; isAvailableSubPu = getInterMergeSubPuMvpCand( pu, mrgCtx, tmpLICFlag, pos #if JVET_L0054_MMVD , 0 #endif ); if ( isAvailableSubPu ) { for ( int mvNum = 0; mvNum < 3; mvNum++ ) { affMrgCtx.mvFieldNeighbours[(affMrgCtx.numValidMergeCand << 1) + 0][mvNum].setMvField( mrgCtx.mvFieldNeighbours[(pos << 1) + 0].mv, mrgCtx.mvFieldNeighbours[(pos << 1) + 0].refIdx ); affMrgCtx.mvFieldNeighbours[(affMrgCtx.numValidMergeCand << 1) + 1][mvNum].setMvField( mrgCtx.mvFieldNeighbours[(pos << 1) + 1].mv, mrgCtx.mvFieldNeighbours[(pos << 1) + 1].refIdx ); } affMrgCtx.interDirNeighbours[affMrgCtx.numValidMergeCand] = mrgCtx.interDirNeighbours[pos]; affMrgCtx.affineType[affMrgCtx.numValidMergeCand] = AFFINE_MODEL_NUM; affMrgCtx.mergeType[affMrgCtx.numValidMergeCand] = MRG_TYPE_SUBPU_ATMVP; if ( affMrgCtx.numValidMergeCand == mrgCandIdx ) { return; } affMrgCtx.numValidMergeCand++; // early termination if ( affMrgCtx.numValidMergeCand == maxNumAffineMergeCand ) { return; } } } #endif #if JVET_L0369_SUBBLOCK_MERGE if ( slice.getSPS()->getSpsNext().getUseAffine() ) { #endif ///> Start: inherited affine candidates const PredictionUnit* npu[5]; int numAffNeighLeft = getAvailableAffineNeighboursForLeftPredictor( pu, npu ); int numAffNeigh = getAvailableAffineNeighboursForAbovePredictor( pu, npu, numAffNeighLeft ); for ( int idx = 0; idx < numAffNeigh; idx++ ) { // derive Mv from Neigh affine PU Mv cMv[2][3]; const PredictionUnit* puNeigh = npu[idx]; pu.cu->affineType = puNeigh->cu->affineType; if ( puNeigh->interDir != 2 ) { xInheritedAffineMv( pu, puNeigh, REF_PIC_LIST_0, cMv[0] ); } if ( slice.isInterB() ) { if ( puNeigh->interDir != 1 ) { xInheritedAffineMv( pu, puNeigh, REF_PIC_LIST_1, cMv[1] ); } } for ( int mvNum = 0; mvNum < 3; mvNum++ ) { affMrgCtx.mvFieldNeighbours[(affMrgCtx.numValidMergeCand << 1) + 0][mvNum].setMvField( cMv[0][mvNum], puNeigh->refIdx[0] ); affMrgCtx.mvFieldNeighbours[(affMrgCtx.numValidMergeCand << 1) + 1][mvNum].setMvField( cMv[1][mvNum], puNeigh->refIdx[1] ); } affMrgCtx.interDirNeighbours[affMrgCtx.numValidMergeCand] = puNeigh->interDir; affMrgCtx.affineType[affMrgCtx.numValidMergeCand] = (EAffineModel)(puNeigh->cu->affineType); #if JVET_L0646_GBI affMrgCtx.GBiIdx[affMrgCtx.numValidMergeCand] = puNeigh->cu->GBiIdx; #endif if ( affMrgCtx.numValidMergeCand == mrgCandIdx ) { return; } // early termination affMrgCtx.numValidMergeCand++; if ( affMrgCtx.numValidMergeCand == maxNumAffineMergeCand ) { return; } } ///> End: inherited affine candidates ///> Start: Constructed affine candidates { MotionInfo mi[4]; bool isAvailable[4] = { false }; // control point: LT B2->B3->A2 const Position posLT[3] = { pu.Y().topLeft().offset( -1, -1 ), pu.Y().topLeft().offset( 0, -1 ), pu.Y().topLeft().offset( -1, 0 ) }; for ( int i = 0; i < 3; i++ ) { const Position pos = posLT[i]; const PredictionUnit* puNeigh = cs.getPURestricted( pos, pu, pu.chType ); if ( puNeigh && CU::isInter( *puNeigh->cu ) ) { isAvailable[0] = true; mi[0] = puNeigh->getMotionInfo( pos ); #if !REMOVE_MV_ADAPT_PREC mi[0].mv[0].setHighPrec(); mi[0].mv[1].setHighPrec(); #endif break; } } // control point: RT B1->B0 const Position posRT[2] = { pu.Y().topRight().offset( 0, -1 ), pu.Y().topRight().offset( 1, -1 ) }; for ( int i = 0; i < 2; i++ ) { const Position pos = posRT[i]; const PredictionUnit* puNeigh = cs.getPURestricted( pos, pu, pu.chType ); if ( puNeigh && CU::isInter( *puNeigh->cu ) ) { isAvailable[1] = true; mi[1] = puNeigh->getMotionInfo( pos ); #if !REMOVE_MV_ADAPT_PREC mi[1].mv[0].setHighPrec(); mi[1].mv[1].setHighPrec(); #endif break; } } // control point: LB A1->A0 const Position posLB[2] = { pu.Y().bottomLeft().offset( -1, 0 ), pu.Y().bottomLeft().offset( -1, 1 ) }; for ( int i = 0; i < 2; i++ ) { const Position pos = posLB[i]; const PredictionUnit* puNeigh = cs.getPURestricted( pos, pu, pu.chType ); if ( puNeigh && CU::isInter( *puNeigh->cu ) ) { isAvailable[2] = true; mi[2] = puNeigh->getMotionInfo( pos ); #if !REMOVE_MV_ADAPT_PREC mi[2].mv[0].setHighPrec(); mi[2].mv[1].setHighPrec(); #endif break; } } // control point: RB if ( slice.getEnableTMVPFlag() ) { //>> MTK colocated-RightBottom // offset the pos to be sure to "point" to the same position the uiAbsPartIdx would've pointed to Position posRB = pu.Y().bottomRight().offset( -3, -3 ); const PreCalcValues& pcv = *cs.pcv; Position posC0; bool C0Avail = false; if ( ((posRB.x + pcv.minCUWidth) < pcv.lumaWidth) && ((posRB.y + pcv.minCUHeight) < pcv.lumaHeight) ) { Position posInCtu( posRB.x & pcv.maxCUWidthMask, posRB.y & pcv.maxCUHeightMask ); if ( (posInCtu.x + 4 < pcv.maxCUWidth) && // is not at the last column of CTU (posInCtu.y + 4 < pcv.maxCUHeight) ) // is not at the last row of CTU { posC0 = posRB.offset( 4, 4 ); C0Avail = true; } else if ( posInCtu.x + 4 < pcv.maxCUWidth ) // is not at the last column of CTU But is last row of CTU { posC0 = posRB.offset( 4, 4 ); // in the reference the CTU address is not set - thus probably resulting in no using this C0 possibility } else if ( posInCtu.y + 4 < pcv.maxCUHeight ) // is not at the last row of CTU But is last column of CTU { posC0 = posRB.offset( 4, 4 ); C0Avail = true; } else //is the right bottom corner of CTU { posC0 = posRB.offset( 4, 4 ); // same as for last column but not last row } } Mv cColMv; int refIdx = 0; bool bExistMV = C0Avail && getColocatedMVP( pu, REF_PIC_LIST_0, posC0, cColMv, refIdx ); if ( bExistMV ) { mi[3].mv[0] = cColMv; #if !REMOVE_MV_ADAPT_PREC mi[3].mv[0].setHighPrec(); #endif mi[3].refIdx[0] = refIdx; mi[3].interDir = 1; isAvailable[3] = true; } if ( slice.isInterB() ) { bExistMV = C0Avail && getColocatedMVP( pu, REF_PIC_LIST_1, posC0, cColMv, refIdx ); if ( bExistMV ) { mi[3].mv[1] = cColMv; #if !REMOVE_MV_ADAPT_PREC mi[3].mv[1].setHighPrec(); #endif mi[3].refIdx[1] = refIdx; mi[3].interDir |= 2; isAvailable[3] = true; } } } //------------------- insert model -------------------// int order[6] = { 0, 1, 2, 3, 4, 5 }; int modelNum = 6; int model[6][4] = { { 0, 1, 2 }, // 0: LT, RT, LB { 0, 1, 3 }, // 1: LT, RT, RB { 0, 2, 3 }, // 2: LT, LB, RB { 1, 2, 3 }, // 3: RT, LB, RB { 0, 1 }, // 4: LT, RT { 0, 2 }, // 5: LT, LB }; int verNum[6] = { 3, 3, 3, 3, 2, 2 }; int startIdx = pu.cs->sps->getSpsNext().getUseAffineType() ? 0 : 4; for ( int idx = startIdx; idx < modelNum; idx++ ) { int modelIdx = order[idx]; getAffineControlPointCand( pu, mi, isAvailable, model[modelIdx], modelIdx, verNum[modelIdx], affMrgCtx ); if ( affMrgCtx.numValidMergeCand != 0 && affMrgCtx.numValidMergeCand - 1 == mrgCandIdx ) { return; } // early termination if ( affMrgCtx.numValidMergeCand == maxNumAffineMergeCand ) { return; } } } ///> End: Constructed affine candidates #if JVET_L0369_SUBBLOCK_MERGE } #endif ///> zero padding int cnt = affMrgCtx.numValidMergeCand; while ( cnt < maxNumAffineMergeCand ) { for ( int mvNum = 0; mvNum < 3; mvNum++ ) { affMrgCtx.mvFieldNeighbours[(cnt << 1) + 0][mvNum].setMvField( Mv( 0, 0 ), 0 ); } affMrgCtx.interDirNeighbours[cnt] = 1; if ( slice.isInterB() ) { for ( int mvNum = 0; mvNum < 3; mvNum++ ) { affMrgCtx.mvFieldNeighbours[(cnt << 1) + 1][mvNum].setMvField( Mv( 0, 0 ), 0 ); } affMrgCtx.interDirNeighbours[cnt] = 3; } affMrgCtx.affineType[cnt] = AFFINEMODEL_4PARAM; cnt++; if ( cnt == maxNumAffineMergeCand ) { return; } } } #else const PredictionUnit* getFirstAvailableAffineNeighbour( const PredictionUnit &pu ) { const Position posLT = pu.Y().topLeft(); const Position posRT = pu.Y().topRight(); const Position posLB = pu.Y().bottomLeft(); const PredictionUnit* puLeft = pu.cs->getPURestricted( posLB.offset( -1, 0 ), pu, pu.chType ); if( puLeft && puLeft->cu->affine ) { return puLeft; } const PredictionUnit* puAbove = pu.cs->getPURestricted( posRT.offset( 0, -1 ), pu, pu.chType ); if( puAbove && puAbove->cu->affine ) { return puAbove; } const PredictionUnit* puAboveRight = pu.cs->getPURestricted( posRT.offset( 1, -1 ), pu, pu.chType ); if( puAboveRight && puAboveRight->cu->affine ) { return puAboveRight; } const PredictionUnit *puLeftBottom = pu.cs->getPURestricted( posLB.offset( -1, 1 ), pu, pu.chType ); if( puLeftBottom && puLeftBottom->cu->affine ) { return puLeftBottom; } const PredictionUnit *puAboveLeft = pu.cs->getPURestricted( posLT.offset( -1, -1 ), pu, pu.chType ); if( puAboveLeft && puAboveLeft->cu->affine ) { return puAboveLeft; } return nullptr; } bool PU::isAffineMrgFlagCoded( const PredictionUnit &pu ) { if ( pu.cu->lumaSize().width < 8 || pu.cu->lumaSize().height < 8 ) { return false; } return getFirstAvailableAffineNeighbour( pu ) != nullptr; } #if JVET_L0646_GBI void PU::getAffineMergeCand( const PredictionUnit &pu, MvField(*mvFieldNeighbours)[3], unsigned char &interDirNeighbours, unsigned char &gbiIdx, int &numValidMergeCand ) #else void PU::getAffineMergeCand( const PredictionUnit &pu, MvField (*mvFieldNeighbours)[3], unsigned char &interDirNeighbours, int &numValidMergeCand ) #endif { for ( int mvNum = 0; mvNum < 3; mvNum++ ) { mvFieldNeighbours[0][mvNum].setMvField( Mv(), -1 ); mvFieldNeighbours[1][mvNum].setMvField( Mv(), -1 ); } const PredictionUnit* puFirstNeighbour = getFirstAvailableAffineNeighbour( pu ); if( puFirstNeighbour == nullptr ) { numValidMergeCand = -1; #if JVET_L0646_GBI gbiIdx = GBI_DEFAULT; #endif return; } else { numValidMergeCand = 1; } // get Inter Dir interDirNeighbours = puFirstNeighbour->getMotionInfo().interDir; pu.cu->affineType = puFirstNeighbour->cu->affineType; // derive Mv from neighbor affine block Mv cMv[3]; if ( interDirNeighbours != 2 ) { xInheritedAffineMv( pu, puFirstNeighbour, REF_PIC_LIST_0, cMv ); for ( int mvNum = 0; mvNum < 3; mvNum++ ) { mvFieldNeighbours[0][mvNum].setMvField( cMv[mvNum], puFirstNeighbour->refIdx[0] ); } } if ( pu.cs->slice->isInterB() ) { if ( interDirNeighbours != 1 ) { xInheritedAffineMv( pu, puFirstNeighbour, REF_PIC_LIST_1, cMv ); for ( int mvNum = 0; mvNum < 3; mvNum++ ) { mvFieldNeighbours[1][mvNum].setMvField( cMv[mvNum], puFirstNeighbour->refIdx[1] ); } } } #if JVET_L0646_GBI gbiIdx = puFirstNeighbour->cu->GBiIdx; #endif } #endif void PU::setAllAffineMvField( PredictionUnit &pu, MvField *mvField, RefPicList eRefList ) { // Set Mv Mv mv[3]; for ( int i = 0; i < 3; i++ ) { mv[i] = mvField[i].mv; } setAllAffineMv( pu, mv[0], mv[1], mv[2], eRefList ); // Set RefIdx CHECK( mvField[0].refIdx != mvField[1].refIdx || mvField[0].refIdx != mvField[2].refIdx, "Affine mv corners don't have the same refIdx." ); pu.refIdx[eRefList] = mvField[0].refIdx; } void PU::setAllAffineMv( PredictionUnit& pu, Mv affLT, Mv affRT, Mv affLB, RefPicList eRefList #if REMOVE_MV_ADAPT_PREC , bool setHighPrec #endif ) { int width = pu.Y().width; int shift = MAX_CU_DEPTH; #if REMOVE_MV_ADAPT_PREC if (setHighPrec) { affLT.hor = affLT.hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; affLT.ver = affLT.ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; affRT.hor = affRT.hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; affRT.ver = affRT.ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; affLB.hor = affLB.hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; affLB.ver = affLB.ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; } #else affLT.setHighPrec(); affRT.setHighPrec(); affLB.setHighPrec(); #endif int deltaMvHorX, deltaMvHorY, deltaMvVerX, deltaMvVerY; deltaMvHorX = (affRT - affLT).getHor() << (shift - g_aucLog2[width]); deltaMvHorY = (affRT - affLT).getVer() << (shift - g_aucLog2[width]); int height = pu.Y().height; if ( pu.cu->affineType == AFFINEMODEL_6PARAM ) { deltaMvVerX = (affLB - affLT).getHor() << (shift - g_aucLog2[height]); deltaMvVerY = (affLB - affLT).getVer() << (shift - g_aucLog2[height]); } else { deltaMvVerX = -deltaMvHorY; deltaMvVerY = deltaMvHorX; } int mvScaleHor = affLT.getHor() << shift; int mvScaleVer = affLT.getVer() << shift; int blockWidth = AFFINE_MIN_BLOCK_SIZE; int blockHeight = AFFINE_MIN_BLOCK_SIZE; const int halfBW = blockWidth >> 1; const int halfBH = blockHeight >> 1; MotionBuf mb = pu.getMotionBuf(); int mvScaleTmpHor, mvScaleTmpVer; for ( int h = 0; h < pu.Y().height; h += blockHeight ) { for ( int w = 0; w < pu.Y().width; w += blockWidth ) { mvScaleTmpHor = mvScaleHor + deltaMvHorX * (halfBW + w) + deltaMvVerX * (halfBH + h); mvScaleTmpVer = mvScaleVer + deltaMvHorY * (halfBW + w) + deltaMvVerY * (halfBH + h); roundAffineMv( mvScaleTmpHor, mvScaleTmpVer, shift ); for ( int y = (h >> MIN_CU_LOG2); y < ((h + blockHeight) >> MIN_CU_LOG2); y++ ) { for ( int x = (w >> MIN_CU_LOG2); x < ((w + blockHeight) >> MIN_CU_LOG2); x++ ) { #if REMOVE_MV_ADAPT_PREC mb.at(x, y).mv[eRefList].hor = mvScaleTmpHor; mb.at(x, y).mv[eRefList].ver = mvScaleTmpVer; #else mb.at(x, y).mv[eRefList] = Mv(mvScaleTmpHor, mvScaleTmpVer, true); #endif } } } } #if JVET_L0694_AFFINE_LINEBUFFER_CLEANUP pu.mvAffi[eRefList][0] = affLT; pu.mvAffi[eRefList][1] = affRT; pu.mvAffi[eRefList][2] = affLB; #else // Set AffineMvField for affine motion compensation LT, RT, LB and RB mb.at( 0, 0 ).mv[eRefList] = affLT; mb.at( mb.width - 1, 0 ).mv[eRefList] = affRT; if ( pu.cu->affineType == AFFINEMODEL_6PARAM ) { mb.at( 0, mb.height - 1 ).mv[eRefList] = affLB; } #endif } static bool deriveScaledMotionTemporal( const Slice& slice, const Position& colPos, const Picture* pColPic, const RefPicList eCurrRefPicList, Mv& cColMv, const RefPicList eFetchRefPicList) { const MotionInfo &mi = pColPic->cs->getMotionInfo(colPos); const Slice *pColSlice = nullptr; for (const auto &pSlice : pColPic->slices) { if (pSlice->getIndependentSliceIdx() == mi.sliceIdx) { pColSlice = pSlice; break; } } CHECK(pColSlice == nullptr, "Couldn't find the colocated slice"); int iColPOC, iColRefPOC, iCurrPOC, iCurrRefPOC, iScale; bool bAllowMirrorMV = true; RefPicList eColRefPicList = slice.getCheckLDC() ? eCurrRefPicList : RefPicList(1 - eFetchRefPicList); if (pColPic == slice.getRefPic(RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0), slice.getColRefIdx())) { eColRefPicList = eCurrRefPicList; //67 -> disable, 64 -> enable bAllowMirrorMV = false; } // Although it might make sense to keep the unavailable motion field per direction still be unavailable, I made the MV prediction the same way as in TMVP // So there is an interaction between MV0 and MV1 of the corresponding blocks identified by TV. // Grab motion and do necessary scaling.{{ iCurrPOC = slice.getPOC(); int iColRefIdx = mi.refIdx[eColRefPicList]; if (iColRefIdx < 0 && (slice.getCheckLDC() || bAllowMirrorMV)) { eColRefPicList = RefPicList(1 - eColRefPicList); iColRefIdx = mi.refIdx[eColRefPicList]; if (iColRefIdx < 0) { return false; } } if (iColRefIdx >= 0 && slice.getNumRefIdx(eCurrRefPicList) > 0) { iColPOC = pColSlice->getPOC(); iColRefPOC = pColSlice->getRefPOC(eColRefPicList, iColRefIdx); /////////////////////////////////////////////////////////////// // Set the target reference index to 0, may be changed later // /////////////////////////////////////////////////////////////// iCurrRefPOC = slice.getRefPic(eCurrRefPicList, 0)->getPOC(); // Scale the vector. cColMv = mi.mv[eColRefPicList]; //pcMvFieldSP[2*iPartition + eCurrRefPicList].getMv(); // Assume always short-term for now iScale = xGetDistScaleFactor(iCurrPOC, iCurrRefPOC, iColPOC, iColRefPOC); if (iScale != 4096) { #if !REMOVE_MV_ADAPT_PREC if (slice.getSPS()->getSpsNext().getUseHighPrecMv()) { cColMv.setHighPrec(); } #endif cColMv = cColMv.scaleMv(iScale); } return true; } return false; } #if JVET_L0257_ATMVP_COLBLK_CLIP void clipColPos(int& posX, int& posY, const PredictionUnit& pu) { Position puPos = pu.lumaPos(); int log2CtuSize = g_aucLog2[pu.cs->sps->getSpsNext().getCTUSize()]; int ctuX = ((puPos.x >> log2CtuSize) << log2CtuSize); int ctuY = ((puPos.y >> log2CtuSize) << log2CtuSize); int horMax = std::min((int)pu.cs->sps->getPicWidthInLumaSamples() - 1, ctuX + (int)pu.cs->sps->getSpsNext().getCTUSize() + 3); int horMin = std::max((int)0, ctuX); int verMax = std::min((int)pu.cs->sps->getPicHeightInLumaSamples() - 1, ctuY + (int)pu.cs->sps->getSpsNext().getCTUSize() - 1); int verMin = std::max((int)0, ctuY); posX = std::min(horMax, std::max(horMin, posX)); posY = std::min(verMax, std::max(verMin, posY)); } #else void clipColBlkMv(int& mvX, int& mvY, const PredictionUnit& pu) { Position puPos = pu.lumaPos(); Size puSize = pu.lumaSize(); int ctuSize = pu.cs->sps->getSpsNext().getCTUSize(); int ctuX = puPos.x / ctuSize*ctuSize; int ctuY = puPos.y / ctuSize*ctuSize; int horMax = std::min((int)pu.cs->sps->getPicWidthInLumaSamples(), ctuX + ctuSize + 4) - puSize.width; int horMin = std::max((int)0, ctuX); int verMax = std::min((int)pu.cs->sps->getPicHeightInLumaSamples(), ctuY + ctuSize) - puSize.height; int verMin = std::min((int)0, ctuY); horMax = horMax - puPos.x; horMin = horMin - puPos.x; verMax = verMax - puPos.y; verMin = verMin - puPos.y; mvX = std::min(horMax, std::max(horMin, mvX)); mvY = std::min(verMax, std::max(verMin, mvY)); } #endif bool PU::getInterMergeSubPuMvpCand(const PredictionUnit &pu, MergeCtx& mrgCtx, bool& LICFlag, const int count #if JVET_L0054_MMVD , int mmvdList #endif ) { const Slice &slice = *pu.cs->slice; const unsigned scale = 4 * std::max<int>(1, 4 * AMVP_DECIMATION_FACTOR / 4); const unsigned mask = ~(scale - 1); const Picture *pColPic = slice.getRefPic(RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0), slice.getColRefIdx()); Mv cTMv; RefPicList fetchRefPicList = RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0); bool terminate = false; for (unsigned currRefListId = 0; currRefListId < (slice.getSliceType() == B_SLICE ? 2 : 1) && !terminate; currRefListId++) { for (int uiN = 0; uiN < count && !terminate; uiN++) { RefPicList currRefPicList = RefPicList(slice.getCheckLDC() ? (slice.getColFromL0Flag() ? currRefListId : 1 - currRefListId) : currRefListId); if ((mrgCtx.interDirNeighbours[uiN] & (1 << currRefPicList)) && slice.getRefPic(currRefPicList, mrgCtx.mvFieldNeighbours[uiN * 2 + currRefPicList].refIdx) == pColPic) { cTMv = mrgCtx.mvFieldNeighbours[uiN * 2 + currRefPicList].mv; terminate = true; fetchRefPicList = currRefPicList; break; } } } /////////////////////////////////////////////////////////////////////// //////// GET Initial Temporal Vector //////// /////////////////////////////////////////////////////////////////////// int mvPrec = 2; #if !REMOVE_MV_ADAPT_PREC if (pu.cs->sps->getSpsNext().getUseHighPrecMv()) { cTMv.setHighPrec(); #endif mvPrec += VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; #if !REMOVE_MV_ADAPT_PREC } #endif #if !JVET_L0257_ATMVP_COLBLK_CLIP int mvRndOffs = (1 << mvPrec) >> 1; #endif Mv cTempVector = cTMv; bool tempLICFlag = false; // compute the location of the current PU Position puPos = pu.lumaPos(); Size puSize = pu.lumaSize(); int numPartLine = std::max(puSize.width >> slice.getSubPuMvpSubblkLog2Size(), 1u); int numPartCol = std::max(puSize.height >> slice.getSubPuMvpSubblkLog2Size(), 1u); int puHeight = numPartCol == 1 ? puSize.height : 1 << slice.getSubPuMvpSubblkLog2Size(); int puWidth = numPartLine == 1 ? puSize.width : 1 << slice.getSubPuMvpSubblkLog2Size(); Mv cColMv; // use coldir. bool bBSlice = slice.isInterB(); Position centerPos; bool found = false; cTempVector = cTMv; #if JVET_L0257_ATMVP_COLBLK_CLIP int tempX = cTempVector.getHor() >> mvPrec; int tempY = cTempVector.getVer() >> mvPrec; centerPos.x = puPos.x + (puSize.width >> 1) + tempX; centerPos.y = puPos.y + (puSize.height >> 1) + tempY; clipColPos(centerPos.x, centerPos.y, pu); #else int tempX = ((cTempVector.getHor() + mvRndOffs) >> mvPrec); int tempY = ((cTempVector.getVer() + mvRndOffs) >> mvPrec); clipColBlkMv(tempX, tempY, pu); if (puSize.width == puWidth && puSize.height == puHeight) { centerPos.x = puPos.x + (puSize.width >> 1) + tempX; centerPos.y = puPos.y + (puSize.height >> 1) + tempY; } else { centerPos.x = puPos.x + ((puSize.width / puWidth) >> 1) * puWidth + (puWidth >> 1) + tempX; centerPos.y = puPos.y + ((puSize.height / puHeight) >> 1) * puHeight + (puHeight >> 1) + tempY; } centerPos.x = Clip3(0, (int)pColPic->lwidth() - 1, centerPos.x); centerPos.y = Clip3(0, (int)pColPic->lheight() - 1, centerPos.y); #endif centerPos = Position{ PosType(centerPos.x & mask), PosType(centerPos.y & mask) }; // derivation of center motion parameters from the collocated CU const MotionInfo &mi = pColPic->cs->getMotionInfo(centerPos); if (mi.isInter) { for (unsigned currRefListId = 0; currRefListId < (bBSlice ? 2 : 1); currRefListId++) { RefPicList currRefPicList = RefPicList(currRefListId); if (deriveScaledMotionTemporal(slice, centerPos, pColPic, currRefPicList, cColMv, fetchRefPicList)) { // set as default, for further motion vector field spanning mrgCtx.mvFieldNeighbours[(count << 1) + currRefListId].setMvField(cColMv, 0); mrgCtx.interDirNeighbours[count] |= (1 << currRefListId); LICFlag = tempLICFlag; #if JVET_L0646_GBI mrgCtx.GBiIdx[count] = GBI_DEFAULT; #endif found = true; } else { mrgCtx.mvFieldNeighbours[(count << 1) + currRefListId].setMvField(Mv(), NOT_VALID); mrgCtx.interDirNeighbours[count] &= ~(1 << currRefListId); } } } if (!found) { return false; } #if JVET_L0054_MMVD if (mmvdList != 1) { #endif #if JVET_L0257_ATMVP_COLBLK_CLIP int xOff = (puWidth >> 1) + tempX; int yOff = (puHeight >> 1) + tempY; #else int xOff = puWidth / 2; int yOff = puHeight / 2; // compute the location of the current PU xOff += tempX; yOff += tempY; int iPicWidth = pColPic->lwidth() - 1; int iPicHeight = pColPic->lheight() - 1; #endif MotionBuf& mb = mrgCtx.subPuMvpMiBuf; const bool isBiPred = isBipredRestriction(pu); for (int y = puPos.y; y < puPos.y + puSize.height; y += puHeight) { for (int x = puPos.x; x < puPos.x + puSize.width; x += puWidth) { Position colPos{ x + xOff, y + yOff }; #if JVET_L0257_ATMVP_COLBLK_CLIP clipColPos(colPos.x, colPos.y, pu); #else colPos.x = Clip3(0, iPicWidth, colPos.x); colPos.y = Clip3(0, iPicHeight, colPos.y); #endif colPos = Position{ PosType(colPos.x & mask), PosType(colPos.y & mask) }; const MotionInfo &colMi = pColPic->cs->getMotionInfo(colPos); MotionInfo mi; mi.isInter = true; mi.sliceIdx = slice.getIndependentSliceIdx(); if (colMi.isInter) { for (unsigned currRefListId = 0; currRefListId < (bBSlice ? 2 : 1); currRefListId++) { RefPicList currRefPicList = RefPicList(currRefListId); if (deriveScaledMotionTemporal(slice, colPos, pColPic, currRefPicList, cColMv, fetchRefPicList)) { mi.refIdx[currRefListId] = 0; mi.mv[currRefListId] = cColMv; } } } else { // intra coded, in this case, no motion vector is available for list 0 or list 1, so use default mi.mv[0] = mrgCtx.mvFieldNeighbours[(count << 1) + 0].mv; mi.mv[1] = mrgCtx.mvFieldNeighbours[(count << 1) + 1].mv; mi.refIdx[0] = mrgCtx.mvFieldNeighbours[(count << 1) + 0].refIdx; mi.refIdx[1] = mrgCtx.mvFieldNeighbours[(count << 1) + 1].refIdx; } mi.interDir = (mi.refIdx[0] != -1 ? 1 : 0) + (mi.refIdx[1] != -1 ? 2 : 0); if (isBiPred && mi.interDir == 3) { mi.interDir = 1; mi.mv[1] = Mv(); mi.refIdx[1] = NOT_VALID; } mb.subBuf(g_miScaling.scale(Position{ x, y } -pu.lumaPos()), g_miScaling.scale(Size(puWidth, puHeight))).fill(mi); } } #if JVET_L0054_MMVD } #endif return true; } void PU::spanMotionInfo( PredictionUnit &pu, const MergeCtx &mrgCtx ) { MotionBuf mb = pu.getMotionBuf(); if( !pu.mergeFlag || pu.mergeType == MRG_TYPE_DEFAULT_N ) { MotionInfo mi; mi.isInter = CU::isInter( *pu.cu ); mi.sliceIdx = pu.cu->slice->getIndependentSliceIdx(); if( mi.isInter ) { mi.interDir = pu.interDir; for( int i = 0; i < NUM_REF_PIC_LIST_01; i++ ) { mi.mv[i] = pu.mv[i]; mi.refIdx[i] = pu.refIdx[i]; } } if( pu.cu->affine ) { for( int y = 0; y < mb.height; y++ ) { for( int x = 0; x < mb.width; x++ ) { MotionInfo &dest = mb.at( x, y ); dest.isInter = mi.isInter; dest.interDir = mi.interDir; dest.sliceIdx = mi.sliceIdx; for( int i = 0; i < NUM_REF_PIC_LIST_01; i++ ) { if( mi.refIdx[i] == -1 ) { dest.mv[i] = Mv(); } dest.refIdx[i] = mi.refIdx[i]; } } } } else { mb.fill( mi ); } } else if (pu.mergeType == MRG_TYPE_SUBPU_ATMVP) { CHECK(mrgCtx.subPuMvpMiBuf.area() == 0 || !mrgCtx.subPuMvpMiBuf.buf, "Buffer not initialized"); mb.copyFrom(mrgCtx.subPuMvpMiBuf); } else { if( isBipredRestriction( pu ) ) { for( int y = 0; y < mb.height; y++ ) { for( int x = 0; x < mb.width; x++ ) { MotionInfo &mi = mb.at( x, y ); if( mi.interDir == 3 ) { mi.interDir = 1; mi.mv [1] = Mv(); mi.refIdx[1] = NOT_VALID; } } } } } } void PU::applyImv( PredictionUnit& pu, MergeCtx &mrgCtx, InterPrediction *interPred ) { if( !pu.mergeFlag ) { unsigned imvShift = pu.cu->imv << 1; if( pu.interDir != 2 /* PRED_L1 */ ) { if (pu.cu->imv) { #if !REMOVE_MV_ADAPT_PREC CHECK(pu.mvd[0].highPrec, "Motion vector difference should never be high precision"); #endif pu.mvd[0] = Mv( pu.mvd[0].hor << imvShift, pu.mvd[0].ver << imvShift ); } unsigned mvp_idx = pu.mvpIdx[0]; AMVPInfo amvpInfo; PU::fillMvpCand(pu, REF_PIC_LIST_0, pu.refIdx[0], amvpInfo); pu.mvpNum[0] = amvpInfo.numCand; pu.mvpIdx[0] = mvp_idx; pu.mv [0] = amvpInfo.mvCand[mvp_idx] + pu.mvd[0]; #if REMOVE_MV_ADAPT_PREC pu.mv[0].hor = pu.mv[0].hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; pu.mv[0].ver = pu.mv[0].ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; #endif } if (pu.interDir != 1 /* PRED_L0 */) { if( !( pu.cu->cs->slice->getMvdL1ZeroFlag() && pu.interDir == 3 ) && pu.cu->imv )/* PRED_BI */ { #if !REMOVE_MV_ADAPT_PREC CHECK(pu.mvd[1].highPrec, "Motion vector difference should never be high precision"); #endif pu.mvd[1] = Mv( pu.mvd[1].hor << imvShift, pu.mvd[1].ver << imvShift ); } unsigned mvp_idx = pu.mvpIdx[1]; AMVPInfo amvpInfo; PU::fillMvpCand(pu, REF_PIC_LIST_1, pu.refIdx[1], amvpInfo); pu.mvpNum[1] = amvpInfo.numCand; pu.mvpIdx[1] = mvp_idx; pu.mv [1] = amvpInfo.mvCand[mvp_idx] + pu.mvd[1]; #if REMOVE_MV_ADAPT_PREC pu.mv[1].hor = pu.mv[1].hor << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; pu.mv[1].ver = pu.mv[1].ver << VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE; #endif } } else { // this function is never called for merge THROW("unexpected"); PU::getInterMergeCandidates ( pu, mrgCtx #if JVET_L0054_MMVD , 0 #endif ); PU::restrictBiPredMergeCands( pu, mrgCtx ); mrgCtx.setMergeInfo( pu, pu.mergeIdx ); } PU::spanMotionInfo( pu, mrgCtx ); } bool PU::isBiPredFromDifferentDir( const PredictionUnit& pu ) { if ( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 ) { const int iPOC0 = pu.cu->slice->getRefPOC( REF_PIC_LIST_0, pu.refIdx[0] ); const int iPOC1 = pu.cu->slice->getRefPOC( REF_PIC_LIST_1, pu.refIdx[1] ); const int iPOC = pu.cu->slice->getPOC(); if ( (iPOC - iPOC0)*(iPOC - iPOC1) < 0 ) { return true; } } return false; } void PU::restrictBiPredMergeCands( const PredictionUnit &pu, MergeCtx& mergeCtx ) { if( PU::isBipredRestriction( pu ) ) { for( uint32_t mergeCand = 0; mergeCand < mergeCtx.numValidMergeCand; ++mergeCand ) { if( mergeCtx.interDirNeighbours[ mergeCand ] == 3 ) { mergeCtx.interDirNeighbours[ mergeCand ] = 1; mergeCtx.mvFieldNeighbours[( mergeCand << 1 ) + 1].setMvField( Mv( 0, 0 ), -1 ); #if JVET_L0646_GBI mergeCtx.GBiIdx[mergeCand] = GBI_DEFAULT; #endif } } } } void CU::resetMVDandMV2Int( CodingUnit& cu, InterPrediction *interPred ) { for( auto &pu : CU::traversePUs( cu ) ) { MergeCtx mrgCtx; if( !pu.mergeFlag ) { unsigned imvShift = cu.imv << 1; if( pu.interDir != 2 /* PRED_L1 */ ) { Mv mv = pu.mv[0]; Mv mvPred; AMVPInfo amvpInfo; PU::fillMvpCand(pu, REF_PIC_LIST_0, pu.refIdx[0], amvpInfo); pu.mvpNum[0] = amvpInfo.numCand; mvPred = amvpInfo.mvCand[pu.mvpIdx[0]]; roundMV ( mv, imvShift ); pu.mv[0] = mv; Mv mvDiff = mv - mvPred; pu.mvd[0] = mvDiff; } if( pu.interDir != 1 /* PRED_L0 */ ) { Mv mv = pu.mv[1]; Mv mvPred; AMVPInfo amvpInfo; PU::fillMvpCand(pu, REF_PIC_LIST_1, pu.refIdx[1], amvpInfo); pu.mvpNum[1] = amvpInfo.numCand; mvPred = amvpInfo.mvCand[pu.mvpIdx[1]]; roundMV ( mv, imvShift ); Mv mvDiff = mv - mvPred; if( pu.cu->cs->slice->getMvdL1ZeroFlag() && pu.interDir == 3 /* PRED_BI */ ) { pu.mvd[1] = Mv(); mv = mvPred; } else { pu.mvd[1] = mvDiff; } pu.mv[1] = mv; } } else { PU::getInterMergeCandidates ( pu, mrgCtx #if JVET_L0054_MMVD , 0 #endif ); PU::restrictBiPredMergeCands( pu, mrgCtx ); mrgCtx.setMergeInfo( pu, pu.mergeIdx ); } PU::spanMotionInfo( pu, mrgCtx ); } } bool CU::hasSubCUNonZeroMVd( const CodingUnit& cu ) { bool bNonZeroMvd = false; for( const auto &pu : CU::traversePUs( cu ) ) { if( ( !pu.mergeFlag ) && ( !cu.skip ) ) { if( pu.interDir != 2 /* PRED_L1 */ ) { bNonZeroMvd |= pu.mvd[REF_PIC_LIST_0].getHor() != 0; bNonZeroMvd |= pu.mvd[REF_PIC_LIST_0].getVer() != 0; } if( pu.interDir != 1 /* PRED_L0 */ ) { if( !pu.cu->cs->slice->getMvdL1ZeroFlag() || pu.interDir != 3 /* PRED_BI */ ) { bNonZeroMvd |= pu.mvd[REF_PIC_LIST_1].getHor() != 0; bNonZeroMvd |= pu.mvd[REF_PIC_LIST_1].getVer() != 0; } } } } return bNonZeroMvd; } int CU::getMaxNeighboriMVCandNum( const CodingStructure& cs, const Position& pos ) { const int numDefault = 0; int maxImvNumCand = 0; // Get BCBP of left PU #if HEVC_TILES_WPP const CodingUnit *cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), cs.slice->getIndependentSliceIdx(), cs.picture->tileMap->getTileIdxMap( pos ), CH_L ); #else const CodingUnit *cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), cs.slice->getIndependentSliceIdx(), CH_L ); #endif maxImvNumCand = ( cuLeft ) ? cuLeft->imvNumCand : numDefault; // Get BCBP of above PU #if HEVC_TILES_WPP const CodingUnit *cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), cs.slice->getIndependentSliceIdx(), cs.picture->tileMap->getTileIdxMap( pos ), CH_L ); #else const CodingUnit *cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), cs.slice->getIndependentSliceIdx(), CH_L ); #endif maxImvNumCand = std::max( maxImvNumCand, ( cuAbove ) ? cuAbove->imvNumCand : numDefault ); return maxImvNumCand; } #if JVET_L0646_GBI bool CU::isGBiIdxCoded( const CodingUnit &cu ) { if( cu.cs->sps->getSpsNext().getUseGBi() == false ) { CHECK(cu.GBiIdx != GBI_DEFAULT, "Error: cu.GBiIdx != GBI_DEFAULT"); return false; } if( cu.predMode == MODE_INTRA || cu.cs->slice->isInterP() ) { return false; } if( cu.lwidth() * cu.lheight() < GBI_SIZE_CONSTRAINT ) { return false; } if( cu.firstPU->interDir == 3 && !cu.firstPU->mergeFlag ) { return true; } return false; } uint8_t CU::getValidGbiIdx( const CodingUnit &cu ) { if( cu.firstPU->interDir == 3 && !cu.firstPU->mergeFlag ) { return cu.GBiIdx; } else if( cu.firstPU->interDir == 3 && cu.firstPU->mergeFlag && cu.firstPU->mergeType == MRG_TYPE_DEFAULT_N ) { // This is intended to do nothing here. } else if( cu.firstPU->mergeFlag && cu.firstPU->mergeType == MRG_TYPE_SUBPU_ATMVP ) { CHECK(cu.GBiIdx != GBI_DEFAULT, " cu.GBiIdx != GBI_DEFAULT "); } else { CHECK(cu.GBiIdx != GBI_DEFAULT, " cu.GBiIdx != GBI_DEFAULT "); } return GBI_DEFAULT; } void CU::setGbiIdx( CodingUnit &cu, uint8_t uh ) { int8_t uhCnt = 0; if( cu.firstPU->interDir == 3 && !cu.firstPU->mergeFlag ) { cu.GBiIdx = uh; ++uhCnt; } else if( cu.firstPU->interDir == 3 && cu.firstPU->mergeFlag && cu.firstPU->mergeType == MRG_TYPE_DEFAULT_N ) { // This is intended to do nothing here. } else if( cu.firstPU->mergeFlag && cu.firstPU->mergeType == MRG_TYPE_SUBPU_ATMVP ) { cu.GBiIdx = GBI_DEFAULT; } else { cu.GBiIdx = GBI_DEFAULT; } CHECK(uhCnt <= 0, " uhCnt <= 0 "); } uint8_t CU::deriveGbiIdx( uint8_t gbiLO, uint8_t gbiL1 ) { if( gbiLO == gbiL1 ) { return gbiLO; } const int8_t w0 = getGbiWeight(gbiLO, REF_PIC_LIST_0); const int8_t w1 = getGbiWeight(gbiL1, REF_PIC_LIST_1); const int8_t th = g_GbiWeightBase >> 1; const int8_t off = 1; if( w0 == w1 || (w0 < (th - off) && w1 < (th - off)) || (w0 >(th + off) && w1 >(th + off)) ) { return GBI_DEFAULT; } else { if( w0 > w1 ) { return ( w0 >= th ? gbiLO : gbiL1 ); } else { return ( w1 >= th ? gbiL1 : gbiLO ); } } } #endif // TU tools #if HEVC_USE_4x4_DSTVII bool TU::useDST(const TransformUnit &tu, const ComponentID &compID) { return isLuma(compID) && tu.cu->predMode == MODE_INTRA; } #endif bool TU::isNonTransformedResidualRotated(const TransformUnit &tu, const ComponentID &compID) { return tu.cs->sps->getSpsRangeExtension().getTransformSkipRotationEnabledFlag() && tu.blocks[compID].width == 4 && tu.cu->predMode == MODE_INTRA; } bool TU::getCbf( const TransformUnit &tu, const ComponentID &compID ) { #if ENABLE_BMS return getCbfAtDepth( tu, compID, tu.depth ); #else return tu.cbf[compID]; #endif } #if ENABLE_BMS bool TU::getCbfAtDepth(const TransformUnit &tu, const ComponentID &compID, const unsigned &depth) { return ((tu.cbf[compID] >> depth) & 1) == 1; } void TU::setCbfAtDepth(TransformUnit &tu, const ComponentID &compID, const unsigned &depth, const bool &cbf) { // first clear the CBF at the depth tu.cbf[compID] &= ~(1 << depth); // then set the CBF tu.cbf[compID] |= ((cbf ? 1 : 0) << depth); } #else void TU::setCbf( TransformUnit &tu, const ComponentID &compID, const bool &cbf ) { tu.cbf[compID] = cbf; } #endif bool TU::hasTransformSkipFlag(const CodingStructure& cs, const CompArea& area) { uint32_t transformSkipLog2MaxSize = cs.pps->getPpsRangeExtension().getLog2MaxTransformSkipBlockSize(); if( cs.pcv->rectCUs ) { return ( area.width * area.height <= (1 << ( transformSkipLog2MaxSize << 1 )) ); } return ( area.width <= (1 << transformSkipLog2MaxSize) ); } uint32_t TU::getGolombRiceStatisticsIndex(const TransformUnit &tu, const ComponentID &compID) { const bool transformSkip = tu.transformSkip[compID]; const bool transquantBypass = tu.cu->transQuantBypass; //-------- const uint32_t channelTypeOffset = isChroma(compID) ? 2 : 0; const uint32_t nonTransformedOffset = (transformSkip || transquantBypass) ? 1 : 0; //-------- const uint32_t selectedIndex = channelTypeOffset + nonTransformedOffset; CHECK( selectedIndex >= RExt__GOLOMB_RICE_ADAPTATION_STATISTICS_SETS, "Invalid golomb rice adaptation statistics set" ); return selectedIndex; } #if HEVC_USE_MDCS uint32_t TU::getCoefScanIdx(const TransformUnit &tu, const ComponentID &compID) { //------------------------------------------------ //this mechanism is available for intra only if( !CU::isIntra( *tu.cu ) ) { return SCAN_DIAG; } //------------------------------------------------ //check that MDCS can be used for this TU const CompArea &area = tu.blocks[compID]; const SPS &sps = *tu.cs->sps; const ChromaFormat format = sps.getChromaFormatIdc(); const uint32_t maximumWidth = MDCS_MAXIMUM_WIDTH >> getComponentScaleX(compID, format); const uint32_t maximumHeight = MDCS_MAXIMUM_HEIGHT >> getComponentScaleY(compID, format); if ((area.width > maximumWidth) || (area.height > maximumHeight)) { return SCAN_DIAG; } //------------------------------------------------ //otherwise, select the appropriate mode const PredictionUnit &pu = *tu.cs->getPU( area.pos(), toChannelType( compID ) ); uint32_t uiDirMode = PU::getFinalIntraMode(pu, toChannelType(compID)); //------------------ if (abs((int) uiDirMode - VER_IDX) <= MDCS_ANGLE_LIMIT) { return SCAN_HOR; } else if (abs((int) uiDirMode - HOR_IDX) <= MDCS_ANGLE_LIMIT) { return SCAN_VER; } else { return SCAN_DIAG; } } #endif bool TU::hasCrossCompPredInfo( const TransformUnit &tu, const ComponentID &compID ) { return ( isChroma(compID) && tu.cs->pps->getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && TU::getCbf( tu, COMPONENT_Y ) && ( CU::isInter(*tu.cu) || PU::isChromaIntraModeCrossCheckMode( *tu.cs->getPU( tu.blocks[compID].pos(), toChannelType( compID ) ) ) ) ); } uint32_t TU::getNumNonZeroCoeffsNonTS( const TransformUnit& tu, const bool bLuma, const bool bChroma ) { uint32_t count = 0; for( uint32_t i = 0; i < ::getNumberValidTBlocks( *tu.cs->pcv ); i++ ) { if( tu.blocks[i].valid() && !tu.transformSkip[i] && TU::getCbf( tu, ComponentID( i ) ) ) { if( isLuma ( tu.blocks[i].compID ) && !bLuma ) continue; if( isChroma( tu.blocks[i].compID ) && !bChroma ) continue; uint32_t area = tu.blocks[i].area(); const TCoeff* coeff = tu.getCoeffs( ComponentID( i ) ).buf; for( uint32_t j = 0; j < area; j++ ) { count += coeff[j] != 0; } } } return count; } bool TU::needsSqrt2Scale( const Size& size ) { return (((g_aucLog2[size.width] + g_aucLog2[size.height]) & 1) == 1); } #if HM_QTBT_AS_IN_JEM_QUANT bool TU::needsBlockSizeTrafoScale( const Size& size ) { return needsSqrt2Scale( size ) || isNonLog2BlockSize( size ); } #else bool TU::needsQP3Offset(const TransformUnit &tu, const ComponentID &compID) { if( tu.cs->pcv->rectCUs && !tu.transformSkip[compID] ) { return ( ( ( g_aucLog2[tu.blocks[compID].width] + g_aucLog2[tu.blocks[compID].height] ) & 1 ) == 1 ); } return false; } #endif // other tools uint32_t getCtuAddr( const Position& pos, const PreCalcValues& pcv ) { return ( pos.x >> pcv.maxCUWidthLog2 ) + ( pos.y >> pcv.maxCUHeightLog2 ) * pcv.widthInCtus; }