/* The copyright in this software is being made available under the BSD * License, included below. This software may be subject to other third party * and contributor rights, including patent rights, and no such rights are * granted under this license. * * Copyright (c) 2010-2018, ITU/ISO/IEC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the ITU/ISO/IEC nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /** \file BitStream.cpp \brief class for handling bitstream */ #include <stdint.h> #include <vector> #include "BitStream.h" #include <string.h> #include <memory.h> using namespace std; //! \ingroup CommonLib //! \{ // ==================================================================================================================== // Constructor / destructor / create / destroy // ==================================================================================================================== OutputBitstream::OutputBitstream() { clear(); } OutputBitstream::~OutputBitstream() { } InputBitstream::InputBitstream() : m_fifo() , m_emulationPreventionByteLocation() , m_fifo_idx(0) , m_num_held_bits(0) , m_held_bits(0) , m_numBitsRead(0) { } InputBitstream::InputBitstream(const InputBitstream &src) : m_fifo(src.m_fifo) , m_emulationPreventionByteLocation(src.m_emulationPreventionByteLocation) , m_fifo_idx(src.m_fifo_idx) , m_num_held_bits(src.m_num_held_bits) , m_held_bits(src.m_held_bits) , m_numBitsRead(src.m_numBitsRead) { } // ==================================================================================================================== // Public member functions // ==================================================================================================================== void InputBitstream::resetToStart() { m_fifo_idx=0; m_num_held_bits=0; m_held_bits=0; m_numBitsRead=0; } uint8_t* OutputBitstream::getByteStream() const { return (uint8_t*) &m_fifo.front(); } uint32_t OutputBitstream::getByteStreamLength() { return uint32_t(m_fifo.size()); } void OutputBitstream::clear() { m_fifo.clear(); m_held_bits = 0; m_num_held_bits = 0; } void OutputBitstream::write ( uint32_t uiBits, uint32_t uiNumberOfBits ) { CHECK( uiNumberOfBits > 32, "Number of bits is exceeds '32'" ); CHECK( uiNumberOfBits != 32 && (uiBits & (~0 << uiNumberOfBits)) != 0, "Unsupported parameters" ); /* any modulo 8 remainder of num_total_bits cannot be written this time, * and will be held until next time. */ uint32_t num_total_bits = uiNumberOfBits + m_num_held_bits; uint32_t next_num_held_bits = num_total_bits % 8; /* form a byte aligned word (write_bits), by concatenating any held bits * with the new bits, discarding the bits that will form the next_held_bits. * eg: H = held bits, V = n new bits /---- next_held_bits * len(H)=7, len(V)=1: ... ---- HHHH HHHV . 0000 0000, next_num_held_bits=0 * len(H)=7, len(V)=2: ... ---- HHHH HHHV . V000 0000, next_num_held_bits=1 * if total_bits < 8, the value of v_ is not used */ uint8_t next_held_bits = uiBits << (8 - next_num_held_bits); if (!(num_total_bits >> 3)) { /* insufficient bits accumulated to write out, append new_held_bits to * current held_bits */ /* NB, this requires that v only contains 0 in bit positions {31..n} */ m_held_bits |= next_held_bits; m_num_held_bits = next_num_held_bits; return; } /* topword serves to justify held_bits to align with the msb of uiBits */ uint32_t topword = (uiNumberOfBits - next_num_held_bits) & ~((1 << 3) -1); uint32_t write_bits = (m_held_bits << topword) | (uiBits >> next_num_held_bits); switch (num_total_bits >> 3) { case 4: m_fifo.push_back(write_bits >> 24); case 3: m_fifo.push_back(write_bits >> 16); case 2: m_fifo.push_back(write_bits >> 8); case 1: m_fifo.push_back(write_bits); } m_held_bits = next_held_bits; m_num_held_bits = next_num_held_bits; } void OutputBitstream::writeAlignOne() { uint32_t num_bits = getNumBitsUntilByteAligned(); write((1 << num_bits) - 1, num_bits); return; } void OutputBitstream::writeAlignZero() { if (0 == m_num_held_bits) { return; } m_fifo.push_back(m_held_bits); m_held_bits = 0; m_num_held_bits = 0; } /** - add substream to the end of the current bitstream . \param pcSubstream substream to be added */ void OutputBitstream::addSubstream( OutputBitstream* pcSubstream ) { uint32_t uiNumBits = pcSubstream->getNumberOfWrittenBits(); const vector<uint8_t>& rbsp = pcSubstream->getFIFO(); for (vector<uint8_t>::const_iterator it = rbsp.begin(); it != rbsp.end();) { write(*it++, 8); } if (uiNumBits&0x7) { write(pcSubstream->getHeldBits()>>(8-(uiNumBits&0x7)), uiNumBits&0x7); } } void OutputBitstream::writeByteAlignment() { write( 1, 1); writeAlignZero(); } int OutputBitstream::countStartCodeEmulations() { uint32_t cnt = 0; vector<uint8_t>& rbsp = getFIFO(); for (vector<uint8_t>::iterator it = rbsp.begin(); it != rbsp.end();) { vector<uint8_t>::iterator found = it; do { // find the next emulated 00 00 {00,01,02,03} // NB, end()-1, prevents finding a trailing two byte sequence found = search_n(found, rbsp.end()-1, 2, 0); found++; // if not found, found == end, otherwise found = second zero byte if (found == rbsp.end()) { break; } if (*(++found) <= 3) { break; } } while (true); it = found; if (found != rbsp.end()) { cnt++; } } return cnt; } /** * read uiNumberOfBits from bitstream without updating the bitstream * state, storing the result in ruiBits. * * If reading uiNumberOfBits would overrun the bitstream buffer, * the bitstream is effectively padded with sufficient zero-bits to * avoid the overrun. */ void InputBitstream::pseudoRead ( uint32_t uiNumberOfBits, uint32_t& ruiBits ) { uint32_t saved_num_held_bits = m_num_held_bits; uint8_t saved_held_bits = m_held_bits; uint32_t saved_fifo_idx = m_fifo_idx; uint32_t num_bits_to_read = min(uiNumberOfBits, getNumBitsLeft()); read(num_bits_to_read, ruiBits); ruiBits <<= (uiNumberOfBits - num_bits_to_read); m_fifo_idx = saved_fifo_idx; m_held_bits = saved_held_bits; m_num_held_bits = saved_num_held_bits; } void InputBitstream::read (uint32_t uiNumberOfBits, uint32_t& ruiBits) { CHECK( uiNumberOfBits > 32, "Too many bits read" ); m_numBitsRead += uiNumberOfBits; /* NB, bits are extracted from the MSB of each byte. */ uint32_t retval = 0; if (uiNumberOfBits <= m_num_held_bits) { /* n=1, len(H)=7: -VHH HHHH, shift_down=6, mask=0xfe * n=3, len(H)=7: -VVV HHHH, shift_down=4, mask=0xf8 */ retval = m_held_bits >> (m_num_held_bits - uiNumberOfBits); retval &= ~(0xff << uiNumberOfBits); m_num_held_bits -= uiNumberOfBits; ruiBits = retval; return; } /* all num_held_bits will go into retval * => need to mask leftover bits from previous extractions * => align retval with top of extracted word */ /* n=5, len(H)=3: ---- -VVV, mask=0x07, shift_up=5-3=2, * n=9, len(H)=3: ---- -VVV, mask=0x07, shift_up=9-3=6 */ uiNumberOfBits -= m_num_held_bits; retval = m_held_bits & ~(0xff << m_num_held_bits); retval <<= uiNumberOfBits; /* number of whole bytes that need to be loaded to form retval */ /* n=32, len(H)=0, load 4bytes, shift_down=0 * n=32, len(H)=1, load 4bytes, shift_down=1 * n=31, len(H)=1, load 4bytes, shift_down=1+1 * n=8, len(H)=0, load 1byte, shift_down=0 * n=8, len(H)=3, load 1byte, shift_down=3 * n=5, len(H)=1, load 1byte, shift_down=1+3 */ uint32_t aligned_word = 0; uint32_t num_bytes_to_load = (uiNumberOfBits - 1) >> 3; CHECK(m_fifo_idx + num_bytes_to_load >= m_fifo.size(), "Exceeded FIFO size"); switch (num_bytes_to_load) { case 3: aligned_word = m_fifo[m_fifo_idx++] << 24; case 2: aligned_word |= m_fifo[m_fifo_idx++] << 16; case 1: aligned_word |= m_fifo[m_fifo_idx++] << 8; case 0: aligned_word |= m_fifo[m_fifo_idx++]; } /* resolve remainder bits */ uint32_t next_num_held_bits = (32 - uiNumberOfBits) % 8; /* copy required part of aligned_word into retval */ retval |= aligned_word >> next_num_held_bits; /* store held bits */ m_num_held_bits = next_num_held_bits; m_held_bits = aligned_word; ruiBits = retval; } /** * insert the contents of the bytealigned (and flushed) bitstream src * into this at byte position pos. */ void OutputBitstream::insertAt(const OutputBitstream& src, uint32_t pos) { CHECK(0 != src.getNumberOfWrittenBits() % 8, "Number of written bits is not a multiple of 8"); vector<uint8_t>::iterator at = m_fifo.begin() + pos; m_fifo.insert(at, src.m_fifo.begin(), src.m_fifo.end()); } uint32_t InputBitstream::readOutTrailingBits () { uint32_t count=0; uint32_t uiBits = 0; while ( ( getNumBitsLeft() > 0 ) && (getNumBitsUntilByteAligned()!=0) ) { count++; read ( 1, uiBits ); } return count; } // //OutputBitstream& OutputBitstream::operator= (const OutputBitstream& src) //{ // vector<uint8_t>::iterator at = m_fifo.begin(); // m_fifo.insert(at, src.m_fifo.begin(), src.m_fifo.end()); // // m_num_held_bits = src.m_num_held_bits; // m_held_bits = src.m_held_bits; // // return *this; //} /** Extract substream from the current bitstream. \param uiNumBits number of bits to transfer */ InputBitstream *InputBitstream::extractSubstream( uint32_t uiNumBits ) { uint32_t uiNumBytes = uiNumBits/8; InputBitstream *pResult = new InputBitstream; std::vector<uint8_t> &buf = pResult->getFifo(); buf.reserve((uiNumBits+7)>>3); if (m_num_held_bits == 0) { std::size_t currentOutputBufferSize=buf.size(); const uint32_t uiNumBytesToReadFromFifo = std::min<uint32_t>(uiNumBytes, (uint32_t)m_fifo.size() - m_fifo_idx); buf.resize(currentOutputBufferSize+uiNumBytes); memcpy(&(buf[currentOutputBufferSize]), &(m_fifo[m_fifo_idx]), uiNumBytesToReadFromFifo); m_fifo_idx+=uiNumBytesToReadFromFifo; if (uiNumBytesToReadFromFifo != uiNumBytes) { memset(&(buf[currentOutputBufferSize+uiNumBytesToReadFromFifo]), 0, uiNumBytes - uiNumBytesToReadFromFifo); } } else { for (uint32_t ui = 0; ui < uiNumBytes; ui++) { uint32_t uiByte; read(8, uiByte); buf.push_back(uiByte); } } if (uiNumBits&0x7) { uint32_t uiByte = 0; read(uiNumBits&0x7, uiByte); uiByte <<= 8-(uiNumBits&0x7); buf.push_back(uiByte); } return pResult; } uint32_t InputBitstream::readByteAlignment() { uint32_t code = 0; read( 1, code ); CHECK(code != 1, "Code is not '1'"); uint32_t numBits = getNumBitsUntilByteAligned(); if(numBits) { CHECK(numBits > getNumBitsLeft(), "More bits available than left"); read( numBits, code ); CHECK(code != 0, "Code not '0'"); } return numBits+1; } //! \}