Skip to content
Snippets Groups Projects
IntraPrediction.cpp 52.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    /* The copyright in this software is being made available under the BSD
     * License, included below. This software may be subject to other third party
     * and contributor rights, including patent rights, and no such rights are
     * granted under this license.
     *
     * Copyright (c) 2010-2018, ITU/ISO/IEC
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions are met:
     *
     *  * Redistributions of source code must retain the above copyright notice,
     *    this list of conditions and the following disclaimer.
     *  * Redistributions in binary form must reproduce the above copyright notice,
     *    this list of conditions and the following disclaimer in the documentation
     *    and/or other materials provided with the distribution.
     *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
     *    be used to endorse or promote products derived from this software without
     *    specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
     * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     * THE POSSIBILITY OF SUCH DAMAGE.
     */
    
    /** \file     Prediction.cpp
        \brief    prediction class
    */
    
    #include "IntraPrediction.h"
    
    #include "Unit.h"
    #include "UnitTools.h"
    #include "Buffer.h"
    
    #include "dtrace_next.h"
    #include "Rom.h"
    
    #include <memory.h>
    
    //! \ingroup CommonLib
    //! \{
    
    // ====================================================================================================================
    // Tables
    // ====================================================================================================================
    
    const uint8_t IntraPrediction::m_aucIntraFilter[MAX_NUM_CHANNEL_TYPE][MAX_INTRA_FILTER_DEPTHS] =
    {
      { // Luma
        20, //   1xn
        20, //   2xn
        20, //   4xn
        14, //   8xn
        2,  //  16xn
        0,  //  32xn
    #if HM_MDIS_AS_IN_JEM
        20, //  64xn
    #else
        0,  //  64xn
    #endif
        0,  // 128xn
      },
      { // Chroma
        40, //   1xn
        40, //   2xn
        40, //   4xn
        28, //   8xn
        4,  //  16xn
        0,  //  32xn
    #if HM_MDIS_AS_IN_JEM
        40, //  64xn
    #else
        0,  //  64xn
    #endif
        0,  // 128xn
      }
    };
    
    // ====================================================================================================================
    // Constructor / destructor / initialize
    // ====================================================================================================================
    
    IntraPrediction::IntraPrediction()
    :
      m_currChromaFormat( NUM_CHROMA_FORMAT )
    {
      for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
      {
        for (uint32_t buf = 0; buf < NUM_PRED_BUF; buf++)
        {
          m_piYuvExt[ch][buf] = nullptr;
        }
      }
    
      m_piTemp = nullptr;
    }
    
    IntraPrediction::~IntraPrediction()
    {
      destroy();
    }
    
    void IntraPrediction::destroy()
    {
      for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
      {
        for (uint32_t buf = 0; buf < NUM_PRED_BUF; buf++)
        {
          delete[] m_piYuvExt[ch][buf];
          m_piYuvExt[ch][buf] = nullptr;
        }
      }
    
      delete[] m_piTemp;
      m_piTemp = nullptr;
    }
    
    void IntraPrediction::init(ChromaFormat chromaFormatIDC, const unsigned bitDepthY)
    {
      // if it has been initialised before, but the chroma format has changed, release the memory and start again.
      if (m_piYuvExt[COMPONENT_Y][PRED_BUF_UNFILTERED] != nullptr && m_currChromaFormat != chromaFormatIDC)
      {
        destroy();
      }
    
      m_currChromaFormat = chromaFormatIDC;
    
      if (m_piYuvExt[COMPONENT_Y][PRED_BUF_UNFILTERED] == nullptr) // check if first is null (in which case, nothing initialised yet)
      {
        m_iYuvExtSize = (MAX_CU_SIZE * 2 + 1) * (MAX_CU_SIZE * 2 + 1);
    
        for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
        {
          for (uint32_t buf = 0; buf < NUM_PRED_BUF; buf++)
          {
            m_piYuvExt[ch][buf] = new Pel[m_iYuvExtSize];
          }
        }
      }
    
      int shift = bitDepthY + 4;
      for (int i = 32; i < 64; i++)
      {
        m_auShiftLM[i - 32] = ((1 << shift) + i / 2) / i;
      }
      if (m_piTemp == nullptr)
      {
        m_piTemp = new Pel[(MAX_CU_SIZE + 1) * (MAX_CU_SIZE + 1)];
      }
    }
    
    // ====================================================================================================================
    // Public member functions
    // ====================================================================================================================
    
    // Function for calculating DC value of the reference samples used in Intra prediction
    //NOTE: Bit-Limit - 25-bit source
    Pel IntraPrediction::xGetPredValDc( const CPelBuf &pSrc, const Size &dstSize )
    {
      CHECK( dstSize.width == 0 || dstSize.height == 0, "Empty area provided" );
    
      int idx, sum = 0;
      Pel dcVal;
      const int width  = dstSize.width;
      const int height = dstSize.height;
      const auto denom     = (width == height) ? (width << 1) : std::max(width,height);
      const auto divShift  = g_aucLog2[denom];
      const auto divOffset = (denom >> 1);
    
      if ( width >= height )
      {
      for( idx = 0; idx < width; idx++ )
      {
        sum += pSrc.at( 1 + idx, 0 );
      }
      }
      if ( width <= height )
      {   
      for( idx = 0; idx < height; idx++ )
      {
        sum += pSrc.at( 0, 1 + idx );
      }  
      }
    
      dcVal = (sum + divOffset) >> divShift;
      return dcVal;
    }
    
      int IntraPrediction::getWideAngle( int width, int height, int predMode )
      {
        if ( predMode > DC_IDX && predMode <= VDIA_IDX )
        {
          int modeShift = (std::min(2, abs(g_aucLog2[width] - g_aucLog2[height])) << 2) + 2;
          if ( width > height && predMode < 2 + modeShift )
          {
            predMode += (VDIA_IDX - 1);
          }
          else if ( height > width && predMode > VDIA_IDX - modeShift )
          {
            predMode -= (VDIA_IDX - 1);
          }
        }
        return predMode;
      }
    
      void IntraPrediction::setReferenceArrayLengths( const CompArea &area )
      {
        // set Top and Left reference samples length
        const int  width    = area.width;
        const int  height   = area.height;
        int blockShapeRatio = std::min(2, abs(g_aucLog2[width] - g_aucLog2[height]));
    
        m_leftRefLength     = (height << 1);
        m_topRefLength      = (width << 1);
        if( width > height )
        {
          m_leftRefLength  += (width >> blockShapeRatio) - height + ((width + 31) >> 5);
        }
        else if( height > width )
        {
          m_topRefLength   += (height >> blockShapeRatio) - width + ((height + 31) >> 5);
        }
    
      }
    
    void IntraPrediction::predIntraAng( const ComponentID compId, PelBuf &piPred, const PredictionUnit &pu, const bool useFilteredPredSamples )
    {
      const ComponentID    compID       = MAP_CHROMA( compId );
      const ChannelType    channelType  = toChannelType( compID );
      const int            iWidth       = piPred.width;
      const int            iHeight      = piPred.height;
      const uint32_t           uiDirMode    = PU::getFinalIntraMode( pu, channelType );
    
    
      CHECK( g_aucLog2[iWidth] < 2 && pu.cs->pcv->noChroma2x2, "Size not allowed" );
      CHECK( g_aucLog2[iWidth] > 7, "Size not allowed" );
      CHECK( iWidth != iHeight && !pu.cs->pcv->rectCUs, "Rectangular block are only allowed with QTBT" );
    
      const int  srcStride  = m_topRefLength  + 1;
      const int  srcHStride = m_leftRefLength + 1;
    
      Pel *ptrSrc = getPredictorPtr(compID, useFilteredPredSamples);
      const ClpRng& clpRng(pu.cu->cs->slice->clpRng(compID));
    
      switch (uiDirMode)
      {
        case(PLANAR_IDX): xPredIntraPlanar(CPelBuf(ptrSrc, srcStride, srcHStride), piPred, *pu.cs->sps); break;
        case(DC_IDX):     xPredIntraDc(CPelBuf(ptrSrc, srcStride, srcHStride), piPred, channelType, false); break;
        default:          xPredIntraAng(CPelBuf(ptrSrc, srcStride, srcHStride), piPred, channelType, uiDirMode, clpRng, *pu.cs->sps, false); break;
      }
    
      bool pdpcCondition = (uiDirMode == PLANAR_IDX || uiDirMode == DC_IDX || uiDirMode == HOR_IDX || uiDirMode == VER_IDX);
      if (pdpcCondition)
      {
        const CPelBuf srcBuf = CPelBuf(ptrSrc, srcStride, srcStride);
        PelBuf dstBuf = piPred;
        const int scale = ((g_aucLog2[iWidth] - 2 + g_aucLog2[iHeight] - 2 + 2) >> 2);
        CHECK(scale < 0 || scale > 31, "PDPC: scale < 0 || scale > 31");
    
        if (uiDirMode == PLANAR_IDX)
        {
          for (int y = 0; y < iHeight; y++)
          {
            int wT = 32 >> std::min(31, ((y << 1) >> scale));
            const Pel left = srcBuf.at(0, y + 1);
            for (int x = 0; x < iWidth; x++)
            {
              const Pel top = srcBuf.at(x + 1, 0);
              int wL = 32 >> std::min(31, ((x << 1) >> scale));
              dstBuf.at(x, y) = ClipPel((wL * left + wT * top + (64 - wL - wT) * dstBuf.at(x, y) + 32) >> 6, clpRng);
            }
          }
        }
        else if (uiDirMode == DC_IDX)
        {
          const Pel topLeft = srcBuf.at(0, 0);
          for (int y = 0; y < iHeight; y++)
          {
            int wT = 32 >> std::min(31, ((y << 1) >> scale));
            const Pel left = srcBuf.at(0, y + 1);
            for (int x = 0; x < iWidth; x++)
            {
              const Pel top = srcBuf.at(x + 1, 0);
              int wL = 32 >> std::min(31, ((x << 1) >> scale));
              int wTL = (wL >> 4) + (wT >> 4);
              dstBuf.at(x, y) = ClipPel((wL * left + wT * top - wTL * topLeft + (64 - wL - wT + wTL) * dstBuf.at(x, y) + 32) >> 6, clpRng);
            }
          }
        }
        else if (uiDirMode == HOR_IDX)
        {
          const Pel topLeft = srcBuf.at(0, 0);
          for (int y = 0; y < iHeight; y++)
          {
            int wT = 32 >> std::min(31, ((y << 1) >> scale));
            for (int x = 0; x < iWidth; x++)
            {
              const Pel top = srcBuf.at(x + 1, 0);
              int wTL = wT;
              dstBuf.at(x, y) = ClipPel((wT * top - wTL * topLeft + (64 - wT + wTL) * dstBuf.at(x, y) + 32) >> 6, clpRng);
            }
          }
        }
        else if (uiDirMode == VER_IDX)
        {
          const Pel topLeft = srcBuf.at(0, 0);
          for (int y = 0; y < iHeight; y++)
          {
            const Pel left = srcBuf.at(0, y + 1);
            for (int x = 0; x < iWidth; x++)
            {
              int wL = 32 >> std::min(31, ((x << 1) >> scale));
              int wTL = wL;
              dstBuf.at(x, y) = ClipPel((wL * left - wTL * topLeft + (64 - wL + wTL) * dstBuf.at(x, y) + 32) >> 6, clpRng);
            }
          }
        }
      }
    }
    void IntraPrediction::predIntraChromaLM(const ComponentID compID, PelBuf &piPred, const PredictionUnit &pu, const CompArea& chromaArea, int intraDir)
    {
      int  iLumaStride = 0;
      PelBuf Temp;
      iLumaStride = MAX_CU_SIZE + 1;
      Temp = PelBuf(m_piTemp + iLumaStride + 1, iLumaStride, Size(chromaArea));
      int a, b, iShift;
      xGetLMParameters(pu, compID, chromaArea, a, b, iShift);
    
      ////// final prediction
      piPred.copyFrom(Temp);
      piPred.linearTransform(a, iShift, b, true, pu.cs->slice->clpRng(compID));
    }
    
    void IntraPrediction::xFilterGroup(Pel* pMulDst[], int i, Pel const * const piSrc, int iRecStride, bool bAboveAvaillable, bool bLeftAvaillable)
    {
      pMulDst[0][i] = (piSrc[1] + piSrc[iRecStride + 1] + 1) >> 1;
    
      pMulDst[1][i] = (piSrc[iRecStride] + piSrc[iRecStride + 1] + 1) >> 1;
    
      pMulDst[3][i] = (piSrc[0] + piSrc[1] + 1) >> 1;
    
      pMulDst[2][i] = (piSrc[0] + piSrc[1] + piSrc[iRecStride] + piSrc[iRecStride + 1] + 2) >> 2;
    
    }
    
    
    
    /** Function for deriving planar intra prediction. This function derives the prediction samples for planar mode (intra coding).
     */
    
    //NOTE: Bit-Limit - 24-bit source
    void IntraPrediction::xPredIntraPlanar( const CPelBuf &pSrc, PelBuf &pDst, const SPS& sps )
    {
      const uint32_t width  = pDst.width;
      const uint32_t height = pDst.height;
      const uint32_t log2W  = g_aucLog2[ width ];
      const uint32_t log2H  = g_aucLog2[ height ];
    
      int leftColumn[MAX_CU_SIZE + 1], topRow[MAX_CU_SIZE + 1], bottomRow[MAX_CU_SIZE], rightColumn[MAX_CU_SIZE];
      const uint32_t offset = width * height;
    
      // Get left and above reference column and row
      for( int k = 0; k < width + 1; k++ )
      {
        topRow[k] = pSrc.at( k + 1, 0 );
      }
    
      for( int k = 0; k < height + 1; k++ )
      {
        leftColumn[k] = pSrc.at( 0, k + 1 );
      }
    
      // Prepare intermediate variables used in interpolation
      int bottomLeft = leftColumn[height];
      int topRight = topRow[width];
    
      for( int k = 0; k < width; k++ )
      {
        bottomRow[k] = bottomLeft - topRow[k];
        topRow[k]    = topRow[k] << log2H;
      }
    
      for( int k = 0; k < height; k++ )
      {
        rightColumn[k] = topRight - leftColumn[k];
        leftColumn[k]  = leftColumn[k] << log2W;
      }
    
      const uint32_t finalShift = 1 + log2W + log2H;
      const uint32_t stride     = pDst.stride;
      Pel*       pred       = pDst.buf;
      for( int y = 0; y < height; y++, pred += stride )
      {
        int horPred = leftColumn[y];
    
        for( int x = 0; x < width; x++ )
        {
          horPred += rightColumn[y];
          topRow[x] += bottomRow[x];
    
          int vertPred = topRow[x];
          pred[x]      = ( ( horPred << log2H ) + ( vertPred << log2W ) + offset ) >> finalShift;
        }
      }
    }
    
    
    
    
    void IntraPrediction::xPredIntraDc( const CPelBuf &pSrc, PelBuf &pDst, const ChannelType channelType, const bool enableBoundaryFilter )
    {
      const Pel dcval = xGetPredValDc( pSrc, pDst );
      pDst.fill( dcval );
    
    #if HEVC_USE_DC_PREDFILTERING
      if( enableBoundaryFilter )
      {
        xDCPredFiltering( pSrc, pDst, channelType );
      }
    #endif
    }
    
    #if HEVC_USE_DC_PREDFILTERING
    /** Function for filtering intra DC predictor. This function performs filtering left and top edges of the prediction samples for DC mode (intra coding).
     */
    void IntraPrediction::xDCPredFiltering(const CPelBuf &pSrc, PelBuf &pDst, const ChannelType &channelType)
    {
      uint32_t iWidth = pDst.width;
      uint32_t iHeight = pDst.height;
      int x, y;
    
      if (isLuma(channelType) && (iWidth <= MAXIMUM_INTRA_FILTERED_WIDTH) && (iHeight <= MAXIMUM_INTRA_FILTERED_HEIGHT))
      {
        //top-left
        pDst.at(0, 0) = (Pel)((pSrc.at(1, 0) + pSrc.at(0, 1) + 2 * pDst.at(0, 0) + 2) >> 2);
    
        //top row (vertical filter)
        for ( x = 1; x < iWidth; x++ )
        {
          pDst.at(x, 0) = (Pel)((pSrc.at(x + 1, 0)  +  3 * pDst.at(x, 0) + 2) >> 2);
        }
    
        //left column (horizontal filter)
        for ( y = 1; y < iHeight; y++ )
        {
          pDst.at(0, y) = (Pel)((pSrc.at(0, y + 1) + 3 * pDst.at(0, y) + 2) >> 2);
        }
      }
    
      return;
    }
    #endif
    
    // Function for deriving the angular Intra predictions
    
    /** Function for deriving the simplified angular intra predictions.
    *
    * This function derives the prediction samples for the angular mode based on the prediction direction indicated by
    * the prediction mode index. The prediction direction is given by the displacement of the bottom row of the block and
    * the reference row above the block in the case of vertical prediction or displacement of the rightmost column
    * of the block and reference column left from the block in the case of the horizontal prediction. The displacement
    * is signalled at 1/32 pixel accuracy. When projection of the predicted pixel falls inbetween reference samples,
    * the predicted value for the pixel is linearly interpolated from the reference samples. All reference samples are taken
    * from the extended main reference.
    */
    //NOTE: Bit-Limit - 25-bit source
    #if HEVC_USE_HOR_VER_PREDFILTERING
    void IntraPrediction::xPredIntraAng( const CPelBuf &pSrc, PelBuf &pDst, const ChannelType channelType, const uint32_t dirMode, const ClpRng& clpRng, const bool bEnableEdgeFilters, const SPS& sps, const bool enableBoundaryFilter )
    #else
    void IntraPrediction::xPredIntraAng( const CPelBuf &pSrc, PelBuf &pDst, const ChannelType channelType, const uint32_t dirMode, const ClpRng& clpRng, const SPS& sps, const bool enableBoundaryFilter )
    #endif
    {
      int width =int(pDst.width);
      int height=int(pDst.height);
    
      CHECK( !( dirMode > DC_IDX && dirMode < NUM_LUMA_MODE ), "Invalid intra dir" );
    
      int              predMode           = getWideAngle(width, height, dirMode);
      const bool       bIsModeVer         = predMode >= DIA_IDX;
      const int        intraPredAngleMode = (bIsModeVer) ? predMode - VER_IDX : -(predMode - HOR_IDX);
      const int        absAngMode         = abs(intraPredAngleMode);
      const int        signAng            = intraPredAngleMode < 0 ? -1 : 1;
    #if HEVC_USE_HOR_VER_PREDFILTERING
      const bool       edgeFilter         = bEnableEdgeFilters && isLuma(channelType) && (width <= MAXIMUM_INTRA_FILTERED_WIDTH) && (height <= MAXIMUM_INTRA_FILTERED_HEIGHT);
    #endif
    
      // Set bitshifts and scale the angle parameter to block size
    
      static const int angTable[27]    = { 0,    1,    2,    3,    5,    7,    9,   11,   13,   15,   17,   19,   21,   23,   26,   29,   32,   35,  39,  45,  49,  54,  60,  68,  79,  93, 114 };
      static const int invAngTable[27] = { 0, 8192, 4096, 2731, 1638, 1170,  910,  745,  630,  546,  482,  431,  390,  356,  315,  282,  256,  234, 210, 182, 167, 152, 137, 120, 104,  88,  72 }; // (256 * 32) / Angle
    
      int invAngle                    = invAngTable[absAngMode];
      int absAng                      = angTable   [absAngMode];
      int intraPredAngle              = signAng * absAng;
    
      Pel* refMain;
      Pel* refSide;
    
      Pel  refAbove[2 * MAX_CU_SIZE + 1];
      Pel  refLeft [2 * MAX_CU_SIZE + 1];
    
    
      // Initialize the Main and Left reference array.
      if (intraPredAngle < 0)
      {
        for( int x = 0; x < width + 1; x++ )
        {
          refAbove[x + height - 1] = pSrc.at( x, 0 );
        }
        for( int y = 0; y < height + 1; y++ )
        {
          refLeft[y + width - 1] = pSrc.at( 0, y );
        }
        refMain = (bIsModeVer ? refAbove + height : refLeft  + width ) - 1;
        refSide = (bIsModeVer ? refLeft  + width  : refAbove + height) - 1;
    
        // Extend the Main reference to the left.
        int invAngleSum    = 128;       // rounding for (shift by 8)
        const int refMainOffsetPreScale = bIsModeVer ? height : width;
        for( int k = -1; k > (refMainOffsetPreScale * intraPredAngle) >> 5; k-- )
        {
          invAngleSum += invAngle;
          refMain[k] = refSide[invAngleSum>>8];
        }
      }
      else
      {
        for( int x = 0; x < m_topRefLength + 1; x++ )
        {
          refAbove[x] = pSrc.at(x, 0);
        }
        for( int y = 0; y < m_leftRefLength + 1; y++ )
        {
          refLeft[y]  = pSrc.at(0, y);
        }
        refMain = bIsModeVer ? refAbove : refLeft ;
        refSide = bIsModeVer ? refLeft  : refAbove;
      }
    
      // swap width/height if we are doing a horizontal mode:
      Pel tempArray[MAX_CU_SIZE*MAX_CU_SIZE];
      const int dstStride = bIsModeVer ? pDst.stride : MAX_CU_SIZE;
      Pel *pDstBuf = bIsModeVer ? pDst.buf : tempArray;
      if (!bIsModeVer)
      {
        std::swap(width, height);
      }
    
    
      if( intraPredAngle == 0 )  // pure vertical or pure horizontal
      {
        for( int y = 0; y < height; y++ )
        {
          for( int x = 0; x < width; x++ )
          {
            pDstBuf[y*dstStride + x] = refMain[x + 1];
          }
        }
    #if HEVC_USE_HOR_VER_PREDFILTERING
        if (edgeFilter)
        {
          for( int y = 0; y < height; y++ )
          {
            pDstBuf[y*dstStride] = ClipPel( pDstBuf[y*dstStride] + ( ( refSide[y + 1] - refSide[0] ) >> 1 ), clpRng );
          }
        }
    #endif
      }
      else
      {
        Pel *pDsty=pDstBuf;
    
        for (int y=0, deltaPos=intraPredAngle; y<height; y++, deltaPos+=intraPredAngle, pDsty+=dstStride)
        {
          const int deltaInt   = deltaPos >> 5;
          const int deltaFract = deltaPos & (32 - 1);
    
    #if HM_4TAPIF_AS_IN_JEM
          if( deltaFract )
    #else
          if( absAng < 32 )
    #endif
          {
            {
              // Do linear filtering
              const Pel *pRM = refMain + deltaInt + 1;
              int lastRefMainPel = *pRM++;
              for( int x = 0; x < width; pRM++, x++ )
              {
                int thisRefMainPel = *pRM;
                pDsty[x + 0] = ( Pel ) ( ( ( 32 - deltaFract )*lastRefMainPel + deltaFract*thisRefMainPel + 16 ) >> 5 );
                lastRefMainPel = thisRefMainPel;
              }
            }
          }
          else
          {
            // Just copy the integer samples
            for( int x = 0; x < width; x++ )
            {
              pDsty[x] = refMain[x + deltaInt + 1];
            }
          }
          const int numModes = 8;
          const int scale = ((g_aucLog2[width] - 2 + g_aucLog2[height] - 2 + 2) >> 2);
          CHECK(scale < 0 || scale > 31, "PDPC: scale < 0 || scale > 31");
    
          if (predMode == 2 || predMode == VDIA_IDX)
          {
            int wT = 16 >> std::min(31, ((y << 1) >> scale));
    
            for (int x = 0; x < width; x++)
            {
              int wL = 16 >> std::min(31, ((x << 1) >> scale));
              if (wT + wL == 0) break;
    
              int c = x + y + 1;
    
              const Pel left = (wL != 0) ? refSide[c + 1] : 0;
              const Pel top  = (wT != 0) ? refMain[c + 1] : 0;
    
    
              pDsty[x] = ClipPel((wL * left + wT * top + (64 - wL - wT) * pDsty[x] + 32) >> 6, clpRng);
            }
          }
          else if ((predMode >= VDIA_IDX - numModes && predMode != VDIA_IDX) || (predMode != 2 && predMode <= (2 + numModes)))
          {
            int invAngleSum0 = 2;
            for (int x = 0; x < width; x++)
            {
              invAngleSum0 += invAngle;
              int deltaPos0 = invAngleSum0 >> 2;
              int deltaFrac0 = deltaPos0 & 63;
              int deltaInt0 = deltaPos0 >> 6;
    
              int deltay = y + deltaInt0 + 1;
              if (deltay >(bIsModeVer ? m_leftRefLength : m_topRefLength) - 1) break;
    
              int wL = 32 >> std::min(31, ((x << 1) >> scale));
              if (wL == 0) break;
              Pel *p = refSide + deltay;
    
              Pel left = (((64 - deltaFrac0) * p[0] + deltaFrac0 * p[1] + 32) >> 6);
              pDsty[x] = ClipPel((wL * left + (64 - wL) * pDsty[x] + 32) >> 6, clpRng);
            }
          }
        }
    #if HEVC_USE_HOR_VER_PREDFILTERING
        if( edgeFilter && absAng <= 1 )
        {
          for( int y = 0; y < height; y++ )
          {
            pDstBuf[y*dstStride] = ClipPel( pDstBuf[y*dstStride] + ((refSide[y + 1] - refSide[0]) >> 2), clpRng );
          }
        }
    #endif
      }
    
      // Flip the block if this is the horizontal mode
      if( !bIsModeVer )
      {
        for( int y = 0; y < height; y++ )
        {
          for( int x = 0; x < width; x++ )
          {
            pDst.at( y, x ) = pDstBuf[x];
          }
          pDstBuf += dstStride;
        }
      }
    }
    
    
    bool IntraPrediction::useDPCMForFirstPassIntraEstimation(const PredictionUnit &pu, const uint32_t &uiDirMode)
    {
      return CU::isRDPCMEnabled(*pu.cu) && pu.cu->transQuantBypass && (uiDirMode == HOR_IDX || uiDirMode == VER_IDX);
    }
    
    inline bool isAboveLeftAvailable  ( const CodingUnit &cu, const ChannelType &chType, const Position &posLT );
    inline int  isAboveAvailable      ( const CodingUnit &cu, const ChannelType &chType, const Position &posLT, const uint32_t uiNumUnitsInPU, const uint32_t unitWidth, bool *validFlags );
    inline int  isLeftAvailable       ( const CodingUnit &cu, const ChannelType &chType, const Position &posLT, const uint32_t uiNumUnitsInPU, const uint32_t unitWidth, bool *validFlags );
    inline int  isAboveRightAvailable ( const CodingUnit &cu, const ChannelType &chType, const Position &posRT, const uint32_t uiNumUnitsInPU, const uint32_t unitHeight, bool *validFlags );
    inline int  isBelowLeftAvailable  ( const CodingUnit &cu, const ChannelType &chType, const Position &posLB, const uint32_t uiNumUnitsInPU, const uint32_t unitHeight, bool *validFlags );
    
    void IntraPrediction::initIntraPatternChType(const CodingUnit &cu, const CompArea &area, const bool bFilterRefSamples)
    {
      const CodingStructure& cs   = *cu.cs;
    
      Pel *refBufUnfiltered   = m_piYuvExt[area.compID][PRED_BUF_UNFILTERED];
      Pel *refBufFiltered     = m_piYuvExt[area.compID][PRED_BUF_FILTERED];
    
      setReferenceArrayLengths(area);
    
      // ----- Step 1: unfiltered reference samples -----
      xFillReferenceSamples( cs.picture->getRecoBuf( area ), refBufUnfiltered, area, cu );
      // ----- Step 2: filtered reference samples -----
      if( bFilterRefSamples )
      {
        xFilterReferenceSamples( refBufUnfiltered, refBufFiltered, area, *cs.sps );
      }
    }
    
    void IntraPrediction::xFillReferenceSamples( const CPelBuf &recoBuf, Pel* refBufUnfiltered, const CompArea &area, const CodingUnit &cu )
    {
      const ChannelType      chType = toChannelType( area.compID );
      const CodingStructure &cs     = *cu.cs;
      const SPS             &sps    = *cs.sps;
      const PreCalcValues   &pcv    = *cs.pcv;
    
      const int  tuWidth            = area.width;
      const int  tuHeight           = area.height;
      const int  predSize           = m_topRefLength;
      const int  predHSize          = m_leftRefLength;
      const int  predStride         = predSize + 1;
    
      const bool noShift            = pcv.noChroma2x2 && area.width == 4; // don't shift on the lowest level (chroma not-split)
      const int  unitWidth          = pcv.minCUWidth  >> (noShift ? 0 : getComponentScaleX( area.compID, sps.getChromaFormatIdc() ));
      const int  unitHeight         = pcv.minCUHeight >> (noShift ? 0 : getComponentScaleY( area.compID, sps.getChromaFormatIdc() ));
    
      const int  totalAboveUnits    = (predSize + (unitWidth - 1)) / unitWidth;
      const int  totalLeftUnits     = (predHSize + (unitHeight - 1)) / unitHeight;
      const int  totalUnits         = totalAboveUnits + totalLeftUnits + 1; //+1 for top-left
      const int  numAboveUnits      = std::max<int>( tuWidth / unitWidth, 1 );
      const int  numLeftUnits       = std::max<int>( tuHeight / unitHeight, 1 );
      const int  numAboveRightUnits = totalAboveUnits - numAboveUnits;
      const int  numLeftBelowUnits  = totalLeftUnits - numLeftUnits;
    
      CHECK( numAboveUnits <= 0 || numLeftUnits <= 0 || numAboveRightUnits <= 0 || numLeftBelowUnits <= 0, "Size not supported" );
    
      // ----- Step 1: analyze neighborhood -----
      const Position posLT          = area;
      const Position posRT          = area.topRight();
      const Position posLB          = area.bottomLeft();
    
      bool  neighborFlags[4 * MAX_NUM_PART_IDXS_IN_CTU_WIDTH + 1];
      int   numIntraNeighbor = 0;
    
      memset( neighborFlags, 0, totalUnits );
    
      neighborFlags[totalLeftUnits] = isAboveLeftAvailable( cu, chType, posLT );
      numIntraNeighbor += neighborFlags[totalLeftUnits] ? 1 : 0;
      numIntraNeighbor += isAboveAvailable     ( cu, chType, posLT, numAboveUnits,      unitWidth,  (neighborFlags + totalLeftUnits + 1) );
      numIntraNeighbor += isAboveRightAvailable( cu, chType, posRT, numAboveRightUnits, unitWidth,  (neighborFlags + totalLeftUnits + 1 + numAboveUnits) );
      numIntraNeighbor += isLeftAvailable      ( cu, chType, posLT, numLeftUnits,       unitHeight, (neighborFlags + totalLeftUnits - 1) );
      numIntraNeighbor += isBelowLeftAvailable ( cu, chType, posLB, numLeftBelowUnits,  unitHeight, (neighborFlags + totalLeftUnits - 1 - numLeftUnits) );
    
      // ----- Step 2: fill reference samples (depending on neighborhood) -----
      CHECK((predHSize + 1) * predStride > m_iYuvExtSize, "Reference sample area not supported");
    
      const Pel*  srcBuf    = recoBuf.buf;
      const int   srcStride = recoBuf.stride;
            Pel*  ptrDst    = refBufUnfiltered;
      const Pel*  ptrSrc;
      const Pel   valueDC   = 1 << (sps.getBitDepth( chType ) - 1);
    
    
      if( numIntraNeighbor == 0 )
      {
        // Fill border with DC value
        for( int j = 0; j <= predSize; j++ ) { ptrDst[j]            = valueDC; }
        for( int i = 1; i <= predHSize; i++ ) { ptrDst[i*predStride] = valueDC; }
      }
      else if( numIntraNeighbor == totalUnits )
      {
        // Fill top-left border and top and top right with rec. samples
        ptrSrc = srcBuf - srcStride - 1;
        for( int j = 0; j <= predSize; j++ ) { ptrDst[j] = ptrSrc[j]; }
        // Fill left and below left border with rec. samples
        ptrSrc = srcBuf - 1;
        for( int i = 1; i <= predHSize; i++ ) { ptrDst[i*predStride] = *(ptrSrc); ptrSrc += srcStride; }
      }
      else // reference samples are partially available
      {
        // BB: old implementation using tmpLineBuf
        // ---------------------------------------
        Pel  tmpLineBuf[5 * MAX_CU_SIZE];
        Pel* ptrTmp;
        int  unitIdx;
    
        // Initialize
        const int totalSamples = (totalLeftUnits * unitHeight) + ((totalAboveUnits + 1) * unitWidth); // all above units have "unitWidth" samples each, all left/below-left units have "unitHeight" samples each
        for( int k = 0; k < totalSamples; k++ ) { tmpLineBuf[k] = valueDC; }
    
        // Fill top-left sample
        ptrSrc = srcBuf - srcStride - 1;
        ptrTmp = tmpLineBuf + (totalLeftUnits * unitHeight);
        unitIdx = totalLeftUnits;
        if( neighborFlags[unitIdx] )
        {
          Pel topLeftVal = ptrSrc[0];
          for( int j = 0; j < unitWidth; j++ ) { ptrTmp[j] = topLeftVal; }
        }
    
        // Fill left & below-left samples (downwards)
        ptrSrc += srcStride;
        ptrTmp--;
        unitIdx--;
    
        for( int k = 0; k < totalLeftUnits; k++ )
        {
          if( neighborFlags[unitIdx] )
          {
            for( int i = 0; i < unitHeight; i++ ) { ptrTmp[-i] = ptrSrc[i*srcStride]; }
          }
          ptrSrc += unitHeight*srcStride;
          ptrTmp -= unitHeight;
          unitIdx--;
        }
    
        // Fill above & above-right samples (left-to-right) (each unit has "unitWidth" samples)
        ptrSrc = srcBuf - srcStride;
        ptrTmp = tmpLineBuf + (totalLeftUnits * unitHeight) + unitWidth; // offset line buffer by totalLeftUnits*unitHeight (for left/below-left) + unitWidth (for above-left)
        unitIdx = totalLeftUnits + 1;
        for( int k = 0; k < totalAboveUnits; k++ )
        {
          if( neighborFlags[unitIdx] )
          {
            for( int j = 0; j < unitWidth; j++ ) { ptrTmp[j] = ptrSrc[j]; }
          }
          ptrSrc += unitWidth;
          ptrTmp += unitWidth;
          unitIdx++;
        }
    
        // Pad reference samples when necessary
        int  currUnit       = 0;
        Pel* ptrTmpCurrUnit = tmpLineBuf;
    
        if( !neighborFlags[0] )
        {
          int nextUnit = 1;
          while( nextUnit < totalUnits && !neighborFlags[nextUnit] )
          {
            nextUnit++;
          }
          Pel* ptrTmpRef = tmpLineBuf + ((nextUnit < totalLeftUnits) ? (nextUnit * unitHeight) : ((totalLeftUnits * (unitHeight - unitWidth)) + (nextUnit * unitWidth)));
          const Pel refSample = *ptrTmpRef;
          // Pad unavailable samples with new value
          // fill left column
          while( currUnit < std::min<int>( nextUnit, totalLeftUnits ) )
          {
            for( int i = 0; i < unitHeight; i++ ) { ptrTmpCurrUnit[i] = refSample; }
            ptrTmpCurrUnit += unitHeight;
            currUnit++;
          }
          // fill top row
          while( currUnit < nextUnit )
          {
            for( int j = 0; j < unitWidth; j++ ) { ptrTmpCurrUnit[j] = refSample; }
            ptrTmpCurrUnit += unitWidth;
            currUnit++;
          }
        }
    
        // pad all other reference samples.
        while( currUnit < totalUnits )
        {
          const int numSamplesInCurrUnit = (currUnit >= totalLeftUnits) ? unitWidth : unitHeight;
          if( !neighborFlags[currUnit] ) // samples not available
          {
            const Pel refSample = *(ptrTmpCurrUnit - 1);
            for( int k = 0; k < numSamplesInCurrUnit; k++ ) { ptrTmpCurrUnit[k] = refSample; }
    
          }
          ptrTmpCurrUnit += numSamplesInCurrUnit;
          currUnit++;
        }
    
        // Copy processed samples
        ptrTmp = tmpLineBuf + (totalLeftUnits * unitHeight) + (unitWidth - 1);
        for( int j = 0; j <= predSize; j++ ) { ptrDst[j] = ptrTmp[j]; } // top left, top and top right samples
    
        ptrTmp = tmpLineBuf + (totalLeftUnits * unitHeight);
        for( int i = 1; i <= predHSize; i++ ) { ptrDst[i*predStride] = ptrTmp[-i]; }
      }
    }
    
    void IntraPrediction::xFilterReferenceSamples( const Pel* refBufUnfiltered, Pel* refBufFiltered, const CompArea &area, const SPS &sps )
    {
      const int  predSize   = m_topRefLength;
      const int  predHSize  = m_leftRefLength;
      const int  predStride = predSize + 1;
    
    
    #if HEVC_USE_INTRA_SMOOTHING_T32 || HEVC_USE_INTRA_SMOOTHING_T64
      // Strong intra smoothing
      ChannelType chType = toChannelType( area.compID );
      if( sps.getUseStrongIntraSmoothing() && isLuma( chType ) )
      {
        const Pel bottomLeft = refBufUnfiltered[predStride * predHSize];
        const Pel topLeft    = refBufUnfiltered[0];
        const Pel topRight   = refBufUnfiltered[predSize];
    
        const int  threshold     = 1 << (sps.getBitDepth( chType ) - 5);
        const bool bilinearLeft  = abs( (bottomLeft + topLeft)  - (2 * refBufUnfiltered[predStride * tuHeight]) ) < threshold; //difference between the
        const bool bilinearAbove = abs( (topLeft    + topRight) - (2 * refBufUnfiltered[             tuWidth ]) ) < threshold; //ends and the middle
    
        if( tuWidth >= 32 && tuHeight >= 32 && bilinearLeft && bilinearAbove )
    #if !HEVC_USE_INTRA_SMOOTHING_T32
        if( tuWidth > 32 && tuHeight > 32 )
    #endif
    #if !HEVC_USE_INTRA_SMOOTHING_T64
        if( tuWidth < 64 && tuHeight < 64 )
    #endif
        {
          Pel *piDestPtr = refBufFiltered + (predStride * predHSize); // bottom left
    
          // apply strong intra smoothing
          for (int i = 0; i < predHSize; i++, piDestPtr -= predStride) //left column (bottom to top)
          {
            *piDestPtr = (((predHSize - i) * bottomLeft) + (i * topLeft) + predHSize / 2) / predHSize;
          }
          for( uint32_t i = 0; i <= predSize; i++, piDestPtr++ )            //full top row (left-to-right)
          {
            *piDestPtr = (((predSize - i) * topLeft) + (i * topRight) + predSize / 2) / predSize;
          }
    
          return;
        }
      }
    #endif
    
      // Regular reference sample filter
      const Pel *piSrcPtr  = refBufUnfiltered + (predStride * predHSize); // bottom left
            Pel *piDestPtr = refBufFiltered   + (predStride * predHSize); // bottom left
    
      // bottom left (not filtered)
      *piDestPtr = *piSrcPtr;
      piDestPtr -= predStride;
      piSrcPtr  -= predStride;
      //left column (bottom to top)
      for( int i = 1; i < predHSize; i++, piDestPtr -= predStride, piSrcPtr -= predStride)
      {
        *piDestPtr = (piSrcPtr[predStride] + 2 * piSrcPtr[0] + piSrcPtr[-predStride] + 2) >> 2;
      }
      //top-left
      *piDestPtr = (piSrcPtr[predStride] + 2 * piSrcPtr[0] + piSrcPtr[1] + 2) >> 2;
      piDestPtr++;
      piSrcPtr++;
      //top row (left-to-right)
      for( uint32_t i=1; i < predSize; i++, piDestPtr++, piSrcPtr++ )
      {
        *piDestPtr = (piSrcPtr[1] + 2 * piSrcPtr[0] + piSrcPtr[-1] + 2) >> 2;
      }
      // top right (not filtered)
      *piDestPtr=*piSrcPtr;
    }
    
    bool IntraPrediction::useFilteredIntraRefSamples( const ComponentID &compID, const PredictionUnit &pu, bool modeSpecific, const UnitArea &tuArea )
    {
      const SPS         &sps    = *pu.cs->sps;
      const ChannelType  chType = toChannelType( compID );
    
      // high level conditions
      if( sps.getSpsRangeExtension().getIntraSmoothingDisabledFlag() )                                       { return false; }
      if( !isLuma( chType ) && pu.chromaFormat != CHROMA_444 )                                               { return false; }
    
    
      if( !modeSpecific )                                                                                    { return true; }
    
      // pred. mode related conditions
      const int dirMode = PU::getFinalIntraMode( pu, chType );
      int predMode = getWideAngle(tuArea.blocks[compID].width, tuArea.blocks[compID].height, dirMode);
      if (predMode != dirMode && (predMode < 2 || predMode > VDIA_IDX))                                      { return true; }
      if (dirMode == DC_IDX)                                                                                 { return false; }
      if (dirMode == PLANAR_IDX)
      {
        return tuArea.blocks[compID].width * tuArea.blocks[compID].height > 32 ? true : false;
      }
    
      int diff = std::min<int>( abs( dirMode - HOR_IDX ), abs( dirMode - VER_IDX ) );
      int log2Size = ((g_aucLog2[tuArea.blocks[compID].width] + g_aucLog2[tuArea.blocks[compID].height]) >> 1);
      CHECK( log2Size >= MAX_INTRA_FILTER_DEPTHS, "Size not supported" );
      return (diff > m_aucIntraFilter[chType][log2Size]);
    }
    
    
    bool isAboveLeftAvailable(const CodingUnit &cu, const ChannelType &chType, const Position &posLT)
    {
      const CodingStructure& cs = *cu.cs;
      const Position refPos = posLT.offset(-1, -1);
      const CodingUnit* pcCUAboveLeft = cs.isDecomp( refPos, chType ) ? cs.getCURestricted( refPos, cu, chType ) : nullptr;
      const bool isConstrained = cs.pps->getConstrainedIntraPred();
      bool bAboveLeftFlag;
    
      if (isConstrained)
      {
        bAboveLeftFlag = pcCUAboveLeft && CU::isIntra(*pcCUAboveLeft);
      }
      else
      {
        bAboveLeftFlag = (pcCUAboveLeft ? true : false);
      }