Forked from
jvet / VVCSoftware_VTM
4689 commits behind the upstream repository.
IntraPrediction.cpp 68.01 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2020, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file Prediction.cpp
\brief prediction class
*/
#include "IntraPrediction.h"
#include "Unit.h"
#include "UnitTools.h"
#include "Buffer.h"
#include "dtrace_next.h"
#include "Rom.h"
#include <memory.h>
#include "CommonLib/InterpolationFilter.h"
//! \ingroup CommonLib
//! \{
// ====================================================================================================================
// Tables
// ====================================================================================================================
const uint8_t IntraPrediction::m_aucIntraFilter[MAX_INTRA_FILTER_DEPTHS] =
{
24, // 1xn
24, // 2xn
24, // 4xn
14, // 8xn
2, // 16xn
0, // 32xn
0, // 64xn
0 // 128xn
};
// ====================================================================================================================
// Constructor / destructor / initialize
// ====================================================================================================================
IntraPrediction::IntraPrediction()
:
m_currChromaFormat( NUM_CHROMA_FORMAT )
{
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
for (uint32_t buf = 0; buf < 4; buf++)
{
m_yuvExt2[ch][buf] = nullptr;
}
}
m_piTemp = nullptr;
m_pMdlmTemp = nullptr;
}
IntraPrediction::~IntraPrediction()
{
destroy();
}
void IntraPrediction::destroy()
{
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
for (uint32_t buf = 0; buf < 4; buf++)
{
delete[] m_yuvExt2[ch][buf];
m_yuvExt2[ch][buf] = nullptr;
}
}
delete[] m_piTemp;
m_piTemp = nullptr;
delete[] m_pMdlmTemp;
m_pMdlmTemp = nullptr;
}
void IntraPrediction::init(ChromaFormat chromaFormatIDC, const unsigned bitDepthY)
{
if (m_yuvExt2[COMPONENT_Y][0] != nullptr && m_currChromaFormat != chromaFormatIDC)
{
destroy();
}
m_currChromaFormat = chromaFormatIDC;
if (m_yuvExt2[COMPONENT_Y][0] == nullptr) // check if first is null (in which case, nothing initialised yet)
{
m_yuvExtSize2 = (MAX_CU_SIZE) * (MAX_CU_SIZE);
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
for (uint32_t buf = 0; buf < 4; buf++)
{
m_yuvExt2[ch][buf] = new Pel[m_yuvExtSize2];
}
}
}
if (m_piTemp == nullptr)
{
m_piTemp = new Pel[(MAX_CU_SIZE + 1) * (MAX_CU_SIZE + 1)];
}
if (m_pMdlmTemp == nullptr)
{
m_pMdlmTemp = new Pel[(2 * MAX_CU_SIZE + 1)*(2 * MAX_CU_SIZE + 1)];//MDLM will use top-above and left-below samples.
}
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
// Function for calculating DC value of the reference samples used in Intra prediction
//NOTE: Bit-Limit - 25-bit source
Pel IntraPrediction::xGetPredValDc( const CPelBuf &pSrc, const Size &dstSize )
{
CHECK( dstSize.width == 0 || dstSize.height == 0, "Empty area provided" );
int idx, sum = 0;
Pel dcVal;
const int width = dstSize.width;
const int height = dstSize.height;
const auto denom = (width == height) ? (width << 1) : std::max(width,height);
const auto divShift = floorLog2(denom);
const auto divOffset = (denom >> 1);
if ( width >= height )
{
for( idx = 0; idx < width; idx++ )
{
sum += pSrc.at(m_ipaParam.multiRefIndex + 1 + idx, 0);
}
}
if ( width <= height )
{
for( idx = 0; idx < height; idx++ )
{
sum += pSrc.at(m_ipaParam.multiRefIndex + 1 + idx, 1);
}
}
dcVal = (sum + divOffset) >> divShift;
return dcVal;
}
int IntraPrediction::getWideAngle( int width, int height, int predMode )
{
if ( predMode > DC_IDX && predMode <= VDIA_IDX )
{
int modeShift[] = { 0, 6, 10, 12, 14, 15 };
int deltaSize = abs(floorLog2(width) - floorLog2(height));
if (width > height && predMode < 2 + modeShift[deltaSize])
{
predMode += (VDIA_IDX - 1);
}
else if (height > width && predMode > VDIA_IDX - modeShift[deltaSize])
{
predMode -= (VDIA_IDX - 1);
}
}
return predMode;
}
void IntraPrediction::setReferenceArrayLengths( const CompArea &area )
{
// set Top and Left reference samples length
const int width = area.width;
const int height = area.height;
m_leftRefLength = (height << 1);
m_topRefLength = (width << 1);
}
void IntraPrediction::predIntraAng( const ComponentID compId, PelBuf &piPred, const PredictionUnit &pu)
{
const ComponentID compID = MAP_CHROMA( compId );
const ChannelType channelType = toChannelType( compID );
const int iWidth = piPred.width;
const int iHeight = piPred.height;
CHECK(iWidth == 2, "Width of 2 is not supported");
const uint32_t uiDirMode = isLuma( compId ) && pu.cu->bdpcmMode ? BDPCM_IDX : !isLuma(compId) && pu.cu->bdpcmModeChroma ? BDPCM_IDX : PU::getFinalIntraMode(pu, channelType);
CHECK( floorLog2(iWidth) < 2 && pu.cs->pcv->noChroma2x2, "Size not allowed" );
CHECK( floorLog2(iWidth) > 7, "Size not allowed" );
const int srcStride = m_refBufferStride[compID];
const int srcHStride = 2;
const CPelBuf & srcBuf = CPelBuf(getPredictorPtr(compID), srcStride, srcHStride);
const ClpRng& clpRng(pu.cu->cs->slice->clpRng(compID));
switch (uiDirMode)
{
case(PLANAR_IDX): xPredIntraPlanar(srcBuf, piPred); break;
case(DC_IDX): xPredIntraDc(srcBuf, piPred, channelType, false); break;
case(BDPCM_IDX): xPredIntraBDPCM(srcBuf, piPred, isLuma(compID) ? pu.cu->bdpcmMode : pu.cu->bdpcmModeChroma, clpRng); break;
default: xPredIntraAng(srcBuf, piPred, channelType, clpRng); break;
}
if (m_ipaParam.applyPDPC)
{
PelBuf dstBuf = piPred;
const int scale = ((floorLog2(iWidth) - 2 + floorLog2(iHeight) - 2 + 2) >> 2);
CHECK(scale < 0 || scale > 31, "PDPC: scale < 0 || scale > 31");
if (uiDirMode == PLANAR_IDX || uiDirMode == DC_IDX)
{
for (int y = 0; y < iHeight; y++)
{
const int wT = 32 >> std::min(31, ((y << 1) >> scale));
const Pel left = srcBuf.at(y + 1, 1);
for (int x = 0; x < iWidth; x++)
{
const int wL = 32 >> std::min(31, ((x << 1) >> scale));
const Pel top = srcBuf.at(x + 1, 0);
const Pel val = dstBuf.at(x, y);
dstBuf.at(x, y) = val + ((wL * (left - val) + wT * (top - val) + 32) >> 6);
}
}
}
}
}
void IntraPrediction::predIntraChromaLM(const ComponentID compID, PelBuf &piPred, const PredictionUnit &pu, const CompArea& chromaArea, int intraDir)
{
int iLumaStride = 0;
PelBuf Temp;
if ((intraDir == MDLM_L_IDX) || (intraDir == MDLM_T_IDX))
{
iLumaStride = 2 * MAX_CU_SIZE + 1;
Temp = PelBuf(m_pMdlmTemp + iLumaStride + 1, iLumaStride, Size(chromaArea));
}
else
{
iLumaStride = MAX_CU_SIZE + 1;
Temp = PelBuf(m_piTemp + iLumaStride + 1, iLumaStride, Size(chromaArea));
}
int a, b, iShift;
xGetLMParameters(pu, compID, chromaArea, a, b, iShift);
////// final prediction
piPred.copyFrom(Temp);
piPred.linearTransform(a, iShift, b, true, pu.cs->slice->clpRng(compID));
}
/** Function for deriving planar intra prediction. This function derives the prediction samples for planar mode (intra coding).
*/
//NOTE: Bit-Limit - 24-bit source
void IntraPrediction::xPredIntraPlanar( const CPelBuf &pSrc, PelBuf &pDst )
{
const uint32_t width = pDst.width;
const uint32_t height = pDst.height;
const uint32_t log2W = floorLog2( width );
const uint32_t log2H = floorLog2( height );
int leftColumn[MAX_CU_SIZE + 1], topRow[MAX_CU_SIZE + 1], bottomRow[MAX_CU_SIZE], rightColumn[MAX_CU_SIZE];
const uint32_t offset = 1 << (log2W + log2H);
// Get left and above reference column and row
for( int k = 0; k < width + 1; k++ )
{
topRow[k] = pSrc.at( k + 1, 0 );
}
for( int k = 0; k < height + 1; k++ )
{
leftColumn[k] = pSrc.at(k + 1, 1);
}
// Prepare intermediate variables used in interpolation
int bottomLeft = leftColumn[height];
int topRight = topRow[width];
for( int k = 0; k < width; k++ )
{
bottomRow[k] = bottomLeft - topRow[k];
topRow[k] = topRow[k] << log2H;
}
for( int k = 0; k < height; k++ )
{
rightColumn[k] = topRight - leftColumn[k];
leftColumn[k] = leftColumn[k] << log2W;
}
const uint32_t finalShift = 1 + log2W + log2H;
const uint32_t stride = pDst.stride;
Pel* pred = pDst.buf;
for( int y = 0; y < height; y++, pred += stride )
{
int horPred = leftColumn[y];
for( int x = 0; x < width; x++ )
{
horPred += rightColumn[y];
topRow[x] += bottomRow[x];
int vertPred = topRow[x];
pred[x] = ( ( horPred << log2H ) + ( vertPred << log2W ) + offset ) >> finalShift;
}
}
}
void IntraPrediction::xPredIntraDc( const CPelBuf &pSrc, PelBuf &pDst, const ChannelType channelType, const bool enableBoundaryFilter )
{
const Pel dcval = xGetPredValDc( pSrc, pDst );
pDst.fill( dcval );
}
// Function for initialization of intra prediction parameters
void IntraPrediction::initPredIntraParams(const PredictionUnit & pu, const CompArea area, const SPS& sps)
{
const ComponentID compId = area.compID;
const ChannelType chType = toChannelType(compId);
const bool useISP = NOT_INTRA_SUBPARTITIONS != pu.cu->ispMode && isLuma( chType );
const Size cuSize = Size( pu.cu->blocks[compId].width, pu.cu->blocks[compId].height );
const Size puSize = Size( area.width, area.height );
const Size& blockSize = useISP ? cuSize : puSize;
const int dirMode = PU::getFinalIntraMode(pu, chType);
const int predMode = getWideAngle( blockSize.width, blockSize.height, dirMode );
m_ipaParam.isModeVer = predMode >= DIA_IDX;
m_ipaParam.multiRefIndex = isLuma (chType) ? pu.multiRefIdx : 0 ;
m_ipaParam.refFilterFlag = false;
m_ipaParam.interpolationFlag = false;
#if JVET_Q0293_REMOVAL_PDPC_CHROMA_NX2
m_ipaParam.applyPDPC = (puSize.width >= MIN_TB_SIZEY && puSize.height >= MIN_TB_SIZEY) && m_ipaParam.multiRefIndex == 0;
#else
m_ipaParam.applyPDPC = ((puSize.width >= MIN_TB_SIZEY && puSize.height >= MIN_TB_SIZEY) || !isLuma(compId)) && m_ipaParam.multiRefIndex == 0;
#endif
const int intraPredAngleMode = (m_ipaParam.isModeVer) ? predMode - VER_IDX : -(predMode - HOR_IDX);
int absAng = 0;
if (dirMode > DC_IDX && dirMode < NUM_LUMA_MODE) // intraPredAngle for directional modes
{
static const int angTable[32] = { 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 23, 26, 29, 32, 35, 39, 45, 51, 57, 64, 73, 86, 102, 128, 171, 256, 341, 512, 1024 };
static const int invAngTable[32] = {
0, 16384, 8192, 5461, 4096, 2731, 2048, 1638, 1365, 1170, 1024, 910, 819, 712, 630, 565,
512, 468, 420, 364, 321, 287, 256, 224, 191, 161, 128, 96, 64, 48, 32, 16
}; // (512 * 32) / Angle
const int absAngMode = abs(intraPredAngleMode);
const int signAng = intraPredAngleMode < 0 ? -1 : 1;
absAng = angTable [absAngMode];
m_ipaParam.invAngle = invAngTable[absAngMode];
m_ipaParam.intraPredAngle = signAng * absAng;
if (intraPredAngleMode < 0)
{
m_ipaParam.applyPDPC = false;
}
else if (intraPredAngleMode > 0)
{
const int sideSize = m_ipaParam.isModeVer ? puSize.height : puSize.width;
const int maxScale = 2;
m_ipaParam.angularScale = std::min(maxScale, floorLog2(sideSize) - (floorLog2(3 * m_ipaParam.invAngle - 2) - 8));
m_ipaParam.applyPDPC &= m_ipaParam.angularScale >= 0;
}
}
// high level conditions and DC intra prediction
if( sps.getSpsRangeExtension().getIntraSmoothingDisabledFlag()
|| !isLuma( chType )
|| useISP
|| PU::isMIP( pu, chType )
|| m_ipaParam.multiRefIndex
|| DC_IDX == dirMode
)
{
}
else if ((isLuma(chType) && pu.cu->bdpcmMode) || (!isLuma(chType) && pu.cu->bdpcmModeChroma)) // BDPCM
{
m_ipaParam.refFilterFlag = false;
}
else if (dirMode == PLANAR_IDX) // Planar intra prediction
{
m_ipaParam.refFilterFlag = puSize.width * puSize.height > 32 ? true : false;
}
else if (!useISP)// HOR, VER and angular modes (MDIS)
{
bool filterFlag = false;
{
const int diff = std::min<int>( abs( predMode - HOR_IDX ), abs( predMode - VER_IDX ) );
const int log2Size = ((floorLog2(puSize.width) + floorLog2(puSize.height)) >> 1);
CHECK( log2Size >= MAX_INTRA_FILTER_DEPTHS, "Size not supported" );
filterFlag = (diff > m_aucIntraFilter[log2Size]);
}
// Selelection of either ([1 2 1] / 4 ) refrence filter OR Gaussian 4-tap interpolation filter
if (filterFlag)
{
const bool isRefFilter = isIntegerSlope(absAng);
CHECK( puSize.width * puSize.height <= 32, "DCT-IF interpolation filter is always used for 4x4, 4x8, and 8x4 luma CB" );
m_ipaParam.refFilterFlag = isRefFilter;
m_ipaParam.interpolationFlag = !isRefFilter;
}
}
}
/** Function for deriving the simplified angular intra predictions.
*
* This function derives the prediction samples for the angular mode based on the prediction direction indicated by
* the prediction mode index. The prediction direction is given by the displacement of the bottom row of the block and
* the reference row above the block in the case of vertical prediction or displacement of the rightmost column
* of the block and reference column left from the block in the case of the horizontal prediction. The displacement
* is signalled at 1/32 pixel accuracy. When projection of the predicted pixel falls inbetween reference samples,
* the predicted value for the pixel is linearly interpolated from the reference samples. All reference samples are taken
* from the extended main reference.
*/
//NOTE: Bit-Limit - 25-bit source
void IntraPrediction::xPredIntraAng( const CPelBuf &pSrc, PelBuf &pDst, const ChannelType channelType, const ClpRng& clpRng)
{
int width =int(pDst.width);
int height=int(pDst.height);
const bool bIsModeVer = m_ipaParam.isModeVer;
const int multiRefIdx = m_ipaParam.multiRefIndex;
const int intraPredAngle = m_ipaParam.intraPredAngle;
const int invAngle = m_ipaParam.invAngle;
Pel* refMain;
Pel* refSide;
Pel refAbove[2 * MAX_CU_SIZE + 3 + 33 * MAX_REF_LINE_IDX];
Pel refLeft [2 * MAX_CU_SIZE + 3 + 33 * MAX_REF_LINE_IDX];
// Initialize the Main and Left reference array.
if (intraPredAngle < 0)
{
for (int x = 0; x <= width + 1 + multiRefIdx; x++)
{
refAbove[x + height] = pSrc.at(x, 0);
}
for (int y = 0; y <= height + 1 + multiRefIdx; y++)
{
refLeft[y + width] = pSrc.at(y, 1);
}
refMain = bIsModeVer ? refAbove + height : refLeft + width;
refSide = bIsModeVer ? refLeft + width : refAbove + height;
// Extend the Main reference to the left.
int sizeSide = bIsModeVer ? height : width;
for (int k = -sizeSide; k <= -1; k++)
{
refMain[k] = refSide[std::min((-k * invAngle + 256) >> 9, sizeSide)];
}
}
else
{
for (int x = 0; x <= m_topRefLength + multiRefIdx; x++)
{
refAbove[x] = pSrc.at(x, 0);
}
for (int y = 0; y <= m_leftRefLength + multiRefIdx; y++)
{
refLeft[y] = pSrc.at(y, 1);
}
refMain = bIsModeVer ? refAbove : refLeft;
refSide = bIsModeVer ? refLeft : refAbove;
// Extend main reference to right using replication
const int log2Ratio = floorLog2(width) - floorLog2(height);
const int s = std::max<int>(0, bIsModeVer ? log2Ratio : -log2Ratio);
const int maxIndex = (multiRefIdx << s) + 2;
const int refLength = bIsModeVer ? m_topRefLength : m_leftRefLength;
const Pel val = refMain[refLength + multiRefIdx];
for (int z = 1; z <= maxIndex; z++)
{
refMain[refLength + multiRefIdx + z] = val;
}
}
// swap width/height if we are doing a horizontal mode:
if (!bIsModeVer)
{
std::swap(width, height);
}
Pel tempArray[MAX_CU_SIZE * MAX_CU_SIZE];
const int dstStride = bIsModeVer ? pDst.stride : width;
Pel * pDstBuf = bIsModeVer ? pDst.buf : tempArray;
// compensate for line offset in reference line buffers
refMain += multiRefIdx;
refSide += multiRefIdx;
Pel *pDsty = pDstBuf;
if( intraPredAngle == 0 ) // pure vertical or pure horizontal
{
for( int y = 0; y < height; y++ )
{
for( int x = 0; x < width; x++ )
{
pDsty[x] = refMain[x + 1];
}
if (m_ipaParam.applyPDPC)
{
const int scale = (floorLog2(width) + floorLog2(height) - 2) >> 2;
const Pel topLeft = refMain[0];
const Pel left = refSide[1 + y];
for (int x = 0; x < std::min(3 << scale, width); x++)
{
const int wL = 32 >> (2 * x >> scale);
const Pel val = pDsty[x];
pDsty[x] = ClipPel(val + ((wL * (left - topLeft) + 32) >> 6), clpRng);
}
}
pDsty += dstStride;
}
}
else
{
for (int y = 0, deltaPos = intraPredAngle * (1 + multiRefIdx); y<height; y++, deltaPos += intraPredAngle, pDsty += dstStride)
{
const int deltaInt = deltaPos >> 5;
const int deltaFract = deltaPos & 31;
if ( !isIntegerSlope( abs(intraPredAngle) ) )
{
if( isLuma(channelType) )
{
const bool useCubicFilter = !m_ipaParam.interpolationFlag;
const TFilterCoeff intraSmoothingFilter[4] = {TFilterCoeff(16 - (deltaFract >> 1)), TFilterCoeff(32 - (deltaFract >> 1)), TFilterCoeff(16 + (deltaFract >> 1)), TFilterCoeff(deltaFract >> 1)};
const TFilterCoeff* const f = (useCubicFilter) ? InterpolationFilter::getChromaFilterTable(deltaFract) : intraSmoothingFilter;
for (int x = 0; x < width; x++)
{
Pel p[4];
p[0] = refMain[deltaInt + x];
p[1] = refMain[deltaInt + x + 1];
p[2] = refMain[deltaInt + x + 2];
p[3] = refMain[deltaInt + x + 3];
Pel val = (f[0] * p[0] + f[1] * p[1] + f[2] * p[2] + f[3] * p[3] + 32) >> 6;
pDsty[x] = ClipPel(val, clpRng); // always clip even though not always needed
}
}
else
{
// Do linear filtering
for (int x = 0; x < width; x++)
{
Pel p[2];
p[0] = refMain[deltaInt + x + 1];
p[1] = refMain[deltaInt + x + 2];
pDsty[x] = p[0] + ((deltaFract * (p[1] - p[0]) + 16) >> 5);
}
}
}
else
{
// Just copy the integer samples
for( int x = 0; x < width; x++ )
{
pDsty[x] = refMain[x + deltaInt + 1];
}
}
if (m_ipaParam.applyPDPC)
{
const int scale = m_ipaParam.angularScale;
int invAngleSum = 256;
for (int x = 0; x < std::min(3 << scale, width); x++)
{
invAngleSum += invAngle;
int wL = 32 >> (2 * x >> scale);
Pel left = refSide[y + (invAngleSum >> 9) + 1];
pDsty[x] = pDsty[x] + ((wL * (left - pDsty[x]) + 32) >> 6);
}
}
}
}
// Flip the block if this is the horizontal mode
if( !bIsModeVer )
{
for( int y = 0; y < height; y++ )
{
for( int x = 0; x < width; x++ )
{
pDst.at( y, x ) = pDstBuf[x];
}
pDstBuf += dstStride;
}
}
}
void IntraPrediction::xPredIntraBDPCM(const CPelBuf &pSrc, PelBuf &pDst, const uint32_t dirMode, const ClpRng& clpRng )
{
const int wdt = pDst.width;
const int hgt = pDst.height;
const int strideP = pDst.stride;
const int strideS = pSrc.stride;
CHECK( !( dirMode == 1 || dirMode == 2 ), "Incorrect BDPCM mode parameter." );
Pel* pred = &pDst.buf[0];
if( dirMode == 1 )
{
Pel val;
for( int y = 0; y < hgt; y++ )
{
val = pSrc.buf[(y + 1) + strideS];
for( int x = 0; x < wdt; x++ )
{
pred[x] = val;
}
pred += strideP;
}
}
else
{
for( int y = 0; y < hgt; y++ )
{
for( int x = 0; x < wdt; x++ )
{
pred[x] = pSrc.buf[x + 1];
}
pred += strideP;
}
}
}
void IntraPrediction::geneWeightedPred(const ComponentID compId, PelBuf &pred, const PredictionUnit &pu, Pel *srcBuf)
{
const int width = pred.width;
CHECK(width == 2, "Width of 2 is not supported");
const int height = pred.height;
const int srcStride = width;
const int dstStride = pred.stride;
Pel* dstBuf = pred.buf;
int wIntra, wMerge;
const Position posBL = pu.Y().bottomLeft();
const Position posTR = pu.Y().topRight();
const PredictionUnit *neigh0 = pu.cs->getPURestricted(posBL.offset(-1, 0), pu, CHANNEL_TYPE_LUMA);
const PredictionUnit *neigh1 = pu.cs->getPURestricted(posTR.offset(0, -1), pu, CHANNEL_TYPE_LUMA);
bool isNeigh0Intra = neigh0 && (CU::isIntra(*neigh0->cu));
bool isNeigh1Intra = neigh1 && (CU::isIntra(*neigh1->cu));
if (isNeigh0Intra && isNeigh1Intra)
{
wIntra = 3; wMerge = 1;
}
else
{
if (!isNeigh0Intra && !isNeigh1Intra)
{
wIntra = 1; wMerge = 3;
}
else
{
wIntra = 2; wMerge = 2;
}
}
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
dstBuf[y*dstStride + x] = (wMerge * dstBuf[y*dstStride + x] + wIntra * srcBuf[y*srcStride + x] + 2) >> 2;
}
}
}
void IntraPrediction::switchBuffer(const PredictionUnit &pu, ComponentID compID, PelBuf srcBuff, Pel *dst)
{
Pel *src = srcBuff.bufAt(0, 0);
int compWidth = compID == COMPONENT_Y ? pu.Y().width : pu.Cb().width;
int compHeight = compID == COMPONENT_Y ? pu.Y().height : pu.Cb().height;
for (int i = 0; i < compHeight; i++)
{
memcpy(dst, src, compWidth * sizeof(Pel));
src += srcBuff.stride;
dst += compWidth;
}
}
void IntraPrediction::geneIntrainterPred(const CodingUnit &cu)
{
if (!cu.firstPU->ciipFlag)
{
return;
}
const PredictionUnit* pu = cu.firstPU;
initIntraPatternChType(cu, pu->Y());
predIntraAng(COMPONENT_Y, cu.cs->getPredBuf(*pu).Y(), *pu);
if (pu->chromaSize().width > 2)
{
initIntraPatternChType(cu, pu->Cb());
predIntraAng(COMPONENT_Cb, cu.cs->getPredBuf(*pu).Cb(), *pu);
initIntraPatternChType(cu, pu->Cr());
predIntraAng(COMPONENT_Cr, cu.cs->getPredBuf(*pu).Cr(), *pu);
}
for (int currCompID = 0; currCompID < 3; currCompID++)
{
if (pu->chromaSize().width <= 2 && currCompID > 0)
continue;
ComponentID currCompID2 = (ComponentID)currCompID;
PelBuf tmpBuf = currCompID == 0 ? cu.cs->getPredBuf(*pu).Y() : (currCompID == 1 ? cu.cs->getPredBuf(*pu).Cb() : cu.cs->getPredBuf(*pu).Cr());
switchBuffer(*pu, currCompID2, tmpBuf, getPredictorPtr2(currCompID2, 0));
}
}
inline bool isAboveLeftAvailable ( const CodingUnit &cu, const ChannelType &chType, const Position &posLT );
inline int isAboveAvailable ( const CodingUnit &cu, const ChannelType &chType, const Position &posLT, const uint32_t uiNumUnitsInPU, const uint32_t unitWidth, bool *validFlags );
inline int isLeftAvailable ( const CodingUnit &cu, const ChannelType &chType, const Position &posLT, const uint32_t uiNumUnitsInPU, const uint32_t unitWidth, bool *validFlags );
inline int isAboveRightAvailable ( const CodingUnit &cu, const ChannelType &chType, const Position &posRT, const uint32_t uiNumUnitsInPU, const uint32_t unitHeight, bool *validFlags );
inline int isBelowLeftAvailable ( const CodingUnit &cu, const ChannelType &chType, const Position &posLB, const uint32_t uiNumUnitsInPU, const uint32_t unitHeight, bool *validFlags );
void IntraPrediction::initIntraPatternChType(const CodingUnit &cu, const CompArea &area, const bool forceRefFilterFlag)
{
CHECK(area.width == 2, "Width of 2 is not supported");
const CodingStructure& cs = *cu.cs;
if (!forceRefFilterFlag)
{
initPredIntraParams(*cu.firstPU, area, *cs.sps);
}
Pel *refBufUnfiltered = m_refBuffer[area.compID][PRED_BUF_UNFILTERED];
Pel *refBufFiltered = m_refBuffer[area.compID][PRED_BUF_FILTERED];
setReferenceArrayLengths( area );
// ----- Step 1: unfiltered reference samples -----
xFillReferenceSamples( cs.picture->getRecoBuf( area ), refBufUnfiltered, area, cu );
// ----- Step 2: filtered reference samples -----
if( m_ipaParam.refFilterFlag || forceRefFilterFlag )
{
xFilterReferenceSamples( refBufUnfiltered, refBufFiltered, area, *cs.sps, cu.firstPU->multiRefIdx );
}
}
void IntraPrediction::initIntraPatternChTypeISP(const CodingUnit& cu, const CompArea& area, PelBuf& recBuf, const bool forceRefFilterFlag)
{
const CodingStructure& cs = *cu.cs;
if (!forceRefFilterFlag)
{
initPredIntraParams(*cu.firstPU, area, *cs.sps);
}
const Position posLT = area;
bool isLeftAvail = (cs.getCURestricted(posLT.offset(-1, 0), cu, CHANNEL_TYPE_LUMA) != NULL) && cs.isDecomp(posLT.offset(-1, 0), CHANNEL_TYPE_LUMA);
bool isAboveAvail = (cs.getCURestricted(posLT.offset(0, -1), cu, CHANNEL_TYPE_LUMA) != NULL) && cs.isDecomp(posLT.offset(0, -1), CHANNEL_TYPE_LUMA);
// ----- Step 1: unfiltered reference samples -----
if (cu.blocks[area.compID].x == area.x && cu.blocks[area.compID].y == area.y)
{
Pel *refBufUnfiltered = m_refBuffer[area.compID][PRED_BUF_UNFILTERED];
// With the first subpartition all the CU reference samples are fetched at once in a single call to xFillReferenceSamples
if (cu.ispMode == HOR_INTRA_SUBPARTITIONS)
{
m_leftRefLength = cu.Y().height << 1;
m_topRefLength = cu.Y().width + area.width;
}
else //if (cu.ispMode == VER_INTRA_SUBPARTITIONS)
{
m_leftRefLength = cu.Y().height + area.height;
m_topRefLength = cu.Y().width << 1;
}
xFillReferenceSamples(cs.picture->getRecoBuf(cu.Y()), refBufUnfiltered, cu.Y(), cu);
// After having retrieved all the CU reference samples, the number of reference samples is now adjusted for the current subpartition
m_topRefLength = cu.blocks[area.compID].width + area.width;
m_leftRefLength = cu.blocks[area.compID].height + area.height;
}
else
{
m_topRefLength = cu.blocks[area.compID].width + area.width;
m_leftRefLength = cu.blocks[area.compID].height + area.height;
const int predSizeHor = m_topRefLength;
const int predSizeVer = m_leftRefLength;
if (cu.ispMode == HOR_INTRA_SUBPARTITIONS)
{
Pel* src = recBuf.bufAt(0, -1);
Pel *ref = m_refBuffer[area.compID][PRED_BUF_UNFILTERED] + m_refBufferStride[area.compID];
if (isLeftAvail)
{
for (int i = 0; i <= 2 * cu.blocks[area.compID].height - area.height; i++)
{
ref[i] = ref[i + area.height];
}
}
else
{
for (int i = 0; i <= predSizeVer; i++)
{
ref[i] = src[0];
}
}
Pel *dst = m_refBuffer[area.compID][PRED_BUF_UNFILTERED] + 1;
dst[-1] = ref[0];
for (int i = 0; i < area.width; i++)
{
dst[i] = src[i];
}
Pel sample = src[area.width - 1];
dst += area.width;
for (int i = 0; i < predSizeHor - area.width; i++)
{
dst[i] = sample;
}
}
else
{
Pel* src = recBuf.bufAt(-1, 0);
Pel *ref = m_refBuffer[area.compID][PRED_BUF_UNFILTERED];
if (isAboveAvail)
{
for (int i = 0; i <= 2 * cu.blocks[area.compID].width - area.width; i++)
{
ref[i] = ref[i + area.width];
}
}
else
{
for (int i = 0; i <= predSizeHor; i++)
{
ref[i] = src[0];
}
}
Pel *dst = m_refBuffer[area.compID][PRED_BUF_UNFILTERED] + m_refBufferStride[area.compID] + 1;
dst[-1] = ref[0];
for (int i = 0; i < area.height; i++)
{
*dst = *src;
src += recBuf.stride;
dst++;
}
Pel sample = src[-recBuf.stride];
for (int i = 0; i < predSizeVer - area.height; i++)
{
*dst = sample;
dst++;
}
}
}
// ----- Step 2: filtered reference samples -----
if (m_ipaParam.refFilterFlag || forceRefFilterFlag)
{
Pel *refBufUnfiltered = m_refBuffer[area.compID][PRED_BUF_UNFILTERED];
Pel *refBufFiltered = m_refBuffer[area.compID][PRED_BUF_FILTERED];
xFilterReferenceSamples(refBufUnfiltered, refBufFiltered, area, *cs.sps, cu.firstPU->multiRefIdx);
}
}
void IntraPrediction::xFillReferenceSamples( const CPelBuf &recoBuf, Pel* refBufUnfiltered, const CompArea &area, const CodingUnit &cu )
{
const ChannelType chType = toChannelType( area.compID );
const CodingStructure &cs = *cu.cs;
const SPS &sps = *cs.sps;
const PreCalcValues &pcv = *cs.pcv;
const int multiRefIdx = (area.compID == COMPONENT_Y) ? cu.firstPU->multiRefIdx : 0;
const int tuWidth = area.width;
const int tuHeight = area.height;
const int predSize = m_topRefLength;
const int predHSize = m_leftRefLength;
const int predStride = predSize + 1 + multiRefIdx;
m_refBufferStride[area.compID] = predStride;
const bool noShift = pcv.noChroma2x2 && area.width == 4; // don't shift on the lowest level (chroma not-split)
const int unitWidth = tuWidth <= 2 && cu.ispMode && isLuma(area.compID) ? tuWidth : pcv.minCUWidth >> (noShift ? 0 : getComponentScaleX(area.compID, sps.getChromaFormatIdc()));
const int unitHeight = tuHeight <= 2 && cu.ispMode && isLuma(area.compID) ? tuHeight : pcv.minCUHeight >> (noShift ? 0 : getComponentScaleY(area.compID, sps.getChromaFormatIdc()));
const int totalAboveUnits = (predSize + (unitWidth - 1)) / unitWidth;
const int totalLeftUnits = (predHSize + (unitHeight - 1)) / unitHeight;
const int totalUnits = totalAboveUnits + totalLeftUnits + 1; //+1 for top-left
const int numAboveUnits = std::max<int>( tuWidth / unitWidth, 1 );
const int numLeftUnits = std::max<int>( tuHeight / unitHeight, 1 );
const int numAboveRightUnits = totalAboveUnits - numAboveUnits;
const int numLeftBelowUnits = totalLeftUnits - numLeftUnits;
CHECK( numAboveUnits <= 0 || numLeftUnits <= 0 || numAboveRightUnits <= 0 || numLeftBelowUnits <= 0, "Size not supported" );
// ----- Step 1: analyze neighborhood -----
const Position posLT = area;
const Position posRT = area.topRight();
const Position posLB = area.bottomLeft();
bool neighborFlags[4 * MAX_NUM_PART_IDXS_IN_CTU_WIDTH + 1];
int numIntraNeighbor = 0;
memset( neighborFlags, 0, totalUnits );
neighborFlags[totalLeftUnits] = isAboveLeftAvailable( cu, chType, posLT );
numIntraNeighbor += neighborFlags[totalLeftUnits] ? 1 : 0;
numIntraNeighbor += isAboveAvailable ( cu, chType, posLT, numAboveUnits, unitWidth, (neighborFlags + totalLeftUnits + 1) );
numIntraNeighbor += isAboveRightAvailable( cu, chType, posRT, numAboveRightUnits, unitWidth, (neighborFlags + totalLeftUnits + 1 + numAboveUnits) );
numIntraNeighbor += isLeftAvailable ( cu, chType, posLT, numLeftUnits, unitHeight, (neighborFlags + totalLeftUnits - 1) );
numIntraNeighbor += isBelowLeftAvailable ( cu, chType, posLB, numLeftBelowUnits, unitHeight, (neighborFlags + totalLeftUnits - 1 - numLeftUnits) );
// ----- Step 2: fill reference samples (depending on neighborhood) -----
const Pel* srcBuf = recoBuf.buf;
const int srcStride = recoBuf.stride;
Pel* ptrDst = refBufUnfiltered;
const Pel* ptrSrc;
const Pel valueDC = 1 << (sps.getBitDepth( chType ) - 1);
if( numIntraNeighbor == 0 )
{
// Fill border with DC value
for (int j = 0; j <= predSize + multiRefIdx; j++) { ptrDst[j] = valueDC; }
for (int i = 0; i <= predHSize + multiRefIdx; i++)
{
ptrDst[i + predStride] = valueDC;
}
}
else if( numIntraNeighbor == totalUnits )
{
// Fill top-left border and top and top right with rec. samples
ptrSrc = srcBuf - (1 + multiRefIdx) * srcStride - (1 + multiRefIdx);
for (int j = 0; j <= predSize + multiRefIdx; j++) { ptrDst[j] = ptrSrc[j]; }
for (int i = 0; i <= predHSize + multiRefIdx; i++)
{
ptrDst[i + predStride] = ptrSrc[i * srcStride];
}
}
else // reference samples are partially available
{
// Fill top-left sample(s) if available
ptrSrc = srcBuf - (1 + multiRefIdx) * srcStride - (1 + multiRefIdx);
ptrDst = refBufUnfiltered;
if (neighborFlags[totalLeftUnits])
{
ptrDst[0] = ptrSrc[0];
ptrDst[predStride] = ptrSrc[0];
for (int i = 1; i <= multiRefIdx; i++)
{
ptrDst[i] = ptrSrc[i];
ptrDst[i + predStride] = ptrSrc[i * srcStride];
}
}
// Fill left & below-left samples if available (downwards)
ptrSrc += (1 + multiRefIdx) * srcStride;
ptrDst += (1 + multiRefIdx) + predStride;
for (int unitIdx = totalLeftUnits - 1; unitIdx > 0; unitIdx--)
{
if (neighborFlags[unitIdx])
{
for (int i = 0; i < unitHeight; i++)
{
ptrDst[i] = ptrSrc[i * srcStride];
}
}
ptrSrc += unitHeight * srcStride;
ptrDst += unitHeight;
}
// Fill last below-left sample(s)
if (neighborFlags[0])
{
int lastSample = (predHSize % unitHeight == 0) ? unitHeight : predHSize % unitHeight;
for (int i = 0; i < lastSample; i++)
{
ptrDst[i] = ptrSrc[i * srcStride];
}
}
// Fill above & above-right samples if available (left-to-right)
ptrSrc = srcBuf - srcStride * (1 + multiRefIdx);
ptrDst = refBufUnfiltered + 1 + multiRefIdx;
for (int unitIdx = totalLeftUnits + 1; unitIdx < totalUnits - 1; unitIdx++)
{
if (neighborFlags[unitIdx])
{
for (int j = 0; j < unitWidth; j++)
{
ptrDst[j] = ptrSrc[j];
}
}
ptrSrc += unitWidth;
ptrDst += unitWidth;
}
// Fill last above-right sample(s)
if (neighborFlags[totalUnits - 1])
{
int lastSample = (predSize % unitWidth == 0) ? unitWidth : predSize % unitWidth;
for (int j = 0; j < lastSample; j++)
{
ptrDst[j] = ptrSrc[j];
}
}
// pad from first available down to the last below-left
ptrDst = refBufUnfiltered;
int lastAvailUnit = 0;
if (!neighborFlags[0])
{
int firstAvailUnit = 1;
while (firstAvailUnit < totalUnits && !neighborFlags[firstAvailUnit])
{
firstAvailUnit++;
}
// first available sample
int firstAvailRow = -1;
int firstAvailCol = 0;
if (firstAvailUnit < totalLeftUnits)
{
firstAvailRow = (totalLeftUnits - firstAvailUnit) * unitHeight + multiRefIdx;
}
else if (firstAvailUnit == totalLeftUnits)
{
firstAvailRow = multiRefIdx;
}
else
{
firstAvailCol = (firstAvailUnit - totalLeftUnits - 1) * unitWidth + 1 + multiRefIdx;
}
const Pel firstAvailSample = ptrDst[firstAvailRow < 0 ? firstAvailCol : firstAvailRow + predStride];
// last sample below-left (n.a.)
int lastRow = predHSize + multiRefIdx;
// fill left column
for (int i = lastRow; i > firstAvailRow; i--)
{
ptrDst[i + predStride] = firstAvailSample;
}
// fill top row
if (firstAvailCol > 0)
{
for (int j = 0; j < firstAvailCol; j++)
{
ptrDst[j] = firstAvailSample;
}
}
lastAvailUnit = firstAvailUnit;
}
// pad all other reference samples.
int currUnit = lastAvailUnit + 1;
while (currUnit < totalUnits)
{
if (!neighborFlags[currUnit]) // samples not available
{
// last available sample
int lastAvailRow = -1;
int lastAvailCol = 0;
if (lastAvailUnit < totalLeftUnits)
{
lastAvailRow = (totalLeftUnits - lastAvailUnit - 1) * unitHeight + multiRefIdx + 1;
}
else if (lastAvailUnit == totalLeftUnits)
{
lastAvailCol = multiRefIdx;
}
else
{
lastAvailCol = (lastAvailUnit - totalLeftUnits) * unitWidth + multiRefIdx;
}
const Pel lastAvailSample = ptrDst[lastAvailRow < 0 ? lastAvailCol : lastAvailRow + predStride];
// fill current unit with last available sample
if (currUnit < totalLeftUnits)
{
for (int i = lastAvailRow - 1; i >= lastAvailRow - unitHeight; i--)
{
ptrDst[i + predStride] = lastAvailSample;
}
}
else if (currUnit == totalLeftUnits)
{
for (int i = 0; i < multiRefIdx + 1; i++)
{
ptrDst[i + predStride] = lastAvailSample;
}
for (int j = 0; j < multiRefIdx + 1; j++)
{
ptrDst[j] = lastAvailSample;
}
}
else
{
int numSamplesInUnit = (currUnit == totalUnits - 1) ? ((predSize % unitWidth == 0) ? unitWidth : predSize % unitWidth) : unitWidth;
for (int j = lastAvailCol + 1; j <= lastAvailCol + numSamplesInUnit; j++)
{
ptrDst[j] = lastAvailSample;
}
}
}
lastAvailUnit = currUnit;
currUnit++;
}
}
}
void IntraPrediction::xFilterReferenceSamples(const Pel *refBufUnfiltered, Pel *refBufFiltered, const CompArea &area,
const SPS &sps, int multiRefIdx
)
{
if (area.compID != COMPONENT_Y)
{
multiRefIdx = 0;
}
const int predSize = m_topRefLength + multiRefIdx;
const int predHSize = m_leftRefLength + multiRefIdx;
const size_t predStride = m_refBufferStride[area.compID];
const Pel topLeft =
(refBufUnfiltered[0] + refBufUnfiltered[1] + refBufUnfiltered[predStride] + refBufUnfiltered[predStride + 1] + 2)
>> 2;
refBufFiltered[0] = topLeft;
for (int i = 1; i < predSize; i++)
{
refBufFiltered[i] = (refBufUnfiltered[i - 1] + 2 * refBufUnfiltered[i] + refBufUnfiltered[i + 1] + 2) >> 2;
}
refBufFiltered[predSize] = refBufUnfiltered[predSize];
refBufFiltered += predStride;
refBufUnfiltered += predStride;
refBufFiltered[0] = topLeft;
for (int i = 1; i < predHSize; i++)
{
refBufFiltered[i] = (refBufUnfiltered[i - 1] + 2 * refBufUnfiltered[i] + refBufUnfiltered[i + 1] + 2) >> 2;
}
refBufFiltered[predHSize] = refBufUnfiltered[predHSize];
}
bool isAboveLeftAvailable(const CodingUnit &cu, const ChannelType &chType, const Position &posLT)
{
const CodingStructure& cs = *cu.cs;
const Position refPos = posLT.offset(-1, -1);
if (!cs.isDecomp(refPos, chType))
{
return false;
}
return (cs.getCURestricted(refPos, cu, chType) != NULL);
}
int isAboveAvailable(const CodingUnit &cu, const ChannelType &chType, const Position &posLT, const uint32_t uiNumUnitsInPU, const uint32_t unitWidth, bool *bValidFlags)
{
const CodingStructure& cs = *cu.cs;
bool * validFlags = bValidFlags;
int numIntra = 0;
const int maxDx = uiNumUnitsInPU * unitWidth;
for (int dx = 0; dx < maxDx; dx += unitWidth)
{
const Position refPos = posLT.offset(dx, -1);
if (!cs.isDecomp(refPos, chType))
{
break;
}
const bool valid = (cs.getCURestricted(refPos, cu, chType) != NULL);
numIntra += valid ? 1 : 0;
*validFlags = valid;
validFlags++;
}
return numIntra;
}
int isLeftAvailable(const CodingUnit &cu, const ChannelType &chType, const Position &posLT, const uint32_t uiNumUnitsInPU, const uint32_t unitHeight, bool *bValidFlags)
{
const CodingStructure& cs = *cu.cs;
bool * validFlags = bValidFlags;
int numIntra = 0;
const int maxDy = uiNumUnitsInPU * unitHeight;
for (int dy = 0; dy < maxDy; dy += unitHeight)
{
const Position refPos = posLT.offset(-1, dy);
if (!cs.isDecomp(refPos, chType))
{
break;
}
const bool valid = (cs.getCURestricted(refPos, cu, chType) != NULL);
numIntra += valid ? 1 : 0;
*validFlags = valid;
validFlags--;
}
return numIntra;
}
int isAboveRightAvailable(const CodingUnit &cu, const ChannelType &chType, const Position &posRT, const uint32_t uiNumUnitsInPU, const uint32_t unitWidth, bool *bValidFlags )
{
const CodingStructure& cs = *cu.cs;
bool * validFlags = bValidFlags;
int numIntra = 0;
const int maxDx = uiNumUnitsInPU * unitWidth;
for (int dx = 0; dx < maxDx; dx += unitWidth)
{
const Position refPos = posRT.offset(unitWidth + dx, -1);
if (!cs.isDecomp(refPos, chType))
{
break;
}
const bool valid = (cs.getCURestricted(refPos, cu, chType) != NULL);
numIntra += valid ? 1 : 0;
*validFlags = valid;
validFlags++;
}
return numIntra;
}
int isBelowLeftAvailable(const CodingUnit &cu, const ChannelType &chType, const Position &posLB, const uint32_t uiNumUnitsInPU, const uint32_t unitHeight, bool *bValidFlags )
{
const CodingStructure& cs = *cu.cs;
bool * validFlags = bValidFlags;
int numIntra = 0;
const int maxDy = uiNumUnitsInPU * unitHeight;
for (int dy = 0; dy < maxDy; dy += unitHeight)
{
const Position refPos = posLB.offset(-1, unitHeight + dy);
if (!cs.isDecomp(refPos, chType))
{
break;
}
const bool valid = (cs.getCURestricted(refPos, cu, chType) != NULL);
numIntra += valid ? 1 : 0;
*validFlags = valid;
validFlags--;
}
return numIntra;
}
// LumaRecPixels
void IntraPrediction::xGetLumaRecPixels(const PredictionUnit &pu, CompArea chromaArea)
{
int iDstStride = 0;
Pel* pDst0 = 0;
int curChromaMode = pu.intraDir[1];
if ((curChromaMode == MDLM_L_IDX) || (curChromaMode == MDLM_T_IDX))
{
iDstStride = 2 * MAX_CU_SIZE + 1;
pDst0 = m_pMdlmTemp + iDstStride + 1;
}
else
{
iDstStride = MAX_CU_SIZE + 1;
pDst0 = m_piTemp + iDstStride + 1; //MMLM_SAMPLE_NEIGHBOR_LINES;
}
//assert 420 chroma subsampling
CompArea lumaArea = CompArea( COMPONENT_Y, pu.chromaFormat, chromaArea.lumaPos(), recalcSize( pu.chromaFormat, CHANNEL_TYPE_CHROMA, CHANNEL_TYPE_LUMA, chromaArea.size() ) );//needed for correct pos/size (4x4 Tus)
CHECK(lumaArea.width == chromaArea.width && CHROMA_444 != pu.chromaFormat, "");
CHECK(lumaArea.height == chromaArea.height && CHROMA_444 != pu.chromaFormat && CHROMA_422 != pu.chromaFormat, "");
const SizeType uiCWidth = chromaArea.width;
const SizeType uiCHeight = chromaArea.height;
const CPelBuf Src = pu.cs->picture->getRecoBuf( lumaArea );
Pel const* pRecSrc0 = Src.bufAt( 0, 0 );
int iRecStride = Src.stride;
int logSubWidthC = getChannelTypeScaleX(CHANNEL_TYPE_CHROMA, pu.chromaFormat);
int logSubHeightC = getChannelTypeScaleY(CHANNEL_TYPE_CHROMA, pu.chromaFormat);
int iRecStride2 = iRecStride << logSubHeightC;
const int mult = 1 << logSubWidthC ;
const CodingUnit& lumaCU = isChroma( pu.chType ) ? *pu.cs->picture->cs->getCU( lumaArea.pos(), CH_L ) : *pu.cu;
const CodingUnit& cu = *pu.cu;
const CompArea& area = isChroma( pu.chType ) ? chromaArea : lumaArea;
const uint32_t uiTuWidth = area.width;
const uint32_t uiTuHeight = area.height;
int iBaseUnitSize = ( 1 << MIN_CU_LOG2 );
const int iUnitWidth = iBaseUnitSize >> getComponentScaleX( area.compID, area.chromaFormat );
const int iUnitHeight = iBaseUnitSize >> getComponentScaleY(area.compID, area.chromaFormat);
const int iTUWidthInUnits = uiTuWidth / iUnitWidth;
const int iTUHeightInUnits = uiTuHeight / iUnitHeight;
const int iAboveUnits = iTUWidthInUnits;
const int iLeftUnits = iTUHeightInUnits;
const int chromaUnitWidth = iBaseUnitSize >> getComponentScaleX(COMPONENT_Cb, area.chromaFormat);
const int chromaUnitHeight = iBaseUnitSize >> getComponentScaleY(COMPONENT_Cb, area.chromaFormat);
const int topTemplateSampNum = 2 * uiCWidth; // for MDLM, the number of template samples is 2W or 2H.
const int leftTemplateSampNum = 2 * uiCHeight;
assert(m_topRefLength >= topTemplateSampNum);
assert(m_leftRefLength >= leftTemplateSampNum);
const int totalAboveUnits = (topTemplateSampNum + (chromaUnitWidth - 1)) / chromaUnitWidth;
const int totalLeftUnits = (leftTemplateSampNum + (chromaUnitHeight - 1)) / chromaUnitHeight;
const int totalUnits = totalLeftUnits + totalAboveUnits + 1;
const int aboveRightUnits = totalAboveUnits - iAboveUnits;
const int leftBelowUnits = totalLeftUnits - iLeftUnits;
int avaiAboveRightUnits = 0;
int avaiLeftBelowUnits = 0;
bool bNeighborFlags[4 * MAX_NUM_PART_IDXS_IN_CTU_WIDTH + 1];
memset(bNeighborFlags, 0, totalUnits);
bool bAboveAvaillable, bLeftAvaillable;
int availlableUnit = isLeftAvailable( isChroma( pu.chType ) ? cu : lumaCU, toChannelType( area.compID ), area.pos(), iLeftUnits, iUnitHeight,
( bNeighborFlags + iLeftUnits + leftBelowUnits - 1 ) );
bLeftAvaillable = availlableUnit == iTUHeightInUnits;
availlableUnit = isAboveAvailable( isChroma( pu.chType ) ? cu : lumaCU, toChannelType( area.compID ), area.pos(), iAboveUnits, iUnitWidth,
( bNeighborFlags + iLeftUnits + leftBelowUnits + 1 ) );
bAboveAvaillable = availlableUnit == iTUWidthInUnits;
if (bLeftAvaillable) // if left is not available, then the below left is not available
{
avaiLeftBelowUnits = isBelowLeftAvailable(isChroma(pu.chType) ? cu : lumaCU, toChannelType(area.compID), area.bottomLeftComp(area.compID), leftBelowUnits, iUnitHeight, (bNeighborFlags + leftBelowUnits - 1));
}
if (bAboveAvaillable) // if above is not available, then the above right is not available.
{
avaiAboveRightUnits = isAboveRightAvailable(isChroma(pu.chType) ? cu : lumaCU, toChannelType(area.compID), area.topRightComp(area.compID), aboveRightUnits, iUnitWidth, (bNeighborFlags + iLeftUnits + leftBelowUnits + iAboveUnits + 1));
}
Pel* pDst = nullptr;
Pel const* piSrc = nullptr;
bool isFirstRowOfCtu = ( lumaArea.y & ((pu.cs->sps)->getCTUSize() - 1) ) == 0;
const int strOffset = (CHROMA_444 == pu.chromaFormat) ? 0 : iRecStride;
#if !JVET_Q0500_CCLM_REF_PADDING
int c0_2tap = 1, c1_2tap = 1, offset_2tap = 1, shift_2tap = 1; //sum = 2
#endif
int c0_3tap = 2, c1_3tap = 1, c2_3tap = 1, offset_3tap = 2, shift_3tap = 2; //sum = 4
int c0_5tap = 1, c1_5tap = 4, c2_5tap = 1, c3_5tap = 1, c4_5tap = 1, offset_5tap = 4, shift_5tap = 3; //sum = 8
int c0_6tap = 2, c1_6tap = 1, c2_6tap = 1, c3_6tap = 2, c4_6tap = 1, c5_6tap = 1, offset_6tap = 4, shift_6tap = 3; //sum = 8
switch (pu.chromaFormat)
{
case CHROMA_422: //overwrite filter coefficient values for 422
#if !JVET_Q0500_CCLM_REF_PADDING
c0_2tap = 1, c1_2tap = 0, offset_2tap = 0, shift_2tap = 0; //sum = 1
#endif
c0_3tap = 2, c1_3tap = 1, c2_3tap = 1, offset_3tap = 2, shift_3tap = 2; //sum = 4
c0_5tap = 0, c1_5tap = 1, c2_5tap = 0, c3_5tap = 0, c4_5tap = 0, offset_5tap = 0, shift_5tap = 0; //sum = 1
c0_6tap = 2, c1_6tap = 1, c2_6tap = 1, c3_6tap = 0, c4_6tap = 0, c5_6tap = 0, offset_6tap = 2, shift_6tap = 2; //sum = 4
break;
case CHROMA_444: //overwrite filter coefficient values for 422
#if !JVET_Q0500_CCLM_REF_PADDING
c0_2tap = 1, c1_2tap = 0, offset_2tap = 0, shift_2tap = 0; //sum = 1
#endif
c0_3tap = 1, c1_3tap = 0, c2_3tap = 0, offset_3tap = 0, shift_3tap = 0; //sum = 1
c0_5tap = 0, c1_5tap = 1, c2_5tap = 0, c3_5tap = 0, c4_5tap = 0, offset_5tap = 0, shift_5tap = 0; //sum = 1
c0_6tap = 1, c1_6tap = 0, c2_6tap = 0, c3_6tap = 0, c4_6tap = 0, c5_6tap = 0, offset_6tap = 0, shift_6tap = 0; //sum = 1
break;
default:
break;
}
if( bAboveAvaillable )
{
pDst = pDst0 - iDstStride;
int addedAboveRight = 0;
if ((curChromaMode == MDLM_L_IDX) || (curChromaMode == MDLM_T_IDX))
{
addedAboveRight = avaiAboveRightUnits*chromaUnitWidth;
}
for (int i = 0; i < uiCWidth + addedAboveRight; i++)
{
if (isFirstRowOfCtu)
{
piSrc = pRecSrc0 - iRecStride;
if ((i == 0 && !bLeftAvaillable) || (i == uiCWidth + addedAboveRight - 1 + logSubWidthC))
{
#if JVET_Q0500_CCLM_REF_PADDING
pDst[i] = (piSrc[mult * i] * c0_3tap + piSrc[mult * i] * c1_3tap + piSrc[mult * i + 1] * c2_3tap + offset_3tap) >> shift_3tap;
#else
pDst[i] = piSrc[mult * i];
#endif
}
else
{
pDst[i] = (piSrc[mult * i] * c0_3tap + piSrc[mult * i - 1] * c1_3tap + piSrc[mult * i + 1] * c2_3tap + offset_3tap) >> shift_3tap;
}
}
else if( pu.cs->sps->getCclmCollocatedChromaFlag() )
{
piSrc = pRecSrc0 - iRecStride2;
if ((i == 0 && !bLeftAvaillable) || (i == uiCWidth + addedAboveRight - 1 + logSubWidthC))
{
#if JVET_Q0500_CCLM_REF_PADDING
pDst[i] = (piSrc[mult * i - strOffset] * c0_5tap
+ piSrc[mult * i] * c1_5tap + piSrc[mult * i] * c2_5tap + piSrc[mult * i + 1] * c3_5tap
+ piSrc[mult * i + strOffset] * c4_5tap
+ offset_5tap) >> shift_5tap;
#else
pDst[i] = (piSrc[mult * i] * c0_3tap + piSrc[mult * i - strOffset] * c1_3tap + piSrc[mult * i + strOffset] * c2_3tap + offset_3tap) >> shift_3tap;
#endif
}
else
{
pDst[i] = (piSrc[mult * i - strOffset] * c0_5tap
+ piSrc[mult * i] * c1_5tap + piSrc[mult * i - 1] * c2_5tap + piSrc[mult * i + 1] * c3_5tap
+ piSrc[mult * i + strOffset] * c4_5tap
+ offset_5tap) >> shift_5tap;
}
}
else
{
piSrc = pRecSrc0 - iRecStride2;
if ((i == 0 && !bLeftAvaillable) || (i == uiCWidth + addedAboveRight - 1 + logSubWidthC))
{
#if JVET_Q0500_CCLM_REF_PADDING
pDst[i] = ((piSrc[mult * i] * c0_6tap + piSrc[mult * i] * c1_6tap + piSrc[mult * i + 1] * c2_6tap)
+ (piSrc[mult * i + strOffset] * c3_6tap + piSrc[mult * i + strOffset] * c4_6tap + piSrc[mult * i + 1 + strOffset] * c5_6tap)
+ offset_6tap) >> shift_6tap;
#else
pDst[i] = (piSrc[mult * i] * c0_2tap + piSrc[mult * i + strOffset] * c1_2tap + offset_2tap) >> shift_2tap;
#endif
}
else
{
pDst[i] = ((piSrc[mult * i] * c0_6tap + piSrc[mult * i - 1] * c1_6tap + piSrc[mult * i + 1] * c2_6tap)
+ (piSrc[mult * i + strOffset] * c3_6tap + piSrc[mult * i - 1 + strOffset] * c4_6tap + piSrc[mult * i + 1 + strOffset] * c5_6tap)
+ offset_6tap) >> shift_6tap;
}
}
}
}
if( bLeftAvaillable )
{
pDst = pDst0 - 1;
piSrc = pRecSrc0 - 2 - logSubWidthC;
int addedLeftBelow = 0;
if ((curChromaMode == MDLM_L_IDX) || (curChromaMode == MDLM_T_IDX))
{
addedLeftBelow = avaiLeftBelowUnits*chromaUnitHeight;
}
for (int j = 0; j < uiCHeight + addedLeftBelow; j++)
{
if( pu.cs->sps->getCclmCollocatedChromaFlag() )
{
if ((j == 0 && !bAboveAvaillable) || (j == uiCHeight + addedLeftBelow - 1 + logSubWidthC))
{
#if JVET_Q0500_CCLM_REF_PADDING
pDst[0] = ( piSrc[1 ] * c0_5tap
+ piSrc[1 ] * c1_5tap + piSrc[0] * c2_5tap + piSrc[2] * c3_5tap
+ piSrc[1 + strOffset] * c4_5tap
+ offset_5tap ) >> shift_5tap;
#else
pDst[0] = ( piSrc[1] * c0_3tap + piSrc[0] * c1_3tap + piSrc[2] * c2_3tap + offset_3tap) >> shift_3tap;
#endif
}
else
{
pDst[0] = ( piSrc[1 - strOffset] * c0_5tap
+ piSrc[1 ] * c1_5tap + piSrc[0] * c2_5tap + piSrc[2] * c3_5tap
+ piSrc[1 + strOffset] * c4_5tap
+ offset_5tap ) >> shift_5tap;
}
}
else
{
pDst[0] = ((piSrc[1] * c0_6tap + piSrc[0] * c1_6tap + piSrc[2] * c2_6tap)
+ (piSrc[1 + strOffset] * c3_6tap + piSrc[strOffset] * c4_6tap + piSrc[2 + strOffset] * c5_6tap)
+ offset_6tap) >> shift_6tap;
}
piSrc += iRecStride2;
pDst += iDstStride;
}
}
// inner part from reconstructed picture buffer
for( int j = 0; j < uiCHeight; j++ )
{
for( int i = 0; i < uiCWidth; i++ )
{
if( pu.cs->sps->getCclmCollocatedChromaFlag() )
{
if( i == 0 && !bLeftAvaillable )
{
if ( j == 0 && !bAboveAvaillable )
{
#if JVET_Q0500_CCLM_REF_PADDING
pDst0[i] = (pRecSrc0[mult * i] * c0_5tap
+ pRecSrc0[mult * i] * c1_5tap + pRecSrc0[mult * i] * c2_5tap + pRecSrc0[mult * i + 1] * c3_5tap
+ pRecSrc0[mult * i + strOffset] * c4_5tap
+ offset_5tap) >> shift_5tap;
#else
pDst0[i] = pRecSrc0[mult * i];
#endif
}
else
{
#if JVET_Q0500_CCLM_REF_PADDING
pDst0[i] = (pRecSrc0[mult * i - strOffset] * c0_5tap
+ pRecSrc0[mult * i] * c1_5tap + pRecSrc0[mult * i] * c2_5tap + pRecSrc0[mult * i + 1] * c3_5tap
+ pRecSrc0[mult * i + strOffset] * c4_5tap
+ offset_5tap) >> shift_5tap;
#else
pDst0[i] = (pRecSrc0[mult * i] * c0_3tap + pRecSrc0[mult * i - strOffset] * c1_3tap + pRecSrc0[mult * i + strOffset] * c2_3tap + offset_3tap) >> shift_3tap;
#endif
}
}
else if ( j == 0 && !bAboveAvaillable )
{
#if JVET_Q0500_CCLM_REF_PADDING
pDst0[i] = (pRecSrc0[mult * i] * c0_5tap
+ pRecSrc0[mult * i] * c1_5tap + pRecSrc0[mult * i - 1] * c2_5tap + pRecSrc0[mult * i + 1] * c3_5tap
+ pRecSrc0[mult * i + strOffset] * c4_5tap
+ offset_5tap) >> shift_5tap;
#else
pDst0[i] = (pRecSrc0[mult * i] * c0_3tap + pRecSrc0[mult * i - 1] * c1_3tap + pRecSrc0[mult * i + 1] * c2_3tap + offset_3tap) >> shift_3tap;
#endif
}
else
{
pDst0[i] = (pRecSrc0[mult * i - strOffset] * c0_5tap
+ pRecSrc0[mult * i] * c1_5tap + pRecSrc0[mult * i - 1] * c2_5tap + pRecSrc0[mult * i + 1] * c3_5tap
+ pRecSrc0[mult * i + strOffset] * c4_5tap
+ offset_5tap) >> shift_5tap;
}
}
else
{
if ((i == 0 && !bLeftAvaillable) || (i == uiCWidth - 1 + logSubWidthC))
{
#if JVET_Q0500_CCLM_REF_PADDING
int s = offset_6tap;
s += pRecSrc0[mult * i] * c0_6tap;
s += pRecSrc0[mult * i + 1] * c1_6tap;
s += pRecSrc0[mult * i] * c2_6tap;
if (pu.chromaFormat == CHROMA_420)
{
s += pRecSrc0[mult * i + strOffset] * c3_6tap;
s += pRecSrc0[mult * i + 1 + strOffset] * c4_6tap;
s += pRecSrc0[mult * i + strOffset] * c5_6tap;
}
pDst0[i] = s >> shift_6tap;
#else
pDst0[i] = (pRecSrc0[mult * i] * c0_2tap + pRecSrc0[mult * i + strOffset] * c1_2tap + offset_2tap) >> shift_2tap;
#endif
}
else
{
int s = offset_6tap;
s += pRecSrc0[mult * i] * c0_6tap;
s += pRecSrc0[mult * i + 1] * c1_6tap;
s += pRecSrc0[mult * i - 1] * c2_6tap;
if (pu.chromaFormat == CHROMA_420)
{
s += pRecSrc0[mult * i + strOffset] * c3_6tap;
s += pRecSrc0[mult * i + 1 + strOffset] * c4_6tap;
s += pRecSrc0[mult * i - 1 + strOffset] * c5_6tap;
}
pDst0[i] = s >> shift_6tap;
}
}
}
pDst0 += iDstStride;
pRecSrc0 += iRecStride2;
}
}
void IntraPrediction::xGetLMParameters(const PredictionUnit &pu, const ComponentID compID,
const CompArea &chromaArea,
int &a, int &b, int &iShift)
{
CHECK(compID == COMPONENT_Y, "");
const SizeType cWidth = chromaArea.width;
const SizeType cHeight = chromaArea.height;
const Position posLT = chromaArea;
CodingStructure & cs = *(pu.cs);
const CodingUnit &cu = *(pu.cu);
const SPS & sps = *cs.sps;
const uint32_t tuWidth = chromaArea.width;
const uint32_t tuHeight = chromaArea.height;
const ChromaFormat nChromaFormat = sps.getChromaFormatIdc();
const int baseUnitSize = 1 << MIN_CU_LOG2;
const int unitWidth = baseUnitSize >> getComponentScaleX(chromaArea.compID, nChromaFormat);
const int unitHeight = baseUnitSize >> getComponentScaleY(chromaArea.compID, nChromaFormat);
const int tuWidthInUnits = tuWidth / unitWidth;
const int tuHeightInUnits = tuHeight / unitHeight;
const int aboveUnits = tuWidthInUnits;
const int leftUnits = tuHeightInUnits;
int topTemplateSampNum = 2 * cWidth; // for MDLM, the template sample number is 2W or 2H;
int leftTemplateSampNum = 2 * cHeight;
assert(m_topRefLength >= topTemplateSampNum);
assert(m_leftRefLength >= leftTemplateSampNum);
int totalAboveUnits = (topTemplateSampNum + (unitWidth - 1)) / unitWidth;
int totalLeftUnits = (leftTemplateSampNum + (unitHeight - 1)) / unitHeight;
int totalUnits = totalLeftUnits + totalAboveUnits + 1;
int aboveRightUnits = totalAboveUnits - aboveUnits;
int leftBelowUnits = totalLeftUnits - leftUnits;
int avaiAboveRightUnits = 0;
int avaiLeftBelowUnits = 0;
int avaiAboveUnits = 0;
int avaiLeftUnits = 0;
int curChromaMode = pu.intraDir[1];
bool neighborFlags[4 * MAX_NUM_PART_IDXS_IN_CTU_WIDTH + 1];
memset(neighborFlags, 0, totalUnits);
bool aboveAvailable, leftAvailable;
int availableUnit =
isAboveAvailable(cu, CHANNEL_TYPE_CHROMA, posLT, aboveUnits, unitWidth,
(neighborFlags + leftUnits + leftBelowUnits + 1));
aboveAvailable = availableUnit == tuWidthInUnits;
availableUnit =
isLeftAvailable(cu, CHANNEL_TYPE_CHROMA, posLT, leftUnits, unitHeight,
(neighborFlags + leftUnits + leftBelowUnits - 1));
leftAvailable = availableUnit == tuHeightInUnits;
if (leftAvailable) // if left is not available, then the below left is not available
{
avaiLeftUnits = tuHeightInUnits;
avaiLeftBelowUnits = isBelowLeftAvailable(cu, CHANNEL_TYPE_CHROMA, chromaArea.bottomLeftComp(chromaArea.compID), leftBelowUnits, unitHeight, (neighborFlags + leftBelowUnits - 1));
}
if (aboveAvailable) // if above is not available, then the above right is not available.
{
avaiAboveUnits = tuWidthInUnits;
avaiAboveRightUnits = isAboveRightAvailable(cu, CHANNEL_TYPE_CHROMA, chromaArea.topRightComp(chromaArea.compID), aboveRightUnits, unitWidth, (neighborFlags + leftUnits + leftBelowUnits + aboveUnits + 1));
}
Pel *srcColor0, *curChroma0;
int srcStride;
PelBuf temp;
if ((curChromaMode == MDLM_L_IDX) || (curChromaMode == MDLM_T_IDX))
{
srcStride = 2 * MAX_CU_SIZE + 1;
temp = PelBuf(m_pMdlmTemp + srcStride + 1, srcStride, Size(chromaArea));
}
else
{
srcStride = MAX_CU_SIZE + 1;
temp = PelBuf(m_piTemp + srcStride + 1, srcStride, Size(chromaArea));
}
srcColor0 = temp.bufAt(0, 0);
curChroma0 = getPredictorPtr(compID);
unsigned internalBitDepth = sps.getBitDepth(CHANNEL_TYPE_CHROMA);
int minLuma[2] = { MAX_INT, 0 };
int maxLuma[2] = { -MAX_INT, 0 };
Pel *src = srcColor0 - srcStride;
int actualTopTemplateSampNum = 0;
int actualLeftTemplateSampNum = 0;
if (curChromaMode == MDLM_T_IDX)
{
leftAvailable = 0;
avaiAboveRightUnits = avaiAboveRightUnits > (cHeight/unitWidth) ? cHeight/unitWidth : avaiAboveRightUnits;
actualTopTemplateSampNum = unitWidth*(avaiAboveUnits + avaiAboveRightUnits);
}
else if (curChromaMode == MDLM_L_IDX)
{
aboveAvailable = 0;
avaiLeftBelowUnits = avaiLeftBelowUnits > (cWidth/unitHeight) ? cWidth/unitHeight : avaiLeftBelowUnits;
actualLeftTemplateSampNum = unitHeight*(avaiLeftUnits + avaiLeftBelowUnits);
}
else if (curChromaMode == LM_CHROMA_IDX)
{
actualTopTemplateSampNum = cWidth;
actualLeftTemplateSampNum = cHeight;
}
int startPos[2]; //0:Above, 1: Left
int pickStep[2];
int aboveIs4 = leftAvailable ? 0 : 1;
int leftIs4 = aboveAvailable ? 0 : 1;
startPos[0] = actualTopTemplateSampNum >> (2 + aboveIs4);
pickStep[0] = std::max(1, actualTopTemplateSampNum >> (1 + aboveIs4));
startPos[1] = actualLeftTemplateSampNum >> (2 + leftIs4);
pickStep[1] = std::max(1, actualLeftTemplateSampNum >> (1 + leftIs4));
Pel selectLumaPix[4] = { 0, 0, 0, 0 };
Pel selectChromaPix[4] = { 0, 0, 0, 0 };
int cntT, cntL;
cntT = cntL = 0;
int cnt = 0;
if (aboveAvailable)
{
cntT = std::min(actualTopTemplateSampNum, (1 + aboveIs4) << 1);
src = srcColor0 - srcStride;
const Pel *cur = curChroma0 + 1;
for (int pos = startPos[0]; cnt < cntT; pos += pickStep[0], cnt++)
{
selectLumaPix[cnt] = src[pos];
selectChromaPix[cnt] = cur[pos];
}
}
if (leftAvailable)
{
cntL = std::min(actualLeftTemplateSampNum, ( 1 + leftIs4 ) << 1 );
src = srcColor0 - 1;
const Pel *cur = curChroma0 + m_refBufferStride[compID] + 1;
for (int pos = startPos[1], cnt = 0; cnt < cntL; pos += pickStep[1], cnt++)
{
selectLumaPix[cnt + cntT] = src[pos * srcStride];
selectChromaPix[cnt + cntT] = cur[pos];
}
}
cnt = cntL + cntT;
if (cnt == 2)
{
selectLumaPix[3] = selectLumaPix[0]; selectChromaPix[3] = selectChromaPix[0];
selectLumaPix[2] = selectLumaPix[1]; selectChromaPix[2] = selectChromaPix[1];
selectLumaPix[0] = selectLumaPix[1]; selectChromaPix[0] = selectChromaPix[1];
selectLumaPix[1] = selectLumaPix[3]; selectChromaPix[1] = selectChromaPix[3];
}
int minGrpIdx[2] = { 0, 2 };
int maxGrpIdx[2] = { 1, 3 };
int *tmpMinGrp = minGrpIdx;
int *tmpMaxGrp = maxGrpIdx;
if (selectLumaPix[tmpMinGrp[0]] > selectLumaPix[tmpMinGrp[1]]) std::swap(tmpMinGrp[0], tmpMinGrp[1]);
if (selectLumaPix[tmpMaxGrp[0]] > selectLumaPix[tmpMaxGrp[1]]) std::swap(tmpMaxGrp[0], tmpMaxGrp[1]);
if (selectLumaPix[tmpMinGrp[0]] > selectLumaPix[tmpMaxGrp[1]]) std::swap(tmpMinGrp, tmpMaxGrp);
if (selectLumaPix[tmpMinGrp[1]] > selectLumaPix[tmpMaxGrp[0]]) std::swap(tmpMinGrp[1], tmpMaxGrp[0]);
minLuma[0] = (selectLumaPix[tmpMinGrp[0]] + selectLumaPix[tmpMinGrp[1]] + 1 )>>1;
minLuma[1] = (selectChromaPix[tmpMinGrp[0]] + selectChromaPix[tmpMinGrp[1]] + 1) >> 1;
maxLuma[0] = (selectLumaPix[tmpMaxGrp[0]] + selectLumaPix[tmpMaxGrp[1]] + 1 )>>1;
maxLuma[1] = (selectChromaPix[tmpMaxGrp[0]] + selectChromaPix[tmpMaxGrp[1]] + 1) >> 1;
if (leftAvailable || aboveAvailable)
{
int diff = maxLuma[0] - minLuma[0];
if (diff > 0)
{
int diffC = maxLuma[1] - minLuma[1];
int x = floorLog2( diff );
static const uint8_t DivSigTable[1 << 4] = {
// 4bit significands - 8 ( MSB is omitted )
0, 7, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 0
};
int normDiff = (diff << 4 >> x) & 15;
int v = DivSigTable[normDiff] | 8;
x += normDiff != 0;
int y = floorLog2( abs( diffC ) ) + 1;
int add = 1 << y >> 1;
a = (diffC * v + add) >> y;
iShift = 3 + x - y;
if ( iShift < 1 )
{
iShift = 1;
a = ( (a == 0)? 0: (a < 0)? -15 : 15 ); // a=Sign(a)*15
}
b = minLuma[1] - ((a * minLuma[0]) >> iShift);
}
else
{
a = 0;
b = minLuma[1];
iShift = 0;
}
}
else
{
a = 0;
b = 1 << (internalBitDepth - 1);
iShift = 0;
}
}
void IntraPrediction::initIntraMip( const PredictionUnit &pu, const CompArea &area )
{
CHECK( area.width > MIP_MAX_WIDTH || area.height > MIP_MAX_HEIGHT, "Error: block size not supported for MIP" );
// prepare input (boundary) data for prediction
CHECK( m_ipaParam.refFilterFlag, "ERROR: unfiltered refs expected for MIP" );
Pel *ptrSrc = getPredictorPtr( COMPONENT_Y );
const int srcStride = m_refBufferStride[COMPONENT_Y];
const int srcHStride = 2;
m_matrixIntraPred.prepareInputForPred( CPelBuf( ptrSrc, srcStride, srcHStride ), area, pu.cu->slice->getSPS()->getBitDepth( CHANNEL_TYPE_LUMA ) );
}
void IntraPrediction::predIntraMip( const ComponentID compId, PelBuf &piPred, const PredictionUnit &pu )
{
CHECK( compId != COMPONENT_Y, "Error: chroma not supported" );
CHECK( piPred.width > MIP_MAX_WIDTH || piPred.height > MIP_MAX_HEIGHT, "Error: block size not supported for MIP" );
CHECK( piPred.width != (1 << floorLog2(piPred.width)) || piPred.height != (1 << floorLog2(piPred.height)), "Error: expecting blocks of size 2^M x 2^N" );
// generate mode-specific prediction
const int bitDepth = pu.cu->slice->getSPS()->getBitDepth( CHANNEL_TYPE_LUMA );
static_vector<int, MIP_MAX_WIDTH* MIP_MAX_HEIGHT> predMip( piPred.width * piPred.height );
m_matrixIntraPred.predBlock( predMip.data(), pu.intraDir[CHANNEL_TYPE_LUMA], pu.mipTransposedFlag, bitDepth );
for( int y = 0; y < piPred.height; y++ )
{
for( int x = 0; x < piPred.width; x++ )
{
piPred.at( x, y ) = Pel(predMip[y * piPred.width + x]);
}
}
}
void IntraPrediction::reorderPLT(CodingStructure& cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
uint8_t reusePLTSizetmp = 0;
uint8_t pltSizetmp = 0;
Pel curPLTtmp[MAX_NUM_COMPONENT][MAXPLTSIZE];
bool curPLTpred[MAXPLTPREDSIZE];
for (int idx = 0; idx < MAXPLTPREDSIZE; idx++)
{
curPLTpred[idx] = false;
cu.reuseflag[compBegin][idx] = false;
}
for (int idx = 0; idx < MAXPLTSIZE; idx++)
{
curPLTpred[idx] = false;
}
for (int predidx = 0; predidx < cs.prevPLT.curPLTSize[compBegin]; predidx++)
{
bool match = false;
int curidx = 0;
for (curidx = 0; curidx < cu.curPLTSize[compBegin]; curidx++)
{
bool matchTmp = true;
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
matchTmp = matchTmp && (cu.curPLT[comp][curidx] == cs.prevPLT.curPLT[comp][predidx]);
}
if (matchTmp)
{
match = true;
break;
}
}
if (match)
{
cu.reuseflag[compBegin][predidx] = true;
curPLTpred[curidx] = true;
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
curPLTtmp[comp][reusePLTSizetmp] = cs.prevPLT.curPLT[comp][predidx];
}
reusePLTSizetmp++;
pltSizetmp++;
}
}
cu.reusePLTSize[compBegin] = reusePLTSizetmp;
for (int curidx = 0; curidx < cu.curPLTSize[compBegin]; curidx++)
{
if (!curPLTpred[curidx])
{
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
curPLTtmp[comp][pltSizetmp] = cu.curPLT[comp][curidx];
}
pltSizetmp++;
}
}
assert(pltSizetmp == cu.curPLTSize[compBegin]);
for (int curidx = 0; curidx < cu.curPLTSize[compBegin]; curidx++)
{
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
cu.curPLT[comp][curidx] = curPLTtmp[comp][curidx];
}
}
}
//! \}