Newer
Older
saveCS.getPredBuf(crArea).copyFrom(cs.getPredBuf(crArea));
if (keepResi)
{
saveCS.getResiBuf(cbArea).copyFrom(cs.getResiBuf(cbArea));
saveCS.getResiBuf(crArea).copyFrom(cs.getResiBuf(crArea));
}
saveCS.getRecoBuf(cbArea).copyFrom(cs.getRecoBuf(cbArea));
saveCS.getRecoBuf(crArea).copyFrom(cs.getRecoBuf(crArea));
tmpTU.copyComponentFrom(currTU, COMPONENT_Cb);
tmpTU.copyComponentFrom(currTU, COMPONENT_Cr);
ctxBest = m_CABACEstimator->getCtx();
}

Xiaoyu Xiu
committed
}
// Retrieve the best CU data (unless it was the very last one tested)
{
#if KEEP_PRED_AND_RESI_SIGNALS
cs.getPredBuf (cbArea).copyFrom(saveCS.getPredBuf (cbArea));
cs.getOrgResiBuf(cbArea).copyFrom(saveCS.getOrgResiBuf(cbArea));
cs.getPredBuf (crArea).copyFrom(saveCS.getPredBuf (crArea));
cs.getOrgResiBuf(crArea).copyFrom(saveCS.getOrgResiBuf(crArea));
#endif
cs.getPredBuf (cbArea).copyFrom(saveCS.getPredBuf (cbArea));
cs.getPredBuf (crArea).copyFrom(saveCS.getPredBuf (crArea));
if( keepResi )
{
cs.getResiBuf (cbArea).copyFrom(saveCS.getResiBuf (cbArea));
cs.getResiBuf (crArea).copyFrom(saveCS.getResiBuf (crArea));
}
cs.getRecoBuf (cbArea).copyFrom(saveCS.getRecoBuf (cbArea));
cs.getRecoBuf (crArea).copyFrom(saveCS.getRecoBuf (crArea));
currTU.copyComponentFrom(tmpTU, COMPONENT_Cb);
currTU.copyComponentFrom(tmpTU, COMPONENT_Cr);
m_CABACEstimator->getCtx() = ctxBest;
}
// Copy results to the picture structures
#if JVET_Z0118_GDR
cs.updateReconMotIPM(cbArea);
#else
cs.picture->getRecoBuf(cbArea).copyFrom(cs.getRecoBuf(cbArea));
#endif
#if JVET_Z0118_GDR
cs.updateReconMotIPM(crArea);
#else
cs.picture->getRecoBuf(crArea).copyFrom(cs.getRecoBuf(crArea));
cs.picture->getPredBuf(cbArea).copyFrom(cs.getPredBuf(cbArea));
cs.picture->getPredBuf(crArea).copyFrom(cs.getPredBuf(crArea));
cbfs.cbf(COMPONENT_Cb) = TU::getCbf(currTU, COMPONENT_Cb);
cbfs.cbf(COMPONENT_Cr) = TU::getCbf(currTU, COMPONENT_Cr);
currTU.jointCbCr = ( (cbfs.cbf(COMPONENT_Cb) + cbfs.cbf(COMPONENT_Cr)) ? bestJointCbCr : 0 );

Karsten Suehring
committed
}
}
else
{
unsigned numValidTBlocks = ::getNumberValidTBlocks( *cs.pcv );
ChromaCbfs SplitCbfs ( false );
if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
{
partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
}
else if( currTU.cu->ispMode )
{
partitioner.splitCurrArea( ispType, cs );
}

Karsten Suehring
committed
else

Karsten Suehring
committed
THROW( "Implicit TU split not available" );

Karsten Suehring
committed
do
{
ChromaCbfs subCbfs = xRecurIntraChromaCodingQT( cs, partitioner, bestCostSoFar, ispType );

Karsten Suehring
committed
for( uint32_t ch = COMPONENT_Cb; ch < numValidTBlocks; ch++ )
{
const ComponentID compID = ComponentID( ch );
SplitCbfs.cbf( compID ) |= subCbfs.cbf( compID );
}
} while( partitioner.nextPart( cs ) );
partitioner.exitCurrSplit();
if( lumaUsesISP && cs.dist == MAX_UINT )
{
return cbfs;
}
cbfs.Cb |= SplitCbfs.Cb;
cbfs.Cr |= SplitCbfs.Cr;

Karsten Suehring
committed
if (!lumaUsesISP)
{
for (auto &ptu: cs.tus)
if (currArea.Cb().contains(ptu->Cb()) || (!ptu->Cb().valid() && currArea.Y().contains(ptu->Y())))
TU::setCbfAtDepth(*ptu, COMPONENT_Cb, currDepth, SplitCbfs.Cb);
TU::setCbfAtDepth(*ptu, COMPONENT_Cr, currDepth, SplitCbfs.Cr);

Karsten Suehring
committed
}
}
return cbfs;
}
uint64_t IntraSearch::xFracModeBitsIntra(PredictionUnit &pu, const uint32_t &uiMode, const ChannelType &chType)
{

Karsten Suehring
committed
#if JVET_Y0065_GPM_INTRA
if (!pu.ciipFlag && !pu.gpmIntraFlag)
#else
if (!pu.ciipFlag)

Karsten Suehring
committed
std::swap(orgMode, pu.intraDir[chType]);
m_CABACEstimator->resetBits();
if( isLuma( chType ) )
{
#if JVET_Y0065_GPM_INTRA
if (!pu.ciipFlag && !pu.gpmIntraFlag)
#else
if (!pu.ciipFlag)
{
m_CABACEstimator->intra_luma_pred_mode(pu);
}

Karsten Suehring
committed
}
else
{
m_CABACEstimator->intra_chroma_pred_mode( pu );
}
#if JVET_Y0065_GPM_INTRA
if ( !pu.ciipFlag && !pu.gpmIntraFlag )
#else
if ( !pu.ciipFlag )

Karsten Suehring
committed
std::swap(orgMode, pu.intraDir[chType]);
return m_CABACEstimator->getEstFracBits();
}
void IntraSearch::sortRdModeListFirstColorSpace(ModeInfo mode, double cost, char bdpcmMode, ModeInfo* rdModeList, double* rdCostList, char* bdpcmModeList, int& candNum)
{
if (candNum == 0)
{
rdModeList[0] = mode;
rdCostList[0] = cost;
bdpcmModeList[0] = bdpcmMode;
candNum++;
return;
}
int insertPos = -1;
for (int pos = candNum - 1; pos >= 0; pos--)
{
if (cost < rdCostList[pos])
{
insertPos = pos;
}
}

Karsten Suehring
committed
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
if (insertPos >= 0)
{
for (int i = candNum - 1; i >= insertPos; i--)
{
rdModeList[i + 1] = rdModeList[i];
rdCostList[i + 1] = rdCostList[i];
bdpcmModeList[i + 1] = bdpcmModeList[i];
}
rdModeList[insertPos] = mode;
rdCostList[insertPos] = cost;
bdpcmModeList[insertPos] = bdpcmMode;
candNum++;
}
else
{
rdModeList[candNum] = mode;
rdCostList[candNum] = cost;
bdpcmModeList[candNum] = bdpcmMode;
candNum++;
}
CHECK(candNum > FAST_UDI_MAX_RDMODE_NUM, "exceed intra mode candidate list capacity");
return;
}
void IntraSearch::invalidateBestRdModeFirstColorSpace()
{
int numSaveRdClass = 4 * NUM_LFNST_NUM_PER_SET * 2;
int savedRdModeListSize = FAST_UDI_MAX_RDMODE_NUM;
for (int i = 0; i < numSaveRdClass; i++)
{
m_numSavedRdModeFirstColorSpace[i] = 0;
for (int j = 0; j < savedRdModeListSize; j++)
{
m_savedRdModeFirstColorSpace[i][j] = ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, 0);
m_savedBDPCMModeFirstColorSpace[i][j] = 0;
m_savedRdCostFirstColorSpace[i][j] = MAX_DOUBLE;
}
}
}

Karsten Suehring
committed
template<typename T, size_t N>
void IntraSearch::reduceHadCandList(static_vector<T, N>& candModeList, static_vector<double, N>& candCostList, int& numModesForFullRD, const double thresholdHadCost, const double* mipHadCost, const PredictionUnit &pu, const bool fastMip)
{
const int maxCandPerType = numModesForFullRD >> 1;
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM> tempRdModeList;
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> tempCandCostList;
const double minCost = candCostList[0];
bool keepOneMip = candModeList.size() > numModesForFullRD;

Christian Helmrich
committed
int numConv = 0;
int numMip = 0;
for (int idx = 0; idx < candModeList.size() - (keepOneMip?0:1); idx++)
{
bool addMode = false;
addMode = (numConv < 3);
numConv += addMode ? 1:0;
addMode = ( numMip < maxCandPerType || (candCostList[idx] < thresholdHadCost * minCost) || keepOneMip );
keepOneMip = false;
numMip += addMode ? 1:0;
}
if( addMode )
{
tempCandCostList.push_back(candCostList[idx]);
}
}
if ((pu.lwidth() > 8 && pu.lheight() > 8))
{
// Sort MIP candidates by Hadamard cost
const int transpOff = getNumModesMip( pu.Y() );
static_vector<uint8_t, FAST_UDI_MAX_RDMODE_NUM> sortedMipModes(0);
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> sortedMipCost(0);
{
uint8_t candMode = mode + uint8_t((mipHadCost[mode + transpOff] < mipHadCost[mode]) ? transpOff : 0);
updateCandList(candMode, mipHadCost[candMode], sortedMipModes, sortedMipCost, 3);
}
// Append MIP mode to RD mode list
const int modeListSize = int(tempRdModeList.size());
for (int idx = 0; idx < 3; idx++)
{
const bool isTransposed = (sortedMipModes[idx] >= transpOff ? true : false);
const uint32_t mipIdx = (isTransposed ? sortedMipModes[idx] - transpOff : sortedMipModes[idx]);
const ModeInfo mipMode( true, isTransposed, 0, NOT_INTRA_SUBPARTITIONS, mipIdx );
for (int modeListIdx = 0; modeListIdx < modeListSize; modeListIdx++)
{
if (tempRdModeList[modeListIdx] == mipMode)
{
alreadyIncluded = true;
break;
}
}
if (!alreadyIncluded)
{
#if JVET_AB0155_SGPM
updateCandList(mipMode, sortedMipCost[idx], tempRdModeList, tempCandCostList, tempRdModeList.size() + 1);
#else
tempRdModeList.push_back(mipMode);
tempCandCostList.push_back(0);
if( fastMip ) break;
}
}
}
candModeList = tempRdModeList;
candCostList = tempCandCostList;
numModesForFullRD = int(candModeList.size());
}
// It decides which modes from the ISP lists can be full RD tested
void IntraSearch::xGetNextISPMode(ModeInfo& modeInfo, const ModeInfo* lastMode, const Size cuSize)
{
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM>* rdModeLists[2] = { &m_ispCandListHor, &m_ispCandListVer };
const int curIspLfnstIdx = m_curIspLfnstIdx;
if (curIspLfnstIdx >= NUM_LFNST_NUM_PER_SET)
{
//All lfnst indices have been checked
return;
}
auto& ispTestedModes = m_ispTestedModes[curIspLfnstIdx];
const bool horSplitIsTerminated = ispTestedModes.splitIsFinished[HOR_INTRA_SUBPARTITIONS - 1];
const bool verSplitIsTerminated = ispTestedModes.splitIsFinished[VER_INTRA_SUBPARTITIONS - 1];
if (!horSplitIsTerminated && !verSplitIsTerminated)
{
nextISPcandSplitType = !lastMode ? HOR_INTRA_SUBPARTITIONS : lastMode->ispMod == HOR_INTRA_SUBPARTITIONS ? VER_INTRA_SUBPARTITIONS : HOR_INTRA_SUBPARTITIONS;
}
else if (!horSplitIsTerminated && verSplitIsTerminated)
{
nextISPcandSplitType = HOR_INTRA_SUBPARTITIONS;
}
else if (horSplitIsTerminated && !verSplitIsTerminated)
{
nextISPcandSplitType = VER_INTRA_SUBPARTITIONS;
}
else
{
return; // no more modes will be tested
}
int maxNumSubPartitions = ispTestedModes.numTotalParts[nextISPcandSplitType - 1];
// We try to break the split here for lfnst > 0 according to the first mode
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
if (curIspLfnstIdx > 0 && ispTestedModes.numTestedModes[nextISPcandSplitType - 1] == 1)
{
int firstModeThisSplit = ispTestedModes.getTestedIntraMode(nextISPcandSplitType, 0);
int numSubPartsFirstModeThisSplit = ispTestedModes.getNumCompletedSubParts(nextISPcandSplitType, firstModeThisSplit);
CHECK(numSubPartsFirstModeThisSplit < 0, "wrong number of subpartitions!");
bool stopThisSplit = false;
bool stopThisSplitAllLfnsts = false;
if (numSubPartsFirstModeThisSplit < maxNumSubPartitions)
{
stopThisSplit = true;
if (m_pcEncCfg->getUseFastISP() && curIspLfnstIdx == 1 && numSubPartsFirstModeThisSplit < maxNumSubPartitions - 1)
{
stopThisSplitAllLfnsts = true;
}
}
if (stopThisSplit)
{
ispTestedModes.splitIsFinished[nextISPcandSplitType - 1] = true;
if (curIspLfnstIdx == 1 && stopThisSplitAllLfnsts)
{
m_ispTestedModes[2].splitIsFinished[nextISPcandSplitType - 1] = true;
}
return;
}
}
// We try to break the split here for lfnst = 0 or all lfnst indices according to the first two modes
if (curIspLfnstIdx == 0 && ispTestedModes.numTestedModes[nextISPcandSplitType - 1] == 2)
{
// Split stop criteria after checking the performance of previously tested intra modes
const int thresholdSplit1 = maxNumSubPartitions;
bool stopThisSplit = false;
bool stopThisSplitForAllLFNSTs = false;
const int thresholdSplit1ForAllLFNSTs = maxNumSubPartitions - 1;
int mode1 = ispTestedModes.getTestedIntraMode((ISPType)nextISPcandSplitType, 0);
mode1 = ( mode1 == DC_IDX || mode1 == DIMD_IDX ) ? -1 : mode1;
#else
mode1 = mode1 == DC_IDX ? -1 : mode1;
int numSubPartsBestMode1 = mode1 != -1 ? ispTestedModes.getNumCompletedSubParts((ISPType)nextISPcandSplitType, mode1) : -1;
int mode2 = ispTestedModes.getTestedIntraMode((ISPType)nextISPcandSplitType, 1);
mode2 = ( mode2 == DC_IDX || mode2 == DIMD_IDX ) ? -1 : mode2;
#else
mode2 = mode2 == DC_IDX ? -1 : mode2;
int numSubPartsBestMode2 = mode2 != -1 ? ispTestedModes.getNumCompletedSubParts((ISPType)nextISPcandSplitType, mode2) : -1;
// 1) The 2 most promising modes do not reach a certain number of sub-partitions
if (numSubPartsBestMode1 != -1 && numSubPartsBestMode2 != -1)
{
if (numSubPartsBestMode1 < thresholdSplit1 && numSubPartsBestMode2 < thresholdSplit1)
{
stopThisSplit = true;
if (curIspLfnstIdx == 0 && numSubPartsBestMode1 < thresholdSplit1ForAllLFNSTs && numSubPartsBestMode2 < thresholdSplit1ForAllLFNSTs)
{
stopThisSplitForAllLFNSTs = true;
}
else
{
//we stop also if the cost is MAX_DOUBLE for both modes
double mode1Cost = ispTestedModes.getRDCost(nextISPcandSplitType, mode1);
double mode2Cost = ispTestedModes.getRDCost(nextISPcandSplitType, mode2);
if (!(mode1Cost < MAX_DOUBLE || mode2Cost < MAX_DOUBLE))
{
stopThisSplit = true;
}
}
if (!stopThisSplit)
// 2) One split type may be discarded by comparing the number of sub-partitions of the best angle modes of both splits
ISPType otherSplit = nextISPcandSplitType == HOR_INTRA_SUBPARTITIONS ? VER_INTRA_SUBPARTITIONS : HOR_INTRA_SUBPARTITIONS;
int numSubPartsBestMode2OtherSplit = mode2 != -1 ? ispTestedModes.getNumCompletedSubParts(otherSplit, mode2) : -1;
if (numSubPartsBestMode2OtherSplit != -1 && numSubPartsBestMode2 != -1 && ispTestedModes.bestSplitSoFar != nextISPcandSplitType)
if (numSubPartsBestMode2OtherSplit > numSubPartsBestMode2)
{
stopThisSplit = true;
}
// both have the same number of subpartitions
else if (numSubPartsBestMode2OtherSplit == numSubPartsBestMode2)
{
// both have the maximum number of subpartitions, so it compares RD costs to decide
if (numSubPartsBestMode2OtherSplit == maxNumSubPartitions)
{
double rdCostBestMode2ThisSplit = ispTestedModes.getRDCost(nextISPcandSplitType, mode2);
double rdCostBestMode2OtherSplit = ispTestedModes.getRDCost(otherSplit, mode2);
double threshold = 1.3;
if (rdCostBestMode2ThisSplit == MAX_DOUBLE || rdCostBestMode2OtherSplit < rdCostBestMode2ThisSplit * threshold)
{
stopThisSplit = true;
}
}
else // none of them reached the maximum number of subpartitions with the best angle modes, so it compares the results with the the planar mode
{
int numSubPartsBestMode1OtherSplit = mode1 != -1 ? ispTestedModes.getNumCompletedSubParts(otherSplit, mode1) : -1;
if (numSubPartsBestMode1OtherSplit != -1 && numSubPartsBestMode1 != -1 && numSubPartsBestMode1OtherSplit > numSubPartsBestMode1)
{
stopThisSplit = true;
}
}
}
}
}
if (stopThisSplit)
{
ispTestedModes.splitIsFinished[nextISPcandSplitType - 1] = true;
if (stopThisSplitForAllLFNSTs)
{
for (int lfnstIdx = 1; lfnstIdx < NUM_LFNST_NUM_PER_SET; lfnstIdx++)
{
m_ispTestedModes[lfnstIdx].splitIsFinished[nextISPcandSplitType - 1] = true;
}
}
return;
}
}
// Now a new mode is retrieved from the list and it has to be decided whether it should be tested or not
if (ispTestedModes.candIndexInList[nextISPcandSplitType - 1] < rdModeLists[nextISPcandSplitType - 1]->size())
ModeInfo candidate = rdModeLists[nextISPcandSplitType - 1]->at(ispTestedModes.candIndexInList[nextISPcandSplitType - 1]);
ispTestedModes.candIndexInList[nextISPcandSplitType - 1]++;
// extra modes are only tested if ISP has won so far
if (ispTestedModes.candIndexInList[nextISPcandSplitType - 1] > ispTestedModes.numOrigModesToTest)
if (ispTestedModes.bestSplitSoFar != candidate.ispMod || ispTestedModes.bestModeSoFar == PLANAR_IDX)
ispTestedModes.splitIsFinished[nextISPcandSplitType - 1] = true;
return;
}
}
bool testCandidate = true;
// we look for a reference mode that has already been tested within the window and decide to test the new one according to the reference mode costs
#endif
#if JVET_W0123_TIMD_FUSION
candidate.modeId != TIMD_IDX &&
#endif
maxNumSubPartitions > 2 && (curIspLfnstIdx > 0 || (candidate.modeId >= DC_IDX && ispTestedModes.numTestedModes[nextISPcandSplitType - 1] >= 2)))
const int angWindowSize = 5;
int numSubPartsLeftMode, numSubPartsRightMode, numSubPartsRefMode, leftIntraMode = -1, rightIntraMode = -1;
int windowSize = candidate.modeId > DC_IDX ? angWindowSize : 1;
int numSamples = cuSize.width << floorLog2(cuSize.height);
int numSubPartsLimit = numSamples >= 256 ? maxNumSubPartitions - 1 : 2;
xFindAlreadyTestedNearbyIntraModes(curIspLfnstIdx, (int)candidate.modeId, &refLfnstIdx, &leftIntraMode, &rightIntraMode, (ISPType)candidate.ispMod, windowSize);
if (refLfnstIdx != -1 && refLfnstIdx != curIspLfnstIdx)
{
CHECK(leftIntraMode != candidate.modeId || rightIntraMode != candidate.modeId, "wrong intra mode and lfnstIdx values!");
numSubPartsRefMode = m_ispTestedModes[refLfnstIdx].getNumCompletedSubParts((ISPType)candidate.ispMod, candidate.modeId);
CHECK(numSubPartsRefMode <= 0, "Wrong value of the number of subpartitions completed!");
}
else
{
numSubPartsLeftMode = leftIntraMode != -1 ? ispTestedModes.getNumCompletedSubParts((ISPType)candidate.ispMod, leftIntraMode) : -1;
numSubPartsRightMode = rightIntraMode != -1 ? ispTestedModes.getNumCompletedSubParts((ISPType)candidate.ispMod, rightIntraMode) : -1;
numSubPartsRefMode = std::max(numSubPartsLeftMode, numSubPartsRightMode);
}
if (numSubPartsRefMode > 0)
{
// The mode was found. Now we check the condition
testCandidate = numSubPartsRefMode > numSubPartsLimit;
}
}
if (testCandidate)
{
modeInfo = candidate;
}
}
else
{
//the end of the list was reached, so the split is invalidated
ispTestedModes.splitIsFinished[nextISPcandSplitType - 1] = true;
}
void IntraSearch::xFindAlreadyTestedNearbyIntraModes(int lfnstIdx, int currentIntraMode, int* refLfnstIdx, int* leftIntraMode, int* rightIntraMode, ISPType ispOption, int windowSize)
{
bool leftModeFound = false, rightModeFound = false;
*leftIntraMode = -1;
*rightIntraMode = -1;
const unsigned st = ispOption - 1;
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
//first we check if the exact intra mode was already tested for another lfnstIdx value
if (lfnstIdx > 0)
{
bool sameIntraModeFound = false;
if (lfnstIdx == 2 && m_ispTestedModes[1].modeHasBeenTested[currentIntraMode][st])
{
sameIntraModeFound = true;
*refLfnstIdx = 1;
}
else if (m_ispTestedModes[0].modeHasBeenTested[currentIntraMode][st])
{
sameIntraModeFound = true;
*refLfnstIdx = 0;
}
if (sameIntraModeFound)
{
*leftIntraMode = currentIntraMode;
*rightIntraMode = currentIntraMode;
return;
}
}
//The mode has not been checked for another lfnstIdx value, so now we look for a similar mode within a window using the same lfnstIdx
for (int k = 1; k <= windowSize; k++)
{
int off = currentIntraMode - 2 - k;
int leftMode = (off < 0) ? NUM_LUMA_MODE + off : currentIntraMode - k;
int rightMode = currentIntraMode > DC_IDX ? (((int)currentIntraMode - 2 + k) % 65) + 2 : PLANAR_IDX;
leftModeFound = leftMode != (int)currentIntraMode ? m_ispTestedModes[lfnstIdx].modeHasBeenTested[leftMode][st] : false;
rightModeFound = rightMode != (int)currentIntraMode ? m_ispTestedModes[lfnstIdx].modeHasBeenTested[rightMode][st] : false;
if (leftModeFound || rightModeFound)
{
*leftIntraMode = leftModeFound ? leftMode : -1;
*rightIntraMode = rightModeFound ? rightMode : -1;
break;
}
}
}
//It prepares the list of potential intra modes candidates that will be tested using RD costs
bool IntraSearch::xSortISPCandList(double bestCostSoFar, double bestNonISPCost, ModeInfo bestNonISPMode)
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
int bestISPModeInRelCU = -1;
m_modeCtrl->setStopNonDCT2Transforms(false);
if (m_pcEncCfg->getUseFastISP())
{
//we check if the ISP tests can be cancelled
double thSkipISP = 1.4;
if (bestNonISPCost > bestCostSoFar * thSkipISP)
{
for (int splitIdx = 0; splitIdx < NUM_INTRA_SUBPARTITIONS_MODES - 1; splitIdx++)
{
for (int j = 0; j < NUM_LFNST_NUM_PER_SET; j++)
{
m_ispTestedModes[j].splitIsFinished[splitIdx] = true;
}
}
return false;
}
if (!updateISPStatusFromRelCU(bestNonISPCost, bestNonISPMode, bestISPModeInRelCU))
{
return false;
}
}
for (int k = 0; k < m_ispCandListHor.size(); k++)
{
m_ispCandListHor.at(k).ispMod = HOR_INTRA_SUBPARTITIONS; //we set the correct ISP split type value
}
auto origHadList = m_ispCandListHor; // save the original hadamard list of regular intra
bool modeIsInList[NUM_LUMA_MODE] = { false };
m_ispCandListHor.clear();
m_ispCandListVer.clear();
// we sort the normal intra modes according to their full RD costs
std::stable_sort(m_regIntraRDListWithCosts.begin(), m_regIntraRDListWithCosts.end(), ModeInfoWithCost::compareModeInfoWithCost);
// we get the best angle from the regular intra list
int bestNormalIntraAngle = -1;
for (int modeIdx = 0; modeIdx < m_regIntraRDListWithCosts.size(); modeIdx++)
{
if (bestNormalIntraAngle == -1 && m_regIntraRDListWithCosts.at(modeIdx).modeId > DC_IDX)
{
bestNormalIntraAngle = m_regIntraRDListWithCosts.at(modeIdx).modeId;
break;
}
}
int mode1 = PLANAR_IDX;
int mode2 = bestNormalIntraAngle;
ModeInfo refMode = origHadList.at(0);
auto* destListPtr = &m_ispCandListHor;
if (m_pcEncCfg->getUseFastISP() && bestISPModeInRelCU != -1) //RelCU intra mode
{
destListPtr->push_back(
ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, bestISPModeInRelCU));
modeIsInList[bestISPModeInRelCU] = true;
}
// Planar
#if JVET_W0103_INTRA_MTS
// push planar later when FastISP is on.
if (!m_pcEncCfg->getUseFastISP() && !modeIsInList[mode1])
#else
{
destListPtr->push_back(ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, mode1));
modeIsInList[mode1] = true;
}
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
// Best angle in regular intra
if (mode2 != -1 && !modeIsInList[mode2])
{
destListPtr->push_back(ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, mode2));
modeIsInList[mode2] = true;
}
// Remaining regular intra modes that were full RD tested (except DC, which is added after the angles from regular intra)
int dcModeIndex = -1;
for (int remModeIdx = 0; remModeIdx < m_regIntraRDListWithCosts.size(); remModeIdx++)
{
int currentMode = m_regIntraRDListWithCosts.at(remModeIdx).modeId;
if (currentMode != mode1 && currentMode != mode2 && !modeIsInList[currentMode])
{
if (currentMode > DC_IDX)
{
destListPtr->push_back(ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, currentMode));
modeIsInList[currentMode] = true;
}
else if (currentMode == DC_IDX)
{
dcModeIndex = remModeIdx;
}
}
}
#if JVET_W0103_INTRA_MTS
// Planar (after angular modes when FastISP is on)
if (!modeIsInList[mode1])
{
destListPtr->push_back(ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, mode1));
modeIsInList[mode1] = true;
}
#endif
// DC is added after the angles from regular intra
if (dcModeIndex != -1 && !modeIsInList[DC_IDX])
{
destListPtr->push_back(ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, DC_IDX));
modeIsInList[DC_IDX] = true;
}
// We add extra candidates to the list that will only be tested if ISP is likely to win
for (int j = 0; j < NUM_LFNST_NUM_PER_SET; j++)
{
m_ispTestedModes[j].numOrigModesToTest = (int)destListPtr->size();
#if JVET_W0103_INTRA_MTS
if (m_pcEncCfg->getUseFastISP() && m_numModesISPRDO != -1 && destListPtr->size() > m_numModesISPRDO)
{
m_ispTestedModes[j].numOrigModesToTest = m_numModesISPRDO;
}
#endif
const int addedModesFromHadList = 3;
int newModesAdded = 0;
for (int k = 0; k < origHadList.size(); k++)
{
if (newModesAdded == addedModesFromHadList)
{
break;
}
#endif
#if JVET_W0123_TIMD_FUSION
origHadList.at(k).modeId == TIMD_IDX ||
destListPtr->push_back( ModeInfo( refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, origHadList.at(k).modeId ) );
newModesAdded++;
}
}
if (m_pcEncCfg->getUseFastISP() && bestISPModeInRelCU != -1)
{
destListPtr->resize(1);
}
// Copy modes to other split-type list
m_ispCandListVer = m_ispCandListHor;
for (int i = 0; i < m_ispCandListVer.size(); i++)
{
m_ispCandListVer[i].ispMod = VER_INTRA_SUBPARTITIONS;
}
// Reset the tested modes information to 0
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
for (int j = 0; j < NUM_LFNST_NUM_PER_SET; j++)
{
for (int i = 0; i < m_ispCandListHor.size(); i++)
{
m_ispTestedModes[j].clearISPModeInfo(m_ispCandListHor[i].modeId);
}
}
return true;
}
void IntraSearch::xSortISPCandListLFNST()
{
//It resorts the list of intra mode candidates for lfnstIdx > 0 by checking the RD costs for lfnstIdx = 0
ISPTestedModesInfo& ispTestedModesRef = m_ispTestedModes[0];
for (int splitIdx = 0; splitIdx < NUM_INTRA_SUBPARTITIONS_MODES - 1; splitIdx++)
{
ISPType ispMode = splitIdx ? VER_INTRA_SUBPARTITIONS : HOR_INTRA_SUBPARTITIONS;
if (!m_ispTestedModes[m_curIspLfnstIdx].splitIsFinished[splitIdx] && ispTestedModesRef.testedModes[splitIdx].size() > 1)
{
auto& candList = ispMode == HOR_INTRA_SUBPARTITIONS ? m_ispCandListHor : m_ispCandListVer;
int bestModeId = candList[1].modeId > DC_IDX ? candList[1].modeId : -1;
int bestSubParts = candList[1].modeId > DC_IDX ? ispTestedModesRef.getNumCompletedSubParts(ispMode, bestModeId) : -1;
double bestCost = candList[1].modeId > DC_IDX ? ispTestedModesRef.getRDCost(ispMode, bestModeId) : MAX_DOUBLE;
for (int i = 0; i < candList.size(); i++)
{
if( candList[i].modeId == DIMD_IDX )
{
continue;
}
#endif
#if JVET_W0123_TIMD_FUSION
if( candList[i].modeId == TIMD_IDX )
{
continue;
}
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
const int candSubParts = ispTestedModesRef.getNumCompletedSubParts(ispMode, candList[i].modeId);
const double candCost = ispTestedModesRef.getRDCost(ispMode, candList[i].modeId);
if (candSubParts > bestSubParts || candCost < bestCost)
{
bestModeId = candList[i].modeId;
bestCost = candCost;
bestSubParts = candSubParts;
}
}
if (bestModeId != -1)
{
if (bestModeId != candList[0].modeId)
{
auto prevMode = candList[0];
candList[0].modeId = bestModeId;
for (int i = 1; i < candList.size(); i++)
{
auto nextMode = candList[i];
candList[i] = prevMode;
if (nextMode.modeId == bestModeId)
{
break;
}
prevMode = nextMode;
}
}
}
}
}
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
bool IntraSearch::updateISPStatusFromRelCU( double bestNonISPCostCurrCu, ModeInfo bestNonISPModeCurrCu, int& bestISPModeInRelCU )
{
//It compares the data of a related CU with the current CU to cancel or reduce the ISP tests
bestISPModeInRelCU = -1;
if (m_modeCtrl->getRelatedCuIsValid())
{
double bestNonISPCostRelCU = m_modeCtrl->getBestDCT2NonISPCostRelCU();
double costRatio = bestNonISPCostCurrCu / bestNonISPCostRelCU;
bool bestModeRelCuIsMip = (m_modeCtrl->getIspPredModeValRelCU() >> 5) & 0x1;
bool bestModeCurrCuIsMip = bestNonISPModeCurrCu.mipFlg;
int relatedCuIntraMode = m_modeCtrl->getIspPredModeValRelCU() >> 9;
bool isSameTypeOfMode = (bestModeRelCuIsMip && bestModeCurrCuIsMip) || (!bestModeRelCuIsMip && !bestModeCurrCuIsMip);
bool bothModesAreAngular = bestNonISPModeCurrCu.modeId > DC_IDX && relatedCuIntraMode > DC_IDX;
bool modesAreComparable = isSameTypeOfMode && (bestModeCurrCuIsMip || bestNonISPModeCurrCu.modeId == relatedCuIntraMode || (bothModesAreAngular && abs(relatedCuIntraMode - (int)bestNonISPModeCurrCu.modeId) <= 5));
int status = m_modeCtrl->getIspPredModeValRelCU();
if ((status & 0x3) == 0x3) //ISP was not selected in the relCU
{
double bestNonDCT2Cost = m_modeCtrl->getBestNonDCT2Cost();
double ratioWithNonDCT2 = bestNonDCT2Cost / bestNonISPCostRelCU;
double margin = ratioWithNonDCT2 < 0.95 ? 0.2 : 0.1;
if (costRatio > 1 - margin && costRatio < 1 + margin && modesAreComparable)
{
for (int lfnstVal = 0; lfnstVal < NUM_LFNST_NUM_PER_SET; lfnstVal++)
{
m_ispTestedModes[lfnstVal].splitIsFinished[HOR_INTRA_SUBPARTITIONS - 1] = true;
m_ispTestedModes[lfnstVal].splitIsFinished[VER_INTRA_SUBPARTITIONS - 1] = true;
}
return false;
}
}
else if ((status & 0x3) == 0x1) //ISP was selected in the relCU
{
double margin = 0.05;
if (costRatio > 1 - margin && costRatio < 1 + margin && modesAreComparable)
{
int ispSplitIdx = (m_modeCtrl->getIspPredModeValRelCU() >> 2) & 0x1;
bool lfnstIdxIsNot0 = (bool)((m_modeCtrl->getIspPredModeValRelCU() >> 3) & 0x1);
bool lfnstIdxIs2 = (bool)((m_modeCtrl->getIspPredModeValRelCU() >> 4) & 0x1);
int lfnstIdx = !lfnstIdxIsNot0 ? 0 : lfnstIdxIs2 ? 2 : 1;
bestISPModeInRelCU = (int)m_modeCtrl->getBestISPIntraModeRelCU();
for (int splitIdx = 0; splitIdx < NUM_INTRA_SUBPARTITIONS_MODES - 1; splitIdx++)
{
for (int lfnstVal = 0; lfnstVal < NUM_LFNST_NUM_PER_SET; lfnstVal++)
{
if (lfnstVal == lfnstIdx && splitIdx == ispSplitIdx)
{
continue;
}
m_ispTestedModes[lfnstVal].splitIsFinished[splitIdx] = true;
}
}
bool stopNonDCT2Transforms = (bool)((m_modeCtrl->getIspPredModeValRelCU() >> 6) & 0x1);
m_modeCtrl->setStopNonDCT2Transforms(stopNonDCT2Transforms);
}
}
else
{
THROW("Wrong ISP relCU status");
}
}
return true;
}
void IntraSearch::xFinishISPModes()
{
//Continue to the next lfnst index
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
m_curIspLfnstIdx++;
if (m_curIspLfnstIdx < NUM_LFNST_NUM_PER_SET)
{
//Check if LFNST is applicable
if (m_curIspLfnstIdx == 1)
{
bool canTestLFNST = false;
for (int lfnstIdx = 1; lfnstIdx < NUM_LFNST_NUM_PER_SET; lfnstIdx++)
{
canTestLFNST |= !m_ispTestedModes[lfnstIdx].splitIsFinished[HOR_INTRA_SUBPARTITIONS - 1] || !m_ispTestedModes[lfnstIdx].splitIsFinished[VER_INTRA_SUBPARTITIONS - 1];
}
if (canTestLFNST)
{
//Construct the intra modes candidates list for the lfnst > 0 cases
xSortISPCandListLFNST();
}
}
}
}