Newer
Older
cs.setDecomp(area);
#if JVET_Z0118_GDR
cs.updateReconMotIPM(area);
#else
cs.picture->getRecoBuf(area).copyFrom(cs.getRecoBuf(area));
Yung-Hsuan Chao (Jessie)
committed
}
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
void IntraSearch::calcPixelPredRD(CodingStructure& cs, Partitioner& partitioner, Pel* orgBuf, Pel* paPixelValue, Pel* paRecoValue, ComponentID compBegin, uint32_t numComp)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
TransformUnit &tu = *cs.getTU(partitioner.chType);
int qp[3];
int qpRem[3];
int qpPer[3];
int quantiserScale[3];
int quantiserRightShift[3];
int rightShiftOffset[3];
int invquantiserRightShift[3];
int add[3];
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
QpParam cQP(tu, ComponentID(ch));
qp[ch] = cQP.Qp(true);
qpRem[ch] = qp[ch] % 6;
qpPer[ch] = qp[ch] / 6;
quantiserScale[ch] = g_quantScales[0][qpRem[ch]];
quantiserRightShift[ch] = QUANT_SHIFT + qpPer[ch];
rightShiftOffset[ch] = 1 << (quantiserRightShift[ch] - 1);
invquantiserRightShift[ch] = IQUANT_SHIFT;
add[ch] = 1 << (invquantiserRightShift[ch] - 1);
}
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
const int channelBitDepth = cu.cs->sps->getBitDepth(toChannelType((ComponentID)ch));
paPixelValue[ch] = Pel(std::max<int>(0, ((orgBuf[ch] * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch])));
assert(paPixelValue[ch] < (1 << (channelBitDepth + 1)));
paRecoValue[ch] = (((paPixelValue[ch] * g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch]) >> invquantiserRightShift[ch];
paRecoValue[ch] = Pel(ClipBD<int>(paRecoValue[ch], channelBitDepth));//to be checked
}
}
void IntraSearch::preCalcPLTIndexRD(CodingStructure& cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
bool lossless = (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && cs.slice->isLossless());
CPelBuf orgBuf[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
CompArea area = cu.blocks[comp];
if (m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag()))
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
{
orgBuf[comp] = cs.getPredBuf(area);
}
else
{
orgBuf[comp] = cs.getOrgBuf(area);
}
}
int rasPos;
uint32_t scaleX = getComponentScaleX(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
uint32_t scaleY = getComponentScaleY(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
rasPos = y * width + x;;
// chroma discard
bool discardChroma = (compBegin == COMPONENT_Y) && (y&scaleY || x&scaleX);
Pel curPel[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
uint32_t pX1 = (comp > 0 && compBegin == COMPONENT_Y) ? (x >> scaleX) : x;
uint32_t pY1 = (comp > 0 && compBegin == COMPONENT_Y) ? (y >> scaleY) : y;
curPel[comp] = orgBuf[comp].at(pX1, pY1);
}
uint8_t pltIdx = 0;
double minError = MAX_DOUBLE;
uint8_t bestIdx = 0;
for (uint8_t z = 0; z < cu.curPLTSize[compBegin]; z++)
{
m_indexError[z][rasPos] = minError;
}
while (pltIdx < cu.curPLTSize[compBegin])
{
uint64_t sqrtError = 0;
if (lossless)
{
for (int comp = compBegin; comp < (discardChroma ? 1 : (compBegin + numComp)); comp++)
{
sqrtError += int64_t(abs(curPel[comp] - cu.curPLT[comp][pltIdx]));
}
if (sqrtError == 0)
{
m_indexError[pltIdx][rasPos] = (double) sqrtError;
minError = (double) sqrtError;
bestIdx = pltIdx;
break;
}
}
else
{
for (int comp = compBegin; comp < (discardChroma ? 1 : (compBegin + numComp)); comp++)
int64_t tmpErr = int64_t(curPel[comp] - cu.curPLT[comp][pltIdx]);
if (isChroma((ComponentID) comp))
{
sqrtError += uint64_t(tmpErr * tmpErr * ENC_CHROMA_WEIGHTING);
}
else
{
sqrtError += tmpErr * tmpErr;
}
m_indexError[pltIdx][rasPos] = (double) sqrtError;
if (sqrtError < minError)
minError = (double) sqrtError;
bestIdx = pltIdx;
}
}
pltIdx++;
}
Pel paPixelValue[3], paRecoValue[3];
if (!lossless)
{
calcPixelPredRD(cs, partitioner, curPel, paPixelValue, paRecoValue, compBegin, numComp);
uint64_t error = 0, rate = 0;
for (int comp = compBegin; comp < (discardChroma ? 1 : (compBegin + numComp)); comp++)
{
if (lossless)
{
rate += m_escapeNumBins[curPel[comp]];
}
else
{
int64_t tmpErr = int64_t(curPel[comp] - paRecoValue[comp]);
if (isChroma((ComponentID) comp))
{
error += uint64_t(tmpErr * tmpErr * ENC_CHROMA_WEIGHTING);
}
else
{
error += tmpErr * tmpErr;
}
rate += m_escapeNumBins[paPixelValue[comp]]; // encode quantized escape color
}
double rdCost = (double)error + m_pcRdCost->getLambda()*(double)rate;
m_indexError[cu.curPLTSize[compBegin]][rasPos] = rdCost;
if (rdCost < minError)
{
minError = rdCost;
bestIdx = (uint8_t)cu.curPLTSize[compBegin];
}
m_minErrorIndexMap[rasPos] = bestIdx; // save the optimal index of the current pixel
}
}
}
void IntraSearch::deriveIndexMap(CodingStructure& cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp, PLTScanMode pltScanMode, double& dMinCost, bool* idxExist)
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
TransformUnit &tu = *cs.getTU(partitioner.chType);
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
int total = height*width;
Pel *runIndex = tu.getPLTIndex(compBegin);
bool *runType = tu.getRunTypes(compBegin);
m_scanOrder = g_scanOrder[SCAN_UNGROUPED][pltScanMode ? SCAN_TRAV_VER : SCAN_TRAV_HOR][gp_sizeIdxInfo->idxFrom(width)][gp_sizeIdxInfo->idxFrom(height)];
// Trellis initialization
for (int i = 0; i < 2; i++)
{
memset(m_prevRunTypeRDOQ[i], 0, sizeof(Pel)*NUM_TRELLIS_STATE);
memset(m_prevRunPosRDOQ[i], 0, sizeof(int)*NUM_TRELLIS_STATE);
memset(m_stateCostRDOQ[i], 0, sizeof (double)*NUM_TRELLIS_STATE);
}
for (int state = 0; state < NUM_TRELLIS_STATE; state++)
{
m_statePtRDOQ[state][0] = 0;
}
// Context modeling
const FracBitsAccess& fracBits = m_CABACEstimator->getCtx().getFracBitsAcess();
BinFracBits fracBitsPltCopyFlagIndex[RUN_IDX_THRE + 1];
for (int dist = 0; dist <= RUN_IDX_THRE; dist++)
{
const unsigned ctxId = DeriveCtx::CtxPltCopyFlag(PLT_RUN_INDEX, dist);
fracBitsPltCopyFlagIndex[dist] = fracBits.getFracBitsArray(Ctx::IdxRunModel( ctxId ) );
}
BinFracBits fracBitsPltCopyFlagAbove[RUN_IDX_THRE + 1];
for (int dist = 0; dist <= RUN_IDX_THRE; dist++)
{
const unsigned ctxId = DeriveCtx::CtxPltCopyFlag(PLT_RUN_COPY, dist);
fracBitsPltCopyFlagAbove[dist] = fracBits.getFracBitsArray(Ctx::CopyRunModel( ctxId ) );
}
const BinFracBits fracBitsPltRunType = fracBits.getFracBitsArray( Ctx::RunTypeFlag() );
// Trellis RDO per CG
bool contTrellisRD = true;
for (int subSetId = 0; ( subSetId <= (total - 1) >> LOG2_PALETTE_CG_SIZE ) && contTrellisRD; subSetId++)
{
int minSubPos = subSetId << LOG2_PALETTE_CG_SIZE;
int maxSubPos = minSubPos + (1 << LOG2_PALETTE_CG_SIZE);
maxSubPos = (maxSubPos > total) ? total : maxSubPos; // if last position is out of the current CU size
contTrellisRD = deriveSubblockIndexMap(cs, partitioner, compBegin, pltScanMode, minSubPos, maxSubPos, fracBitsPltRunType, fracBitsPltCopyFlagIndex, fracBitsPltCopyFlagAbove, dMinCost, (bool)pltScanMode);
}
if (!contTrellisRD)
{
return;
}
// best state at the last scan position
double sumRdCost = MAX_DOUBLE;
uint8_t bestState = 0;
for (uint8_t state = 0; state < NUM_TRELLIS_STATE; state++)
{
if (m_stateCostRDOQ[0][state] < sumRdCost)
{
sumRdCost = m_stateCostRDOQ[0][state];
bestState = state;
}
}
bool checkRunTable [MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
uint8_t checkIndexTable[MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
uint8_t bestStateTable [MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
uint8_t nextState = bestState;
// best trellis path
for (int i = (width*height - 1); i >= 0; i--)
{
bestStateTable[i] = nextState;
int rasterPos = m_scanOrder[i].idx;
nextState = m_statePtRDOQ[nextState][rasterPos];
}
// reconstruct index and runs based on the state pointers
for (int i = 0; i < (width*height); i++)
{
int rasterPos = m_scanOrder[i].idx;
int abovePos = (pltScanMode == PLT_SCAN_HORTRAV) ? m_scanOrder[i].idx - width : m_scanOrder[i].idx - 1;
nextState = bestStateTable[i];
if ( nextState == 0 ) // same as the previous
{
checkRunTable[rasterPos] = checkRunTable[ m_scanOrder[i - 1].idx ];
if ( checkRunTable[rasterPos] == PLT_RUN_INDEX )
{
checkIndexTable[rasterPos] = checkIndexTable[m_scanOrder[i - 1].idx];
}
else
{
checkIndexTable[rasterPos] = checkIndexTable[ abovePos ];
}
}
else if (nextState == 1) // CopyAbove mode
{
checkRunTable[rasterPos] = PLT_RUN_COPY;
checkIndexTable[rasterPos] = checkIndexTable[abovePos];
}
else if (nextState == 2) // Index mode
{
checkRunTable[rasterPos] = PLT_RUN_INDEX;
checkIndexTable[rasterPos] = m_minErrorIndexMap[rasterPos];
}
}
// Escape flag
m_bestEscape = false;
for (int pos = 0; pos < (width*height); pos++)
{
uint8_t index = checkIndexTable[pos];
if (index == cu.curPLTSize[compBegin])
{
m_bestEscape = true;
break;
}
}
// Horizontal scan v.s vertical scan
if (sumRdCost < dMinCost)
{
cu.useEscape[compBegin] = m_bestEscape;
m_bestScanRotationMode = pltScanMode;
memset(idxExist, false, sizeof(bool) * (MAXPLTSIZE + 1));
for (int pos = 0; pos < (width*height); pos++)
{
runIndex[pos] = checkIndexTable[pos];
runType[pos] = checkRunTable[pos];
idxExist[checkIndexTable[pos]] = true;
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
}
dMinCost = sumRdCost;
}
}
bool IntraSearch::deriveSubblockIndexMap(
CodingStructure& cs,
Partitioner& partitioner,
ComponentID compBegin,
PLTScanMode pltScanMode,
int minSubPos,
int maxSubPos,
const BinFracBits& fracBitsPltRunType,
const BinFracBits* fracBitsPltIndexINDEX,
const BinFracBits* fracBitsPltIndexCOPY,
const double minCost,
bool useRotate
)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
int indexMaxValue = cu.curPLTSize[compBegin];
int refId = 0;
int currRasterPos, currScanPos, prevScanPos, aboveScanPos, roffset;
int log2Width = (pltScanMode == PLT_SCAN_HORTRAV) ? floorLog2(width): floorLog2(height);
int buffersize = (pltScanMode == PLT_SCAN_HORTRAV) ? 2*width: 2*height;
for (int curPos = minSubPos; curPos < maxSubPos; curPos++)
{
currRasterPos = m_scanOrder[curPos].idx;
prevScanPos = (curPos == 0) ? 0 : (curPos - 1) % buffersize;
roffset = (curPos >> log2Width) << log2Width;
aboveScanPos = roffset - (curPos - roffset + 1);
aboveScanPos %= buffersize;
currScanPos = curPos % buffersize;
if ((pltScanMode == PLT_SCAN_HORTRAV && curPos < width) || (pltScanMode == PLT_SCAN_VERTRAV && curPos < height))
{
aboveScanPos = -1; // first column/row: above row is not valid
}
// 1st state: same as previous scanned sample
// 2nd state: Copy_Above mode
// 3rd state: Index mode
// Loop of current state
for ( int curState = 0; curState < NUM_TRELLIS_STATE; curState++ )
{
double minRdCost = MAX_DOUBLE;
int minState = 0; // best prevState
uint8_t bestRunIndex = 0;
bool bestRunType = 0;
bool bestPrevCodedType = 0;
int bestPrevCodedPos = 0;
if ( ( curState == 0 && curPos == 0 ) || ( curState == 1 && aboveScanPos < 0 ) ) // state not available
{
m_stateCostRDOQ[1 - refId][curState] = MAX_DOUBLE;
continue;
}
bool runType = 0;
uint8_t runIndex = 0;
if ( curState == 1 ) // 2nd state: Copy_Above mode
{
runType = PLT_RUN_COPY;
}
else if ( curState == 2 ) // 3rd state: Index mode
{
runType = PLT_RUN_INDEX;
runIndex = m_minErrorIndexMap[currRasterPos];
}
// Loop of previous state
for ( int stateID = 0; stateID < NUM_TRELLIS_STATE; stateID++ )
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
{
if ( m_stateCostRDOQ[refId][stateID] == MAX_DOUBLE )
{
continue;
}
if ( curState == 0 ) // 1st state: same as previous scanned sample
{
runType = m_runMapRDOQ[refId][stateID][prevScanPos];
runIndex = ( runType == PLT_RUN_INDEX ) ? m_indexMapRDOQ[refId][stateID][ prevScanPos ] : m_indexMapRDOQ[refId][stateID][ aboveScanPos ];
}
else if ( curState == 1 ) // 2nd state: Copy_Above mode
{
runIndex = m_indexMapRDOQ[refId][stateID][aboveScanPos];
}
bool prevRunType = m_runMapRDOQ[refId][stateID][prevScanPos];
uint8_t prevRunIndex = m_indexMapRDOQ[refId][stateID][prevScanPos];
uint8_t aboveRunIndex = (aboveScanPos >= 0) ? m_indexMapRDOQ[refId][stateID][aboveScanPos] : 0;
int dist = curPos - m_prevRunPosRDOQ[refId][stateID] - 1;
double rdCost = m_stateCostRDOQ[refId][stateID];
if ( rdCost >= minRdCost ) continue;
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
bool prevCodedRunType = m_prevRunTypeRDOQ[refId][stateID];
int prevCodedPos = m_prevRunPosRDOQ [refId][stateID];
const BinFracBits* fracBitsPt = (m_prevRunTypeRDOQ[refId][stateID] == PLT_RUN_INDEX) ? fracBitsPltIndexINDEX : fracBitsPltIndexCOPY;
rdCost += rateDistOptPLT(runType, runIndex, prevRunType, prevRunIndex, aboveRunIndex, prevCodedRunType, prevCodedPos, curPos, (pltScanMode == PLT_SCAN_HORTRAV) ? width : height, dist, indexMaxValue, fracBitsPt, fracBitsPltRunType);
if (rdCost < minRdCost) // update minState ( minRdCost )
{
minRdCost = rdCost;
minState = stateID;
bestRunType = runType;
bestRunIndex = runIndex;
bestPrevCodedType = prevCodedRunType;
bestPrevCodedPos = prevCodedPos;
}
}
// Update trellis info of current state
m_stateCostRDOQ [1 - refId][curState] = minRdCost;
m_prevRunTypeRDOQ[1 - refId][curState] = bestPrevCodedType;
m_prevRunPosRDOQ [1 - refId][curState] = bestPrevCodedPos;
m_statePtRDOQ[curState][currRasterPos] = minState;
int buffer2update = std::min(buffersize, curPos);
memcpy(m_indexMapRDOQ[1 - refId][curState], m_indexMapRDOQ[refId][minState], sizeof(uint8_t)*buffer2update);
memcpy(m_runMapRDOQ[1 - refId][curState], m_runMapRDOQ[refId][minState], sizeof(bool)*buffer2update);
m_indexMapRDOQ[1 - refId][curState][currScanPos] = bestRunIndex;
m_runMapRDOQ [1 - refId][curState][currScanPos] = bestRunType;
}
if (useRotate) // early terminate: Rd cost >= min cost in horizontal scan
{
if ((m_stateCostRDOQ[1 - refId][0] >= minCost) &&
(m_stateCostRDOQ[1 - refId][1] >= minCost) &&
(m_stateCostRDOQ[1 - refId][2] >= minCost) )
{
return 0;
}
}
refId = 1 - refId;
}
return 1;
}
double IntraSearch::rateDistOptPLT(
bool runType,
uint8_t runIndex,
bool prevRunType,
uint8_t prevRunIndex,
uint8_t aboveRunIndex,
bool& prevCodedRunType,
int& prevCodedPos,
int scanPos,
uint32_t width,
int dist,
int indexMaxValue,
const BinFracBits* IndexfracBits,
const BinFracBits& TypefracBits)
{
double rdCost = 0.0;
bool identityFlag = !( (runType != prevRunType) || ( (runType == PLT_RUN_INDEX) && (runIndex != prevRunIndex) ) );
if ( ( !identityFlag && runType == PLT_RUN_INDEX ) || scanPos == 0 ) // encode index value
{
uint8_t refIndex = (prevRunType == PLT_RUN_INDEX) ? prevRunIndex : aboveRunIndex;
refIndex = (scanPos == 0) ? ( indexMaxValue + 1) : refIndex;
if ( runIndex == refIndex )
{
rdCost = MAX_DOUBLE;
return rdCost;
}
rdCost += m_pcRdCost->getLambda()*(m_truncBinBits[(runIndex > refIndex) ? runIndex - 1 : runIndex][(scanPos == 0) ? (indexMaxValue + 1) : indexMaxValue] << SCALE_BITS);
rdCost += m_indexError[runIndex][m_scanOrder[scanPos].idx] * (1 << SCALE_BITS);
if (scanPos > 0)
{
rdCost += m_pcRdCost->getLambda()*( identityFlag ? (IndexfracBits[(dist < RUN_IDX_THRE) ? dist : RUN_IDX_THRE].intBits[1]) : (IndexfracBits[(dist < RUN_IDX_THRE) ? dist : RUN_IDX_THRE].intBits[0] ) );
}
if ( !identityFlag && scanPos >= width && prevRunType != PLT_RUN_COPY )
{
rdCost += m_pcRdCost->getLambda()*TypefracBits.intBits[runType];
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
}
if (!identityFlag || scanPos == 0)
{
prevCodedRunType = runType;
prevCodedPos = scanPos;
}
return rdCost;
}
uint32_t IntraSearch::getEpExGolombNumBins(uint32_t symbol, uint32_t count)
{
uint32_t numBins = 0;
while (symbol >= (uint32_t)(1 << count))
{
numBins++;
symbol -= 1 << count;
count++;
}
numBins++;
numBins += count;
assert(numBins <= 32);
return numBins;
}
uint32_t IntraSearch::getTruncBinBits(uint32_t symbol, uint32_t maxSymbol)
{
uint32_t idxCodeBit = 0;
uint32_t thresh;
if (maxSymbol > 256)
{
uint32_t threshVal = 1 << 8;
thresh = 8;
while (threshVal <= maxSymbol)
{
thresh++;
threshVal <<= 1;
}
thresh--;
}
else
{
thresh = g_tbMax[maxSymbol];
}
uint32_t uiVal = 1 << thresh;
assert(uiVal <= maxSymbol);
assert((uiVal << 1) > maxSymbol);
assert(symbol < maxSymbol);
uint32_t b = maxSymbol - uiVal;
assert(b < uiVal);
if (symbol < uiVal - b)
{
idxCodeBit = thresh;
}
else
{
idxCodeBit = thresh + 1;
}
return idxCodeBit;
}
void IntraSearch::initTBCTable(int bitDepth)
{
for (uint32_t i = 0; i < m_symbolSize; i++)
{
memset(m_truncBinBits[i], 0, sizeof(uint16_t)*(m_symbolSize + 1));
}
for (uint32_t i = 0; i < (m_symbolSize + 1); i++)
{
for (uint32_t j = 0; j < i; j++)
{
m_truncBinBits[j][i] = getTruncBinBits(j, i);
}
}
memset(m_escapeNumBins, 0, sizeof(uint16_t)*m_symbolSize);
for (uint32_t i = 0; i < m_symbolSize; i++)
{
m_escapeNumBins[i] = getEpExGolombNumBins(i, 5);
void IntraSearch::calcPixelPred(CodingStructure& cs, Partitioner& partitioner, uint32_t yPos, uint32_t xPos, ComponentID compBegin, uint32_t numComp)
Yung-Hsuan Chao (Jessie)
committed
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
TransformUnit &tu = *cs.getTU(partitioner.chType);
bool lossless = (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && cs.slice->isLossless());
CPelBuf orgBuf[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
CompArea area = cu.blocks[comp];
if (m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag()))
{
orgBuf[comp] = cs.getPredBuf(area);
}
else
{
orgBuf[comp] = cs.getOrgBuf(area);
}
}
int qp[3];
int qpRem[3];
int qpPer[3];
int quantiserScale[3];
int quantiserRightShift[3];
int rightShiftOffset[3];
int invquantiserRightShift[3];
if (!lossless)
{
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
QpParam cQP(tu, ComponentID(ch));
qp[ch] = cQP.Qp(true);
qpRem[ch] = qp[ch] % 6;
qpPer[ch] = qp[ch] / 6;
quantiserScale[ch] = g_quantScales[0][qpRem[ch]];
quantiserRightShift[ch] = QUANT_SHIFT + qpPer[ch];
rightShiftOffset[ch] = 1 << (quantiserRightShift[ch] - 1);
invquantiserRightShift[ch] = IQUANT_SHIFT;
add[ch] = 1 << (invquantiserRightShift[ch] - 1);
}
uint32_t scaleX = getComponentScaleX(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
uint32_t scaleY = getComponentScaleY(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
const int channelBitDepth = cu.cs->sps->getBitDepth(toChannelType((ComponentID)ch));
CompArea area = cu.blocks[ch];
PelBuf recBuf = cs.getRecoBuf(area);
PLTescapeBuf escapeValue = tu.getescapeValue((ComponentID)ch);
if (compBegin != COMPONENT_Y || ch == 0)
{
if (lossless)
{
escapeValue.at(xPos, yPos) = orgBuf[ch].at(xPos, yPos);
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
recBuf.at(xPos, yPos) = orgBuf[ch].at(xPos, yPos);
#else
recBuf.at(xPos, yPos) = escapeValue.at(xPos, yPos);
}
else
{
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
escapeValue.at(xPos, yPos) = std::max<TCoeff>(0, ((orgBuf[ch].at(xPos, yPos) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch]));
assert(escapeValue.at(xPos, yPos) < (TCoeff(1) << (channelBitDepth + 1)));
TCoeff value = (((escapeValue.at(xPos, yPos)*g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch]) >> invquantiserRightShift[ch];
recBuf.at(xPos, yPos) = Pel(ClipBD<TCoeff>(value, channelBitDepth));//to be checked
#else
escapeValue.at(xPos, yPos) = TCoeff(std::max<int>(0, ((orgBuf[ch].at(xPos, yPos) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch])));
assert(escapeValue.at(xPos, yPos) < (1 << (channelBitDepth + 1)));
recBuf.at(xPos, yPos) = (((escapeValue.at(xPos, yPos)*g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch]) >> invquantiserRightShift[ch];
recBuf.at(xPos, yPos) = Pel(ClipBD<int>(recBuf.at(xPos, yPos), channelBitDepth));//to be checked
else if (compBegin == COMPONENT_Y && ch > 0 && yPos % (1 << scaleY) == 0 && xPos % (1 << scaleX) == 0)
uint32_t yPosC = yPos >> scaleY;
uint32_t xPosC = xPos >> scaleX;
if (lossless)
{
escapeValue.at(xPosC, yPosC) = orgBuf[ch].at(xPosC, yPosC);
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
recBuf.at(xPosC, yPosC) = orgBuf[ch].at(xPosC, yPosC);
#else
recBuf.at(xPosC, yPosC) = escapeValue.at(xPosC, yPosC);
}
else
{
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
escapeValue.at(xPosC, yPosC) = std::max<TCoeff>(
0, ((orgBuf[ch].at(xPosC, yPosC) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch]));
assert(escapeValue.at(xPosC, yPosC) < (TCoeff(1) << (channelBitDepth + 1)));
TCoeff value = (((escapeValue.at(xPosC, yPosC) * g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch])
>> invquantiserRightShift[ch];
recBuf.at(xPosC, yPosC) = Pel(ClipBD<TCoeff>(value, channelBitDepth)); // to be checked
escapeValue.at(xPosC, yPosC) = TCoeff(std::max<int>(
0, ((orgBuf[ch].at(xPosC, yPosC) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch])));
assert(escapeValue.at(xPosC, yPosC) < (1 << (channelBitDepth + 1)));
recBuf.at(xPosC, yPosC) =
(((escapeValue.at(xPosC, yPosC) * g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch])
>> invquantiserRightShift[ch];
recBuf.at(xPosC, yPosC) = Pel(ClipBD<int>(recBuf.at(xPosC, yPosC), channelBitDepth)); // to be checked
}
}
Yung-Hsuan Chao (Jessie)
committed
}
void IntraSearch::derivePLTLossy(CodingStructure& cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp)
Yung-Hsuan Chao (Jessie)
committed
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
const int channelBitDepth_L = cs.sps->getBitDepth(CHANNEL_TYPE_LUMA);
const int channelBitDepth_C = cs.sps->getBitDepth(CHANNEL_TYPE_CHROMA);
bool lossless = (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && cs.slice->isLossless());
int pcmShiftRight_L = (channelBitDepth_L - PLT_ENCBITDEPTH);
int pcmShiftRight_C = (channelBitDepth_C - PLT_ENCBITDEPTH);
if (lossless)
{
pcmShiftRight_L = 0;
pcmShiftRight_C = 0;
}
int maxPltSize = cu.isSepTree() ? MAXPLTSIZE_DUALTREE : MAXPLTSIZE;
#else
int maxPltSize = CS::isDualITree(cs) ? MAXPLTSIZE_DUALTREE : MAXPLTSIZE;
#endif
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
CPelBuf orgBuf[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
CompArea area = cu.blocks[comp];
if (m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag()))
{
orgBuf[comp] = cs.getPredBuf(area);
}
else
{
orgBuf[comp] = cs.getOrgBuf(area);
}
}
TransformUnit &tu = *cs.getTU(partitioner.chType);
QpParam cQP(tu, compBegin);
int qp = cQP.Qp(true) - 12;
qp = (qp < 0) ? 0 : ((qp > 56) ? 56 : qp);
int errorLimit = g_paletteQuant[qp];
if (lossless)
{
errorLimit = 0;
}
uint32_t totalSize = height*width;
SortingElement *pelList = new SortingElement[totalSize];
SortingElement element;
SortingElement *pelListSort = new SortingElement[MAXPLTSIZE + 1];
uint32_t dictMaxSize = maxPltSize;
int last = -1;
uint32_t scaleX = getComponentScaleX(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
uint32_t scaleY = getComponentScaleY(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
uint32_t org[3], pX, pY;
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
pX = (comp > 0 && compBegin == COMPONENT_Y) ? (x >> scaleX) : x;
pY = (comp > 0 && compBegin == COMPONENT_Y) ? (y >> scaleY) : y;
org[comp] = orgBuf[comp].at(pX, pY);
}
element.setAll(org, compBegin, numComp);
ComponentID tmpCompBegin = compBegin;
int tmpNumComp = numComp;
if( cs.sps->getChromaFormatIdc() != CHROMA_444 &&
numComp == 3 &&
(x != ((x >> scaleX) << scaleX) || (y != ((y >> scaleY) << scaleY))) )
{
tmpCompBegin = COMPONENT_Y;
tmpNumComp = 1;
}
int besti = last, bestSAD = (last == -1) ? MAX_UINT : pelList[last].getSAD(element, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless);
if (lossless)
{
if (bestSAD)
{
for (int i = idx - 1; i >= 0; i--)
{
uint32_t sad = pelList[i].getSAD(element, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless);
if (sad == 0)
{
bestSAD = sad;
besti = i;
break;
}
}
}
}
else
{
for (int i = idx - 1; i >= 0; i--)
uint32_t sad = pelList[i].getSAD(element, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless);
if (sad < bestSAD)
{
bestSAD = sad;
besti = i;
if (!sad)
{
break;
}
}
if (besti >= 0 && pelList[besti].almostEqualData(element, errorLimit, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless))
{
pelList[besti].addElement(element, tmpCompBegin, tmpNumComp);
last = besti;
}
else
{
pelList[idx].copyDataFrom(element, tmpCompBegin, tmpNumComp);
for (int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++)
pelList[idx].setCnt(1, comp);
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
last = idx;
idx++;
}
}
}
if( cs.sps->getChromaFormatIdc() != CHROMA_444 && numComp == 3 )
{
for( int i = 0; i < idx; i++ )
{
pelList[i].setCnt( pelList[i].getCnt(COMPONENT_Y) + (pelList[i].getCnt(COMPONENT_Cb) >> 2), MAX_NUM_COMPONENT);
}
}
else
{
if( compBegin == 0 )
{
for( int i = 0; i < idx; i++ )
{
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Y), COMPONENT_Cb);
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Y), COMPONENT_Cr);
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Y), MAX_NUM_COMPONENT);
}
}
else
{
for( int i = 0; i < idx; i++ )
{
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Cb), COMPONENT_Y);
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Cb), MAX_NUM_COMPONENT);
}
}
}
for (int i = 0; i < dictMaxSize; i++)
pelListSort[i].setCnt(0, COMPONENT_Y);
pelListSort[i].setCnt(0, COMPONENT_Cb);
pelListSort[i].setCnt(0, COMPONENT_Cr);
pelListSort[i].setCnt(0, MAX_NUM_COMPONENT);
pelListSort[i].resetAll(compBegin, numComp);
}
//bubble sorting
dictMaxSize = 1;
for (int i = 0; i < idx; i++)
if( pelList[i].getCnt(MAX_NUM_COMPONENT) > pelListSort[dictMaxSize - 1].getCnt(MAX_NUM_COMPONENT) )
{
int j;
for (j = dictMaxSize; j > 0; j--)
if (pelList[i].getCnt(MAX_NUM_COMPONENT) > pelListSort[j - 1].getCnt(MAX_NUM_COMPONENT))
pelListSort[j].copyAllFrom(pelListSort[j - 1], compBegin, numComp);
dictMaxSize = std::min(dictMaxSize + 1, (uint32_t)maxPltSize);
}
else
{
break;
}
}
pelListSort[j].copyAllFrom(pelList[i], compBegin, numComp);
}
}
uint64_t numColorBits = 0;
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
numColorBits += (comp > 0) ? channelBitDepth_C : channelBitDepth_L;
}
const int plt_lambda_shift = (compBegin > 0) ? pcmShiftRight_C : pcmShiftRight_L;
double bitCost = m_pcRdCost->getLambda() / (double) (1 << (2 * plt_lambda_shift)) * numColorBits;
bool reuseflag[MAXPLTPREDSIZE] = { false };
int run;
double reuseflagCost;
for (int i = 0; i < maxPltSize; i++)
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
{
if( pelListSort[i].getCnt(MAX_NUM_COMPONENT) )
{
ComponentID tmpCompBegin = compBegin;
int tmpNumComp = numComp;
if( cs.sps->getChromaFormatIdc() != CHROMA_444 && numComp == 3 && pelListSort[i].getCnt(COMPONENT_Cb) == 0 )
{
tmpCompBegin = COMPONENT_Y;
tmpNumComp = 1;
}
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
int half = pelListSort[i].getCnt(comp) >> 1;
cu.curPLT[comp][paletteSize] = (pelListSort[i].getSumData(comp) + half) / pelListSort[i].getCnt(comp);
}
int best = -1;
if( errorLimit )
{
double pal[MAX_NUM_COMPONENT], err = 0.0, bestCost = 0.0;
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
pal[comp] = pelListSort[i].getSumData(comp) / (double)pelListSort[i].getCnt(comp);
err = pal[comp] - cu.curPLT[comp][paletteSize];
if( isChroma((ComponentID) comp) )
{
bestCost += (err * err * PLT_CHROMA_WEIGHTING) / (1 << (2 * pcmShiftRight_C)) * pelListSort[i].getCnt(comp);
}
else
{
bestCost += (err * err) / (1 << (2 * pcmShiftRight_L)) * pelListSort[i].getCnt(comp);
}
}
bestCost += bitCost;
for( int t = 0; t < cs.prevPLT.curPLTSize[compBegin]; t++ )
{
double cost = 0.0;
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
err = pal[comp] - cs.prevPLT.curPLT[comp][t];
if( isChroma((ComponentID) comp) )
{
cost += (err * err * PLT_CHROMA_WEIGHTING) / (1 << (2 * pcmShiftRight_C)) * pelListSort[i].getCnt(comp);
}
else
{
cost += (err * err) / (1 << (2 * pcmShiftRight_L)) * pelListSort[i].getCnt(comp);
}
}
run = 0;
for (int t2 = t; t2 >= 0; t2--)
{
if (!reuseflag[t2])
{
run++;
}
else
{
break;
}
}
reuseflagCost = m_pcRdCost->getLambda() / (double)(1 << (2 * plt_lambda_shift)) * getEpExGolombNumBins(run ? run + 1 : run, 0);
cost += reuseflagCost;
if( cost < bestCost )
{
best = t;
bestCost = cost;
}
}
if( best != -1 )
{
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
cu.curPLT[comp][paletteSize] = cs.prevPLT.curPLT[comp][best];
}
reuseflag[best] = true;
}
}
bool duplicate = false;
if( pelListSort[i].getCnt(MAX_NUM_COMPONENT) == 1 && best == -1 )
{
duplicate = true;
}
else
{
for( int t = 0; t < paletteSize; t++ )
{
bool duplicateTmp = true;
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
duplicateTmp = duplicateTmp && (cu.curPLT[comp][paletteSize] == cu.curPLT[comp][t]);
}
if( duplicateTmp )
{
duplicate = true;
break;
}
}
}
if( !duplicate )
{
if( cs.sps->getChromaFormatIdc() != CHROMA_444 && numComp == 3 && pelListSort[i].getCnt(COMPONENT_Cb) == 0 )
{
if( best != -1 )
{
cu.curPLT[COMPONENT_Cb][paletteSize] = cs.prevPLT.curPLT[COMPONENT_Cb][best];
cu.curPLT[COMPONENT_Cr][paletteSize] = cs.prevPLT.curPLT[COMPONENT_Cr][best];
}
else
{
cu.curPLT[COMPONENT_Cb][paletteSize] = 1 << (channelBitDepth_C - 1);
cu.curPLT[COMPONENT_Cr][paletteSize] = 1 << (channelBitDepth_C - 1);
}
}
paletteSize++;
}
}
else
{
break;
}
}
cu.curPLTSize[compBegin] = paletteSize;
cu.curPLTSize[COMPONENT_Y] = paletteSize;