Newer
Older

Karsten Suehring
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2018, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file EncSearch.cpp
* \brief encoder intra search class
*/
#include "IntraSearch.h"
#include "EncModeCtrl.h"
#include "CommonLib/CommonDef.h"
#include "CommonLib/Rom.h"
#include "CommonLib/Picture.h"
#include "CommonLib/UnitTools.h"
#include "CommonLib/dtrace_next.h"
#include "CommonLib/dtrace_buffer.h"
#include <math.h>
#include <limits>
//! \ingroup EncoderLib
//! \{
IntraSearch::IntraSearch()
: m_pSplitCS (nullptr)
, m_pFullCS (nullptr)
, m_pBestCS (nullptr)
, m_pcEncCfg (nullptr)
, m_pcTrQuant (nullptr)
, m_pcRdCost (nullptr)
, m_CABACEstimator(nullptr)
, m_CtxCache (nullptr)
, m_isInitialized (false)
{
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
m_pSharedPredTransformSkip[ch] = nullptr;
}
}
void IntraSearch::destroy()
{
CHECK( !m_isInitialized, "Not initialized" );
if( m_pcEncCfg )
{
bool BTnoRQT = m_pcEncCfg->getQTBT();
const uint32_t uiNumLayersToAllocateSplit = BTnoRQT ? 1 : m_pcEncCfg->getQuadtreeTULog2MaxSize() - m_pcEncCfg->getQuadtreeTULog2MinSize() + 1;
const uint32_t uiNumLayersToAllocateFull = BTnoRQT ? 1 : m_pcEncCfg->getQuadtreeTULog2MaxSize() - m_pcEncCfg->getQuadtreeTULog2MinSize() + 1;
const int uiNumSaveLayersToAllocate = 2;
for( uint32_t layer = 0; layer < uiNumSaveLayersToAllocate; layer++ )
{
m_pSaveCS[layer]->destroy();
delete m_pSaveCS[layer];
}
uint32_t numWidths = gp_sizeIdxInfo->numWidths();
uint32_t numHeights = gp_sizeIdxInfo->numHeights();
for( uint32_t width = 0; width < numWidths; width++ )
{
for( uint32_t height = 0; height < numHeights; height++ )
{
if( ( BTnoRQT || width == height ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( width ) ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( height ) ) )
{
for( uint32_t layer = 0; layer < uiNumLayersToAllocateSplit; layer++ )
{
m_pSplitCS[width][height][layer]->destroy();
delete m_pSplitCS[width][height][layer];
}
for( uint32_t layer = 0; layer < uiNumLayersToAllocateFull; layer++ )
{
m_pFullCS[width][height][layer]->destroy();
delete m_pFullCS[width][height][layer];
}
delete[] m_pSplitCS[width][height];
delete[] m_pFullCS [width][height];
m_pBestCS[width][height]->destroy();
m_pTempCS[width][height]->destroy();
delete m_pTempCS[width][height];
delete m_pBestCS[width][height];
}
}
delete[] m_pSplitCS[width];
delete[] m_pFullCS [width];
delete[] m_pTempCS[width];
delete[] m_pBestCS[width];
}
delete[] m_pSplitCS;
delete[] m_pFullCS;
delete[] m_pBestCS;
delete[] m_pTempCS;
delete[] m_pSaveCS;
}
m_pSplitCS = m_pFullCS = nullptr;
m_pBestCS = m_pTempCS = nullptr;
m_pSaveCS = nullptr;
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
delete[] m_pSharedPredTransformSkip[ch];
m_pSharedPredTransformSkip[ch] = nullptr;
}
m_isInitialized = false;
}
IntraSearch::~IntraSearch()
{
if( m_isInitialized )
{
destroy();
}
}
void IntraSearch::init( EncCfg* pcEncCfg,
TrQuant* pcTrQuant,
RdCost* pcRdCost,
CABACWriter* CABACEstimator,
CtxCache* ctxCache,
const uint32_t maxCUWidth,
const uint32_t maxCUHeight,
const uint32_t maxTotalCUDepth
)
{
CHECK(m_isInitialized, "Already initialized");
m_pcEncCfg = pcEncCfg;
m_pcTrQuant = pcTrQuant;
m_pcRdCost = pcRdCost;
m_CABACEstimator = CABACEstimator;
m_CtxCache = ctxCache;
const ChromaFormat cform = pcEncCfg->getChromaFormatIdc();
IntraPrediction::init( cform, pcEncCfg->getBitDepth( CHANNEL_TYPE_LUMA ) );
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
m_pSharedPredTransformSkip[ch] = new Pel[MAX_CU_SIZE * MAX_CU_SIZE];
}
uint32_t numWidths = gp_sizeIdxInfo->numWidths();
uint32_t numHeights = gp_sizeIdxInfo->numHeights();
bool BTnoRQT = m_pcEncCfg->getQTBT();
const uint32_t uiNumLayersToAllocateSplit = BTnoRQT ? 1 : pcEncCfg->getQuadtreeTULog2MaxSize() - pcEncCfg->getQuadtreeTULog2MinSize() + 1;
const uint32_t uiNumLayersToAllocateFull = BTnoRQT ? 1 : pcEncCfg->getQuadtreeTULog2MaxSize() - pcEncCfg->getQuadtreeTULog2MinSize() + 1;
m_pBestCS = new CodingStructure**[numWidths];
m_pTempCS = new CodingStructure**[numWidths];
m_pFullCS = new CodingStructure***[numWidths];
m_pSplitCS = new CodingStructure***[numWidths];
for( uint32_t width = 0; width < numWidths; width++ )
{
m_pBestCS[width] = new CodingStructure*[numHeights];
m_pTempCS[width] = new CodingStructure*[numHeights];
m_pFullCS [width] = new CodingStructure**[numHeights];
m_pSplitCS[width] = new CodingStructure**[numHeights];
for( uint32_t height = 0; height < numHeights; height++ )
{
if( ( BTnoRQT || width == height ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( width ) ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( height ) ) )
{
m_pBestCS[width][height] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pTempCS[width][height] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pBestCS[width][height]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
m_pTempCS[width][height]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
m_pFullCS [width][height] = new CodingStructure*[uiNumLayersToAllocateFull];
m_pSplitCS[width][height] = new CodingStructure*[uiNumLayersToAllocateSplit];
for( uint32_t layer = 0; layer < uiNumLayersToAllocateFull; layer++ )
{
m_pFullCS [width][height][layer] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pFullCS [width][height][layer]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
}
for( uint32_t layer = 0; layer < uiNumLayersToAllocateSplit; layer++ )
{
m_pSplitCS[width][height][layer] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pSplitCS[width][height][layer]->create( m_pcEncCfg->getChromaFormatIdc(), Area( 0, 0, gp_sizeIdxInfo->sizeFrom( width ), gp_sizeIdxInfo->sizeFrom( height ) ), false );
}
}
else
{
m_pBestCS[width][height] = nullptr;
m_pTempCS[width][height] = nullptr;
m_pFullCS [width][height] = nullptr;
m_pSplitCS[width][height] = nullptr;
}
}
}
const int uiNumSaveLayersToAllocate = 2;
m_pSaveCS = new CodingStructure*[uiNumSaveLayersToAllocate];
for( uint32_t depth = 0; depth < uiNumSaveLayersToAllocate; depth++ )
{
m_pSaveCS[depth] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pSaveCS[depth]->create( UnitArea( cform, Area( 0, 0, maxCUWidth, maxCUHeight ) ), false );
}
m_isInitialized = true;
}
//////////////////////////////////////////////////////////////////////////
// INTRA PREDICTION
//////////////////////////////////////////////////////////////////////////
void IntraSearch::estIntraPredLumaQT( CodingUnit &cu, Partitioner &partitioner )
{
CodingStructure &cs = *cu.cs;
const SPS &sps = *cs.sps;
const uint32_t uiWidthBit = cs.pcv->rectCUs ? g_aucLog2[partitioner.currArea().lwidth() ] : CU::getIntraSizeIdx(cu);
const uint32_t uiHeightBit = g_aucLog2[partitioner.currArea().lheight()];
// Lambda calculation at equivalent Qp of 4 is recommended because at that Qp, the quantization divisor is 1.
const double sqrtLambdaForFirstPass = m_pcRdCost->getMotionLambda(cu.transQuantBypass) / double(1 << SCALE_BITS);
//===== loop over partitions =====
const TempCtx ctxStart ( m_CtxCache, m_CABACEstimator->getCtx() );
const TempCtx ctxStartIntraMode ( m_CtxCache, SubCtx( Ctx::IPredMode[CHANNEL_TYPE_LUMA], m_CABACEstimator->getCtx() ) );
CHECK( !cu.firstPU, "CU has no PUs" );
const bool keepResi = cs.pps->getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() || KEEP_PRED_AND_RESI_SIGNALS;
uint32_t extraModes = 0; // add two extra modes, which would be used after uiMode <= DC_IDX is removed for cu.nsstIdx == 3
const int width = partitioner.currArea().lwidth();
const int height = partitioner.currArea().lheight();
// Marking EMT usage for faster EMT
// 0: EMT is either not applicable for current CU (cuWidth > EMT_INTRA_MAX_CU or cuHeight > EMT_INTRA_MAX_CU), not active in the config file or the fast decision algorithm is not used in this case
// 1: EMT fast algorithm can be applied for the current CU, and the DCT2 is being checked
// 2: EMT is being checked for current CU. Stored results of DCT2 can be utilized for speedup
uint8_t emtUsageFlag = 0;
const int maxSizeEMT = cs.pcv->noRQT ? EMT_INTRA_MAX_CU_WITH_QTBT : EMT_INTRA_MAX_CU;
if( width <= maxSizeEMT && height <= maxSizeEMT && sps.getSpsNext().getUseIntraEMT() )
{
emtUsageFlag = cu.emtFlag == 1 ? 2 : 1;
}
bool isAllIntra = m_pcEncCfg->getIntraPeriod() == 1;
if( cs.pcv->rectCUs )
{
if( width * height < 64 && !isAllIntra )
{
emtUsageFlag = 0; //this forces the recalculation of the candidates list. Why is this necessary? (to be checked)
}
}
static_vector<uint32_t, FAST_UDI_MAX_RDMODE_NUM> uiHadModeList;
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> CandCostList;
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> CandHadList;
#if JVET_L0283_MULTI_REF_LINE
static_vector<int, FAST_UDI_MAX_RDMODE_NUM> extendRefList;
static_vector<int, FAST_UDI_MAX_RDMODE_NUM>* nullList = NULL;
#endif

Karsten Suehring
committed
auto &pu = *cu.firstPU;
int puIndex = 0;
{
CandHadList.clear();
CandCostList.clear();
uiHadModeList.clear();
#if JVET_L0283_MULTI_REF_LINE
extendRefList.clear();
#endif

Karsten Suehring
committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
CHECK(pu.cu != &cu, "PU is not contained in the CU");
//===== determine set of modes to be tested (using prediction signal only) =====
int numModesAvailable = NUM_LUMA_MODE; // total number of Intra modes
static_vector< uint32_t, FAST_UDI_MAX_RDMODE_NUM > uiRdModeList;
int numModesForFullRD = 3;
if( cs.pcv->rectCUs )
{
numModesForFullRD = g_aucIntraModeNumFast_UseMPM_2D[uiWidthBit - MIN_CU_LOG2][uiHeightBit - MIN_CU_LOG2];
}
else
{
numModesForFullRD = m_pcEncCfg->getFastUDIUseMPMEnabled() ? g_aucIntraModeNumFast_UseMPM[uiWidthBit] : g_aucIntraModeNumFast_NotUseMPM[uiWidthBit];
numModesForFullRD -= 1;
}
#if INTRA_FULL_SEARCH
numModesForFullRD = numModesAvailable;
#endif
if( emtUsageFlag != 2 )
{
// this should always be true
CHECK( !pu.Y().valid(), "PU is not valid" );
#if JVET_L0283_MULTI_REF_LINE
bool isFirstLineOfCtu = (((pu.block(COMPONENT_Y).y)&((pu.cs->sps)->getMaxCUWidth() - 1)) == 0);
int numOfPassesExtendRef = (isFirstLineOfCtu ? 1 : MRL_NUM_REF_LINES);
pu.multiRefIdx = 0;
#endif

Karsten Suehring
committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
//===== init pattern for luma prediction =====
initIntraPatternChType( cu, pu.Y(), IntraPrediction::useFilteredIntraRefSamples( COMPONENT_Y, pu, false, pu ) );
if( numModesForFullRD != numModesAvailable )
{
CHECK( numModesForFullRD >= numModesAvailable, "Too many modes for full RD search" );
const CompArea &area = pu.Y();
PelBuf piOrg = cs.getOrgBuf(area);
PelBuf piPred = cs.getPredBuf(area);
DistParam distParam;
const bool bUseHadamard = cu.transQuantBypass == 0;
m_pcRdCost->setDistParam(distParam, piOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y, bUseHadamard);
distParam.applyWeight = false;
bool bSatdChecked[NUM_INTRA_MODE];
memset( bSatdChecked, 0, sizeof( bSatdChecked ) );
{
for( int modeIdx = 0; modeIdx < numModesAvailable; modeIdx++ )
{
uint32_t uiMode = modeIdx;
Distortion uiSad = 0;
// Skip checking extended Angular modes in the first round of SATD
if( uiMode > DC_IDX && ( uiMode & 1 ) )
{
continue;
}
bSatdChecked[uiMode] = true;
pu.intraDir[0] = modeIdx;
if( useDPCMForFirstPassIntraEstimation( pu, uiMode ) )
{
encPredIntraDPCM( COMPONENT_Y, piOrg, piPred, uiMode );
}
else
{
predIntraAng( COMPONENT_Y, piPred, pu, IntraPrediction::useFilteredIntraRefSamples( COMPONENT_Y, pu, true, pu ) );
}
// use Hadamard transform here
uiSad += distParam.distFunc(distParam);
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
m_CABACEstimator->getCtx() = SubCtx( Ctx::IPredMode[CHANNEL_TYPE_LUMA], ctxStartIntraMode );
uint64_t fracModeBits = xFracModeBitsIntra(pu, uiMode, CHANNEL_TYPE_LUMA);
double cost = ( double ) uiSad + ( double ) fracModeBits * sqrtLambdaForFirstPass;
DTRACE( g_trace_ctx, D_INTRA_COST, "IntraHAD: %u, %llu, %f (%d)\n", uiSad, fracModeBits, cost, uiMode );
updateCandList( uiMode, cost, uiRdModeList, CandCostList
#if JVET_L0283_MULTI_REF_LINE
, extendRefList, 0
#endif
, numModesForFullRD + extraModes );
updateCandList(uiMode, (double) uiSad, uiHadModeList, CandHadList
#if JVET_L0283_MULTI_REF_LINE
, *nullList, -1
#endif
, 3 + extraModes);

Karsten Suehring
committed
}
} // NSSTFlag
// forget the extra modes
uiRdModeList.resize( numModesForFullRD );
#if JVET_L0283_MULTI_REF_LINE
CandCostList.resize(numModesForFullRD);
extendRefList.resize(numModesForFullRD);
#endif

Karsten Suehring
committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
static_vector<unsigned, FAST_UDI_MAX_RDMODE_NUM> parentCandList(FAST_UDI_MAX_RDMODE_NUM);
std::copy_n(uiRdModeList.begin(), numModesForFullRD, parentCandList.begin());
// Second round of SATD for extended Angular modes
for (int modeIdx = 0; modeIdx < numModesForFullRD; modeIdx++)
{
unsigned parentMode = parentCandList[modeIdx];
if (parentMode > (DC_IDX + 1) && parentMode < (NUM_LUMA_MODE - 1))
{
for (int subModeIdx = -1; subModeIdx <= 1; subModeIdx += 2)
{
unsigned mode = parentMode + subModeIdx;
if (!bSatdChecked[mode])
{
pu.intraDir[0] = mode;
if (useDPCMForFirstPassIntraEstimation(pu, mode))
{
encPredIntraDPCM(COMPONENT_Y, piOrg, piPred, mode);
}
else
{
predIntraAng(COMPONENT_Y, piPred, pu,
IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Y, pu, true, pu));
}
// use Hadamard transform here
Distortion sad = distParam.distFunc(distParam);
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
m_CABACEstimator->getCtx() = SubCtx(Ctx::IPredMode[CHANNEL_TYPE_LUMA], ctxStartIntraMode);
uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);
double cost = (double) sad + (double) fracModeBits * sqrtLambdaForFirstPass;
updateCandList(mode, cost, uiRdModeList, CandCostList
#if JVET_L0283_MULTI_REF_LINE
, extendRefList, 0
#endif
, numModesForFullRD);
updateCandList(mode, (double)sad, uiHadModeList, CandHadList
#if JVET_L0283_MULTI_REF_LINE
, *nullList, -1
#endif
, 3);

Karsten Suehring
committed
bSatdChecked[mode] = true;
}
}
}
}
#if JVET_L0283_MULTI_REF_LINE
pu.multiRefIdx = 1;
const int numMPMs = NUM_MOST_PROBABLE_MODES;
unsigned multiRefMPM [numMPMs];
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
PU::getIntraMPMs(pu, multiRefMPM);
for (int mRefNum = 1; mRefNum < numOfPassesExtendRef; mRefNum++)
{
int multiRefIdx = MULTI_REF_LINE_IDX[mRefNum];
pu.multiRefIdx = multiRefIdx;
{
initIntraPatternChType(cu, pu.Y(), IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Y, pu, false, pu));
}
for (int x = 0; x < numMPMs; x++)
{
uint32_t mode = multiRefMPM[x];
{
pu.intraDir[0] = mode;
if (useDPCMForFirstPassIntraEstimation(pu, mode))
{
encPredIntraDPCM(COMPONENT_Y, piOrg, piPred, mode);
}
else
{
predIntraAng(COMPONENT_Y, piPred, pu, IntraPrediction::useFilteredIntraRefSamples(COMPONENT_Y, pu, true, pu));
}
// use Hadamard transform here
Distortion sad = distParam.distFunc(distParam);
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
m_CABACEstimator->getCtx() = SubCtx(Ctx::IPredMode[CHANNEL_TYPE_LUMA], ctxStartIntraMode);
uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);
double cost = (double)sad + (double)fracModeBits * sqrtLambdaForFirstPass;
updateCandList(mode, cost, uiRdModeList, CandCostList, extendRefList, multiRefIdx, numModesForFullRD);
}
}
}
CandCostList.resize(numModesForFullRD);
extendRefList.resize(numModesForFullRD);
#endif

Karsten Suehring
committed
if( m_pcEncCfg->getFastUDIUseMPMEnabled() )
{
const int numMPMs = NUM_MOST_PROBABLE_MODES;
unsigned uiPreds[numMPMs];

Karsten Suehring
committed
#if JVET_L0283_MULTI_REF_LINE
pu.multiRefIdx = 0;
#endif

Karsten Suehring
committed
const int numCand = PU::getIntraMPMs( pu, uiPreds );
for( int j = 0; j < numCand; j++ )
{
bool mostProbableModeIncluded = false;
int mostProbableMode = uiPreds[j];
for( int i = 0; i < numModesForFullRD; i++ )
{
#if JVET_L0283_MULTI_REF_LINE
mostProbableModeIncluded |= (mostProbableMode == uiRdModeList[i] && extendRefList[i] == 0);
#else

Karsten Suehring
committed
mostProbableModeIncluded |= ( mostProbableMode == uiRdModeList[i] );

Karsten Suehring
committed
}
if( !mostProbableModeIncluded )
{
#if JVET_L0283_MULTI_REF_LINE
extendRefList.push_back(0);
#endif

Karsten Suehring
committed
numModesForFullRD++;
uiRdModeList.push_back( mostProbableMode );
}
}
}
}
else
{
for( int i = 0; i < numModesForFullRD; i++ )
{
uiRdModeList.push_back( i );
}
}
if( emtUsageFlag == 1 )
{
// Store the modes to be checked with RD
m_savedNumRdModes[puIndex] = numModesForFullRD;
std::copy_n( uiRdModeList.begin(), numModesForFullRD, m_savedRdModeList[puIndex] );
#if JVET_L0283_MULTI_REF_LINE
std::copy_n(extendRefList.begin(), numModesForFullRD, m_savedExtendRefList[puIndex]);
#endif

Karsten Suehring
committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
}
}
else //emtUsage = 2 (here we potentially reduce the number of modes that will be full-RD checked)
{
if( isAllIntra && m_pcEncCfg->getFastIntraEMT() )
{
double thresholdSkipMode;
if( cs.pcv->noRQT )
{
thresholdSkipMode = 1.0 + 1.4 / sqrt( ( double ) ( width*height ) );
}
else
{
switch( width )
{
case 4: thresholdSkipMode = 1.47; break; // Skip checking 4x4 Intra modes using the R-D cost in the DCT2-pass
case 8: thresholdSkipMode = 1.28; break; // Skip checking 8x8 Intra modes using the R-D cost in the DCT2-pass
case 16: thresholdSkipMode = 1.12; break; // Skip checking 16x16 Intra modes using the R-D cost in the DCT2-pass
case 32: thresholdSkipMode = 1.06; break; // Skip checking 32x32 Intra modes using the R-D cost in the DCT2-pass
default: thresholdSkipMode = 1.06; break; // Skip checking 32x32 Intra modes using the R-D cost in the DCT2-pass
}
}
numModesForFullRD = 0;
// Skip checking the modes with much larger R-D cost than the best mode
for( int i = 0; i < m_savedNumRdModes[puIndex]; i++ )
{
if( m_modeCostStore[puIndex][i] <= thresholdSkipMode * m_bestModeCostStore[puIndex] )
{
uiRdModeList.push_back( m_savedRdModeList[puIndex][i] );
#if JVET_L0283_MULTI_REF_LINE
extendRefList.push_back(m_savedExtendRefList[puIndex][i]);
#endif

Karsten Suehring
committed
numModesForFullRD++;
}
}
}
else //this is necessary because we skip the candidates list calculation, since it was already obtained for the DCT-II. Now we load it
{
// Restore the modes to be checked with RD
numModesForFullRD = m_savedNumRdModes[puIndex];
uiRdModeList.resize( numModesForFullRD );
std::copy_n( m_savedRdModeList[puIndex], m_savedNumRdModes[puIndex], uiRdModeList.begin() );
#if JVET_L0283_MULTI_REF_LINE
CandCostList.resize(numModesForFullRD);
extendRefList.resize(numModesForFullRD);
std::copy_n(m_savedExtendRefList[puIndex], m_savedNumRdModes[puIndex], extendRefList.begin());
#endif

Karsten Suehring
committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
}
}
CHECK( numModesForFullRD != uiRdModeList.size(), "Inconsistent state!" );
// after this point, don't use numModesForFullRD
// PBINTRA fast
if( m_pcEncCfg->getUsePbIntraFast() && !cs.slice->isIntra() && cu.partSize == SIZE_2Nx2N && uiRdModeList.size() < numModesAvailable && emtUsageFlag != 2 )
{
if( CandHadList.size() < 3 || CandHadList[2] > cs.interHad * PBINTRA_RATIO )
{
uiRdModeList.resize( std::min<size_t>( uiRdModeList.size(), 2 ) );
}
if( CandHadList.size() < 2 || CandHadList[1] > cs.interHad * PBINTRA_RATIO )
{
uiRdModeList.resize( std::min<size_t>( uiRdModeList.size(), 1 ) );
}
if( CandHadList.size() < 1 || CandHadList[0] > cs.interHad * PBINTRA_RATIO )
{
cs.dist = std::numeric_limits<Distortion>::max();
cs.interHad = 0;
//===== reset context models =====
m_CABACEstimator->getCtx() = SubCtx( Ctx::IPredMode [CHANNEL_TYPE_LUMA], ctxStartIntraMode );
return;
}
}
//===== check modes (using r-d costs) =====
uint32_t uiBestPUMode = 0;
#if JVET_L0283_MULTI_REF_LINE
int bestExtendRef = 0;
#endif

Karsten Suehring
committed
CodingStructure *csTemp = m_pTempCS[gp_sizeIdxInfo->idxFrom( cu.lwidth() )][gp_sizeIdxInfo->idxFrom( cu.lheight() )];
CodingStructure *csBest = m_pBestCS[gp_sizeIdxInfo->idxFrom( cu.lwidth() )][gp_sizeIdxInfo->idxFrom( cu.lheight() )];
csTemp->slice = cs.slice;
csBest->slice = cs.slice;
csTemp->initStructData();
csBest->initStructData();
// just to be sure
numModesForFullRD = ( int ) uiRdModeList.size();
for (uint32_t uiMode = 0; uiMode < numModesForFullRD; uiMode++)
{
// set luma prediction mode
uint32_t uiOrgMode = uiRdModeList[uiMode];
pu.intraDir[0] = uiOrgMode;
#if JVET_L0283_MULTI_REF_LINE
int multiRefIdx = extendRefList[uiMode];
pu.multiRefIdx = multiRefIdx;
CHECK(pu.multiRefIdx && (pu.intraDir[0] == DC_IDX || pu.intraDir[0] == PLANAR_IDX), "ERL");
#endif

Karsten Suehring
committed
// set context models
m_CABACEstimator->getCtx() = ctxStart;
// determine residual for partition
cs.initSubStructure( *csTemp, partitioner.chType, cs.area, true );
xRecurIntraCodingLumaQT( *csTemp, partitioner );
if( emtUsageFlag == 1 && m_pcEncCfg->getFastIntraEMT() )
{
m_modeCostStore[puIndex][uiMode] = csTemp->cost; //cs.cost;
}
DTRACE( g_trace_ctx, D_INTRA_COST, "IntraCost T %f (%d) \n", csTemp->cost, uiOrgMode );
// check r-d cost
if( csTemp->cost < csBest->cost )
{
std::swap( csTemp, csBest );
uiBestPUMode = uiOrgMode;
#if JVET_L0283_MULTI_REF_LINE
bestExtendRef = multiRefIdx;
#endif

Karsten Suehring
committed
if( ( emtUsageFlag == 1 ) && m_pcEncCfg->getFastIntraEMT() )
{
m_bestModeCostStore[puIndex] = csBest->cost; //cs.cost;
}
}
csTemp->releaseIntermediateData();
} // Mode loop
cs.useSubStructure( *csBest, partitioner.chType, pu.singleChan( CHANNEL_TYPE_LUMA ), KEEP_PRED_AND_RESI_SIGNALS, true, keepResi, keepResi );
csBest->releaseIntermediateData();
//=== update PU data ====
pu.intraDir[0] = uiBestPUMode;
#if JVET_L0283_MULTI_REF_LINE
pu.multiRefIdx = bestExtendRef;
#endif

Karsten Suehring
committed
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
}
//===== reset context models =====
m_CABACEstimator->getCtx() = ctxStart;
}
void IntraSearch::estIntraPredChromaQT(CodingUnit &cu, Partitioner &partitioner)
{
const ChromaFormat format = cu.chromaFormat;
const uint32_t numberValidComponents = getNumberValidComponents(format);
CodingStructure &cs = *cu.cs;
const TempCtx ctxStart ( m_CtxCache, m_CABACEstimator->getCtx() );
cs.setDecomp( cs.area.Cb(), false );
auto &pu = *cu.firstPU;
{
uint32_t uiBestMode = 0;
Distortion uiBestDist = 0;
double dBestCost = MAX_DOUBLE;
//----- init mode list ----
{
uint32_t uiMinMode = 0;
uint32_t uiMaxMode = NUM_CHROMA_MODE;
//----- check chroma modes -----
uint32_t chromaCandModes[ NUM_CHROMA_MODE ];
PU::getIntraChromaCandModes( pu, chromaCandModes );
// create a temporary CS
CodingStructure &saveCS = *m_pSaveCS[0];
saveCS.pcv = cs.pcv;
saveCS.picture = cs.picture;
saveCS.area.repositionTo( cs.area );
saveCS.clearTUs();
if( CS::isDualITree( cs ) )
{
if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
{
partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
do
{
cs.addTU( CS::getArea( cs, partitioner.currArea(), partitioner.chType ), partitioner.chType ).depth = partitioner.currTrDepth;
} while( partitioner.nextPart( cs ) );
partitioner.exitCurrSplit();
}
else
cs.addTU( CS::getArea( cs, partitioner.currArea(), partitioner.chType ), partitioner.chType );
}
std::vector<TransformUnit*> orgTUs;
// create a store for the TUs
for( const auto &ptu : cs.tus )
{
// for split TUs in HEVC, add the TUs without Chroma parts for correct setting of Cbfs
if( pu.contains( *ptu, CHANNEL_TYPE_CHROMA ) || ( !cs.pcv->noRQT && !ptu->Cb().valid() && !ptu->Cr().valid() ) )
{
saveCS.addTU( *ptu, partitioner.chType );
orgTUs.push_back( ptu );
}
}
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#if JVET_L0338_MDLM
// SATD pre-selecting.
int satdModeList[NUM_CHROMA_MODE];
int64_t satdSortedCost[NUM_CHROMA_MODE];
for (int i = 0; i < NUM_CHROMA_MODE; i++)
{
satdSortedCost[i] = 0; // for the mode not pre-select by SATD, do RDO by default, so set the initial value 0.
satdModeList[i] = 0;
}
bool modeIsEnable[NUM_INTRA_MODE + 1]; // use intra mode idx to check whether enable
for (int i = 0; i < NUM_INTRA_MODE + 1; i++)
{
modeIsEnable[i] = 1;
}
DistParam distParam;
const bool useHadamard = true;
pu.intraDir[1] = MDLM_L_IDX; // temporary assigned, just to indicate this is a MDLM mode. for luma down-sampling operation.
initIntraPatternChType(cu, pu.Cb());
initIntraPatternChType(cu, pu.Cr());
xGetLumaRecPixels(pu, pu.Cb());
for (int idx = uiMinMode; idx <= uiMaxMode - 1; idx++)
{
int mode = chromaCandModes[idx];
satdModeList[idx] = mode;
if (PU::isLMCMode(mode) && !PU::isLMCModeEnabled(pu, mode))
{
continue;
}
if ((mode == LM_CHROMA_IDX) || (mode == PLANAR_IDX) || (mode == DM_CHROMA_IDX)) // only pre-check regular modes and MDLM modes, not including DM ,Planar, and LM
{
continue;
}
pu.intraDir[1] = mode; // temporary assigned, for SATD checking.
int64_t sad = 0;
CodingStructure& cs = *(pu.cs);
CompArea areaCb = pu.Cb();
PelBuf orgCb = cs.getOrgBuf(areaCb);
PelBuf predCb = cs.getPredBuf(areaCb);
m_pcRdCost->setDistParam(distParam, orgCb, predCb, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cb, useHadamard);
distParam.applyWeight = false;
if (PU::isLMCMode(mode))
{
predIntraChromaLM(COMPONENT_Cb, predCb, pu, areaCb, mode);
}
else
{
predIntraAng(COMPONENT_Cb, predCb, pu, false);
}
sad += distParam.distFunc(distParam);

Karsten Suehring
committed
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
CompArea areaCr = pu.Cr();
PelBuf orgCr = cs.getOrgBuf(areaCr);
PelBuf predCr = cs.getPredBuf(areaCr);
m_pcRdCost->setDistParam(distParam, orgCr, predCr, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cr, useHadamard);
distParam.applyWeight = false;
if (PU::isLMCMode(mode))
{
predIntraChromaLM(COMPONENT_Cr, predCr, pu, areaCr, mode);
}
else
{
predIntraAng(COMPONENT_Cr, predCr, pu, false);
}
sad += distParam.distFunc(distParam);
satdSortedCost[idx] = sad;
}
// sort the mode based on the cost from small to large.
int tempIdx = 0;
int64_t tempCost = 0;
for (int i = uiMinMode; i <= uiMaxMode - 1; i++)
{
for (int j = i + 1; j <= uiMaxMode - 1; j++)
{
if (satdSortedCost[j] < satdSortedCost[i])
{
tempIdx = satdModeList[i];
satdModeList[i] = satdModeList[j];
satdModeList[j] = tempIdx;
tempCost = satdSortedCost[i];
satdSortedCost[i] = satdSortedCost[j];
satdSortedCost[j] = tempCost;
}
}
}
int reducedModeNumber = 2; // reduce the number of chroma modes
for (int i = 0; i < reducedModeNumber; i++)
{
modeIsEnable[satdModeList[uiMaxMode - 1 - i]] = 0; // disable the last reducedModeNumber modes
}
#endif

Karsten Suehring
committed
// save the dist
Distortion baseDist = cs.dist;
for (uint32_t uiMode = uiMinMode; uiMode < uiMaxMode; uiMode++)
{
const int chromaIntraMode = chromaCandModes[uiMode];
if( PU::isLMCMode( chromaIntraMode ) && ! PU::isLMCModeEnabled( pu, chromaIntraMode ) )
{
continue;
}
#if JVET_L0338_MDLM
if (!modeIsEnable[chromaIntraMode] && PU::isLMCModeEnabled(pu, chromaIntraMode)) // when CCLM is disable, then MDLM is disable. not use satd checking
{
continue;
}
#endif

Karsten Suehring
committed
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
cs.setDecomp( pu.Cb(), false );
cs.dist = baseDist;
//----- restore context models -----
m_CABACEstimator->getCtx() = ctxStart;
//----- chroma coding -----
pu.intraDir[1] = chromaIntraMode;
xRecurIntraChromaCodingQT( cs, partitioner );
if (cs.pps->getUseTransformSkip())
{
m_CABACEstimator->getCtx() = ctxStart;
}
uint64_t fracBits = xGetIntraFracBitsQT( cs, partitioner, false, true );
Distortion uiDist = cs.dist;
double dCost = m_pcRdCost->calcRdCost( fracBits, uiDist - baseDist );
//----- compare -----
if( dCost < dBestCost )
{
for( uint32_t i = getFirstComponentOfChannel( CHANNEL_TYPE_CHROMA ); i < numberValidComponents; i++ )
{
const CompArea &area = pu.blocks[i];
saveCS.getRecoBuf ( area ).copyFrom( cs.getRecoBuf ( area ) );
#if KEEP_PRED_AND_RESI_SIGNALS
saveCS.getPredBuf ( area ).copyFrom( cs.getPredBuf ( area ) );
saveCS.getResiBuf ( area ).copyFrom( cs.getResiBuf ( area ) );
#endif
cs.picture->getRecoBuf( area ).copyFrom( cs.getRecoBuf( area ) );
for( uint32_t j = 0; j < saveCS.tus.size(); j++ )
{
saveCS.tus[j]->copyComponentFrom( *orgTUs[j], area.compID );
}
}
dBestCost = dCost;
uiBestDist = uiDist;
uiBestMode = chromaIntraMode;
}
}
for( uint32_t i = getFirstComponentOfChannel( CHANNEL_TYPE_CHROMA ); i < numberValidComponents; i++ )
{
const CompArea &area = pu.blocks[i];
cs.getRecoBuf ( area ).copyFrom( saveCS.getRecoBuf( area ) );
#if KEEP_PRED_AND_RESI_SIGNALS
cs.getPredBuf ( area ).copyFrom( saveCS.getPredBuf( area ) );
cs.getResiBuf ( area ).copyFrom( saveCS.getResiBuf( area ) );
#endif
cs.picture->getRecoBuf( area ).copyFrom( cs. getRecoBuf( area ) );
for( uint32_t j = 0; j < saveCS.tus.size(); j++ )
{
orgTUs[ j ]->copyComponentFrom( *saveCS.tus[ j ], area.compID );
}
}
}
pu.intraDir[1] = uiBestMode;
cs.dist = uiBestDist;
}
//----- restore context models -----
m_CABACEstimator->getCtx() = ctxStart;
}