Skip to content
Snippets Groups Projects
IntraSearch.cpp 64 KiB
Newer Older
  • Learn to ignore specific revisions
  •   }
    
      if (bChroma)
      {
        bool isFirst = partitioner.currArea().Cb().valid() && partitioner.currArea().chromaPos() == cs.area.chromaPos();
    
        PredictionUnit &pu = *cs.getPU( partitioner.currArea().chromaPos(), CHANNEL_TYPE_CHROMA );
    
        if( cu.partSize == SIZE_2Nx2N )
        {
          if( isFirst )
          {
            m_CABACEstimator->intra_chroma_pred_mode( pu );
          }
        }
      }
    }
    
    void IntraSearch::xEncSubdivCbfQT(CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma)
    {
      const UnitArea &currArea = partitioner.currArea();
      TransformUnit &currTU    = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType );
    
    #if HM_EMT_NSST_AS_IN_JEM
    
      CodingUnit &currCU       = *currTU.cu;
    #endif
    #if ENABLE_BMS
      uint32_t currDepth           = partitioner.currTrDepth;
    
      const bool subdiv        = currTU.depth > currDepth;
    
      if( cs.pcv->noRQT )
      {
    #if ENABLE_BMS
        if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
        {
          CHECK( !subdiv, "TU split implied" );
        }
        else
    #endif
          CHECK( subdiv, "No TU subdivision is allowed with QTBT" );
      }
    #endif
    
      if (bChroma)
      {
        const uint32_t numberValidComponents = getNumberValidComponents(currArea.chromaFormat);
    
        for (uint32_t ch = COMPONENT_Cb; ch < numberValidComponents; ch++)
        {
          const ComponentID compID = ComponentID(ch);
    
    #if ENABLE_BMS
          if( currDepth == 0 || TU::getCbfAtDepth( currTU, compID, currDepth - 1 ) )
          {
            const bool prevCbf = ( compID == COMPONENT_Cr ? TU::getCbfAtDepth( currTU, COMPONENT_Cb, currDepth ) : false );
            m_CABACEstimator->cbf_comp( cs, TU::getCbfAtDepth( currTU, compID, currDepth ), currArea.blocks[compID], currDepth, prevCbf );
    
          }
    #else
          const bool prevCbf = ( compID == COMPONENT_Cr ? TU::getCbf( currTU, COMPONENT_Cb ) : false );
          m_CABACEstimator->cbf_comp( cs, TU::getCbf( currTU, compID ), currArea.blocks[compID], prevCbf );
    #endif
        }
      }
    
    #if ENABLE_BMS
      if (subdiv)
      {
    
    #if HM_EMT_NSST_AS_IN_JEM
    
        if( currDepth == 0 && bLuma ) m_CABACEstimator->emt_cu_flag( currCU );
    #endif
    
    #if ENABLE_BMS
        if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
        {
          partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
        }
        else
    #endif
        THROW( "Cannot perform an implicit split!" );
    
        do
        {
          xEncSubdivCbfQT( cs, partitioner, bLuma, bChroma );
        } while( partitioner.nextPart( cs ) );
    
        partitioner.exitCurrSplit();
      }
      else
    #endif
      {
    
    #if HM_EMT_NSST_AS_IN_JEM
    
    #if ENABLE_BMS
        if( currDepth == 0 && bLuma && TU::getCbfAtDepth( currTU, COMPONENT_Y, 0 ) ) m_CABACEstimator->emt_cu_flag( currCU );
    #else
        if( bLuma && TU::getCbf( currTU, COMPONENT_Y ) ) m_CABACEstimator->emt_cu_flag( *currTU.cu );
    #endif
    
    #endif
        //===== Cbfs =====
        if (bLuma)
        {
    #if ENABLE_BMS
          m_CABACEstimator->cbf_comp( cs, TU::getCbfAtDepth( currTU, COMPONENT_Y, currDepth ), currTU.Y(), currTU.depth );
    #else
          m_CABACEstimator->cbf_comp( cs, TU::getCbf( currTU, COMPONENT_Y), currTU.Y() );
    #endif
        }
      }
    }
    
    void IntraSearch::xEncCoeffQT(CodingStructure &cs, Partitioner &partitioner, const ComponentID &compID)
    {
      const UnitArea &currArea  = partitioner.currArea();
      TransformUnit &currTU     = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType );
    #if ENABLE_BMS
      uint32_t      currDepth       = partitioner.currTrDepth;
      const bool subdiv         = currTU.depth > currDepth;
    
      if (subdiv)
      {
    #if ENABLE_BMS
        if (partitioner.canSplit(TU_MAX_TR_SPLIT, cs))
        {
          partitioner.splitCurrArea(TU_MAX_TR_SPLIT, cs);
        }
        else
    #endif
          THROW("Implicit TU split not available!");
    
        do
        {
          xEncCoeffQT( cs, partitioner, compID );
        } while( partitioner.nextPart( cs ) );
    
        partitioner.exitCurrSplit();
      }
      else
    #endif
    
      if( currArea.blocks[compID].valid() )
      {
        if( TU::hasCrossCompPredInfo( currTU, compID ) )
        {
          m_CABACEstimator->cross_comp_pred( currTU, compID );
        }
        if( TU::getCbf( currTU, compID ) )
        {
          m_CABACEstimator->residual_coding( currTU, compID );
        }
      }
    }
    
    uint64_t IntraSearch::xGetIntraFracBitsQT( CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma )
    {
      m_CABACEstimator->resetBits();
    
      xEncIntraHeader( cs, partitioner, bLuma, bChroma );
      xEncSubdivCbfQT( cs, partitioner, bLuma, bChroma );
    
      if( bLuma )
      {
        xEncCoeffQT( cs, partitioner, COMPONENT_Y );
      }
      if( bChroma )
      {
        xEncCoeffQT( cs, partitioner, COMPONENT_Cb );
        xEncCoeffQT( cs, partitioner, COMPONENT_Cr );
      }
    
      uint64_t fracBits = m_CABACEstimator->getEstFracBits();
      return fracBits;
    }
    
    uint64_t IntraSearch::xGetIntraFracBitsQTChroma(TransformUnit& currTU, const ComponentID &compID)
    {
      m_CABACEstimator->resetBits();
    
      if( TU::hasCrossCompPredInfo( currTU, compID ) )
      {
        m_CABACEstimator->cross_comp_pred( currTU, compID );
      }
      if( TU::getCbf( currTU, compID ) )
      {
        m_CABACEstimator->residual_coding( currTU, compID );
      }
    
      uint64_t fracBits = m_CABACEstimator->getEstFracBits();
      return fracBits;
    }
    
    void IntraSearch::xIntraCodingTUBlock(TransformUnit &tu, const ComponentID &compID, const bool &checkCrossCPrediction, Distortion& ruiDist, const int &default0Save1Load2, uint32_t* numSig )
    {
      if (!tu.blocks[compID].valid())
      {
        return;
      }
    
      CodingStructure &cs                       = *tu.cs;
    
      const CompArea      &area                 = tu.blocks[compID];
      const SPS           &sps                  = *cs.sps;
      const PPS           &pps                  = *cs.pps;
    
      const ChannelType    chType               = toChannelType(compID);
      const int            bitDepth             = sps.getBitDepth(chType);
    
      PelBuf         piOrg                      = cs.getOrgBuf    (area);
      PelBuf         piPred                     = cs.getPredBuf   (area);
      PelBuf         piResi                     = cs.getResiBuf   (area);
      PelBuf         piOrgResi                  = cs.getOrgResiBuf(area);
      PelBuf         piReco                     = cs.getRecoBuf   (area);
    
      const PredictionUnit &pu                  = *cs.getPU(area.pos(), chType);
      const uint32_t           uiChFinalMode        = PU::getFinalIntraMode(pu, chType);
    
      const bool           bUseCrossCPrediction = pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && isChroma( compID ) && PU::isChromaIntraModeCrossCheckMode( pu ) && checkCrossCPrediction;
      const bool           ccUseRecoResi        = m_pcEncCfg->getUseReconBasedCrossCPredictionEstimate();
    
    
    #if !JVET_L0059_MTS_SIMP
    
      const uint8_t          transformIndex       = tu.cu->emtFlag && compID == COMPONENT_Y ? tu.emtIdx : DCT2_EMT ;
    
    
      //===== init availability pattern =====
      PelBuf sharedPredTS( m_pSharedPredTransformSkip[compID], area );
      if( default0Save1Load2 != 2 )
      {
        const bool bUseFilteredPredictions = IntraPrediction::useFilteredIntraRefSamples( compID, pu, true, tu );
        initIntraPatternChType( *tu.cu, area, bUseFilteredPredictions );
    
        //===== get prediction signal =====
        if( compID != COMPONENT_Y && PU::isLMCMode( uiChFinalMode ) )
        {
    #if !ENABLE_BMS
          if( !PU::isMFLMEnabled(pu) || !pu.cs->pcv->noRQT)
    #endif
          {
            xGetLumaRecPixels( pu, area );
          }
          predIntraChromaLM( compID, piPred, pu, area, uiChFinalMode );
        }
        else
        {
          predIntraAng( compID, piPred, pu, bUseFilteredPredictions );
        }
    
    
        // save prediction
        if( default0Save1Load2 == 1 )
        {
          sharedPredTS.copyFrom( piPred );
        }
      }
      else
      {
        // load prediction
        piPred.copyFrom( sharedPredTS );
      }
    
    
      DTRACE( g_trace_ctx, D_PRED, "@(%4d,%4d) [%2dx%2d] IMode=%d\n", tu.lx(), tu.ly(), tu.lwidth(), tu.lheight(), uiChFinalMode );
      //DTRACE_PEL_BUF( D_PRED, piPred, tu, tu.cu->predMode, COMPONENT_Y );
    
      //===== get residual signal =====
      piResi.copyFrom( piOrg  );
      piResi.subtract( piPred );
    
      if (pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && isLuma(compID))
      {
        piOrgResi.copyFrom (piResi);
      }
    
      if (bUseCrossCPrediction)
      {
        if (xCalcCrossComponentPredictionAlpha(tu, compID, ccUseRecoResi) == 0)
        {
          return;
        }
        CrossComponentPrediction::crossComponentPrediction(tu, compID, cs.getResiBuf(tu.Y()), piResi, piResi, false);
      }
    
      //===== transform and quantization =====
      //--- init rate estimation arrays for RDOQ ---
      //--- transform and quantization           ---
      TCoeff uiAbsSum = 0;
    
      const QpParam cQP(tu, compID);
    
    #if RDOQ_CHROMA_LAMBDA
      m_pcTrQuant->selectLambda(compID);
    #endif
    
    
      m_pcTrQuant->transformNxN(tu, compID, cQP, uiAbsSum, m_CABACEstimator->getCtx());
    
    
    #if !JVET_L0059_MTS_SIMP
    
      if( transformIndex != DCT2_EMT && ( !tu.transformSkip[COMPONENT_Y] ) ) //this can only be true if compID is luma
      {
        *numSig = 0;
        TCoeff* coeffBuffer = tu.getCoeffs(compID).buf;
        for( uint32_t uiX = 0; uiX < tu.Y().area(); uiX++ )
        {
          if( coeffBuffer[uiX] )
          {
            ( *numSig )++;
            if( *numSig > g_EmtSigNumThr )
            {
              break;
            }
          }
        }
        //if the number of significant coeffs is less than the threshold, then only the default transform (which has a 0 index, but it is the DST7) is allowed
        if( transformIndex != 0 && *numSig <= g_EmtSigNumThr && !tu.transformSkip[compID] )
        {
          return;
        }
      }
    
    
      DTRACE( g_trace_ctx, D_TU_ABS_SUM, "%d: comp=%d, abssum=%d\n", DTRACE_GET_COUNTER( g_trace_ctx, D_TU_ABS_SUM ), compID, uiAbsSum );
    
    
      //--- inverse transform ---
      if (uiAbsSum > 0)
      {
        m_pcTrQuant->invTransformNxN(tu, compID, piResi, cQP);
      }
      else
      {
        piResi.fill(0);
      }
    
      //===== reconstruction =====
      if (bUseCrossCPrediction)
      {
        CrossComponentPrediction::crossComponentPrediction(tu, compID, cs.getResiBuf(tu.Y()), piResi, piResi, true);
      }
    
      piReco.reconstruct(piPred, piResi, cs.slice->clpRng( compID ));
    
      //===== update distortion =====
    #if WCG_EXT
      if( m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled() )
      {
        const CPelBuf orgLuma = cs.getOrgBuf( cs.area.blocks[COMPONENT_Y] );
        ruiDist += m_pcRdCost->getDistPart( piOrg, piReco, bitDepth, compID, DF_SSE_WTD, &orgLuma );
      }
      else
    #endif
      {
        ruiDist += m_pcRdCost->getDistPart( piOrg, piReco, bitDepth, compID, DF_SSE );
      }
    }
    
    void IntraSearch::xRecurIntraCodingLumaQT( CodingStructure &cs, Partitioner &partitioner )
    {
      const UnitArea &currArea = partitioner.currArea();
      const CodingUnit &cu     = *cs.getCU(currArea.lumaPos(), partitioner.chType);
    #if ENABLE_BMS
      uint32_t     currDepth       = partitioner.currTrDepth;
    #endif
      const PPS &pps           = *cs.pps;
      const bool keepResi      = pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() || KEEP_PRED_AND_RESI_SIGNALS;
      bool bCheckFull          = true;
      bool bCheckSplit         = false;
    #if ENABLE_BMS
      bCheckFull               = cs.pcv->noRQT && !partitioner.canSplit( TU_MAX_TR_SPLIT, cs );
      bCheckSplit              = cs.pcv->noRQT &&  partitioner.canSplit( TU_MAX_TR_SPLIT, cs );
    #endif
    
      uint32_t    numSig           = 0;
    
      if( !cs.pcv->noRQT )
      {
      }
    
      bool    checkInitTrDepth = false, checkInitTrDepthTransformSkipWinner = false;
    
      double     dSingleCost                        = MAX_DOUBLE;
      Distortion uiSingleDistLuma                   = 0;
      uint64_t     singleFracBits                     = 0;
      bool       checkTransformSkip                 = pps.getUseTransformSkip();
      int        bestModeId[MAX_NUM_COMPONENT]      = {0, 0, 0};
      uint8_t      nNumTransformCands                 = cu.emtFlag ? 4 : 1; //4 is the number of transforms of emt
      bool       isAllIntra                         = m_pcEncCfg->getIntraPeriod() == 1;
    
      uint8_t numTransformIndexCands                  = nNumTransformCands;
    
      const TempCtx ctxStart  ( m_CtxCache, m_CABACEstimator->getCtx() );
      TempCtx       ctxBest   ( m_CtxCache );
    
    #if ENABLE_BMS
      CodingStructure *csSplit = nullptr;
    #endif
      CodingStructure *csFull  = nullptr;
    
    #if ENABLE_BMS
      if( bCheckSplit )
      {
        csSplit = &cs;
      }
      else if( bCheckFull )
    #endif
      {
        csFull = &cs;
      }
    
      if( bCheckFull )
      {
        csFull->cost = 0.0;
    
        TransformUnit &tu = csFull->addTU( CS::getArea( *csFull, currArea, partitioner.chType ), partitioner.chType );
    #if ENABLE_BMS
        tu.depth = currDepth;
    #endif
    
        checkTransformSkip &= TU::hasTransformSkipFlag( *tu.cs, tu.Y() );
        checkTransformSkip &= !cu.transQuantBypass;
        checkTransformSkip &= !cu.emtFlag;
    
        CHECK( !tu.Y().valid(), "Invalid TU" );
    
        //this prevents transformSkip from being checked because we already know it's not the best mode
        checkTransformSkip = ( checkInitTrDepth && !checkInitTrDepthTransformSkipWinner ) ? false : checkTransformSkip;
    
    
        CHECK( checkInitTrDepthTransformSkipWinner && !checkTransformSkip, "Transform Skip must be enabled if it was the winner in the previous call of xRecurIntraCodingLumaQT!" );
    
        CodingStructure &saveCS = *m_pSaveCS[0];
    
        TransformUnit *tmpTU = nullptr;
    
        Distortion singleDistTmpLuma = 0;
        uint64_t     singleTmpFracBits = 0;
        double     singleCostTmp     = 0;
        int        firstCheckId      = 0;
    
        //we add the EMT candidates to the loop. TransformSkip will still be the last one to be checked (when modeId == lastCheckId) as long as checkTransformSkip is true
        int        lastCheckId       = numTransformIndexCands - ( firstCheckId + 1 ) + ( int ) checkTransformSkip;
        bool isNotOnlyOneMode        = lastCheckId != firstCheckId && !checkInitTrDepthTransformSkipWinner;
    
        if( isNotOnlyOneMode )
        {
          saveCS.pcv     = cs.pcv;
          saveCS.picture = cs.picture;
          saveCS.area.repositionTo(cs.area);
          saveCS.clearTUs();
          tmpTU = &saveCS.addTU(currArea, partitioner.chType);
        }
    
        bool cbfBestMode = false;
    
    
        for( int modeId = firstCheckId; modeId <= lastCheckId; modeId++ )
        {
          if( checkInitTrDepthTransformSkipWinner )
          {
            //If this is a full RQT call and the winner of the first call (checkFirst=true) was transformSkip, then we skip the first iteration of the loop, since transform skip always comes at the end
            if( modeId == firstCheckId )
            {
              continue;
            }
          }
    
          uint8_t transformIndex = modeId;
    
    
          if( ( transformIndex < lastCheckId ) || ( ( transformIndex == lastCheckId ) && !checkTransformSkip ) ) //we avoid this if the mode is transformSkip
          {
            // Skip checking other transform candidates if zero CBF is encountered and it is the best transform so far
            if( m_pcEncCfg->getFastIntraEMT() && isAllIntra && transformIndex && !cbfBestMode )
            {
              continue;
            }
          }
    
          if ((modeId != firstCheckId) && isNotOnlyOneMode)
          {
            m_CABACEstimator->getCtx() = ctxStart;
          }
    
          int default0Save1Load2 = 0;
          singleDistTmpLuma = 0;
    
          if (modeId == firstCheckId && modeId != lastCheckId && !checkInitTrDepthTransformSkipWinner )
          {
            default0Save1Load2 = 1;
          }
          else if (modeId != firstCheckId)
          {
            default0Save1Load2 = 2;
          }
    
          if (cu.emtFlag)
          {
            tu.emtIdx = transformIndex;
          }
          if( !checkTransformSkip )
          {
            tu.transformSkip[COMPONENT_Y] = false;
          }
          else
          {
            tu.transformSkip[COMPONENT_Y] = modeId == lastCheckId;
          }
    
          xIntraCodingTUBlock( tu, COMPONENT_Y, false, singleDistTmpLuma, default0Save1Load2, &numSig );
    
          //----- determine rate and r-d cost -----
          //the condition (transformIndex != DCT2_EMT) seems to be irrelevant, since DCT2_EMT=7 and the highest value of transformIndex is 4
    
    #if JVET_L0059_MTS_SIMP
    #if ENABLE_BMS
          if( ( modeId == lastCheckId && checkTransformSkip && !TU::getCbfAtDepth( tu, COMPONENT_Y, currDepth ) ) )
    #else
          if( ( modeId == lastCheckId && checkTransformSkip && !TU::getCbf( tu, COMPONENT_Y ) ) )
    #endif
    #else
    
    #if ENABLE_BMS
          if( ( modeId == lastCheckId && checkTransformSkip && !TU::getCbfAtDepth( tu, COMPONENT_Y, currDepth ) )
            || ( tu.emtIdx > 0 && ( checkTransformSkip ? transformIndex != lastCheckId : true ) && tu.emtIdx != DCT2_EMT && numSig <= g_EmtSigNumThr ) )
    #else
          if( ( modeId == lastCheckId && checkTransformSkip && !TU::getCbf( tu, COMPONENT_Y ) )
            || ( tu.emtIdx > 0 && ( checkTransformSkip ? transformIndex != lastCheckId : true ) && tu.emtIdx != DCT2_EMT && numSig <= g_EmtSigNumThr ) )
    
    1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
    #endif
          {
            //In order not to code TS flag when cbf is zero, the case for TS with cbf being zero is forbidden.
            singleCostTmp = MAX_DOUBLE;
          }
          else
          {
            singleTmpFracBits = xGetIntraFracBitsQT( *csFull, partitioner, true, false );
            singleCostTmp     = m_pcRdCost->calcRdCost( singleTmpFracBits, singleDistTmpLuma );
          }
    
          if (singleCostTmp < dSingleCost)
          {
            dSingleCost       = singleCostTmp;
            uiSingleDistLuma  = singleDistTmpLuma;
            singleFracBits    = singleTmpFracBits;
    
            bestModeId[COMPONENT_Y] = modeId;
    #if ENABLE_BMS
            cbfBestMode       = TU::getCbfAtDepth( tu, COMPONENT_Y, currDepth );
    #else
            cbfBestMode       = TU::getCbf( tu, COMPONENT_Y );
    #endif
    
    
            if( bestModeId[COMPONENT_Y] != lastCheckId )
            {
    #if KEEP_PRED_AND_RESI_SIGNALS
              saveCS.getPredBuf( tu.Y() ).copyFrom( csFull->getPredBuf( tu.Y() ) );
    #endif
              saveCS.getRecoBuf( tu.Y() ).copyFrom( csFull->getRecoBuf( tu.Y() ) );
    
              if( keepResi )
              {
                saveCS.getResiBuf   ( tu.Y() ).copyFrom( csFull->getResiBuf   ( tu.Y() ) );
                saveCS.getOrgResiBuf( tu.Y() ).copyFrom( csFull->getOrgResiBuf( tu.Y() ) );
              }
    
              tmpTU->copyComponentFrom( tu, COMPONENT_Y );
    
              ctxBest = m_CABACEstimator->getCtx();
            }
          }
        }
    
        if( bestModeId[COMPONENT_Y] != lastCheckId )
        {
    #if KEEP_PRED_AND_RESI_SIGNALS
          csFull->getPredBuf( tu.Y() ).copyFrom( saveCS.getPredBuf( tu.Y() ) );
    #endif
          csFull->getRecoBuf( tu.Y() ).copyFrom( saveCS.getRecoBuf( tu.Y() ) );
    
          if( keepResi )
          {
            csFull->getResiBuf   ( tu.Y() ).copyFrom( saveCS.getResiBuf   ( tu.Y() ) );
            csFull->getOrgResiBuf( tu.Y() ).copyFrom( saveCS.getOrgResiBuf( tu.Y() ) );
          }
    
          tu.copyComponentFrom( *tmpTU, COMPONENT_Y );
    
          if( !bCheckSplit )
          {
            m_CABACEstimator->getCtx() = ctxBest;
          }
        }
        else if( bCheckSplit )
        {
          ctxBest = m_CABACEstimator->getCtx();
        }
    
        csFull->cost     += dSingleCost;
        csFull->dist     += uiSingleDistLuma;
        csFull->fracBits += singleFracBits;
      }
    
    #if ENABLE_BMS
      if( bCheckSplit )
      {
        //----- store full entropy coding status, load original entropy coding status -----
        if( bCheckFull )
        {
          m_CABACEstimator->getCtx() = ctxStart;
        }
        //----- code splitted block -----
        csSplit->cost = 0;
    
        bool uiSplitCbfLuma  = false;
        bool splitIsSelected = true;
    #if ENABLE_BMS
        if( cs.pcv->noRQT && partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
        {
          partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
        }
    #endif
    
        do
        {
          xRecurIntraCodingLumaQT( *csSplit, partitioner );
    
          csSplit->setDecomp( partitioner.currArea().Y() );
    
          uiSplitCbfLuma |= TU::getCbfAtDepth( *csSplit->getTU( partitioner.currArea().lumaPos(), partitioner.chType ), COMPONENT_Y, partitioner.currTrDepth );
    
    
    
        } while( partitioner.nextPart( *csSplit ) );
    
        partitioner.exitCurrSplit();
    
        if( splitIsSelected )
        {
          for( auto &ptu : csSplit->tus )
          {
            if( currArea.Y().contains( ptu->Y() ) )
            {
              TU::setCbfAtDepth( *ptu, COMPONENT_Y, currDepth, uiSplitCbfLuma ? 1 : 0 );
            }
          }
    
          //----- restore context states -----
          m_CABACEstimator->getCtx() = ctxStart;
    
          //----- determine rate and r-d cost -----
          csSplit->fracBits = xGetIntraFracBitsQT(*csSplit, partitioner, true, false);
    
          //--- update cost ---
          csSplit->cost     = m_pcRdCost->calcRdCost(csSplit->fracBits, csSplit->dist);
        }
      }
    
      if( csFull || csSplit )
    #endif
      {
        {
          // otherwise this would've happened in useSubStructure
          cs.picture->getRecoBuf( currArea.Y() ).copyFrom( cs.getRecoBuf( currArea.Y() ) );
        }
    
        cs.cost = m_pcRdCost->calcRdCost( cs.fracBits, cs.dist );
      }
    }
    
    ChromaCbfs IntraSearch::xRecurIntraChromaCodingQT(CodingStructure &cs, Partitioner& partitioner)
    {
      UnitArea currArea                   = partitioner.currArea();
      const bool keepResi                 = cs.sps->getSpsNext().getUseLMChroma() || KEEP_PRED_AND_RESI_SIGNALS;
      if( !currArea.Cb().valid() ) return ChromaCbfs( false );
    
    
      TransformUnit &currTU               = *cs.getTU( currArea.chromaPos(), CHANNEL_TYPE_CHROMA );
      const PredictionUnit &pu            = *cs.getPU( currArea.chromaPos(), CHANNEL_TYPE_CHROMA );
      const TransformUnit &currTULuma     = CS::isDualITree( cs ) ? *cs.picture->cs->getTU( currArea.lumaPos(), CHANNEL_TYPE_LUMA ) : currTU;
    
    #if ENABLE_BMS
      uint32_t     currDepth                  = partitioner.currTrDepth;
    #endif
      const PPS &pps                      = *cs.pps;
      ChromaCbfs cbfs                     ( false );
    
    #if ENABLE_BMS
      if (currDepth == currTU.depth)
    #endif
      {
        if (!currArea.Cb().valid() || !currArea.Cr().valid())
        {
          return cbfs;
        }
    
        bool checkTransformSkip = pps.getUseTransformSkip();
        checkTransformSkip &= TU::hasTransformSkipFlag( *currTU.cs, partitioner.currArea().Cb() );
    
        if( m_pcEncCfg->getUseTransformSkipFast() )
        {
          checkTransformSkip &= TU::hasTransformSkipFlag( *currTU.cs, partitioner.currArea().Y() );
    
          if( checkTransformSkip && cs.pcv->noChroma2x2 )
          {
            int nbLumaSkip = currTULuma.transformSkip[0] ? 1 : 0;
    
            {
              // the chroma blocks are co-located with the last luma block, so backwards references are needed
              nbLumaSkip += cs.getTU( currTULuma.Y().topLeft().offset( -1,  0 ), partitioner.chType )->transformSkip[0] ? 1 : 0;
              nbLumaSkip += cs.getTU( currTULuma.Y().topLeft().offset( -1, -1 ), partitioner.chType )->transformSkip[0] ? 1 : 0;
              nbLumaSkip += cs.getTU( currTULuma.Y().topLeft().offset(  0, -1 ), partitioner.chType )->transformSkip[0] ? 1 : 0;
            }
    
            checkTransformSkip &= ( nbLumaSkip > 0 );
          }
        }
    
        CodingStructure &saveCS = *m_pSaveCS[1];
        saveCS.pcv      = cs.pcv;
        saveCS.picture  = cs.picture;
        saveCS.area.repositionTo( cs.area );
        saveCS.initStructData( -1, false, true );
    
        TransformUnit &tmpTU = saveCS.addTU(currArea, partitioner.chType);
    
    
        cs.setDecomp(currArea.Cb(), true); // set in advance (required for Cb2/Cr2 in 4:2:2 video)
    
        const unsigned      numTBlocks  = ::getNumberValidTBlocks( *cs.pcv );
    
        for( uint32_t c = COMPONENT_Cb; c < numTBlocks; c++)
        {
          const ComponentID compID  = ComponentID(c);
          const CompArea&   area    = currTU.blocks[compID];
    
          double     dSingleCost    = MAX_DOUBLE;
          int        bestModeId     = 0;
          Distortion singleDistC    = 0;
          Distortion singleDistCTmp = 0;
          double     singleCostTmp  = 0;
    
          const bool checkCrossComponentPrediction = PU::isChromaIntraModeCrossCheckMode( pu ) && pps.getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && TU::getCbf( currTU, COMPONENT_Y );
    
          const int  crossCPredictionModesToTest = checkCrossComponentPrediction ? 2 : 1;
          const int  transformSkipModesToTest    = checkTransformSkip ? 2 : 1;
          const int  totalModesToTest            = crossCPredictionModesToTest * transformSkipModesToTest;
          const bool isOneMode                   = (totalModesToTest == 1);
    
          int currModeId = 0;
          int default0Save1Load2 = 0;
    
          TempCtx ctxStart  ( m_CtxCache );
          TempCtx ctxBest   ( m_CtxCache );
    
          if (!isOneMode)
          {
            ctxStart = m_CABACEstimator->getCtx();
          }
    
          for (int transformSkipModeId = 0; transformSkipModeId < transformSkipModesToTest; transformSkipModeId++)
          {
            for (int crossCPredictionModeId = 0; crossCPredictionModeId < crossCPredictionModesToTest; crossCPredictionModeId++)
            {
              currTU.compAlpha    [compID] = 0;
              currTU.transformSkip[compID] = transformSkipModeId;
    
              currModeId++;
    
              const bool isFirstMode = (currModeId == 1);
              const bool isLastMode  = (currModeId == totalModesToTest); // currModeId is indexed from 1
    
              if (isOneMode)
              {
                default0Save1Load2 = 0;
              }
              else if (!isOneMode && (transformSkipModeId == 0) && (crossCPredictionModeId == 0))
              {
                default0Save1Load2 = 1; //save prediction on first mode
              }
              else
              {
                default0Save1Load2 = 2; //load it on subsequent modes
              }
    
              if (!isFirstMode) // if not first mode to be tested
              {
                m_CABACEstimator->getCtx() = ctxStart;
              }
    
              singleDistCTmp = 0;
    
              xIntraCodingTUBlock( currTU, compID, crossCPredictionModeId != 0, singleDistCTmp, default0Save1Load2 );
    
              if( ( ( crossCPredictionModeId == 1 ) && ( currTU.compAlpha[compID] == 0 ) ) || ( ( transformSkipModeId == 1 ) && !TU::getCbf( currTU, compID ) ) ) //In order not to code TS flag when cbf is zero, the case for TS with cbf being zero is forbidden.
              {
                singleCostTmp = MAX_DOUBLE;
              }
              else if( !isOneMode )
              {
                uint64_t fracBitsTmp = xGetIntraFracBitsQTChroma( currTU, compID );
                singleCostTmp = m_pcRdCost->calcRdCost( fracBitsTmp, singleDistCTmp );
              }
    
              if( singleCostTmp < dSingleCost )
              {
                dSingleCost = singleCostTmp;
                singleDistC = singleDistCTmp;
                bestModeId  = currModeId;
    
                if( !isLastMode )
                {
    #if KEEP_PRED_AND_RESI_SIGNALS
                  saveCS.getPredBuf   (area).copyFrom(cs.getPredBuf   (area));
                  saveCS.getOrgResiBuf(area).copyFrom(cs.getOrgResiBuf(area));
    #endif
                  if( keepResi )
                  {
                    saveCS.getResiBuf (area).copyFrom(cs.getResiBuf   (area));
                  }
                  saveCS.getRecoBuf   (area).copyFrom(cs.getRecoBuf   (area));
    
                  tmpTU.copyComponentFrom(currTU, compID);
    
                  ctxBest = m_CABACEstimator->getCtx();
                }
              }
            }
          }
    
          if (bestModeId < totalModesToTest)
          {
    #if KEEP_PRED_AND_RESI_SIGNALS
            cs.getPredBuf   (area).copyFrom(saveCS.getPredBuf   (area));
            cs.getOrgResiBuf(area).copyFrom(saveCS.getOrgResiBuf(area));
    #endif
            if( keepResi )
            {
              cs.getResiBuf (area).copyFrom(saveCS.getResiBuf   (area));
            }
            cs.getRecoBuf   (area).copyFrom(saveCS.getRecoBuf   (area));
    
            currTU.copyComponentFrom(tmpTU, compID);
    
            m_CABACEstimator->getCtx() = ctxBest;
          }
    
          cs.picture->getRecoBuf(area).copyFrom(cs.getRecoBuf(area));
    
          cbfs.cbf(compID) = TU::getCbf(currTU, compID);
    
          cs.dist += singleDistC;
        }
      }
    #if ENABLE_BMS
      else
      {
    #if ENABLE_BMS
        unsigned    numValidTBlocks   = ::getNumberValidTBlocks( *cs.pcv );
        ChromaCbfs  SplitCbfs         ( false );
    
    #if ENABLE_BMS
        if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
        {
          partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
        }
        else
    #endif
          THROW( "Implicit TU split not available" );
    
        do
        {
          ChromaCbfs subCbfs = xRecurIntraChromaCodingQT( cs, partitioner );
    
          for( uint32_t ch = COMPONENT_Cb; ch < numValidTBlocks; ch++ )
          {
            const ComponentID compID = ComponentID( ch );
            SplitCbfs.cbf( compID ) |= subCbfs.cbf( compID );
          }
        } while( partitioner.nextPart( cs ) );
    
        partitioner.exitCurrSplit();
    
        {
    
          cbfs.Cb |= SplitCbfs.Cb;
          cbfs.Cr |= SplitCbfs.Cr;
    
          for( auto &ptu : cs.tus )
          {
            if( currArea.Cb().contains( ptu->Cb() ) || ( !ptu->Cb().valid() && currArea.Y().contains( ptu->Y() ) ) )
            {
              TU::setCbfAtDepth( *ptu, COMPONENT_Cb, currDepth, SplitCbfs.Cb );
              TU::setCbfAtDepth( *ptu, COMPONENT_Cr, currDepth, SplitCbfs.Cr );
            }
          }
        }
    #else
        THROW( "TU split is only allowed in HEVC mode or with Mode1D partitions" );
    #endif
      }
    #endif
    
      return cbfs;
    }
    
    uint64_t IntraSearch::xFracModeBitsIntra(PredictionUnit &pu, const uint32_t &uiMode, const ChannelType &chType)
    {
      uint32_t orgMode = uiMode;
    
    
    #if JVET_L0100_MULTI_HYPOTHESIS_INTRA
    
      if (!pu.mhIntraFlag)
    
      std::swap(orgMode, pu.intraDir[chType]);
    
      m_CABACEstimator->resetBits();
    
      if( isLuma( chType ) )
      {
    
    #if JVET_L0100_MULTI_HYPOTHESIS_INTRA
    
        if ( pu.mhIntraFlag )
    
          m_CABACEstimator->MHIntra_luma_pred_modes(*pu.cu);
        else
        {
          m_CABACEstimator->intra_luma_pred_mode(pu);
        }
    #else
    
        m_CABACEstimator->intra_luma_pred_mode( pu );
    
    #if JVET_L0100_MULTI_HYPOTHESIS_INTRA
    
      if ( !pu.mhIntraFlag )
    
      std::swap(orgMode, pu.intraDir[chType]);
    
      return m_CABACEstimator->getEstFracBits();
    }
    
    
    
    void IntraSearch::encPredIntraDPCM( const ComponentID &compID, PelBuf &pOrg, PelBuf &pDst, const uint32_t &uiDirMode )
    {
      CHECK( pOrg.buf == 0, "Encoder DPCM called without original buffer" );
    
      const int srcStride = m_topRefLength + 1;
      CPelBuf   pSrc = CPelBuf(getPredictorPtr(compID), srcStride, m_leftRefLength + 1);
    
      // Sample Adaptive intra-Prediction (SAP)
      if( uiDirMode == HOR_IDX )
      {
        // left column filled with reference samples, remaining columns filled with pOrg data
        for( int y = 0; y < pDst.height; y++ )
        {
          pDst.at( 0, y ) = pSrc.at( 0, 1 + y );
        }
        CPelBuf orgRest  = pOrg.subBuf( 0, 0, pOrg.width - 1, pOrg.height );
        PelBuf  predRest = pDst.subBuf( 1, 0, pDst.width - 1, pDst.height );
    
        predRest.copyFrom( orgRest );
      }
      else // VER_IDX
      {
        // top row filled with reference samples, remaining rows filled with pOrg data
        for( int x = 0; x < pDst.width; x++ )
        {
          pDst.at( x, 0 ) = pSrc.at( 1 + x, 0 );
        }
        CPelBuf orgRest  = pOrg.subBuf( 0, 0, pOrg.width, pOrg.height - 1 );
        PelBuf  predRest = pDst.subBuf( 0, 1, pDst.width, pDst.height - 1 );
    
        predRest.copyFrom( orgRest );
      }
    }
    
    bool IntraSearch::useDPCMForFirstPassIntraEstimation( const PredictionUnit &pu, const uint32_t &uiDirMode )
    {
      return CU::isRDPCMEnabled( *pu.cu ) && pu.cu->transQuantBypass && (uiDirMode == HOR_IDX || uiDirMode == VER_IDX);
    }