Newer
Older
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
checkRunTable[rasterPos] = PLT_RUN_COPY;
checkIndexTable[rasterPos] = checkIndexTable[abovePos];
}
else if (nextState == 2) // Index mode
{
checkRunTable[rasterPos] = PLT_RUN_INDEX;
checkIndexTable[rasterPos] = m_minErrorIndexMap[rasterPos];
}
}
// Escape flag
m_bestEscape = false;
for (int pos = 0; pos < (width*height); pos++)
{
uint8_t index = checkIndexTable[pos];
if (index == cu.curPLTSize[compBegin])
{
m_bestEscape = true;
break;
}
}
// Horizontal scan v.s vertical scan
if (sumRdCost < dMinCost)
{
cu.useEscape[compBegin] = m_bestEscape;
m_bestScanRotationMode = pltScanMode;
memset(idxExist, false, sizeof(bool) * (MAXPLTSIZE + 1));
for (int pos = 0; pos < (width*height); pos++)
{
runIndex[pos] = checkIndexTable[pos];
runType[pos] = checkRunTable[pos];
idxExist[checkIndexTable[pos]] = true;
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
}
dMinCost = sumRdCost;
}
}
bool IntraSearch::deriveSubblockIndexMap(
CodingStructure& cs,
Partitioner& partitioner,
ComponentID compBegin,
PLTScanMode pltScanMode,
int minSubPos,
int maxSubPos,
const BinFracBits& fracBitsPltRunType,
const BinFracBits* fracBitsPltIndexINDEX,
const BinFracBits* fracBitsPltIndexCOPY,
const double minCost,
bool useRotate
)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
int indexMaxValue = cu.curPLTSize[compBegin];
int refId = 0;
int currRasterPos, currScanPos, prevScanPos, aboveScanPos, roffset;
int log2Width = (pltScanMode == PLT_SCAN_HORTRAV) ? floorLog2(width): floorLog2(height);
int buffersize = (pltScanMode == PLT_SCAN_HORTRAV) ? 2*width: 2*height;
for (int curPos = minSubPos; curPos < maxSubPos; curPos++)
{
currRasterPos = m_scanOrder[curPos].idx;
prevScanPos = (curPos == 0) ? 0 : (curPos - 1) % buffersize;
roffset = (curPos >> log2Width) << log2Width;
aboveScanPos = roffset - (curPos - roffset + 1);
aboveScanPos %= buffersize;
currScanPos = curPos % buffersize;
if ((pltScanMode == PLT_SCAN_HORTRAV && curPos < width) || (pltScanMode == PLT_SCAN_VERTRAV && curPos < height))
{
aboveScanPos = -1; // first column/row: above row is not valid
}
// 1st state: same as previous scanned sample
// 2nd state: Copy_Above mode
// 3rd state: Index mode
// Loop of current state
for ( int curState = 0; curState < NUM_TRELLIS_STATE; curState++ )
{
double minRdCost = MAX_DOUBLE;
int minState = 0; // best prevState
uint8_t bestRunIndex = 0;
bool bestRunType = 0;
bool bestPrevCodedType = 0;
int bestPrevCodedPos = 0;
if ( ( curState == 0 && curPos == 0 ) || ( curState == 1 && aboveScanPos < 0 ) ) // state not available
{
m_stateCostRDOQ[1 - refId][curState] = MAX_DOUBLE;
continue;
}
bool runType = 0;
uint8_t runIndex = 0;
if ( curState == 1 ) // 2nd state: Copy_Above mode
{
runType = PLT_RUN_COPY;
}
else if ( curState == 2 ) // 3rd state: Index mode
{
runType = PLT_RUN_INDEX;
runIndex = m_minErrorIndexMap[currRasterPos];
}
// Loop of previous state
for ( int stateID = 0; stateID < NUM_TRELLIS_STATE; stateID++ )
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
{
if ( m_stateCostRDOQ[refId][stateID] == MAX_DOUBLE )
{
continue;
}
if ( curState == 0 ) // 1st state: same as previous scanned sample
{
runType = m_runMapRDOQ[refId][stateID][prevScanPos];
runIndex = ( runType == PLT_RUN_INDEX ) ? m_indexMapRDOQ[refId][stateID][ prevScanPos ] : m_indexMapRDOQ[refId][stateID][ aboveScanPos ];
}
else if ( curState == 1 ) // 2nd state: Copy_Above mode
{
runIndex = m_indexMapRDOQ[refId][stateID][aboveScanPos];
}
bool prevRunType = m_runMapRDOQ[refId][stateID][prevScanPos];
uint8_t prevRunIndex = m_indexMapRDOQ[refId][stateID][prevScanPos];
uint8_t aboveRunIndex = (aboveScanPos >= 0) ? m_indexMapRDOQ[refId][stateID][aboveScanPos] : 0;
int dist = curPos - m_prevRunPosRDOQ[refId][stateID] - 1;
double rdCost = m_stateCostRDOQ[refId][stateID];
if ( rdCost >= minRdCost ) continue;
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
bool prevCodedRunType = m_prevRunTypeRDOQ[refId][stateID];
int prevCodedPos = m_prevRunPosRDOQ [refId][stateID];
const BinFracBits* fracBitsPt = (m_prevRunTypeRDOQ[refId][stateID] == PLT_RUN_INDEX) ? fracBitsPltIndexINDEX : fracBitsPltIndexCOPY;
rdCost += rateDistOptPLT(runType, runIndex, prevRunType, prevRunIndex, aboveRunIndex, prevCodedRunType, prevCodedPos, curPos, (pltScanMode == PLT_SCAN_HORTRAV) ? width : height, dist, indexMaxValue, fracBitsPt, fracBitsPltRunType);
if (rdCost < minRdCost) // update minState ( minRdCost )
{
minRdCost = rdCost;
minState = stateID;
bestRunType = runType;
bestRunIndex = runIndex;
bestPrevCodedType = prevCodedRunType;
bestPrevCodedPos = prevCodedPos;
}
}
// Update trellis info of current state
m_stateCostRDOQ [1 - refId][curState] = minRdCost;
m_prevRunTypeRDOQ[1 - refId][curState] = bestPrevCodedType;
m_prevRunPosRDOQ [1 - refId][curState] = bestPrevCodedPos;
m_statePtRDOQ[curState][currRasterPos] = minState;
int buffer2update = std::min(buffersize, curPos);
memcpy(m_indexMapRDOQ[1 - refId][curState], m_indexMapRDOQ[refId][minState], sizeof(uint8_t)*buffer2update);
memcpy(m_runMapRDOQ[1 - refId][curState], m_runMapRDOQ[refId][minState], sizeof(bool)*buffer2update);
m_indexMapRDOQ[1 - refId][curState][currScanPos] = bestRunIndex;
m_runMapRDOQ [1 - refId][curState][currScanPos] = bestRunType;
}
if (useRotate) // early terminate: Rd cost >= min cost in horizontal scan
{
if ((m_stateCostRDOQ[1 - refId][0] >= minCost) &&
(m_stateCostRDOQ[1 - refId][1] >= minCost) &&
(m_stateCostRDOQ[1 - refId][2] >= minCost) )
{
return 0;
}
}
refId = 1 - refId;
}
return 1;
}
double IntraSearch::rateDistOptPLT(
bool runType,
uint8_t runIndex,
bool prevRunType,
uint8_t prevRunIndex,
uint8_t aboveRunIndex,
bool& prevCodedRunType,
int& prevCodedPos,
int scanPos,
uint32_t width,
int dist,
int indexMaxValue,
const BinFracBits* IndexfracBits,
const BinFracBits& TypefracBits)
{
double rdCost = 0.0;
bool identityFlag = !( (runType != prevRunType) || ( (runType == PLT_RUN_INDEX) && (runIndex != prevRunIndex) ) );
if ( ( !identityFlag && runType == PLT_RUN_INDEX ) || scanPos == 0 ) // encode index value
{
uint8_t refIndex = (prevRunType == PLT_RUN_INDEX) ? prevRunIndex : aboveRunIndex;
refIndex = (scanPos == 0) ? ( indexMaxValue + 1) : refIndex;
if ( runIndex == refIndex )
{
rdCost = MAX_DOUBLE;
return rdCost;
}
rdCost += m_pcRdCost->getLambda()*(m_truncBinBits[(runIndex > refIndex) ? runIndex - 1 : runIndex][(scanPos == 0) ? (indexMaxValue + 1) : indexMaxValue] << SCALE_BITS);
rdCost += m_indexError[runIndex][m_scanOrder[scanPos].idx] * (1 << SCALE_BITS);
if (scanPos > 0)
{
rdCost += m_pcRdCost->getLambda()*( identityFlag ? (IndexfracBits[(dist < RUN_IDX_THRE) ? dist : RUN_IDX_THRE].intBits[1]) : (IndexfracBits[(dist < RUN_IDX_THRE) ? dist : RUN_IDX_THRE].intBits[0] ) );
}
if ( !identityFlag && scanPos >= width && prevRunType != PLT_RUN_COPY )
{
rdCost += m_pcRdCost->getLambda()*TypefracBits.intBits[runType];
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
}
if (!identityFlag || scanPos == 0)
{
prevCodedRunType = runType;
prevCodedPos = scanPos;
}
return rdCost;
}
uint32_t IntraSearch::getEpExGolombNumBins(uint32_t symbol, uint32_t count)
{
uint32_t numBins = 0;
while (symbol >= (uint32_t)(1 << count))
{
numBins++;
symbol -= 1 << count;
count++;
}
numBins++;
numBins += count;
assert(numBins <= 32);
return numBins;
}
uint32_t IntraSearch::getTruncBinBits(uint32_t symbol, uint32_t maxSymbol)
{
uint32_t idxCodeBit = 0;
uint32_t thresh;
if (maxSymbol > 256)
{
uint32_t threshVal = 1 << 8;
thresh = 8;
while (threshVal <= maxSymbol)
{
thresh++;
threshVal <<= 1;
}
thresh--;
}
else
{
thresh = g_tbMax[maxSymbol];
}
uint32_t uiVal = 1 << thresh;
assert(uiVal <= maxSymbol);
assert((uiVal << 1) > maxSymbol);
assert(symbol < maxSymbol);
uint32_t b = maxSymbol - uiVal;
assert(b < uiVal);
if (symbol < uiVal - b)
{
idxCodeBit = thresh;
}
else
{
idxCodeBit = thresh + 1;
}
return idxCodeBit;
}
void IntraSearch::initTBCTable(int bitDepth)
{
for (uint32_t i = 0; i < m_symbolSize; i++)
{
memset(m_truncBinBits[i], 0, sizeof(uint16_t)*(m_symbolSize + 1));
}
for (uint32_t i = 0; i < (m_symbolSize + 1); i++)
{
for (uint32_t j = 0; j < i; j++)
{
m_truncBinBits[j][i] = getTruncBinBits(j, i);
}
}
memset(m_escapeNumBins, 0, sizeof(uint16_t)*m_symbolSize);
for (uint32_t i = 0; i < m_symbolSize; i++)
{
m_escapeNumBins[i] = getEpExGolombNumBins(i, 5);
void IntraSearch::calcPixelPred(CodingStructure& cs, Partitioner& partitioner, uint32_t yPos, uint32_t xPos, ComponentID compBegin, uint32_t numComp)
Yung-Hsuan Chao (Jessie)
committed
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
TransformUnit &tu = *cs.getTU(partitioner.chType);
bool lossless = (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && cs.slice->isLossless());
CPelBuf orgBuf[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
CompArea area = cu.blocks[comp];
if (m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag()))
{
orgBuf[comp] = cs.getPredBuf(area);
}
else
{
orgBuf[comp] = cs.getOrgBuf(area);
}
}
int qp[3];
int qpRem[3];
int qpPer[3];
int quantiserScale[3];
int quantiserRightShift[3];
int rightShiftOffset[3];
int invquantiserRightShift[3];
if (!lossless)
{
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
QpParam cQP(tu, ComponentID(ch));
qp[ch] = cQP.Qp(true);
qpRem[ch] = qp[ch] % 6;
qpPer[ch] = qp[ch] / 6;
quantiserScale[ch] = g_quantScales[0][qpRem[ch]];
quantiserRightShift[ch] = QUANT_SHIFT + qpPer[ch];
rightShiftOffset[ch] = 1 << (quantiserRightShift[ch] - 1);
invquantiserRightShift[ch] = IQUANT_SHIFT;
add[ch] = 1 << (invquantiserRightShift[ch] - 1);
}
uint32_t scaleX = getComponentScaleX(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
uint32_t scaleY = getComponentScaleY(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
const int channelBitDepth = cu.cs->sps->getBitDepth(toChannelType((ComponentID)ch));
CompArea area = cu.blocks[ch];
PelBuf recBuf = cs.getRecoBuf(area);
PLTescapeBuf escapeValue = tu.getescapeValue((ComponentID)ch);
if (compBegin != COMPONENT_Y || ch == 0)
{
if (lossless)
{
escapeValue.at(xPos, yPos) = orgBuf[ch].at(xPos, yPos);
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
recBuf.at(xPos, yPos) = orgBuf[ch].at(xPos, yPos);
#else
recBuf.at(xPos, yPos) = escapeValue.at(xPos, yPos);
}
else
{
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
escapeValue.at(xPos, yPos) = std::max<TCoeff>(0, ((orgBuf[ch].at(xPos, yPos) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch]));
assert(escapeValue.at(xPos, yPos) < (TCoeff(1) << (channelBitDepth + 1)));
TCoeff value = (((escapeValue.at(xPos, yPos)*g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch]) >> invquantiserRightShift[ch];
recBuf.at(xPos, yPos) = Pel(ClipBD<TCoeff>(value, channelBitDepth));//to be checked
#else
escapeValue.at(xPos, yPos) = TCoeff(std::max<int>(0, ((orgBuf[ch].at(xPos, yPos) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch])));
assert(escapeValue.at(xPos, yPos) < (1 << (channelBitDepth + 1)));
recBuf.at(xPos, yPos) = (((escapeValue.at(xPos, yPos)*g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch]) >> invquantiserRightShift[ch];
recBuf.at(xPos, yPos) = Pel(ClipBD<int>(recBuf.at(xPos, yPos), channelBitDepth));//to be checked
else if (compBegin == COMPONENT_Y && ch > 0 && yPos % (1 << scaleY) == 0 && xPos % (1 << scaleX) == 0)
uint32_t yPosC = yPos >> scaleY;
uint32_t xPosC = xPos >> scaleX;
if (lossless)
{
escapeValue.at(xPosC, yPosC) = orgBuf[ch].at(xPosC, yPosC);
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
recBuf.at(xPosC, yPosC) = orgBuf[ch].at(xPosC, yPosC);
#else
recBuf.at(xPosC, yPosC) = escapeValue.at(xPosC, yPosC);
}
else
{
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
escapeValue.at(xPosC, yPosC) = std::max<TCoeff>(
0, ((orgBuf[ch].at(xPosC, yPosC) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch]));
assert(escapeValue.at(xPosC, yPosC) < (TCoeff(1) << (channelBitDepth + 1)));
TCoeff value = (((escapeValue.at(xPosC, yPosC) * g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch])
>> invquantiserRightShift[ch];
recBuf.at(xPosC, yPosC) = Pel(ClipBD<TCoeff>(value, channelBitDepth)); // to be checked
escapeValue.at(xPosC, yPosC) = TCoeff(std::max<int>(
0, ((orgBuf[ch].at(xPosC, yPosC) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch])));
assert(escapeValue.at(xPosC, yPosC) < (1 << (channelBitDepth + 1)));
recBuf.at(xPosC, yPosC) =
(((escapeValue.at(xPosC, yPosC) * g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch])
>> invquantiserRightShift[ch];
recBuf.at(xPosC, yPosC) = Pel(ClipBD<int>(recBuf.at(xPosC, yPosC), channelBitDepth)); // to be checked
}
}
Yung-Hsuan Chao (Jessie)
committed
}
void IntraSearch::derivePLTLossy(CodingStructure& cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp)
Yung-Hsuan Chao (Jessie)
committed
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
const int channelBitDepth_L = cs.sps->getBitDepth(CHANNEL_TYPE_LUMA);
const int channelBitDepth_C = cs.sps->getBitDepth(CHANNEL_TYPE_CHROMA);
bool lossless = (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && cs.slice->isLossless());
int pcmShiftRight_L = (channelBitDepth_L - PLT_ENCBITDEPTH);
int pcmShiftRight_C = (channelBitDepth_C - PLT_ENCBITDEPTH);
if (lossless)
{
pcmShiftRight_L = 0;
pcmShiftRight_C = 0;
}
int maxPltSize = cu.isSepTree() ? MAXPLTSIZE_DUALTREE : MAXPLTSIZE;
#else
int maxPltSize = CS::isDualITree(cs) ? MAXPLTSIZE_DUALTREE : MAXPLTSIZE;
#endif
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
CPelBuf orgBuf[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
CompArea area = cu.blocks[comp];
if (m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag()))
{
orgBuf[comp] = cs.getPredBuf(area);
}
else
{
orgBuf[comp] = cs.getOrgBuf(area);
}
}
TransformUnit &tu = *cs.getTU(partitioner.chType);
QpParam cQP(tu, compBegin);
int qp = cQP.Qp(true) - 12;
qp = (qp < 0) ? 0 : ((qp > 56) ? 56 : qp);
int errorLimit = g_paletteQuant[qp];
if (lossless)
{
errorLimit = 0;
}
uint32_t totalSize = height*width;
SortingElement *pelList = new SortingElement[totalSize];
SortingElement element;
SortingElement *pelListSort = new SortingElement[MAXPLTSIZE + 1];
uint32_t dictMaxSize = maxPltSize;
int last = -1;
uint32_t scaleX = getComponentScaleX(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
uint32_t scaleY = getComponentScaleY(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
uint32_t org[3], pX, pY;
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
pX = (comp > 0 && compBegin == COMPONENT_Y) ? (x >> scaleX) : x;
pY = (comp > 0 && compBegin == COMPONENT_Y) ? (y >> scaleY) : y;
org[comp] = orgBuf[comp].at(pX, pY);
}
element.setAll(org, compBegin, numComp);
ComponentID tmpCompBegin = compBegin;
int tmpNumComp = numComp;
if( cs.sps->getChromaFormatIdc() != CHROMA_444 &&
numComp == 3 &&
(x != ((x >> scaleX) << scaleX) || (y != ((y >> scaleY) << scaleY))) )
{
tmpCompBegin = COMPONENT_Y;
tmpNumComp = 1;
}
int besti = last, bestSAD = (last == -1) ? MAX_UINT : pelList[last].getSAD(element, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless);
if (lossless)
{
if (bestSAD)
{
for (int i = idx - 1; i >= 0; i--)
{
uint32_t sad = pelList[i].getSAD(element, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless);
if (sad == 0)
{
bestSAD = sad;
besti = i;
break;
}
}
}
}
else
{
for (int i = idx - 1; i >= 0; i--)
uint32_t sad = pelList[i].getSAD(element, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless);
if (sad < bestSAD)
{
bestSAD = sad;
besti = i;
if (!sad)
{
break;
}
}
if (besti >= 0 && pelList[besti].almostEqualData(element, errorLimit, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless))
{
pelList[besti].addElement(element, tmpCompBegin, tmpNumComp);
last = besti;
}
else
{
pelList[idx].copyDataFrom(element, tmpCompBegin, tmpNumComp);
for (int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++)
pelList[idx].setCnt(1, comp);
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
last = idx;
idx++;
}
}
}
if( cs.sps->getChromaFormatIdc() != CHROMA_444 && numComp == 3 )
{
for( int i = 0; i < idx; i++ )
{
pelList[i].setCnt( pelList[i].getCnt(COMPONENT_Y) + (pelList[i].getCnt(COMPONENT_Cb) >> 2), MAX_NUM_COMPONENT);
}
}
else
{
if( compBegin == 0 )
{
for( int i = 0; i < idx; i++ )
{
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Y), COMPONENT_Cb);
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Y), COMPONENT_Cr);
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Y), MAX_NUM_COMPONENT);
}
}
else
{
for( int i = 0; i < idx; i++ )
{
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Cb), COMPONENT_Y);
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Cb), MAX_NUM_COMPONENT);
}
}
}
for (int i = 0; i < dictMaxSize; i++)
pelListSort[i].setCnt(0, COMPONENT_Y);
pelListSort[i].setCnt(0, COMPONENT_Cb);
pelListSort[i].setCnt(0, COMPONENT_Cr);
pelListSort[i].setCnt(0, MAX_NUM_COMPONENT);
pelListSort[i].resetAll(compBegin, numComp);
}
//bubble sorting
dictMaxSize = 1;
for (int i = 0; i < idx; i++)
if( pelList[i].getCnt(MAX_NUM_COMPONENT) > pelListSort[dictMaxSize - 1].getCnt(MAX_NUM_COMPONENT) )
{
int j;
for (j = dictMaxSize; j > 0; j--)
if (pelList[i].getCnt(MAX_NUM_COMPONENT) > pelListSort[j - 1].getCnt(MAX_NUM_COMPONENT))
pelListSort[j].copyAllFrom(pelListSort[j - 1], compBegin, numComp);
dictMaxSize = std::min(dictMaxSize + 1, (uint32_t)maxPltSize);
}
else
{
break;
}
}
pelListSort[j].copyAllFrom(pelList[i], compBegin, numComp);
}
}
uint64_t numColorBits = 0;
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
numColorBits += (comp > 0) ? channelBitDepth_C : channelBitDepth_L;
}
const int plt_lambda_shift = (compBegin > 0) ? pcmShiftRight_C : pcmShiftRight_L;
double bitCost = m_pcRdCost->getLambda() / (double) (1 << (2 * plt_lambda_shift)) * numColorBits;
bool reuseflag[MAXPLTPREDSIZE] = { false };
int run;
double reuseflagCost;
for (int i = 0; i < maxPltSize; i++)
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
{
if( pelListSort[i].getCnt(MAX_NUM_COMPONENT) )
{
ComponentID tmpCompBegin = compBegin;
int tmpNumComp = numComp;
if( cs.sps->getChromaFormatIdc() != CHROMA_444 && numComp == 3 && pelListSort[i].getCnt(COMPONENT_Cb) == 0 )
{
tmpCompBegin = COMPONENT_Y;
tmpNumComp = 1;
}
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
int half = pelListSort[i].getCnt(comp) >> 1;
cu.curPLT[comp][paletteSize] = (pelListSort[i].getSumData(comp) + half) / pelListSort[i].getCnt(comp);
}
int best = -1;
if( errorLimit )
{
double pal[MAX_NUM_COMPONENT], err = 0.0, bestCost = 0.0;
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
pal[comp] = pelListSort[i].getSumData(comp) / (double)pelListSort[i].getCnt(comp);
err = pal[comp] - cu.curPLT[comp][paletteSize];
if( isChroma((ComponentID) comp) )
{
bestCost += (err * err * PLT_CHROMA_WEIGHTING) / (1 << (2 * pcmShiftRight_C)) * pelListSort[i].getCnt(comp);
}
else
{
bestCost += (err * err) / (1 << (2 * pcmShiftRight_L)) * pelListSort[i].getCnt(comp);
}
}
bestCost += bitCost;
for( int t = 0; t < cs.prevPLT.curPLTSize[compBegin]; t++ )
{
double cost = 0.0;
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
err = pal[comp] - cs.prevPLT.curPLT[comp][t];
if( isChroma((ComponentID) comp) )
{
cost += (err * err * PLT_CHROMA_WEIGHTING) / (1 << (2 * pcmShiftRight_C)) * pelListSort[i].getCnt(comp);
}
else
{
cost += (err * err) / (1 << (2 * pcmShiftRight_L)) * pelListSort[i].getCnt(comp);
}
}
run = 0;
for (int t2 = t; t2 >= 0; t2--)
{
if (!reuseflag[t2])
{
run++;
}
else
{
break;
}
}
reuseflagCost = m_pcRdCost->getLambda() / (double)(1 << (2 * plt_lambda_shift)) * getEpExGolombNumBins(run ? run + 1 : run, 0);
cost += reuseflagCost;
if( cost < bestCost )
{
best = t;
bestCost = cost;
}
}
if( best != -1 )
{
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
cu.curPLT[comp][paletteSize] = cs.prevPLT.curPLT[comp][best];
}
reuseflag[best] = true;
}
}
bool duplicate = false;
if( pelListSort[i].getCnt(MAX_NUM_COMPONENT) == 1 && best == -1 )
{
duplicate = true;
}
else
{
for( int t = 0; t < paletteSize; t++ )
{
bool duplicateTmp = true;
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
duplicateTmp = duplicateTmp && (cu.curPLT[comp][paletteSize] == cu.curPLT[comp][t]);
}
if( duplicateTmp )
{
duplicate = true;
break;
}
}
}
if( !duplicate )
{
if( cs.sps->getChromaFormatIdc() != CHROMA_444 && numComp == 3 && pelListSort[i].getCnt(COMPONENT_Cb) == 0 )
{
if( best != -1 )
{
cu.curPLT[COMPONENT_Cb][paletteSize] = cs.prevPLT.curPLT[COMPONENT_Cb][best];
cu.curPLT[COMPONENT_Cr][paletteSize] = cs.prevPLT.curPLT[COMPONENT_Cr][best];
}
else
{
cu.curPLT[COMPONENT_Cb][paletteSize] = 1 << (channelBitDepth_C - 1);
cu.curPLT[COMPONENT_Cr][paletteSize] = 1 << (channelBitDepth_C - 1);
}
}
paletteSize++;
}
}
else
{
break;
}
}
cu.curPLTSize[compBegin] = paletteSize;
cu.curPLTSize[COMPONENT_Y] = paletteSize;
delete[] pelList;
delete[] pelListSort;
Yung-Hsuan Chao (Jessie)
committed
}

Karsten Suehring
committed
// -------------------------------------------------------------------------------------------------------------------
// Intra search
// -------------------------------------------------------------------------------------------------------------------
void IntraSearch::xEncIntraHeader( CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma, const int subTuIdx )

Karsten Suehring
committed
{
CodingUnit &cu = *cs.getCU( partitioner.chType );
if (bLuma)
{
bool isFirst = cu.ispMode ? subTuIdx == 0 : partitioner.currArea().lumaPos() == cs.area.lumaPos();

Karsten Suehring
committed
// CU header
if( isFirst )
{
if ((!cs.slice->isIntra() || cs.slice->getSPS()->getIBCFlag() || cs.slice->getSPS()->getPLTMode())

Karsten Suehring
committed
{
m_CABACEstimator->cu_skip_flag( cu );
m_CABACEstimator->pred_mode ( cu );
}
#if ENABLE_DIMD
m_CABACEstimator->cu_dimd_flag(cu);
#endif
if (CU::isPLT(cu))
{
return;
}

Karsten Suehring
committed
}
PredictionUnit &pu = *cs.getPU(partitioner.currArea().lumaPos(), partitioner.chType);
// luma prediction mode

Karsten Suehring
committed
{
m_CABACEstimator->bdpcm_mode( cu, COMPONENT_Y );

Karsten Suehring
committed
}
}
if (bChroma)
{
bool isFirst = partitioner.currArea().Cb().valid() && partitioner.currArea().chromaPos() == cs.area.chromaPos();
PredictionUnit &pu = *cs.getPU( partitioner.currArea().chromaPos(), CHANNEL_TYPE_CHROMA );

Karsten Suehring
committed
{
m_CABACEstimator->bdpcm_mode( cu, ComponentID(CHANNEL_TYPE_CHROMA) );

Karsten Suehring
committed
}
}
}
void IntraSearch::xEncSubdivCbfQT( CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma, const int subTuIdx, const PartSplit ispType )
{
const UnitArea &currArea = partitioner.currArea();
int subTuCounter = subTuIdx;
TransformUnit &currTU = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType, subTuCounter );
CodingUnit &currCU = *currTU.cu;

Karsten Suehring
committed
uint32_t currDepth = partitioner.currTrDepth;
const bool subdiv = currTU.depth > currDepth;
ComponentID compID = partitioner.chType == CHANNEL_TYPE_LUMA ? COMPONENT_Y : COMPONENT_Cb;

Karsten Suehring
committed

Karsten Suehring
committed
{
CHECK( !subdiv, "TU split implied" );
}
else
{
CHECK( subdiv && !currCU.ispMode && isLuma( compID ), "No TU subdivision is allowed with QTBT" );
}
if (bChroma)
{
const bool chromaCbfISP = currArea.blocks[COMPONENT_Cb].valid() && currCU.ispMode && !subdiv;
if ( !currCU.ispMode || chromaCbfISP )

Karsten Suehring
committed
{
const uint32_t numberValidComponents = getNumberValidComponents(currArea.chromaFormat);
const uint32_t cbfDepth = (chromaCbfISP ? currDepth - 1 : currDepth);

Karsten Suehring
committed
for (uint32_t ch = COMPONENT_Cb; ch < numberValidComponents; ch++)

Karsten Suehring
committed
{
const ComponentID compID = ComponentID(ch);

Karsten Suehring
committed
if (currDepth == 0 || TU::getCbfAtDepth(currTU, compID, currDepth - 1) || chromaCbfISP)
{
const bool prevCbf = (compID == COMPONENT_Cr ? TU::getCbfAtDepth(currTU, COMPONENT_Cb, currDepth) : false);
m_CABACEstimator->cbf_comp(cs, TU::getCbfAtDepth(currTU, compID, currDepth), currArea.blocks[compID],
cbfDepth, prevCbf);
}

Karsten Suehring
committed
}
}
}
if (subdiv)
{
if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
{
partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
}
else if( currCU.ispMode && isLuma( compID ) )
{
partitioner.splitCurrArea( ispType, cs );
}

Karsten Suehring
committed
else
{
THROW("Cannot perform an implicit split!");
}

Karsten Suehring
committed
do
{
xEncSubdivCbfQT( cs, partitioner, bLuma, bChroma, subTuCounter, ispType );
subTuCounter += subTuCounter != -1 ? 1 : 0;

Karsten Suehring
committed
} while( partitioner.nextPart( cs ) );
partitioner.exitCurrSplit();
}
else
{
//===== Cbfs =====
if (bLuma)
{
bool previousCbf = false;
bool lastCbfIsInferred = false;
if( ispType != TU_NO_ISP )
{
bool rootCbfSoFar = false;
uint32_t nTus = currCU.ispMode == HOR_INTRA_SUBPARTITIONS ? currCU.lheight() >> floorLog2(currTU.lheight()) : currCU.lwidth() >> floorLog2(currTU.lwidth());
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
if( subTuCounter == nTus - 1 )
{
TransformUnit* tuPointer = currCU.firstTU;
for( int tuIdx = 0; tuIdx < nTus - 1; tuIdx++ )
{
rootCbfSoFar |= TU::getCbfAtDepth( *tuPointer, COMPONENT_Y, currDepth );
tuPointer = tuPointer->next;
}
if( !rootCbfSoFar )
{
lastCbfIsInferred = true;
}
}
if( !lastCbfIsInferred )
{
previousCbf = TU::getPrevTuCbfAtDepth( currTU, COMPONENT_Y, partitioner.currTrDepth );
}
}
if( !lastCbfIsInferred )
{
m_CABACEstimator->cbf_comp( cs, TU::getCbfAtDepth( currTU, COMPONENT_Y, currDepth ), currTU.Y(), currTU.depth, previousCbf, currCU.ispMode );
}

Karsten Suehring
committed
}
}
}
void IntraSearch::xEncCoeffQT( CodingStructure &cs, Partitioner &partitioner, const ComponentID compID, const int subTuIdx, const PartSplit ispType, CUCtx* cuCtx )

Karsten Suehring
committed
{
const UnitArea &currArea = partitioner.currArea();
int subTuCounter = subTuIdx;
TransformUnit &currTU = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType, subTuIdx );

Karsten Suehring
committed
uint32_t currDepth = partitioner.currTrDepth;
const bool subdiv = currTU.depth > currDepth;
if (subdiv)
{
if (partitioner.canSplit(TU_MAX_TR_SPLIT, cs))
{
partitioner.splitCurrArea(TU_MAX_TR_SPLIT, cs);
}
else if( currTU.cu->ispMode )
{
partitioner.splitCurrArea( ispType, cs );
}

Karsten Suehring
committed
else

Karsten Suehring
committed
THROW("Implicit TU split not available!");

Karsten Suehring
committed
do
{
xEncCoeffQT( cs, partitioner, compID, subTuCounter, ispType, cuCtx );
subTuCounter += subTuCounter != -1 ? 1 : 0;

Karsten Suehring
committed
} while( partitioner.nextPart( cs ) );
partitioner.exitCurrSplit();
}
else
{
if (currArea.blocks[compID].valid())

Karsten Suehring
committed
{
const int cbfMask = (TU::getCbf(currTU, COMPONENT_Cb) ? 2 : 0) + (TU::getCbf(currTU, COMPONENT_Cr) ? 1 : 0);
m_CABACEstimator->joint_cb_cr(currTU, cbfMask);
}
if (TU::getCbf(currTU, compID))
{
if (isLuma(compID))
{
m_CABACEstimator->residual_coding(currTU, compID, cuCtx);
m_CABACEstimator->mts_idx(*currTU.cu, cuCtx);
}
else
{
m_CABACEstimator->residual_coding(currTU, compID);
}

Karsten Suehring
committed
}
}
}
uint64_t IntraSearch::xGetIntraFracBitsQT( CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma, const int subTuIdx, const PartSplit ispType, CUCtx* cuCtx )

Karsten Suehring
committed
{
m_CABACEstimator->resetBits();
xEncIntraHeader( cs, partitioner, bLuma, bChroma, subTuIdx );
xEncSubdivCbfQT( cs, partitioner, bLuma, bChroma, subTuIdx, ispType );

Karsten Suehring
committed
if( bLuma )
{
xEncCoeffQT( cs, partitioner, COMPONENT_Y, subTuIdx, ispType, cuCtx );

Karsten Suehring
committed
}
if( bChroma )
{
xEncCoeffQT( cs, partitioner, COMPONENT_Cb, subTuIdx, ispType );
xEncCoeffQT( cs, partitioner, COMPONENT_Cr, subTuIdx, ispType );
}
CodingUnit& cu = *cs.getCU(partitioner.chType);
if ( cuCtx && bLuma && cu.isSepTree() && ( !cu.ispMode || ( cu.lfnstIdx && subTuIdx == 0 ) || ( !cu.lfnstIdx && subTuIdx == m_ispTestedModes[cu.lfnstIdx].numTotalParts[cu.ispMode - 1] - 1 ) ) )
#else
if (cuCtx && bLuma && CS::isDualITree(cs) && (!cu.ispMode || (cu.lfnstIdx && subTuIdx == 0) || (!cu.lfnstIdx && subTuIdx == m_ispTestedModes[cu.lfnstIdx].numTotalParts[cu.ispMode - 1] - 1)))
#endif
{
m_CABACEstimator->residual_lfnst_mode(cu, *cuCtx);
}
uint64_t fracBits = m_CABACEstimator->getEstFracBits();
return fracBits;
}
uint64_t IntraSearch::xGetIntraFracBitsQTSingleChromaComponent( CodingStructure &cs, Partitioner &partitioner, const ComponentID compID )
{
m_CABACEstimator->resetBits();
if( compID == COMPONENT_Cb )
{
PredictionUnit &pu = *cs.getPU( partitioner.currArea().lumaPos(), partitioner.chType );
m_CABACEstimator->intra_chroma_pred_mode( pu );
//xEncIntraHeader(cs, partitioner, false, true);
}
CHECK( partitioner.currTrDepth != 1, "error in the depth!" );
const UnitArea &currArea = partitioner.currArea();