Newer
Older
}
dst += scaledStride;
}
delete[] buf;
}
void Picture::rescalePicture( const std::pair<int, int> scalingRatio,
const CPelUnitBuf& beforeScaling, const Window& scalingWindowBefore,
const PelUnitBuf& afterScaling, const Window& scalingWindowAfter,
const ChromaFormat chromaFormatIDC, const BitDepths& bitDepths, const bool useLumaFilter, const bool downsampling,
Kenneth Andersson
committed
const bool horCollocatedChromaFlag, const bool verCollocatedChromaFlag
#if JVET_AB0082
, bool rescaleForDisplay, int upscaleFilterForDisplay
#endif
)
{
for( int comp = 0; comp < ::getNumberValidComponents( chromaFormatIDC ); comp++ )
{
ComponentID compID = ComponentID( comp );
const CPelBuf& beforeScale = beforeScaling.get( compID );
const PelBuf& afterScale = afterScaling.get( compID );
sampleRateConv( scalingRatio, std::pair<int, int>( ::getComponentScaleX( compID, chromaFormatIDC ), ::getComponentScaleY( compID, chromaFormatIDC ) ),
beforeScale, scalingWindowBefore.getWindowLeftOffset() * SPS::getWinUnitX( chromaFormatIDC ), scalingWindowBefore.getWindowTopOffset() * SPS::getWinUnitY( chromaFormatIDC ),
afterScale, scalingWindowAfter.getWindowLeftOffset() * SPS::getWinUnitX( chromaFormatIDC ), scalingWindowAfter.getWindowTopOffset() * SPS::getWinUnitY( chromaFormatIDC ),
bitDepths.recon[toChannelType(compID)], downsampling || useLumaFilter ? true : isLuma( compID ), downsampling,
Kenneth Andersson
committed
isLuma( compID ) ? 1 : horCollocatedChromaFlag, isLuma( compID ) ? 1 : verCollocatedChromaFlag
#if JVET_AB0082
, rescaleForDisplay, upscaleFilterForDisplay
#endif
);
}
}
void Picture::saveSubPicBorder(int POC, int subPicX0, int subPicY0, int subPicWidth, int subPicHeight)
{
// 1.1 set up margin for back up memory allocation
int xMargin = margin >> getComponentScaleX(COMPONENT_Y, cs->area.chromaFormat);
int yMargin = margin >> getComponentScaleY(COMPONENT_Y, cs->area.chromaFormat);
// 1.2 measure the size of back up memory
Area areaAboveBelow(0, 0, subPicWidth + 2 * xMargin, yMargin);
Area areaLeftRight(0, 0, xMargin, subPicHeight);
UnitArea unitAreaAboveBelow(cs->area.chromaFormat, areaAboveBelow);
UnitArea unitAreaLeftRight(cs->area.chromaFormat, areaLeftRight);
// 1.3 create back up memory
m_bufSubPicAbove.create(unitAreaAboveBelow);
m_bufSubPicBelow.create(unitAreaAboveBelow);
m_bufSubPicLeft.create(unitAreaLeftRight);
m_bufSubPicRight.create(unitAreaLeftRight);
m_bufWrapSubPicAbove.create(unitAreaAboveBelow);
m_bufWrapSubPicBelow.create(unitAreaAboveBelow);
for (int comp = 0; comp < getNumberValidComponents(cs->area.chromaFormat); comp++)
{
ComponentID compID = ComponentID(comp);
// 2.1 measure the margin for each component
int xmargin = margin >> getComponentScaleX(compID, cs->area.chromaFormat);
int ymargin = margin >> getComponentScaleY(compID, cs->area.chromaFormat);
// 2.2 calculate the origin of the subpicture
Biao Wang
committed
int left = subPicX0 >> getComponentScaleX(compID, cs->area.chromaFormat);
int top = subPicY0 >> getComponentScaleY(compID, cs->area.chromaFormat);
// 2.3 calculate the width/height of the subPic
Biao Wang
committed
int width = subPicWidth >> getComponentScaleX(compID, cs->area.chromaFormat);
int height = subPicHeight >> getComponentScaleY(compID, cs->area.chromaFormat);
// 3.1.1 set reconstructed picture
PelBuf s = M_BUFS(0, PIC_RECONSTRUCTION).get(compID);
Biao Wang
committed
Pel *src = s.bufAt(left, top);
// 3.2.1 set back up buffer for left
PelBuf dBufLeft = m_bufSubPicLeft.getBuf(compID);
Pel *dstLeft = dBufLeft.bufAt(0, 0);
// 3.2.2 set back up buffer for right
PelBuf dBufRight = m_bufSubPicRight.getBuf(compID);
Pel *dstRight = dBufRight.bufAt(0, 0);
// 3.2.3 copy to recon picture to back up buffer
Pel *srcLeft = src - xmargin;
Pel *srcRight = src + width;
for (int y = 0; y < height; y++)
{
::memcpy(dstLeft + y * dBufLeft.stride, srcLeft + y * s.stride, sizeof(Pel) * xmargin);
::memcpy(dstRight + y * dBufRight.stride, srcRight + y * s.stride, sizeof(Pel) * xmargin);
}
// 3.3.1 set back up buffer for above
Biao Wang
committed
PelBuf dBufTop = m_bufSubPicAbove.getBuf(compID);
Pel *dstTop = dBufTop.bufAt(0, 0);
// 3.3.2 set back up buffer for below
Biao Wang
committed
PelBuf dBufBottom = m_bufSubPicBelow.getBuf(compID);
Pel *dstBottom = dBufBottom.bufAt(0, 0);
// 3.3.3 copy to recon picture to back up buffer
Biao Wang
committed
Pel *srcTop = src - xmargin - ymargin * s.stride;
Pel *srcBottom = src - xmargin + height * s.stride;
for (int y = 0; y < ymargin; y++)
{
Biao Wang
committed
::memcpy(dstTop + y * dBufTop.stride, srcTop + y * s.stride, sizeof(Pel) * (2 * xmargin + width));
::memcpy(dstBottom + y * dBufBottom.stride, srcBottom + y * s.stride, sizeof(Pel) * (2 * xmargin + width));
}
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
// back up recon wrap buffer
if (cs->sps->getWrapAroundEnabledFlag())
{
PelBuf sWrap = M_BUFS(0, PIC_RECON_WRAP).get(compID);
Pel *srcWrap = sWrap.bufAt(left, top);
// 3.4.1 set back up buffer for above
PelBuf dBufTopWrap = m_bufWrapSubPicAbove.getBuf(compID);
Pel *dstTopWrap = dBufTopWrap.bufAt(0, 0);
// 3.4.2 set back up buffer for below
PelBuf dBufBottomWrap = m_bufWrapSubPicBelow.getBuf(compID);
Pel *dstBottomWrap = dBufBottomWrap.bufAt(0, 0);
// 3.4.3 copy recon wrap picture to back up buffer
Pel *srcTopWrap = srcWrap - xmargin - ymargin * sWrap.stride;
Pel *srcBottomWrap = srcWrap - xmargin + height * sWrap.stride;
for (int y = 0; y < ymargin; y++)
{
::memcpy(dstTopWrap + y * dBufTopWrap.stride, srcTopWrap + y * sWrap.stride, sizeof(Pel) * (2 * xmargin + width));
::memcpy(dstBottomWrap + y * dBufBottomWrap.stride, srcBottomWrap + y * sWrap.stride, sizeof(Pel) * (2 * xmargin + width));
}
}
}
}
void Picture::extendSubPicBorder(int POC, int subPicX0, int subPicY0, int subPicWidth, int subPicHeight)
{
for (int comp = 0; comp < getNumberValidComponents(cs->area.chromaFormat); comp++)
{
ComponentID compID = ComponentID(comp);
// 2.1 measure the margin for each component
int xmargin = margin >> getComponentScaleX(compID, cs->area.chromaFormat);
int ymargin = margin >> getComponentScaleY(compID, cs->area.chromaFormat);
// 2.2 calculate the origin of the Subpicture
Biao Wang
committed
int left = subPicX0 >> getComponentScaleX(compID, cs->area.chromaFormat);
int top = subPicY0 >> getComponentScaleY(compID, cs->area.chromaFormat);
// 2.3 calculate the width/height of the Subpicture
Biao Wang
committed
int width = subPicWidth >> getComponentScaleX(compID, cs->area.chromaFormat);
int height = subPicHeight >> getComponentScaleY(compID, cs->area.chromaFormat);
int numPt = (cs->isGdrEnabled()) ? 2 : 1;
for (int i = 0; i < numPt; i++)
{
PelBuf s = M_BUFS(0, PIC_RECONSTRUCTION+i).get(compID);
Pel *src = s.bufAt(left, top);
#else
// 3.1 set reconstructed picture
PelBuf s = M_BUFS(0, PIC_RECONSTRUCTION).get(compID);
Pel *src = s.bufAt(left, top);
#endif
// 4.1 apply padding for left and right
Biao Wang
committed
Pel *dstLeft = src - xmargin;
Pel *dstRight = src + width;
Pel *srcLeft = src + 0;
Pel *srcRight = src + width - 1;
for (int y = 0; y < height; y++)
{
for (int x = 0; x < xmargin; x++)
{
Biao Wang
committed
dstLeft[x] = *srcLeft;
dstRight[x] = *srcRight;
}
Biao Wang
committed
dstLeft += s.stride;
dstRight += s.stride;
srcLeft += s.stride;
srcRight += s.stride;
// 4.2 apply padding on bottom
Pel *srcBottom = src + s.stride * (height - 1) - xmargin;
Pel *dstBottom = srcBottom + s.stride;
for (int y = 0; y < ymargin; y++)
{
::memcpy(dstBottom, srcBottom, sizeof(Pel)*(2 * xmargin + width));
dstBottom += s.stride;
}
// 4.3 apply padding for top
// si is still (-marginX, SubpictureHeight-1)
Pel *srcTop = src - xmargin;
Pel *dstTop = srcTop - s.stride;
// si is now (-marginX, 0)
for (int y = 0; y < ymargin; y++)
{
::memcpy(dstTop, srcTop, sizeof(Pel)*(2 * xmargin + width));
dstTop -= s.stride;
}
#if JVET_Z0118_GDR
} // for loop
#endif
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
// Appy padding for recon wrap buffer
if (cs->sps->getWrapAroundEnabledFlag())
{
// set recon wrap picture
PelBuf sWrap = M_BUFS(0, PIC_RECON_WRAP).get(compID);
Pel *srcWrap = sWrap.bufAt(left, top);
// apply padding on bottom
Pel *srcBottomWrap = srcWrap + sWrap.stride * (height - 1) - xmargin;
Pel *dstBottomWrap = srcBottomWrap + sWrap.stride;
for (int y = 0; y < ymargin; y++)
{
::memcpy(dstBottomWrap, srcBottomWrap, sizeof(Pel)*(2 * xmargin + width));
dstBottomWrap += sWrap.stride;
}
// apply padding for top
// si is still (-marginX, SubpictureHeight-1)
Pel *srcTopWrap = srcWrap - xmargin;
Pel *dstTopWrap = srcTopWrap - sWrap.stride;
// si is now (-marginX, 0)
for (int y = 0; y < ymargin; y++)
{
::memcpy(dstTopWrap, srcTopWrap, sizeof(Pel)*(2 * xmargin + width));
dstTopWrap -= sWrap.stride;
}
}
}
void Picture::restoreSubPicBorder(int POC, int subPicX0, int subPicY0, int subPicWidth, int subPicHeight)
{
for (int comp = 0; comp < getNumberValidComponents(cs->area.chromaFormat); comp++)
{
ComponentID compID = ComponentID(comp);
// 2.1 measure the margin for each component
int xmargin = margin >> getComponentScaleX(compID, cs->area.chromaFormat);
int ymargin = margin >> getComponentScaleY(compID, cs->area.chromaFormat);
// 2.2 calculate the origin of the subpicture
Biao Wang
committed
int left = subPicX0 >> getComponentScaleX(compID, cs->area.chromaFormat);
int top = subPicY0 >> getComponentScaleY(compID, cs->area.chromaFormat);
// 2.3 calculate the width/height of the subpicture
Biao Wang
committed
int width = subPicWidth >> getComponentScaleX(compID, cs->area.chromaFormat);
int height = subPicHeight >> getComponentScaleY(compID, cs->area.chromaFormat);
// 3.1 set reconstructed picture
PelBuf s = M_BUFS(0, PIC_RECONSTRUCTION).get(compID);
Biao Wang
committed
Pel *src = s.bufAt(left, top);
// 4.2.1 copy from back up buffer to recon picture
PelBuf dBufLeft = m_bufSubPicLeft.getBuf(compID);
Pel *dstLeft = dBufLeft.bufAt(0, 0);
// 4.2.2 set back up buffer for right
PelBuf dBufRight = m_bufSubPicRight.getBuf(compID);
Pel *dstRight = dBufRight.bufAt(0, 0);
// 4.2.3 copy to recon picture to back up buffer
Pel *srcLeft = src - xmargin;
Pel *srcRight = src + width;
for (int y = 0; y < height; y++)
{
// the destination and source position is reversed on purpose
::memcpy(srcLeft + y * s.stride, dstLeft + y * dBufLeft.stride, sizeof(Pel) * xmargin);
::memcpy(srcRight + y * s.stride, dstRight + y * dBufRight.stride, sizeof(Pel) * xmargin);
}
Biao Wang
committed
// 4.3.1 set back up buffer for above
PelBuf dBufTop = m_bufSubPicAbove.getBuf(compID);
Pel *dstTop = dBufTop.bufAt(0, 0);
// 4.3.2 set back up buffer for below
Biao Wang
committed
PelBuf dBufBottom = m_bufSubPicBelow.getBuf(compID);
Pel *dstBottom = dBufBottom.bufAt(0, 0);
// 4.3.3 copy to recon picture to back up buffer
Biao Wang
committed
Pel *srcTop = src - xmargin - ymargin * s.stride;
Pel *srcBottom = src - xmargin + height * s.stride;
for (int y = 0; y < ymargin; y++)
{
Biao Wang
committed
::memcpy(srcTop + y * s.stride, dstTop + y * dBufTop.stride, sizeof(Pel) * (2 * xmargin + width));
::memcpy(srcBottom + y * s.stride, dstBottom + y * dBufBottom.stride, sizeof(Pel) * (2 * xmargin + width));
}
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
// restore recon wrap buffer
if (cs->sps->getWrapAroundEnabledFlag())
{
// set recon wrap picture
PelBuf sWrap = M_BUFS(0, PIC_RECON_WRAP).get(compID);
Pel *srcWrap = sWrap.bufAt(left, top);
// set back up buffer for above
PelBuf dBufTopWrap = m_bufWrapSubPicAbove.getBuf(compID);
Pel *dstTopWrap = dBufTopWrap.bufAt(0, 0);
// set back up buffer for below
PelBuf dBufBottomWrap = m_bufWrapSubPicBelow.getBuf(compID);
Pel *dstBottomWrap = dBufBottomWrap.bufAt(0, 0);
// copy to recon wrap picture from back up buffer
Pel *srcTopWrap = srcWrap - xmargin - ymargin * sWrap.stride;
Pel *srcBottomWrap = srcWrap - xmargin + height * sWrap.stride;
for (int y = 0; y < ymargin; y++)
{
::memcpy(srcTopWrap + y * sWrap.stride, dstTopWrap + y * dBufTopWrap.stride, sizeof(Pel) * (2 * xmargin + width));
::memcpy(srcBottomWrap + y * sWrap.stride, dstBottomWrap + y * dBufBottomWrap.stride, sizeof(Pel) * (2 * xmargin + width));
}
}
}
// 5.0 destroy the back up memory
m_bufSubPicAbove.destroy();
m_bufSubPicBelow.destroy();
m_bufSubPicLeft.destroy();
m_bufSubPicRight.destroy();
m_bufWrapSubPicAbove.destroy();
m_bufWrapSubPicBelow.destroy();
}
void Picture::extendPicBorder( const PPS *pps )

Karsten Suehring
committed
{
if ( m_bIsBorderExtended )
{
if( isWrapAroundEnabled( pps ) && ( !m_wrapAroundValid || m_wrapAroundOffset != pps->getWrapAroundOffset() ) )
{
extendWrapBorder( pps );
}

Karsten Suehring
committed
return;
}
int numPt = (cs->isGdrEnabled()) ? PIC_RECONSTRUCTION_1 : PIC_RECONSTRUCTION_0;
Seungwook Hong
committed
for (int pt = (int) PIC_RECONSTRUCTION_0; pt <= (int) numPt; pt++)
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
{
for (int comp = 0; comp < getNumberValidComponents(cs->area.chromaFormat); comp++)
{
ComponentID compID = ComponentID(comp);
PelBuf p = M_BUFS(0, (PictureType) pt).get(compID);
Pel *piTxt = p.bufAt(0, 0);
int xmargin = margin >> getComponentScaleX(compID, cs->area.chromaFormat);
int ymargin = margin >> getComponentScaleY(compID, cs->area.chromaFormat);
Pel* pi = piTxt;
// do left and right margins
for (int y = 0; y < p.height; y++)
{
for (int x = 0; x < xmargin; x++)
{
pi[-xmargin + x] = pi[0];
pi[p.width + x] = pi[p.width - 1];
}
pi += p.stride;
}
// pi is now the (0,height) (bottom left of image within bigger picture
pi -= (p.stride + xmargin);
// pi is now the (-marginX, height-1)
for (int y = 0; y < ymargin; y++)
{
::memcpy(pi + (y + 1)*p.stride, pi, sizeof(Pel)*(p.width + (xmargin << 1)));
}
// pi is still (-marginX, height-1)
pi -= ((p.height - 1) * p.stride);
// pi is now (-marginX, 0)
for (int y = 0; y < ymargin; y++)
{
::memcpy(pi - (y + 1)*p.stride, pi, sizeof(Pel)*(p.width + (xmargin << 1)));
}
// reference picture with horizontal wrapped boundary
if (isWrapAroundEnabled(pps))
{
extendWrapBorder(pps);
}
else
{
m_wrapAroundValid = false;
m_wrapAroundOffset = 0;
}
}
}
#else

Karsten Suehring
committed
for(int comp=0; comp<getNumberValidComponents( cs->area.chromaFormat ); comp++)
{
ComponentID compID = ComponentID( comp );
PelBuf p = M_BUFS( 0, PIC_RECONSTRUCTION ).get( compID );
Pel *piTxt = p.bufAt(0,0);
int xmargin = margin >> getComponentScaleX( compID, cs->area.chromaFormat );
int ymargin = margin >> getComponentScaleY( compID, cs->area.chromaFormat );
Pel* pi = piTxt;
// do left and right margins
for (int y = 0; y < p.height; y++)
{
for (int x = 0; x < xmargin; x++)
pi[-xmargin + x] = pi[0];
pi[p.width + x] = pi[p.width - 1];

Karsten Suehring
committed
// pi is now the (0,height) (bottom left of image within bigger picture
pi -= (p.stride + xmargin);
// pi is now the (-marginX, height-1)
for (int y = 0; y < ymargin; y++ )
{
::memcpy( pi + (y+1)*p.stride, pi, sizeof(Pel)*(p.width + (xmargin << 1)));
}
// pi is still (-marginX, height-1)
pi -= ((p.height-1) * p.stride);
// pi is now (-marginX, 0)
for (int y = 0; y < ymargin; y++ )
{
::memcpy( pi - (y+1)*p.stride, pi, sizeof(Pel)*(p.width + (xmargin<<1)) );
}
// reference picture with horizontal wrapped boundary
if ( isWrapAroundEnabled( pps ) )
{
extendWrapBorder( pps );
}
else
{
m_wrapAroundValid = false;
m_wrapAroundOffset = 0;
}

Karsten Suehring
committed
}

Karsten Suehring
committed
m_bIsBorderExtended = true;
}
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
void Picture::extendWrapBorder( const PPS *pps )
{
for(int comp=0; comp<getNumberValidComponents( cs->area.chromaFormat ); comp++)
{
ComponentID compID = ComponentID( comp );
PelBuf p = M_BUFS( 0, PIC_RECON_WRAP ).get( compID );
p.copyFrom(M_BUFS( 0, PIC_RECONSTRUCTION ).get( compID ));
Pel *piTxt = p.bufAt(0,0);
int xmargin = margin >> getComponentScaleX( compID, cs->area.chromaFormat );
int ymargin = margin >> getComponentScaleY( compID, cs->area.chromaFormat );
Pel* pi = piTxt;
int xoffset = pps->getWrapAroundOffset() >> getComponentScaleX( compID, cs->area.chromaFormat );
for (int y = 0; y < p.height; y++)
{
for (int x = 0; x < xmargin; x++ )
{
if( x < xoffset )
{
pi[ -x - 1 ] = pi[ -x - 1 + xoffset ];
pi[ p.width + x ] = pi[ p.width + x - xoffset ];
}
else
{
pi[ -x - 1 ] = pi[ 0 ];
pi[ p.width + x ] = pi[ p.width - 1 ];
}
}
pi += p.stride;
}
pi -= (p.stride + xmargin);
for (int y = 0; y < ymargin; y++ )
{
::memcpy( pi + (y+1)*p.stride, pi, sizeof(Pel)*(p.width + (xmargin << 1)));
}
pi -= ((p.height-1) * p.stride);
for (int y = 0; y < ymargin; y++ )
{
::memcpy( pi - (y+1)*p.stride, pi, sizeof(Pel)*(p.width + (xmargin<<1)) );
}
}
m_wrapAroundValid = true;
m_wrapAroundOffset = pps->getWrapAroundOffset();
}

Karsten Suehring
committed
PelBuf Picture::getBuf( const ComponentID compID, const PictureType &type )
{
if (type == PIC_RECONSTRUCTION_0 || type == PIC_RECONSTRUCTION_1)
{
return M_BUFS(scheduler.getSplitPicId(), type).getBuf(compID);
}
#endif
return M_BUFS( ( type == PIC_ORIGINAL || type == PIC_TRUE_ORIGINAL || type == PIC_FILTERED_ORIGINAL || type == PIC_ORIGINAL_INPUT || type == PIC_TRUE_ORIGINAL_INPUT || type == PIC_FILTERED_ORIGINAL_INPUT ) ? 0 : scheduler.getSplitPicId(), type ).getBuf( compID );

Karsten Suehring
committed
}
const CPelBuf Picture::getBuf( const ComponentID compID, const PictureType &type ) const
{
if (type == PIC_RECONSTRUCTION_0 || type == PIC_RECONSTRUCTION_1)
{
return M_BUFS(scheduler.getSplitPicId(), type).getBuf(compID);
}
#endif
return M_BUFS( ( type == PIC_ORIGINAL || type == PIC_TRUE_ORIGINAL || type == PIC_FILTERED_ORIGINAL || type == PIC_ORIGINAL_INPUT || type == PIC_TRUE_ORIGINAL_INPUT || type == PIC_FILTERED_ORIGINAL_INPUT ) ? 0 : scheduler.getSplitPicId(), type ).getBuf( compID );

Karsten Suehring
committed
}
PelBuf Picture::getBuf( const CompArea &blk, const PictureType &type )
{
if( !blk.valid() )
{
return PelBuf();
}
#if ENABLE_SPLIT_PARALLELISM
const int jId = ( type == PIC_ORIGINAL || type == PIC_TRUE_ORIGINAL || type == PIC_ORIGINAL_INPUT || type == PIC_TRUE_ORIGINAL_INPUT ) ? 0 : scheduler.getSplitPicId();

Karsten Suehring
committed
#endif
#if !KEEP_PRED_AND_RESI_SIGNALS
#if JVET_AC0162_ALF_RESIDUAL_SAMPLES_INPUT
if (type == PIC_PREDICTION)
{
CompArea localBlk = blk;
localBlk.x &= (cs->pcv->maxCUWidthMask >> getComponentScaleX(blk.compID, blk.chromaFormat));
localBlk.y &= (cs->pcv->maxCUHeightMask >> getComponentScaleY(blk.compID, blk.chromaFormat));
return M_BUFS(jId, type).getBuf(localBlk);
}
#else

Karsten Suehring
committed
if( type == PIC_RESIDUAL || type == PIC_PREDICTION )
{
CompArea localBlk = blk;
localBlk.x &= ( cs->pcv->maxCUWidthMask >> getComponentScaleX( blk.compID, blk.chromaFormat ) );
localBlk.y &= ( cs->pcv->maxCUHeightMask >> getComponentScaleY( blk.compID, blk.chromaFormat ) );
return M_BUFS( jId, type ).getBuf( localBlk );
}

Karsten Suehring
committed
#endif
return M_BUFS( jId, type ).getBuf( blk );
}
const CPelBuf Picture::getBuf( const CompArea &blk, const PictureType &type ) const
{
if( !blk.valid() )
{
return PelBuf();
}
#if ENABLE_SPLIT_PARALLELISM
const int jId = ( type == PIC_ORIGINAL || type == PIC_TRUE_ORIGINAL ) ? 0 : scheduler.getSplitPicId();

Karsten Suehring
committed
#endif
#if !KEEP_PRED_AND_RESI_SIGNALS
#if JVET_AC0162_ALF_RESIDUAL_SAMPLES_INPUT
if (type == PIC_PREDICTION)
{
CompArea localBlk = blk;
localBlk.x &= (cs->pcv->maxCUWidthMask >> getComponentScaleX(blk.compID, blk.chromaFormat));
localBlk.y &= (cs->pcv->maxCUHeightMask >> getComponentScaleY(blk.compID, blk.chromaFormat));
return M_BUFS(jId, type).getBuf(localBlk);
}
#else

Karsten Suehring
committed
if( type == PIC_RESIDUAL || type == PIC_PREDICTION )
{
CompArea localBlk = blk;
localBlk.x &= ( cs->pcv->maxCUWidthMask >> getComponentScaleX( blk.compID, blk.chromaFormat ) );
localBlk.y &= ( cs->pcv->maxCUHeightMask >> getComponentScaleY( blk.compID, blk.chromaFormat ) );
return M_BUFS( jId, type ).getBuf( localBlk );
}

Karsten Suehring
committed
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
#endif
return M_BUFS( jId, type ).getBuf( blk );
}
PelUnitBuf Picture::getBuf( const UnitArea &unit, const PictureType &type )
{
if( chromaFormat == CHROMA_400 )
{
return PelUnitBuf( chromaFormat, getBuf( unit.Y(), type ) );
}
else
{
return PelUnitBuf( chromaFormat, getBuf( unit.Y(), type ), getBuf( unit.Cb(), type ), getBuf( unit.Cr(), type ) );
}
}
const CPelUnitBuf Picture::getBuf( const UnitArea &unit, const PictureType &type ) const
{
if( chromaFormat == CHROMA_400 )
{
return CPelUnitBuf( chromaFormat, getBuf( unit.Y(), type ) );
}
else
{
return CPelUnitBuf( chromaFormat, getBuf( unit.Y(), type ), getBuf( unit.Cb(), type ), getBuf( unit.Cr(), type ) );
}
}
Pel* Picture::getOrigin( const PictureType &type, const ComponentID compID ) const
{
#if ENABLE_SPLIT_PARALLELISM
const int jId = ( type == PIC_ORIGINAL || type == PIC_TRUE_ORIGINAL ) ? 0 : scheduler.getSplitPicId();

Karsten Suehring
committed
#endif
return M_BUFS( jId, type ).getOrigin( compID );
}
void Picture::createSpliceIdx(int nums)
{
m_ctuNums = nums;
m_spliceIdx = new int[m_ctuNums];
memset(m_spliceIdx, 0, m_ctuNums * sizeof(int));
}
bool Picture::getSpliceFull()
{
int count = 0;
for (int i = 0; i < m_ctuNums; i++)
{
if (m_spliceIdx[i] != 0)
count++;
}
if (count < m_ctuNums * 0.25)
return false;
return true;
}
void Picture::addPictureToHashMapForInter()
{
int picWidth = slices[0]->getPPS()->getPicWidthInLumaSamples();
int picHeight = slices[0]->getPPS()->getPicHeightInLumaSamples();
bool* bIsBlockSame[2][3];
for (int i = 0; i < 2; i++)
{
for (int j = 0; j < 2; j++)
{
blockHashValues[i][j] = new uint32_t[picWidth*picHeight];
}
for (int j = 0; j < 3; j++)
{
bIsBlockSame[i][j] = new bool[picWidth*picHeight];
}
}
m_hashMap.create(picWidth, picHeight);
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
m_hashMap.generateBlock2x2HashValue(getOrigBuf(), picWidth, picHeight, slices[0]->getSPS()->getBitDepths(), blockHashValues[0], bIsBlockSame[0]);//2x2
m_hashMap.generateBlockHashValue(picWidth, picHeight, 4, 4, blockHashValues[0], blockHashValues[1], bIsBlockSame[0], bIsBlockSame[1]);//4x4
m_hashMap.addToHashMapByRowWithPrecalData(blockHashValues[1], bIsBlockSame[1][2], picWidth, picHeight, 4, 4);
m_hashMap.generateBlockHashValue(picWidth, picHeight, 8, 8, blockHashValues[1], blockHashValues[0], bIsBlockSame[1], bIsBlockSame[0]);//8x8
m_hashMap.addToHashMapByRowWithPrecalData(blockHashValues[0], bIsBlockSame[0][2], picWidth, picHeight, 8, 8);
m_hashMap.generateBlockHashValue(picWidth, picHeight, 16, 16, blockHashValues[0], blockHashValues[1], bIsBlockSame[0], bIsBlockSame[1]);//16x16
m_hashMap.addToHashMapByRowWithPrecalData(blockHashValues[1], bIsBlockSame[1][2], picWidth, picHeight, 16, 16);
m_hashMap.generateBlockHashValue(picWidth, picHeight, 32, 32, blockHashValues[1], blockHashValues[0], bIsBlockSame[1], bIsBlockSame[0]);//32x32
m_hashMap.addToHashMapByRowWithPrecalData(blockHashValues[0], bIsBlockSame[0][2], picWidth, picHeight, 32, 32);
m_hashMap.generateBlockHashValue(picWidth, picHeight, 64, 64, blockHashValues[0], blockHashValues[1], bIsBlockSame[0], bIsBlockSame[1]);//64x64
m_hashMap.addToHashMapByRowWithPrecalData(blockHashValues[1], bIsBlockSame[1][2], picWidth, picHeight, 64, 64);
m_hashMap.setInitial();
for (int i = 0; i < 2; i++)
{
for (int j = 0; j < 2; j++)
{
delete[] blockHashValues[i][j];
}
for (int j = 0; j < 3; j++)
{
delete[] bIsBlockSame[i][j];
}
}
}
#if JVET_Z0118_GDR
void Picture::initCleanCurPicture()
{
if (!cs->isGdrEnabled())
{
return;
}
const int picWidth = getPicWidthInLumaSamples();
const int picHight = getPicHeightInLumaSamples();
const int bitDepth = slices[0]->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA);
const Pel dirtyPelVal = 1 << (bitDepth - 1);
UnitArea wholePictureArea = UnitArea(chromaFormat, Area(Position(0, 0), Size(picWidth, picHight)));
getBuf(wholePictureArea, PIC_RECONSTRUCTION_0).fill(dirtyPelVal);
getBuf(wholePictureArea, PIC_RECONSTRUCTION_1).fill(dirtyPelVal);
cs->getMotionBuf(wholePictureArea, PIC_RECONSTRUCTION_0).fill(0);
cs->getMotionBuf(wholePictureArea, PIC_RECONSTRUCTION_1).fill(0);
#if JVET_W0123_TIMD_FUSION
cs->getIpmBuf(wholePictureArea, PIC_RECONSTRUCTION_0).fill(0);
cs->getIpmBuf(wholePictureArea, PIC_RECONSTRUCTION_1).fill(0);
#endif
}
void Picture::copyCleanCurPicture()
{
if (!cs->isGdrEnabled())
{
return;
}
{
ChromaFormat chromaFormat = cs->sps->getChromaFormatIdc();
int gdrEndX = cs->picHeader->getGdrEndX();
int gdrEndY = cs->pps->getPicHeightInLumaSamples();
UnitArea cleanArea = UnitArea(chromaFormat, Area(Position(0, 0), Size(gdrEndX, gdrEndY)));
PelUnitBuf picBuf0 = getBuf(cleanArea, PIC_RECONSTRUCTION_0);
PelUnitBuf picBuf1 = getBuf(cleanArea, PIC_RECONSTRUCTION_1);
picBuf1.copyFrom(picBuf0);
}
}
#endif