Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file RateCtrl.cpp
\brief Rate control manager class
*/
#include "RateCtrl.h"
#include "../CommonLib/ChromaFormat.h"
#include <cmath>
#define LAMBDA_PREC 1000000

Karsten Suehring
committed
using namespace std;
//sequence level
EncRCSeq::EncRCSeq()
{
m_totalFrames = 0;
m_targetRate = 0;
m_frameRate = 0;
m_targetBits = 0;
m_GOPSize = 0;
m_picWidth = 0;
m_picHeight = 0;
m_LCUWidth = 0;
m_LCUHeight = 0;
m_numberOfLevel = 0;
m_numberOfLCU = 0;
m_averageBits = 0;
m_bitsRatio = NULL;
m_GOPID2Level = NULL;
m_picPara = NULL;
m_LCUPara = NULL;
m_numberOfPixel = 0;
m_framesLeft = 0;
m_bitsLeft = 0;
m_useLCUSeparateModel = false;
m_adaptiveBit = 0;
m_lastLambda = 0.0;
m_bitDepth = 0;

Karsten Suehring
committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
}
EncRCSeq::~EncRCSeq()
{
destroy();
}
void EncRCSeq::create( int totalFrames, int targetBitrate, int frameRate, int GOPSize, int picWidth, int picHeight, int LCUWidth, int LCUHeight, int numberOfLevel, bool useLCUSeparateModel, int adaptiveBit )
{
destroy();
m_totalFrames = totalFrames;
m_targetRate = targetBitrate;
m_frameRate = frameRate;
m_GOPSize = GOPSize;
m_picWidth = picWidth;
m_picHeight = picHeight;
m_LCUWidth = LCUWidth;
m_LCUHeight = LCUHeight;
m_numberOfLevel = numberOfLevel;
m_useLCUSeparateModel = useLCUSeparateModel;
m_numberOfPixel = m_picWidth * m_picHeight;
m_targetBits = (int64_t)m_totalFrames * (int64_t)m_targetRate / (int64_t)m_frameRate;
m_seqTargetBpp = (double)m_targetRate / (double)m_frameRate / (double)m_numberOfPixel;
if ( m_seqTargetBpp < 0.03 )
{
m_alphaUpdate = 0.01;
m_betaUpdate = 0.005;
}
else if ( m_seqTargetBpp < 0.08 )
{
m_alphaUpdate = 0.05;
m_betaUpdate = 0.025;
}
else if ( m_seqTargetBpp < 0.2 )
{
m_alphaUpdate = 0.1;
m_betaUpdate = 0.05;
}
else if ( m_seqTargetBpp < 0.5 )
{
m_alphaUpdate = 0.2;
m_betaUpdate = 0.1;
}
else
{
m_alphaUpdate = 0.4;
m_betaUpdate = 0.2;
}
m_averageBits = (int)(m_targetBits / totalFrames);
int picWidthInBU = ( m_picWidth % m_LCUWidth ) == 0 ? m_picWidth / m_LCUWidth : m_picWidth / m_LCUWidth + 1;
int picHeightInBU = ( m_picHeight % m_LCUHeight ) == 0 ? m_picHeight / m_LCUHeight : m_picHeight / m_LCUHeight + 1;
m_numberOfLCU = picWidthInBU * picHeightInBU;
m_bitsRatio = new int[m_GOPSize];
for ( int i=0; i<m_GOPSize; i++ )
{
m_bitsRatio[i] = 1;
}
m_GOPID2Level = new int[m_GOPSize];
for ( int i=0; i<m_GOPSize; i++ )
{
m_GOPID2Level[i] = 1;
}
m_picPara = new TRCParameter[m_numberOfLevel];
for ( int i=0; i<m_numberOfLevel; i++ )
{
m_picPara[i].m_alpha = 0.0;
m_picPara[i].m_beta = 0.0;
m_picPara[i].m_validPix = -1;
m_picPara[i].m_skipRatio = 0.0;

Karsten Suehring
committed
}
if ( m_useLCUSeparateModel )
{
m_LCUPara = new TRCParameter*[m_numberOfLevel];
for ( int i=0; i<m_numberOfLevel; i++ )
{
m_LCUPara[i] = new TRCParameter[m_numberOfLCU];
for ( int j=0; j<m_numberOfLCU; j++)
{
m_LCUPara[i][j].m_alpha = 0.0;
m_LCUPara[i][j].m_beta = 0.0;
m_LCUPara[i][j].m_validPix = -1;
m_LCUPara[i][j].m_skipRatio = 0.0;

Karsten Suehring
committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
}
}
}
m_framesLeft = m_totalFrames;
m_bitsLeft = m_targetBits;
m_adaptiveBit = adaptiveBit;
m_lastLambda = 0.0;
}
void EncRCSeq::destroy()
{
if (m_bitsRatio != NULL)
{
delete[] m_bitsRatio;
m_bitsRatio = NULL;
}
if ( m_GOPID2Level != NULL )
{
delete[] m_GOPID2Level;
m_GOPID2Level = NULL;
}
if ( m_picPara != NULL )
{
delete[] m_picPara;
m_picPara = NULL;
}
if ( m_LCUPara != NULL )
{
for ( int i=0; i<m_numberOfLevel; i++ )
{
delete[] m_LCUPara[i];
}
delete[] m_LCUPara;
m_LCUPara = NULL;
}
}
void EncRCSeq::initBitsRatio( int bitsRatio[])
{
for (int i=0; i<m_GOPSize; i++)
{
m_bitsRatio[i] = bitsRatio[i];
}
}
void EncRCSeq::initGOPID2Level( int GOPID2Level[] )
{
for ( int i=0; i<m_GOPSize; i++ )
{
m_GOPID2Level[i] = GOPID2Level[i];
}
}
void EncRCSeq::initPicPara( TRCParameter* picPara )
{
CHECK( m_picPara == NULL, "Object does not exist" );
if ( picPara == NULL )
{
for ( int i=0; i<m_numberOfLevel; i++ )
{
if (i>0)
{
int bitdepth_luma_scale =
2
* (m_bitDepth - 8
- DISTORTION_PRECISION_ADJUSTMENT(m_bitDepth));
m_picPara[i].m_alpha = 3.2003 * pow(2.0, bitdepth_luma_scale);
m_picPara[i].m_beta = -1.367;

Karsten Suehring
committed
}
else
{
int bitdepth_luma_scale =
2
* (m_bitDepth - 8
- DISTORTION_PRECISION_ADJUSTMENT(m_bitDepth));
m_picPara[i].m_alpha = pow(2.0, bitdepth_luma_scale) * ALPHA;
m_picPara[i].m_beta = BETA2;

Karsten Suehring
committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
}
}
}
else
{
for ( int i=0; i<m_numberOfLevel; i++ )
{
m_picPara[i] = picPara[i];
}
}
}
void EncRCSeq::initLCUPara( TRCParameter** LCUPara )
{
if ( m_LCUPara == NULL )
{
return;
}
if ( LCUPara == NULL )
{
for ( int i=0; i<m_numberOfLevel; i++ )
{
for ( int j=0; j<m_numberOfLCU; j++)
{
m_LCUPara[i][j].m_alpha = m_picPara[i].m_alpha;
m_LCUPara[i][j].m_beta = m_picPara[i].m_beta;
}
}
}
else
{
for ( int i=0; i<m_numberOfLevel; i++ )
{
for ( int j=0; j<m_numberOfLCU; j++)
{
m_LCUPara[i][j] = LCUPara[i][j];
}
}
}
}
void EncRCSeq::updateAfterPic ( int bits )
{
m_bitsLeft -= bits;
m_framesLeft--;
}
void EncRCSeq::setAllBitRatio( double basicLambda, double* equaCoeffA, double* equaCoeffB )
{
int* bitsRatio = new int[m_GOPSize];
for ( int i=0; i<m_GOPSize; i++ )
{
bitsRatio[i] = (int)(equaCoeffA[i] * pow(basicLambda, equaCoeffB[i]) * (double)getPicPara(getGOPID2Level(i)).m_validPix);

Karsten Suehring
committed
}
initBitsRatio( bitsRatio );
delete[] bitsRatio;
}
//GOP level
EncRCGOP::EncRCGOP()
{
m_encRCSeq = NULL;
m_picTargetBitInGOP = NULL;
m_numPic = 0;
m_targetBits = 0;
m_picLeft = 0;
m_bitsLeft = 0;
m_minEstLambda = 0.0;
m_maxEstLambda = 0.0;

Karsten Suehring
committed
}
EncRCGOP::~EncRCGOP()
{
destroy();
}
void EncRCGOP::create( EncRCSeq* encRCSeq, int numPic )
{
destroy();
int targetBits = xEstGOPTargetBits( encRCSeq, numPic );
int bitdepth_luma_scale =
2 * (encRCSeq->getbitDepth() - 8
- DISTORTION_PRECISION_ADJUSTMENT(encRCSeq->getbitDepth()));
m_minEstLambda = 0.1;
m_maxEstLambda = 10000.0 * pow(2.0, bitdepth_luma_scale);

Karsten Suehring
committed
if ( encRCSeq->getAdaptiveBits() > 0 && encRCSeq->getLastLambda() > 0.1 )
{
double targetBpp = (double)targetBits / encRCSeq->getNumPixel();
double basicLambda = 0.0;
double* lambdaRatio = new double[encRCSeq->getGOPSize()];
double* equaCoeffA = new double[encRCSeq->getGOPSize()];
double* equaCoeffB = new double[encRCSeq->getGOPSize()];
if ( encRCSeq->getAdaptiveBits() == 1 && encRCSeq->getGOPSize() == 4) // for GOP size =4, low delay case

Karsten Suehring
committed
{
if ( encRCSeq->getLastLambda() < 120.0 )
{
lambdaRatio[1] = 0.725 * log( encRCSeq->getLastLambda() ) + 0.5793;
lambdaRatio[0] = 1.3 * lambdaRatio[1];
lambdaRatio[2] = 1.3 * lambdaRatio[1];
lambdaRatio[3] = 1.0;
}
else
{
lambdaRatio[0] = 5.0;
lambdaRatio[1] = 4.0;
lambdaRatio[2] = 5.0;
lambdaRatio[3] = 1.0;
}
}
else if (encRCSeq->getAdaptiveBits() == 1 && encRCSeq->getGOPSize() == 8) // for GOP size =8, low delay case
{
if (encRCSeq->getLastLambda() < 120.0)
{
lambdaRatio[1] = 0.725 * log(encRCSeq->getLastLambda()) + 0.5793;
lambdaRatio[3] = 0.725 * log(encRCSeq->getLastLambda()) + 0.5793;
lambdaRatio[5] = 0.725 * log(encRCSeq->getLastLambda()) + 0.5793;
lambdaRatio[0] = 1.3 * lambdaRatio[1];
lambdaRatio[2] = 1.3 * lambdaRatio[1];
lambdaRatio[4] = 1.3 * lambdaRatio[1];
lambdaRatio[6] = 1.3 * lambdaRatio[1];
lambdaRatio[7] = 1.0;
}
else
{
lambdaRatio[0] = 5.0;
lambdaRatio[1] = 4.0;
lambdaRatio[2] = 5.0;
lambdaRatio[3] = 4.0;
lambdaRatio[4] = 5.0;
lambdaRatio[5] = 4.0;
lambdaRatio[6] = 5.0;
lambdaRatio[7] = 1.0;
}
}

Karsten Suehring
committed
else if ( encRCSeq->getAdaptiveBits() == 2 ) // for GOP size = 8, random access case
{
if ( encRCSeq->getLastLambda() < 90.0 )
{
lambdaRatio[0] = 1.0;
lambdaRatio[1] = 0.725 * log( encRCSeq->getLastLambda() ) + 0.7963;
lambdaRatio[2] = 1.3 * lambdaRatio[1];
lambdaRatio[3] = 3.25 * lambdaRatio[1];
lambdaRatio[4] = 3.25 * lambdaRatio[1];
lambdaRatio[5] = 1.3 * lambdaRatio[1];
lambdaRatio[6] = 3.25 * lambdaRatio[1];
lambdaRatio[7] = 3.25 * lambdaRatio[1];
}
else
{
lambdaRatio[0] = 1.0;
lambdaRatio[1] = 4.0;
lambdaRatio[2] = 5.0;
lambdaRatio[3] = 12.3;
lambdaRatio[4] = 12.3;
lambdaRatio[5] = 5.0;
lambdaRatio[6] = 12.3;
lambdaRatio[7] = 12.3;
}
}
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
else if (encRCSeq->getAdaptiveBits() == 3) // for GOP size = 16, random access case
{
{
int bitdepth_luma_scale =
2
* (encRCSeq->getbitDepth() - 8
- DISTORTION_PRECISION_ADJUSTMENT(encRCSeq->getbitDepth()));
double hierarQp = 4.2005 * log(encRCSeq->getLastLambda() / pow(2.0, bitdepth_luma_scale)) + 13.7122; // the qp of POC16
double qpLev2 = (hierarQp + 0.0) + 0.2016 * (hierarQp + 0.0) - 4.8848;
double qpLev3 = (hierarQp + 3.0) + 0.22286 * (hierarQp + 3.0) - 5.7476;
double qpLev4 = (hierarQp + 4.0) + 0.2333 * (hierarQp + 4.0) - 5.9;
double qpLev5 = (hierarQp + 5.0) + 0.3 * (hierarQp + 5.0) - 7.1444;
double lambdaLev1 = exp((hierarQp - 13.7122) / 4.2005) *pow(2.0, bitdepth_luma_scale);
double lambdaLev2 = exp((qpLev2 - 13.7122) / 4.2005) * pow(2.0, bitdepth_luma_scale);
double lambdaLev3 = exp((qpLev3 - 13.7122) / 4.2005) * pow(2.0, bitdepth_luma_scale);
double lambdaLev4 = exp((qpLev4 - 13.7122) / 4.2005) * pow(2.0, bitdepth_luma_scale);
double lambdaLev5 = exp((qpLev5 - 13.7122) / 4.2005) * pow(2.0, bitdepth_luma_scale);
lambdaRatio[0] = 1.0;
lambdaRatio[1] = lambdaLev2 / lambdaLev1;
lambdaRatio[2] = lambdaLev3 / lambdaLev1;
lambdaRatio[3] = lambdaLev4 / lambdaLev1;
lambdaRatio[4] = lambdaLev5 / lambdaLev1;
lambdaRatio[5] = lambdaLev5 / lambdaLev1;
lambdaRatio[6] = lambdaLev4 / lambdaLev1;
lambdaRatio[7] = lambdaLev5 / lambdaLev1;
lambdaRatio[8] = lambdaLev5 / lambdaLev1;
lambdaRatio[9] = lambdaLev3 / lambdaLev1;
lambdaRatio[10] = lambdaLev4 / lambdaLev1;
lambdaRatio[11] = lambdaLev5 / lambdaLev1;
lambdaRatio[12] = lambdaLev5 / lambdaLev1;
lambdaRatio[13] = lambdaLev4 / lambdaLev1;
lambdaRatio[14] = lambdaLev5 / lambdaLev1;
lambdaRatio[15] = lambdaLev5 / lambdaLev1;
const double qdfParaLev2A = 0.5847;
const double qdfParaLev2B = -0.0782;
const double qdfParaLev3A = 0.5468;
const double qdfParaLev3B = -0.1364;
const double qdfParaLev4A = 0.6539;
const double qdfParaLev4B = -0.203;
const double qdfParaLev5A = 0.8623;
const double qdfParaLev5B = -0.4676;
double qdfLev1Lev2 = Clip3(0.12, 0.9, qdfParaLev2A * encRCSeq->getPicPara(2).m_skipRatio + qdfParaLev2B);
double qdfLev1Lev3 = Clip3(0.13, 0.9, qdfParaLev3A * encRCSeq->getPicPara(3).m_skipRatio + qdfParaLev3B);
double qdfLev1Lev4 = Clip3(0.15, 0.9, qdfParaLev4A * encRCSeq->getPicPara(4).m_skipRatio + qdfParaLev4B);
double qdfLev1Lev5 = Clip3(0.20, 0.9, qdfParaLev5A * encRCSeq->getPicPara(5).m_skipRatio + qdfParaLev5B);
double qdfLev2Lev3 = Clip3(0.09, 0.9, qdfLev1Lev3 * (1 - qdfLev1Lev2));
double qdfLev2Lev4 = Clip3(0.12, 0.9, qdfLev1Lev4 * (1 - qdfLev1Lev2));
double qdfLev2Lev5 = Clip3(0.14, 0.9, qdfLev1Lev5 * (1 - qdfLev1Lev2));
double qdfLev3Lev4 = Clip3(0.06, 0.9, qdfLev1Lev4 * (1 - qdfLev1Lev3));
double qdfLev3Lev5 = Clip3(0.09, 0.9, qdfLev1Lev5 * (1 - qdfLev1Lev3));
double qdfLev4Lev5 = Clip3(0.10, 0.9, qdfLev1Lev5 * (1 - qdfLev1Lev4));
lambdaLev1 = 1 / (1 + 2 * (qdfLev1Lev2 + 2 * qdfLev1Lev3 + 4 * qdfLev1Lev4 + 8 * qdfLev1Lev5));
lambdaLev2 = 1 / (1 + (3 * qdfLev2Lev3 + 5 * qdfLev2Lev4 + 8 * qdfLev2Lev5));
lambdaLev3 = 1 / (1 + 2 * qdfLev3Lev4 + 4 * qdfLev3Lev5);
lambdaLev4 = 1 / (1 + 2 * qdfLev4Lev5);
lambdaLev5 = 1 / (1.0);
lambdaRatio[0] = 1.0;
lambdaRatio[1] = lambdaLev2 / lambdaLev1;
lambdaRatio[2] = lambdaLev3 / lambdaLev1;
lambdaRatio[3] = lambdaLev4 / lambdaLev1;
lambdaRatio[4] = lambdaLev5 / lambdaLev1;
lambdaRatio[5] = lambdaLev5 / lambdaLev1;
lambdaRatio[6] = lambdaLev4 / lambdaLev1;
lambdaRatio[7] = lambdaLev5 / lambdaLev1;
lambdaRatio[8] = lambdaLev5 / lambdaLev1;
lambdaRatio[9] = lambdaLev3 / lambdaLev1;
lambdaRatio[10] = lambdaLev4 / lambdaLev1;
lambdaRatio[11] = lambdaLev5 / lambdaLev1;
lambdaRatio[12] = lambdaLev5 / lambdaLev1;
lambdaRatio[13] = lambdaLev4 / lambdaLev1;
lambdaRatio[14] = lambdaLev5 / lambdaLev1;
lambdaRatio[15] = lambdaLev5 / lambdaLev1;
}
}
else
{
msg( WARNING, "Warning: Current rate control does not support this coding configuration." );
}

Karsten Suehring
committed
xCalEquaCoeff( encRCSeq, lambdaRatio, equaCoeffA, equaCoeffB, encRCSeq->getGOPSize() );
basicLambda = xSolveEqua(encRCSeq, targetBpp, equaCoeffA, equaCoeffB, encRCSeq->getGOPSize());

Karsten Suehring
committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
encRCSeq->setAllBitRatio( basicLambda, equaCoeffA, equaCoeffB );
delete []lambdaRatio;
delete []equaCoeffA;
delete []equaCoeffB;
}
m_picTargetBitInGOP = new int[numPic];
int i;
int totalPicRatio = 0;
int currPicRatio = 0;
for ( i=0; i<numPic; i++ )
{
totalPicRatio += encRCSeq->getBitRatio( i );
}
for ( i=0; i<numPic; i++ )
{
currPicRatio = encRCSeq->getBitRatio( i );
m_picTargetBitInGOP[i] = (int)( ((double)targetBits) * currPicRatio / totalPicRatio );
}
m_encRCSeq = encRCSeq;
m_numPic = numPic;
m_targetBits = targetBits;
m_picLeft = m_numPic;
m_bitsLeft = m_targetBits;

Karsten Suehring
committed
}
void EncRCGOP::xCalEquaCoeff( EncRCSeq* encRCSeq, double* lambdaRatio, double* equaCoeffA, double* equaCoeffB, int GOPSize )
{
for ( int i=0; i<GOPSize; i++ )
{
int frameLevel = encRCSeq->getGOPID2Level(i);
double alpha = encRCSeq->getPicPara(frameLevel).m_alpha;
double beta = encRCSeq->getPicPara(frameLevel).m_beta;
equaCoeffA[i] = pow( 1.0/alpha, 1.0/beta ) * pow( lambdaRatio[i], 1.0/beta );
equaCoeffB[i] = 1.0/beta;
}
}
double EncRCGOP::xSolveEqua(EncRCSeq* encRCSeq, double targetBpp, double* equaCoeffA, double* equaCoeffB, int GOPSize)

Karsten Suehring
committed
{
double solution = 100.0;
double minNumber = m_minEstLambda;
double maxNumber = m_maxEstLambda;

Karsten Suehring
committed
for ( int i=0; i<g_RCIterationNum; i++ )
{
double fx = 0.0;
for ( int j=0; j<GOPSize; j++ )
{
double tmpBpp = equaCoeffA[j] * pow(solution, equaCoeffB[j]);
double actualBpp = tmpBpp * (double)encRCSeq->getPicPara(encRCSeq->getGOPID2Level(j)).m_validPix / (double)encRCSeq->getNumPixel();
fx += actualBpp;

Karsten Suehring
committed
}
if ( fabs( fx - targetBpp ) < 0.000001 )
{
break;
}
if ( fx > targetBpp )
{
minNumber = solution;
solution = ( solution + maxNumber ) / 2.0;
}
else
{
maxNumber = solution;
solution = ( solution + minNumber ) / 2.0;
}
}
solution = Clip3(m_minEstLambda, m_maxEstLambda, solution);

Karsten Suehring
committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
return solution;
}
void EncRCGOP::destroy()
{
m_encRCSeq = NULL;
if ( m_picTargetBitInGOP != NULL )
{
delete[] m_picTargetBitInGOP;
m_picTargetBitInGOP = NULL;
}
}
void EncRCGOP::updateAfterPicture( int bitsCost )
{
m_bitsLeft -= bitsCost;
m_picLeft--;
}
int EncRCGOP::xEstGOPTargetBits( EncRCSeq* encRCSeq, int GOPSize )
{
int realInfluencePicture = min( g_RCSmoothWindowSize, encRCSeq->getFramesLeft() );
int averageTargetBitsPerPic = (int)( encRCSeq->getTargetBits() / encRCSeq->getTotalFrames() );
int currentTargetBitsPerPic = (int)( ( encRCSeq->getBitsLeft() - averageTargetBitsPerPic * (encRCSeq->getFramesLeft() - realInfluencePicture) ) / realInfluencePicture );
int targetBits = currentTargetBitsPerPic * GOPSize;
if ( targetBits < 200 )
{
targetBits = 200; // at least allocate 200 bits for one GOP
}
return targetBits;
}
//picture level
EncRCPic::EncRCPic()
{
m_encRCSeq = NULL;
m_encRCGOP = NULL;
m_frameLevel = 0;
m_numberOfPixel = 0;
m_numberOfLCU = 0;
m_targetBits = 0;
m_estHeaderBits = 0;
m_estPicQP = 0;
m_estPicLambda = 0.0;
m_LCULeft = 0;
m_bitsLeft = 0;
m_pixelsLeft = 0;
m_LCUs = NULL;
m_picActualHeaderBits = 0;
m_picActualBits = 0;
m_picQP = 0;
m_picLambda = 0.0;
m_picMSE = 0.0;
m_validPixelsInPic = 0;

Karsten Suehring
committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
}
EncRCPic::~EncRCPic()
{
destroy();
}
int EncRCPic::xEstPicTargetBits( EncRCSeq* encRCSeq, EncRCGOP* encRCGOP )
{
int targetBits = 0;
int GOPbitsLeft = encRCGOP->getBitsLeft();
int i;
int currPicPosition = encRCGOP->getNumPic()-encRCGOP->getPicLeft();
int currPicRatio = encRCSeq->getBitRatio( currPicPosition );
int totalPicRatio = 0;
for ( i=currPicPosition; i<encRCGOP->getNumPic(); i++ )
{
totalPicRatio += encRCSeq->getBitRatio( i );
}
targetBits = int( ((double)GOPbitsLeft) * currPicRatio / totalPicRatio );
if ( targetBits < 100 )
{
targetBits = 100; // at least allocate 100 bits for one picture
}
if ( m_encRCSeq->getFramesLeft() > 16 )
{
targetBits = int( g_RCWeightPicRargetBitInBuffer * targetBits + g_RCWeightPicTargetBitInGOP * m_encRCGOP->getTargetBitInGOP( currPicPosition ) );
}
return targetBits;
}
int EncRCPic::xEstPicHeaderBits( list<EncRCPic*>& listPreviousPictures, int frameLevel )
{
int numPreviousPics = 0;
int totalPreviousBits = 0;
list<EncRCPic*>::iterator it;
for ( it = listPreviousPictures.begin(); it != listPreviousPictures.end(); it++ )
{
if ( (*it)->getFrameLevel() == frameLevel )
{
totalPreviousBits += (*it)->getPicActualHeaderBits();
numPreviousPics++;
}
}
int estHeaderBits = 0;
if ( numPreviousPics > 0 )
{
estHeaderBits = totalPreviousBits / numPreviousPics;
}
return estHeaderBits;
}
#if V0078_ADAPTIVE_LOWER_BOUND
int EncRCPic::xEstPicLowerBound(EncRCSeq* encRCSeq, EncRCGOP* encRCGOP)
{
int lowerBound = 0;
int GOPbitsLeft = encRCGOP->getBitsLeft();
const int nextPicPosition = (encRCGOP->getNumPic() - encRCGOP->getPicLeft() + 1) % encRCGOP->getNumPic();
const int nextPicRatio = encRCSeq->getBitRatio(nextPicPosition);
int totalPicRatio = 0;
for (int i = nextPicPosition; i < encRCGOP->getNumPic(); i++)
{
totalPicRatio += encRCSeq->getBitRatio(i);
}
if (nextPicPosition == 0)
{
GOPbitsLeft = encRCGOP->getTargetBits();
}
else
{
GOPbitsLeft -= m_targetBits;
}
lowerBound = int(((double)GOPbitsLeft) * nextPicRatio / totalPicRatio);
if (lowerBound < 100)
{
lowerBound = 100; // at least allocate 100 bits for one picture
}
if (m_encRCSeq->getFramesLeft() > 16)
{
lowerBound = int(g_RCWeightPicRargetBitInBuffer * lowerBound + g_RCWeightPicTargetBitInGOP * m_encRCGOP->getTargetBitInGOP(nextPicPosition));
}
return lowerBound;
}
#endif
void EncRCPic::addToPictureLsit( list<EncRCPic*>& listPreviousPictures )
{
if ( listPreviousPictures.size() > g_RCMaxPicListSize )
{
EncRCPic* p = listPreviousPictures.front();
listPreviousPictures.pop_front();
p->destroy();
delete p;
}
listPreviousPictures.push_back( this );
}
void EncRCPic::create( EncRCSeq* encRCSeq, EncRCGOP* encRCGOP, int frameLevel, list<EncRCPic*>& listPreviousPictures )
{
destroy();
m_encRCSeq = encRCSeq;
m_encRCGOP = encRCGOP;
int targetBits = xEstPicTargetBits( encRCSeq, encRCGOP );
int estHeaderBits = xEstPicHeaderBits( listPreviousPictures, frameLevel );
if ( targetBits < estHeaderBits + 100 )
{
targetBits = estHeaderBits + 100; // at least allocate 100 bits for picture data
}
m_frameLevel = frameLevel;
m_numberOfPixel = encRCSeq->getNumPixel();
m_numberOfLCU = encRCSeq->getNumberOfLCU();
m_estPicLambda = 100.0;
m_targetBits = targetBits;
m_estHeaderBits = estHeaderBits;
m_bitsLeft = m_targetBits;
int picWidth = encRCSeq->getPicWidth();
int picHeight = encRCSeq->getPicHeight();
int LCUWidth = encRCSeq->getLCUWidth();
int LCUHeight = encRCSeq->getLCUHeight();
int picWidthInLCU = ( picWidth % LCUWidth ) == 0 ? picWidth / LCUWidth : picWidth / LCUWidth + 1;
int picHeightInLCU = ( picHeight % LCUHeight ) == 0 ? picHeight / LCUHeight : picHeight / LCUHeight + 1;
#if V0078_ADAPTIVE_LOWER_BOUND
m_lowerBound = xEstPicLowerBound( encRCSeq, encRCGOP );
#endif
m_LCULeft = m_numberOfLCU;
m_bitsLeft -= m_estHeaderBits;
m_pixelsLeft = m_numberOfPixel;
m_LCUs = new TRCLCU[m_numberOfLCU];
int i, j;
int LCUIdx;
for ( i=0; i<picWidthInLCU; i++ )
{
for ( j=0; j<picHeightInLCU; j++ )
{
LCUIdx = j*picWidthInLCU + i;
m_LCUs[LCUIdx].m_actualBits = 0;
m_LCUs[LCUIdx].m_actualSSE = 0.0;
m_LCUs[LCUIdx].m_actualMSE = 0.0;

Karsten Suehring
committed
m_LCUs[LCUIdx].m_QP = 0;
m_LCUs[LCUIdx].m_lambda = 0.0;
m_LCUs[LCUIdx].m_targetBits = 0;
m_LCUs[LCUIdx].m_bitWeight = 1.0;
int currWidth = ( (i == picWidthInLCU -1) ? picWidth - LCUWidth *(picWidthInLCU -1) : LCUWidth );
int currHeight = ( (j == picHeightInLCU-1) ? picHeight - LCUHeight*(picHeightInLCU-1) : LCUHeight );
m_LCUs[LCUIdx].m_numberOfPixel = currWidth * currHeight;
}
}
m_picActualHeaderBits = 0;
m_picActualBits = 0;
m_picQP = 0;
m_picLambda = 0.0;
m_validPixelsInPic = 0;
m_picMSE = 0.0;

Karsten Suehring
committed
}
void EncRCPic::destroy()
{
if( m_LCUs != NULL )
{
delete[] m_LCUs;
m_LCUs = NULL;
}
m_encRCSeq = NULL;
m_encRCGOP = NULL;
}
double EncRCPic::estimatePicLambda( list<EncRCPic*>& listPreviousPictures, bool isIRAP)

Karsten Suehring
committed
{
double alpha = m_encRCSeq->getPicPara( m_frameLevel ).m_alpha;
double beta = m_encRCSeq->getPicPara( m_frameLevel ).m_beta;
double bpp = (double)m_targetBits/(double)m_numberOfPixel;
int bitdepth_luma_scale =
2 * (m_encRCSeq->getbitDepth() - 8
- DISTORTION_PRECISION_ADJUSTMENT(m_encRCSeq->getbitDepth()));
int lastPicValPix = 0;
if (listPreviousPictures.size() > 0)
{
lastPicValPix = m_encRCSeq->getPicPara(m_frameLevel).m_validPix;
}
if (lastPicValPix > 0)
{
bpp = (double)m_targetBits / (double)lastPicValPix;
}

Karsten Suehring
committed
double estLambda;

Karsten Suehring
committed
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
{
estLambda = calculateLambdaIntra(alpha, beta, pow(m_totalCostIntra/(double)m_numberOfPixel, BETA1), bpp);
}
else
{
estLambda = alpha * pow( bpp, beta );
}
double lastLevelLambda = -1.0;
double lastPicLambda = -1.0;
double lastValidLambda = -1.0;
list<EncRCPic*>::iterator it;
for ( it = listPreviousPictures.begin(); it != listPreviousPictures.end(); it++ )
{
if ( (*it)->getFrameLevel() == m_frameLevel )
{
lastLevelLambda = (*it)->getPicActualLambda();
}
lastPicLambda = (*it)->getPicActualLambda();
if ( lastPicLambda > 0.0 )
{
lastValidLambda = lastPicLambda;
}
}
if ( lastLevelLambda > 0.0 )
{
lastLevelLambda = Clip3(m_encRCGOP->getMinEstLambda(), m_encRCGOP->getMaxEstLambda(), lastLevelLambda);

Karsten Suehring
committed
estLambda = Clip3( lastLevelLambda * pow( 2.0, -3.0/3.0 ), lastLevelLambda * pow( 2.0, 3.0/3.0 ), estLambda );
}
if ( lastPicLambda > 0.0 )
{
lastPicLambda = Clip3(m_encRCGOP->getMinEstLambda(), 2000.0 * pow(2.0, bitdepth_luma_scale), lastPicLambda);

Karsten Suehring
committed
estLambda = Clip3( lastPicLambda * pow( 2.0, -10.0/3.0 ), lastPicLambda * pow( 2.0, 10.0/3.0 ), estLambda );
}
else if ( lastValidLambda > 0.0 )
{
lastValidLambda = Clip3(m_encRCGOP->getMinEstLambda(), 2000.0 * pow(2.0, bitdepth_luma_scale), lastValidLambda);

Karsten Suehring
committed
estLambda = Clip3( lastValidLambda * pow(2.0, -10.0/3.0), lastValidLambda * pow(2.0, 10.0/3.0), estLambda );
}
else
{
estLambda = Clip3(m_encRCGOP->getMinEstLambda(), m_encRCGOP->getMaxEstLambda(), estLambda);

Karsten Suehring
committed
}
if ( estLambda < m_encRCGOP->getMinEstLambda())

Karsten Suehring
committed
{
estLambda = m_encRCGOP->getMinEstLambda();

Karsten Suehring
committed
}
//Avoid different results in different platforms. The problem is caused by the different results of pow() in different platforms.
estLambda = double(int64_t(estLambda * (double)LAMBDA_PREC + 0.5)) / (double)LAMBDA_PREC;

Karsten Suehring
committed
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
m_estPicLambda = estLambda;
double totalWeight = 0.0;
// initial BU bit allocation weight
for ( int i=0; i<m_numberOfLCU; i++ )
{
double alphaLCU, betaLCU;
if ( m_encRCSeq->getUseLCUSeparateModel() )
{
alphaLCU = m_encRCSeq->getLCUPara( m_frameLevel, i ).m_alpha;
betaLCU = m_encRCSeq->getLCUPara( m_frameLevel, i ).m_beta;
}
else
{
alphaLCU = m_encRCSeq->getPicPara( m_frameLevel ).m_alpha;
betaLCU = m_encRCSeq->getPicPara( m_frameLevel ).m_beta;
}
m_LCUs[i].m_bitWeight = m_LCUs[i].m_numberOfPixel * pow( estLambda/alphaLCU, 1.0/betaLCU );
if ( m_LCUs[i].m_bitWeight < 0.01 )
{
m_LCUs[i].m_bitWeight = 0.01;
}
totalWeight += m_LCUs[i].m_bitWeight;
}
for ( int i=0; i<m_numberOfLCU; i++ )
{
double BUTargetBits = m_targetBits * m_LCUs[i].m_bitWeight / totalWeight;
m_LCUs[i].m_bitWeight = BUTargetBits;
}
return estLambda;
}
int EncRCPic::estimatePicQP( double lambda, list<EncRCPic*>& listPreviousPictures )
{
int bitdepth_luma_scale =
2
* (m_encRCSeq->getbitDepth() - 8
- DISTORTION_PRECISION_ADJUSTMENT(m_encRCSeq->getbitDepth()));
int QP = int(4.2005 * log(lambda / pow(2.0, bitdepth_luma_scale)) + 13.7122 + 0.5);

Karsten Suehring
committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
int lastLevelQP = g_RCInvalidQPValue;
int lastPicQP = g_RCInvalidQPValue;
int lastValidQP = g_RCInvalidQPValue;
list<EncRCPic*>::iterator it;
for ( it = listPreviousPictures.begin(); it != listPreviousPictures.end(); it++ )
{
if ( (*it)->getFrameLevel() == m_frameLevel )
{
lastLevelQP = (*it)->getPicActualQP();
}
lastPicQP = (*it)->getPicActualQP();
if ( lastPicQP > g_RCInvalidQPValue )
{
lastValidQP = lastPicQP;
}
}
if ( lastLevelQP > g_RCInvalidQPValue )
{
QP = Clip3( lastLevelQP - 3, lastLevelQP + 3, QP );
}
if( lastPicQP > g_RCInvalidQPValue )
{
QP = Clip3( lastPicQP - 10, lastPicQP + 10, QP );
}
else if( lastValidQP > g_RCInvalidQPValue )
{
QP = Clip3( lastValidQP - 10, lastValidQP + 10, QP );
}
return QP;
}
double EncRCPic::getLCUTargetBpp(bool isIRAP)

Karsten Suehring
committed
{
int LCUIdx = getLCUCoded();
double bpp = -1.0;
int avgBits = 0;

Karsten Suehring
committed
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
int noOfLCUsLeft = m_numberOfLCU - LCUIdx + 1;
int bitrateWindow = min(4,noOfLCUsLeft);
double MAD = getLCU(LCUIdx).m_costIntra;
if (m_remainingCostIntra > 0.1 )
{
double weightedBitsLeft = (m_bitsLeft*bitrateWindow+(m_bitsLeft-getLCU(LCUIdx).m_targetBitsLeft)*noOfLCUsLeft)/(double)bitrateWindow;
avgBits = int( MAD*weightedBitsLeft/m_remainingCostIntra );
}
else
{
avgBits = int( m_bitsLeft / m_LCULeft );
}
m_remainingCostIntra -= MAD;
}
else
{
double totalWeight = 0;
for ( int i=LCUIdx; i<m_numberOfLCU; i++ )
{
totalWeight += m_LCUs[i].m_bitWeight;
}
int realInfluenceLCU = min( g_RCLCUSmoothWindowSize, getLCULeft() );
avgBits = (int)( m_LCUs[LCUIdx].m_bitWeight - ( totalWeight - m_bitsLeft ) / realInfluenceLCU + 0.5 );
}
if ( avgBits < 1 )
{
avgBits = 1;