Skip to content
Snippets Groups Projects
Picture.cpp 29.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2018, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
*  * Redistributions of source code must retain the above copyright notice,
*    this list of conditions and the following disclaimer.
*  * Redistributions in binary form must reproduce the above copyright notice,
*    this list of conditions and the following disclaimer in the documentation
*    and/or other materials provided with the distribution.
*  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
*    be used to endorse or promote products derived from this software without
*    specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/

/** \file     Picture.cpp
 *  \brief    Description of a coded picture
 */

#include "Picture.h"
#include "SEI.h"
#include "ChromaFormat.h"
#if ENABLE_WPP_PARALLELISM
#if ENABLE_WPP_STATIC_LINK
#include <atomic>
#else
#include <condition_variable>
#endif
#endif


#if ENABLE_WPP_PARALLELISM || ENABLE_SPLIT_PARALLELISM
#if ENABLE_WPP_PARALLELISM
#if ENABLE_WPP_STATIC_LINK
class SyncObj
{
public:
  SyncObj() : m_Val(-1) {}
  ~SyncObj()            {}

  void reset()
  {
    m_Val = -1;
  }

  bool isReady( int64_t val ) const
  {
//    std::cout << "is ready m_Val " << m_Val << " val " << val << std::endl;
    return m_Val >= val;
  }

  void wait( int64_t idx, int ctuPosY  )
  {
    while( ! isReady( idx ) )
    {
    }
  }

  void set( int64_t val, int ctuPosY)
  {
    m_Val = val;
  }

private:
  std::atomic<int>         m_Val;
};
#else
class SyncObj
{
public:
  SyncObj() : m_Val(-1) {}
  ~SyncObj()            {}

  void reset()
  {
    std::unique_lock< std::mutex > lock( m_mutex );

    m_Val = -1;
  }

  bool isReady( int64_t val ) const
  {
    return m_Val >= val;
  }

  void wait( int64_t idx, int ctuPosY  )
  {
    std::unique_lock< std::mutex > lock( m_mutex );

    while( ! isReady( idx ) )
    {
      m_cv.wait( lock );
    }
  }

  void set( int64_t val, int ctuPosY)
  {
    std::unique_lock< std::mutex > lock( m_mutex );
    m_Val = val;
    m_cv.notify_all();
  }

private:
  int64_t                 m_Val;
  std::condition_variable m_cv;
  std::mutex              m_mutex;
};
#endif
#endif

int g_wppThreadId( 0 );
#pragma omp threadprivate(g_wppThreadId)

#if ENABLE_SPLIT_PARALLELISM
int g_splitThreadId( 0 );
#pragma omp threadprivate(g_splitThreadId)

int g_splitJobId( 0 );
#pragma omp threadprivate(g_splitJobId)
#endif

Scheduler::Scheduler() :
#if ENABLE_WPP_PARALLELISM
  m_numWppThreads( 1 ),
  m_numWppDataInstances( 1 )
#endif
#if ENABLE_SPLIT_PARALLELISM && ENABLE_WPP_PARALLELISM
  ,
#endif
#if ENABLE_SPLIT_PARALLELISM
  m_numSplitThreads( 1 )
#endif
{
}

Scheduler::~Scheduler()
{
#if ENABLE_WPP_PARALLELISM
  for( auto & so : m_SyncObjs )
  {
    delete so;
  }
  m_SyncObjs.clear();
#endif
}

#if ENABLE_SPLIT_PARALLELISM
unsigned Scheduler::getSplitDataId( int jobId ) const
{
  if( m_numSplitThreads > 1 && m_hasParallelBuffer )
  {
    int splitJobId = jobId == CURR_THREAD_ID ? g_splitJobId : jobId;

    return ( g_wppThreadId * NUM_RESERVERD_SPLIT_JOBS ) + splitJobId;
  }
  else
  {
    return 0;
  }
}

unsigned Scheduler::getSplitPicId( int tId /*= CURR_THREAD_ID */ ) const
{
  if( m_numSplitThreads > 1 && m_hasParallelBuffer )
  {
    int threadId = tId == CURR_THREAD_ID ? g_splitThreadId : tId;

    return ( g_wppThreadId * m_numSplitThreads ) + threadId;
  }
  else
  {
    return 0;
  }
}

unsigned Scheduler::getSplitJobId() const
{
  if( m_numSplitThreads > 1 )
  {
    return g_splitJobId;
  }
  else
  {
    return 0;
  }
}

void Scheduler::setSplitJobId( const int jobId )
{
  CHECK( g_splitJobId != 0 && jobId != 0, "Need to reset the jobId after usage!" );
  g_splitJobId = jobId;
}

void Scheduler::startParallel()
{
  m_hasParallelBuffer = true;
}

void Scheduler::finishParallel()
{
  m_hasParallelBuffer = false;
}

void Scheduler::setSplitThreadId( const int tId )
{
  g_splitThreadId = tId == CURR_THREAD_ID ? omp_get_thread_num() : tId;
}

#endif


#if ENABLE_WPP_PARALLELISM
unsigned Scheduler::getWppDataId( int lID ) const
{
  const int tId = lID == CURR_THREAD_ID ? g_wppThreadId : lID;

#if ENABLE_SPLIT_PARALLELISM
  if( m_numSplitThreads > 1 )
  {
    return tId * NUM_RESERVERD_SPLIT_JOBS;
  }
  else
  {
    return tId;
  }
#else
  return tId;
#endif
}

unsigned Scheduler::getWppThreadId() const
{
  return g_wppThreadId;
}

void Scheduler::setWppThreadId( const int tId )
{
  g_wppThreadId = tId == CURR_THREAD_ID ? omp_get_thread_num() : tId;

  CHECK( g_wppThreadId >= PARL_WPP_MAX_NUM_THREADS, "The WPP thread ID " << g_wppThreadId << " is invalid!" );
}
#endif

unsigned Scheduler::getDataId() const
{
#if ENABLE_SPLIT_PARALLELISM
  if( m_numSplitThreads > 1 )
  {
    return getSplitDataId();
  }
#endif
#if ENABLE_WPP_PARALLELISM
  if( m_numWppThreads > 1 )
  {
    return getWppDataId();
  }
#endif
  return 0;
}

bool Scheduler::init( const int ctuYsize, const int ctuXsize, const int numWppThreadsRunning, const int numWppExtraLines, const int numSplitThreads )
{
#if ENABLE_SPLIT_PARALLELISM
  m_numSplitThreads = numSplitThreads;
#endif
#if ENABLE_WPP_PARALLELISM
  m_firstNonFinishedLine    = 0;
  m_numWppThreadsRunning    = 1;
  m_numWppDataInstances     = numWppThreadsRunning+numWppExtraLines;
  m_numWppThreads           = numWppThreadsRunning;
  m_ctuYsize                = ctuYsize;
  m_ctuXsize                = ctuXsize;

  if( m_SyncObjs.size() == 0 )
  {
    m_SyncObjs.reserve( ctuYsize );
    for( int i = (int)m_SyncObjs.size(); i < ctuYsize; i++ )
    {
      m_SyncObjs.push_back( new SyncObj );
    }
  }
  else
  {
    CHECK( m_SyncObjs.size() != ctuYsize, "");
  }

  for( int i = 0; i < ctuYsize; i++ )
  {
    m_SyncObjs[i]->reset();
  }

  if( m_numWppThreads != m_numWppDataInstances )
  {
    m_LineDone.clear();
    m_LineDone.resize(ctuYsize, -1);

    m_LineProc.clear();
    m_LineProc.resize(ctuYsize, false);

    m_SyncObjs[0]->set(0,0);
    m_LineProc[0]=true;
  }
#endif

  return true;
}


int Scheduler::getNumPicInstances() const
{
#if !ENABLE_SPLIT_PARALLELISM
  return 1;
#elif !ENABLE_WPP_PARALLELISM
  return ( m_numSplitThreads > 1 ? m_numSplitThreads : 1 );
#else
  return m_numSplitThreads > 1 ? m_numWppDataInstances * m_numSplitThreads : 1;
#endif
}

#if ENABLE_WPP_PARALLELISM
void Scheduler::wait( const int ctuPosX, const int ctuPosY )
{
  if( m_numWppThreads == m_numWppDataInstances )
  {
    if( ctuPosY > 0 && ctuPosX+1 < m_ctuXsize)
    {
      m_SyncObjs[ctuPosY-1]->wait( ctuPosX+1, ctuPosY-1 );
    }
    return;
  }

  m_SyncObjs[ctuPosY]->wait( ctuPosX, ctuPosY );
}

void Scheduler::setReady(const int ctuPosX, const int ctuPosY)
{
  if( m_numWppThreads == m_numWppDataInstances )
  {
    m_SyncObjs[ctuPosY]->set( ctuPosX, ctuPosY);
    return;
  }

  std::unique_lock< std::mutex > lock( m_mutex );

  if( ctuPosX+1 == m_ctuXsize )
  {
    m_LineProc[ctuPosY] = true; //prevent line from be further evaluated
    m_LineDone[ctuPosY] = std::numeric_limits<int>::max();
    m_firstNonFinishedLine = ctuPosY+1;
  }
  else
  {
    m_LineDone[ctuPosY] = ctuPosX;
    m_LineProc[ctuPosY] = false;    // mark currently not processed
  }

  int lastLine = m_firstNonFinishedLine + m_numWppDataInstances;
  lastLine = std::min( m_ctuYsize, lastLine )-1-m_firstNonFinishedLine;

  m_numWppThreadsRunning--;

  Position pos;
  //if the current encoder is the last
  const bool c1 = (ctuPosY == m_firstNonFinishedLine + m_numWppThreads - 1);
  const bool c2 = (ctuPosY+1 <= m_firstNonFinishedLine+lastLine);
  const bool c3 = (ctuPosX >= m_ctuXsize/4);
  if( c1 && c2 && c3 && getNextCtu( pos, ctuPosY+1, 4 ) )
  {
    //  try to continue in the next row
    // go on in the current line
    m_SyncObjs[pos.y]->set(pos.x, pos.y);
    m_numWppThreadsRunning++;
  }
  else if( getNextCtu( pos, ctuPosY, 1 ) )
  {
    //  try to continue in the same row
    // go on in the current line
    m_SyncObjs[pos.y]->set(pos.x, pos.y);
    m_numWppThreadsRunning++;
  }
  for( int i = m_numWppThreadsRunning; i < m_numWppThreads; i++ )
  {
   // just go and get a job
    for( int y = 0; y <= lastLine; y++ )
    {
      if( getNextCtu( pos, m_firstNonFinishedLine+y, 1 ))
      {
        m_SyncObjs[pos.y]->set(pos.x, pos.y);
        m_numWppThreadsRunning++;
        break;
      }
    }
  }
}


bool Scheduler::getNextCtu( Position& pos, int ctuLine, int offset)
{
  int x = m_LineDone[ctuLine] + 1;
  if( ! m_LineProc[ctuLine] )
  {
    int maxXOffset = x+offset >= m_ctuXsize ? m_ctuXsize-1 : x+offset;
    if( (ctuLine == 0 || m_LineDone[ctuLine-1]>=maxXOffset) && (x==0 || m_LineDone[ctuLine]>=+x-1))
    {
      m_LineProc[ctuLine] = true;
      pos.x = x; pos.y = ctuLine;
      return true;
    }
  }
  return false;
}

#endif
#endif


// ---------------------------------------------------------------------------
// picture methods
// ---------------------------------------------------------------------------

#if HEVC_TILES_WPP

Tile::Tile()
: m_tileWidthInCtus     (0)
, m_tileHeightInCtus    (0)
, m_rightEdgePosInCtus  (0)
, m_bottomEdgePosInCtus (0)
, m_firstCtuRsAddr      (0)
{
}

Tile::~Tile()
{
}


TileMap::TileMap()
  : pcv(nullptr)
  , tiles(0)
  , numTiles(0)
  , numTileColumns(0)
  , numTileRows(0)
  , tileIdxMap(nullptr)
  , ctuTsToRsAddrMap(nullptr)
  , ctuRsToTsAddrMap(nullptr)
{
}

void TileMap::create( const SPS& sps, const PPS& pps )
{
  pcv = pps.pcv;

  numTileColumns = pps.getNumTileColumnsMinus1() + 1;
  numTileRows    = pps.getNumTileRowsMinus1() + 1;
  numTiles       = numTileColumns * numTileRows;
  tiles.resize( numTiles );

  const uint32_t numCtusInFrame = pcv->sizeInCtus;
  tileIdxMap       = new uint32_t[numCtusInFrame];
  ctuTsToRsAddrMap = new uint32_t[numCtusInFrame+1];
  ctuRsToTsAddrMap = new uint32_t[numCtusInFrame+1];

  initTileMap( sps, pps );
  initCtuTsRsAddrMap();
}

void TileMap::destroy()
{
  tiles.clear();

  if ( tileIdxMap )
  {
    delete[] tileIdxMap;
    tileIdxMap = nullptr;
  }

  if ( ctuTsToRsAddrMap )
  {
    delete[] ctuTsToRsAddrMap;
    ctuTsToRsAddrMap = nullptr;
  }

  if ( ctuRsToTsAddrMap )
  {
    delete[] ctuRsToTsAddrMap;
    ctuRsToTsAddrMap = nullptr;
  }
}

void TileMap::initTileMap( const SPS& sps, const PPS& pps )
{
  const uint32_t frameWidthInCtus  = pcv->widthInCtus;
  const uint32_t frameHeightInCtus = pcv->heightInCtus;

  if( pps.getTileUniformSpacingFlag() )
  {
    //set width and height for each (uniform) tile
    for(int row=0; row < numTileRows; row++)
    {
      for(int col=0; col < numTileColumns; col++)
      {
        const int tileIdx = row * numTileColumns + col;
        tiles[tileIdx].setTileWidthInCtus(  (col+1)*frameWidthInCtus/numTileColumns - (col*frameWidthInCtus)/numTileColumns );
        tiles[tileIdx].setTileHeightInCtus( (row+1)*frameHeightInCtus/numTileRows   - (row*frameHeightInCtus)/numTileRows );
      }
    }
  }
  else
  {
    //set the width for each tile
    for(int row=0; row < numTileRows; row++)
    {
      int cumulativeTileWidth = 0;
      for(int col=0; col < numTileColumns - 1; col++)
      {
        tiles[row * numTileColumns + col].setTileWidthInCtus( pps.getTileColumnWidth(col) );
        cumulativeTileWidth += pps.getTileColumnWidth(col);
      }
      tiles[row * numTileColumns + numTileColumns - 1].setTileWidthInCtus( frameWidthInCtus-cumulativeTileWidth );
    }

    //set the height for each tile
    for(int col=0; col < numTileColumns; col++)
    {
      int cumulativeTileHeight = 0;
      for(int row=0; row < numTileRows - 1; row++)
      {
        tiles[row * numTileColumns + col].setTileHeightInCtus( pps.getTileRowHeight(row) );
        cumulativeTileHeight += pps.getTileRowHeight(row);
      }
      tiles[(numTileRows - 1) * numTileColumns + col].setTileHeightInCtus( frameHeightInCtus-cumulativeTileHeight );
    }
  }

  // Tile size check
  int minWidth  = 1;
  int minHeight = 1;
  const int profileIdc = sps.getPTL()->getGeneralPTL()->getProfileIdc();
  if (  profileIdc == Profile::MAIN || profileIdc == Profile::MAIN10)
  {
    if (pps.getTilesEnabledFlag())
    {
      minHeight = 64  / sps.getMaxCUHeight();
      minWidth  = 256 / sps.getMaxCUWidth();
    }
  }
  for(int row=0; row < numTileRows; row++)
  {
    for(int col=0; col < numTileColumns; col++)
    {
      const int tileIdx = row * numTileColumns + col;
      if(tiles[tileIdx].getTileWidthInCtus() < minWidth)   { THROW("Invalid tile size"); }
      if(tiles[tileIdx].getTileHeightInCtus() < minHeight) { THROW("Invalid tile size"); }
    }
  }

  //initialize each tile of the current picture
  for( int row=0; row < numTileRows; row++ )
  {
    for( int col=0; col < numTileColumns; col++ )
    {
      const int tileIdx = row * numTileColumns + col;

      //initialize the RightEdgePosInCU for each tile
      int rightEdgePosInCTU = 0;
      for( int i=0; i <= col; i++ )
      {
        rightEdgePosInCTU += tiles[row * numTileColumns + i].getTileWidthInCtus();
      }
      tiles[tileIdx].setRightEdgePosInCtus(rightEdgePosInCTU-1);

      //initialize the BottomEdgePosInCU for each tile
      int bottomEdgePosInCTU = 0;
      for( int i=0; i <= row; i++ )
      {
        bottomEdgePosInCTU += tiles[i * numTileColumns + col].getTileHeightInCtus();
      }
      tiles[tileIdx].setBottomEdgePosInCtus(bottomEdgePosInCTU-1);

      //initialize the FirstCUAddr for each tile
      tiles[tileIdx].setFirstCtuRsAddr( (tiles[tileIdx].getBottomEdgePosInCtus() - tiles[tileIdx].getTileHeightInCtus() + 1) * frameWidthInCtus +
                                         tiles[tileIdx].getRightEdgePosInCtus()  - tiles[tileIdx].getTileWidthInCtus()  + 1);
    }
  }

  int  columnIdx = 0;
  int  rowIdx = 0;

  //initialize the TileIdxMap
  const uint32_t numCtusInFrame = pcv->sizeInCtus;
  for( int i=0; i<numCtusInFrame; i++)
  {
    for( int col=0; col < numTileColumns; col++)
    {
      if(i % frameWidthInCtus <= tiles[col].getRightEdgePosInCtus())
      {
        columnIdx = col;
        break;
      }
    }
    for(int row=0; row < numTileRows; row++)
    {
      if(i / frameWidthInCtus <= tiles[row*numTileColumns].getBottomEdgePosInCtus())
      {
        rowIdx = row;
        break;
      }
    }
    tileIdxMap[i] = rowIdx * numTileColumns + columnIdx;
  }
}

void TileMap::initCtuTsRsAddrMap()
{
  //generate the Coding Order Map and Inverse Coding Order Map
  const uint32_t numCtusInFrame = pcv->sizeInCtus;
  for(int ctuTsAddr=0, ctuRsAddr=0; ctuTsAddr<numCtusInFrame; ctuTsAddr++, ctuRsAddr = calculateNextCtuRSAddr(ctuRsAddr))
  {
    ctuTsToRsAddrMap[ctuTsAddr] = ctuRsAddr;
    ctuRsToTsAddrMap[ctuRsAddr] = ctuTsAddr;
  }
  ctuTsToRsAddrMap[numCtusInFrame] = numCtusInFrame;
  ctuRsToTsAddrMap[numCtusInFrame] = numCtusInFrame;
}

uint32_t TileMap::calculateNextCtuRSAddr( const uint32_t currCtuRsAddr ) const
{
  const uint32_t frameWidthInCtus = pcv->widthInCtus;
  uint32_t  nextCtuRsAddr;

  //get the tile index for the current CTU
  const uint32_t uiTileIdx = getTileIdxMap(currCtuRsAddr);

  //get the raster scan address for the next CTU
  if( currCtuRsAddr % frameWidthInCtus == tiles[uiTileIdx].getRightEdgePosInCtus() && currCtuRsAddr / frameWidthInCtus == tiles[uiTileIdx].getBottomEdgePosInCtus() )
  //the current CTU is the last CTU of the tile
  {
    if(uiTileIdx+1 == numTiles)
    {
      nextCtuRsAddr = pcv->sizeInCtus;
    }
    else
    {
      nextCtuRsAddr = tiles[uiTileIdx+1].getFirstCtuRsAddr();
    }
  }
  else //the current CTU is not the last CTU of the tile
  {
    if( currCtuRsAddr % frameWidthInCtus == tiles[uiTileIdx].getRightEdgePosInCtus() )  //the current CTU is on the rightmost edge of the tile
    {
      nextCtuRsAddr = currCtuRsAddr + frameWidthInCtus - tiles[uiTileIdx].getTileWidthInCtus() + 1;
    }
    else
    {
      nextCtuRsAddr = currCtuRsAddr + 1;
    }
  }

  return nextCtuRsAddr;
}

uint32_t TileMap::getSubstreamForCtuAddr(const uint32_t ctuAddr, const bool bAddressInRaster, Slice *pcSlice) const
{
  const bool bWPPEnabled = pcSlice->getPPS()->getEntropyCodingSyncEnabledFlag();
  uint32_t subStrm;

  if( (bWPPEnabled && pcv->heightInCtus > 1) || (numTiles > 1) ) // wavefronts, and possibly tiles being used.
  {
    const uint32_t ctuRsAddr = bAddressInRaster ? ctuAddr : getCtuTsToRsAddrMap(ctuAddr);
    const uint32_t tileIndex = getTileIdxMap(ctuRsAddr);

    if (bWPPEnabled)
    {
      const uint32_t firstCtuRsAddrOfTile     = tiles[tileIndex].getFirstCtuRsAddr();
      const uint32_t tileYInCtus              = firstCtuRsAddrOfTile / pcv->widthInCtus;
      const uint32_t ctuLine                  = ctuRsAddr / pcv->widthInCtus;
      const uint32_t startingSubstreamForTile = (tileYInCtus * numTileColumns) + (tiles[tileIndex].getTileHeightInCtus() * (tileIndex % numTileColumns));

      subStrm = startingSubstreamForTile + (ctuLine - tileYInCtus);
    }
    else
    {
      subStrm = tileIndex;
    }
  }
  else
  {
    subStrm = 0;
  }
  return subStrm;
}
#endif

Picture::Picture()
{
#if HEVC_TILES_WPP
  tileMap              = nullptr;
#endif
  cs                   = nullptr;
  m_bIsBorderExtended  = false;
  usedByCurr           = false;
  longTerm             = false;
  reconstructed        = false;
  neededForOutput      = false;
  referenced           = false;
  layer                = std::numeric_limits<uint32_t>::max();
  fieldPic             = false;
  topField             = false;
  for( int i = 0; i < MAX_NUM_CHANNEL_TYPE; i++ )
  {
    m_prevQP[i] = -1;
  }
}

void Picture::create(const ChromaFormat &_chromaFormat, const Size &size, const unsigned _maxCUSize, const unsigned _margin, const bool _decoder)
{
  UnitArea::operator=( UnitArea( _chromaFormat, Area( Position{ 0, 0 }, size ) ) );
  margin            =  _margin;
  const Area a      = Area( Position(), size );
  M_BUFS( 0, PIC_RECONSTRUCTION ).create( _chromaFormat, a, _maxCUSize, _margin, MEMORY_ALIGN_DEF_SIZE );

  if( !_decoder )
  {
    M_BUFS( 0, PIC_ORIGINAL ).    create( _chromaFormat, a );
  }
#if !KEEP_PRED_AND_RESI_SIGNALS

  m_ctuArea = UnitArea( _chromaFormat, Area( Position{ 0, 0 }, Size( _maxCUSize, _maxCUSize ) ) );
#endif
}

void Picture::destroy()
{
#if ENABLE_SPLIT_PARALLELISM
#if ENABLE_WPP_PARALLELISM
  for( int jId = 0; jId < ( PARL_SPLIT_MAX_NUM_THREADS * PARL_WPP_MAX_NUM_THREADS ); jId++ )
#else
  for( int jId = 0; jId < PARL_SPLIT_MAX_NUM_THREADS; jId++ )
#endif
#endif
  for (uint32_t t = 0; t < NUM_PIC_TYPES; t++)
  {
    M_BUFS( jId, t ).destroy();
  }

  if( cs )
  {
    cs->destroy();
    delete cs;
    cs = nullptr;
  }

  for( auto &ps : slices )
  {
    delete ps;
  }
  slices.clear();

  for( auto &psei : SEIs )
  {
    delete psei;
  }
  SEIs.clear();

#if HEVC_TILES_WPP
  if ( tileMap )
  {
    tileMap->destroy();
    delete tileMap;
    tileMap = nullptr;
  }
#endif
}

void Picture::createTempBuffers( const unsigned _maxCUSize )
{
#if KEEP_PRED_AND_RESI_SIGNALS
  const Area a( Position{ 0, 0 }, lumaSize() );
#else
  const Area a = m_ctuArea.Y();
#endif

#if ENABLE_SPLIT_PARALLELISM
  scheduler.startParallel();

  for( int jId = 0; jId < scheduler.getNumPicInstances(); jId++ )
#endif
  {
    M_BUFS( jId, PIC_PREDICTION                   ).create( chromaFormat, a,   _maxCUSize );
    M_BUFS( jId, PIC_RESIDUAL                     ).create( chromaFormat, a,   _maxCUSize );
#if ENABLE_SPLIT_PARALLELISM
    if( jId > 0 ) M_BUFS( jId, PIC_RECONSTRUCTION ).create( chromaFormat, Y(), _maxCUSize, margin, MEMORY_ALIGN_DEF_SIZE );
#endif
  }

  if( cs ) cs->rebindPicBufs();
}

void Picture::destroyTempBuffers()
{
#if ENABLE_SPLIT_PARALLELISM
  scheduler.finishParallel();

  for( int jId = 0; jId < scheduler.getNumPicInstances(); jId++ )
#endif
  for( uint32_t t = 0; t < NUM_PIC_TYPES; t++ )
  {
    if( t == PIC_RESIDUAL || t == PIC_PREDICTION ) M_BUFS( jId, t ).destroy();
#if ENABLE_SPLIT_PARALLELISM
    if( t == PIC_RECONSTRUCTION &&       jId > 0 ) M_BUFS( jId, t ).destroy();
#endif
  }

  if( cs ) cs->rebindPicBufs();
}

       PelBuf     Picture::getOrigBuf(const CompArea &blk)        { return getBuf(blk,  PIC_ORIGINAL); }
const CPelBuf     Picture::getOrigBuf(const CompArea &blk)  const { return getBuf(blk,  PIC_ORIGINAL); }
       PelUnitBuf Picture::getOrigBuf(const UnitArea &unit)       { return getBuf(unit, PIC_ORIGINAL); }
const CPelUnitBuf Picture::getOrigBuf(const UnitArea &unit) const { return getBuf(unit, PIC_ORIGINAL); }
       PelUnitBuf Picture::getOrigBuf()                           { return M_BUFS(0,    PIC_ORIGINAL); }
const CPelUnitBuf Picture::getOrigBuf()                     const { return M_BUFS(0,    PIC_ORIGINAL); }

       PelBuf     Picture::getPredBuf(const CompArea &blk)        { return getBuf(blk,  PIC_PREDICTION); }
const CPelBuf     Picture::getPredBuf(const CompArea &blk)  const { return getBuf(blk,  PIC_PREDICTION); }
       PelUnitBuf Picture::getPredBuf(const UnitArea &unit)       { return getBuf(unit, PIC_PREDICTION); }
const CPelUnitBuf Picture::getPredBuf(const UnitArea &unit) const { return getBuf(unit, PIC_PREDICTION); }

       PelBuf     Picture::getResiBuf(const CompArea &blk)        { return getBuf(blk,  PIC_RESIDUAL); }
const CPelBuf     Picture::getResiBuf(const CompArea &blk)  const { return getBuf(blk,  PIC_RESIDUAL); }
       PelUnitBuf Picture::getResiBuf(const UnitArea &unit)       { return getBuf(unit, PIC_RESIDUAL); }
const CPelUnitBuf Picture::getResiBuf(const UnitArea &unit) const { return getBuf(unit, PIC_RESIDUAL); }

       PelBuf     Picture::getRecoBuf(const ComponentID compID)       { return getBuf(compID,                    PIC_RECONSTRUCTION); }
const CPelBuf     Picture::getRecoBuf(const ComponentID compID) const { return getBuf(compID,                    PIC_RECONSTRUCTION); }
       PelBuf     Picture::getRecoBuf(const CompArea &blk)            { return getBuf(blk,                       PIC_RECONSTRUCTION); }
const CPelBuf     Picture::getRecoBuf(const CompArea &blk)      const { return getBuf(blk,                       PIC_RECONSTRUCTION); }
       PelUnitBuf Picture::getRecoBuf(const UnitArea &unit)           { return getBuf(unit,                      PIC_RECONSTRUCTION); }
const CPelUnitBuf Picture::getRecoBuf(const UnitArea &unit)     const { return getBuf(unit,                      PIC_RECONSTRUCTION); }
       PelUnitBuf Picture::getRecoBuf()                               { return M_BUFS(scheduler.getSplitPicId(), PIC_RECONSTRUCTION); }
const CPelUnitBuf Picture::getRecoBuf()                         const { return M_BUFS(scheduler.getSplitPicId(), PIC_RECONSTRUCTION); }

void Picture::finalInit( const SPS& sps, const PPS& pps )
{
  for( auto &sei : SEIs )
  {
    delete sei;
  }
  SEIs.clear();
  clearSliceBuffer();

#if HEVC_TILES_WPP
  if( tileMap )
  {
    tileMap->destroy();
    delete tileMap;
    tileMap = nullptr;
  }
#endif

  const ChromaFormat chromaFormatIDC = sps.getChromaFormatIdc();
  const int          iWidth = sps.getPicWidthInLumaSamples();
  const int          iHeight = sps.getPicHeightInLumaSamples();

  if( cs )
  {
    cs->initStructData();
  }
  else
  {
    cs = new CodingStructure( g_globalUnitCache.cuCache, g_globalUnitCache.puCache, g_globalUnitCache.tuCache );
    cs->sps = &sps;
    cs->create( chromaFormatIDC, Area( 0, 0, iWidth, iHeight ), true );
  }

  cs->picture = this;
  cs->slice   = nullptr;  // the slices for this picture have not been set at this point. update cs->slice after swapSliceObject()
  cs->pps     = &pps;
#if HEVC_VPS
  cs->vps     = nullptr;
#endif
  cs->pcv     = pps.pcv;

#if HEVC_TILES_WPP
  tileMap = new TileMap;
  tileMap->create( sps, pps );
#endif
}

void Picture::allocateNewSlice()
{
  slices.push_back(new Slice);
  Slice& slice = *slices.back();

  slice.setPPS( cs->pps);
  slice.setSPS( cs->sps);
  if(slices.size()>=2)
  {
    slice.copySliceInfo( slices[slices.size()-2] );
    slice.initSlice();
  }
}

Slice *Picture::swapSliceObject(Slice * p, uint32_t i)
{
  p->setSPS(cs->sps);
  p->setPPS(cs->pps);

  Slice * pTmp = slices[i];
  slices[i] = p;
  pTmp->setSPS(0);
  pTmp->setPPS(0);
  return pTmp;
}

void Picture::clearSliceBuffer()
{
  for (uint32_t i = 0; i < uint32_t(slices.size()); i++)
  {
    delete slices[i];
  }
  slices.clear();
}

#if ENABLE_SPLIT_PARALLELISM

void Picture::finishParallelPart( const UnitArea& area )
{
  const UnitArea clipdArea = clipArea( area, *this );
  const int      sourceID  = scheduler.getSplitPicId( 0 );
  CHECK( scheduler.getSplitJobId() > 0, "Finish-CU cannot be called from within a mode- or split-parallelized block!" );

  // distribute the reconstruction across all of the parallel workers
  for( int tId = 1; tId < scheduler.getNumSplitThreads(); tId++ )
  {
    const int destID = scheduler.getSplitPicId( tId );

    M_BUFS( destID, PIC_RECONSTRUCTION ).subBuf( clipdArea ).copyFrom( M_BUFS( sourceID, PIC_RECONSTRUCTION ).subBuf( clipdArea ) );
  }
}

#if ENABLE_WPP_PARALLELISM
void Picture::finishCtuPart( const UnitArea& ctuArea )
{
  const UnitArea clipdArea = clipArea( ctuArea, *this );
  const int      sourceID  = scheduler.getSplitPicId( 0 );
  // distribute the reconstruction across all of the parallel workers
  for( int dataId = 0; dataId < scheduler.getNumPicInstances(); dataId++ )
  {
    if( dataId == sourceID ) continue;

    M_BUFS( dataId, PIC_RECONSTRUCTION ).subBuf( clipdArea ).copyFrom( M_BUFS( sourceID, PIC_RECONSTRUCTION ).subBuf( clipdArea ) );
  }
}
#endif

#endif

void Picture::extendPicBorder()
{
  if ( m_bIsBorderExtended )
  {
    return;
  }

  for(int comp=0; comp<getNumberValidComponents( cs->area.chromaFormat ); comp++)
  {
    ComponentID compID = ComponentID( comp );
    PelBuf p = M_BUFS( 0, PIC_RECONSTRUCTION ).get( compID );
    Pel *piTxt = p.bufAt(0,0);
    int xmargin = margin >> getComponentScaleX( compID, cs->area.chromaFormat );
    int ymargin = margin >> getComponentScaleY( compID, cs->area.chromaFormat );

    Pel*  pi = piTxt;
    // do left and right margins
    for (int y = 0; y < p.height; y++)
    {
      for (int x = 0; x < xmargin; x++ )
      {
        pi[ -xmargin + x ] = pi[0];
        pi[  p.width + x ] = pi[p.width-1];
      }