EncCu.h 22.54 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2021, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file EncCu.h
\brief Coding Unit (CU) encoder class (header)
*/
#ifndef __ENCCU__
#define __ENCCU__
// Include files
#include "CommonLib/CommonDef.h"
#include "CommonLib/IntraPrediction.h"
#include "CommonLib/InterPrediction.h"
#include "CommonLib/TrQuant.h"
#include "CommonLib/Unit.h"
#include "CommonLib/UnitPartitioner.h"
#include "CommonLib/IbcHashMap.h"
#if JVET_V0094_BILATERAL_FILTER || JVET_X0071_CHROMA_BILATERAL_FILTER
#include "CommonLib/BilateralFilter.h"
#endif
#include "CommonLib/LoopFilter.h"
#include "DecoderLib/DecCu.h"
#include "CABACWriter.h"
#include "IntraSearch.h"
#include "InterSearch.h"
#include "RateCtrl.h"
#include "EncModeCtrl.h"
//! \ingroup EncoderLib
//! \{
class EncLib;
class HLSWriter;
class EncSlice;
// ====================================================================================================================
// Class definition
// ====================================================================================================================
/// CU encoder class
struct GeoMergeCombo
{
int splitDir;
int mergeIdx0;
int mergeIdx1;
double cost;
GeoMergeCombo() : splitDir(), mergeIdx0(-1), mergeIdx1(-1), cost(0.0) {};
GeoMergeCombo(int _splitDir, int _mergeIdx0, int _mergeIdx1, double _cost) : splitDir(_splitDir), mergeIdx0(_mergeIdx0), mergeIdx1(_mergeIdx1), cost(_cost) {};
};
struct GeoMotionInfo
{
uint8_t m_candIdx0;
uint8_t m_candIdx1;
GeoMotionInfo(uint8_t candIdx0, uint8_t candIdx1) : m_candIdx0(candIdx0), m_candIdx1(candIdx1) { }
GeoMotionInfo() { m_candIdx0 = m_candIdx1 = 0; }
};
struct SmallerThanComboCost
{
inline bool operator() (const GeoMergeCombo& first, const GeoMergeCombo& second)
{
return (first.cost < second.cost);
}
};
class GeoComboCostList
{
public:
GeoComboCostList() {};
~GeoComboCostList() {};
std::vector<GeoMergeCombo> list;
void sortByCost() { std::stable_sort(list.begin(), list.end(), SmallerThanComboCost()); };
};
struct SingleGeoMergeEntry
{
int mergeIdx;
double cost;
SingleGeoMergeEntry() : mergeIdx(0), cost(MAX_DOUBLE) {};
SingleGeoMergeEntry(int _mergeIdx, double _cost) : mergeIdx(_mergeIdx), cost(_cost) {};
};
class FastGeoCostList
{
public:
FastGeoCostList() { numGeoTemplatesInitialized = 0; };
~FastGeoCostList()
{
for (int partIdx = 0; partIdx < 2; partIdx++)
{
for (int splitDir = 0; splitDir < GEO_NUM_PARTITION_MODE; splitDir++)
{
delete[] singleDistList[partIdx][splitDir];
}
delete[] singleDistList[partIdx];
singleDistList[partIdx] = nullptr;
}
};
SingleGeoMergeEntry** singleDistList[2];
void init(int numTemplates, int maxNumGeoCand)
{
if (numGeoTemplatesInitialized == 0 || numGeoTemplatesInitialized < numTemplates)
{
for (int partIdx = 0; partIdx < 2; partIdx++)
{
singleDistList[partIdx] = new SingleGeoMergeEntry*[numTemplates];
for (int splitDir = 0; splitDir < numTemplates; splitDir++)
{
singleDistList[partIdx][splitDir] = new SingleGeoMergeEntry[maxNumGeoCand];
}
}
numGeoTemplatesInitialized = numTemplates;
}
}
void insert(int geoIdx, int partIdx, int mergeIdx, double cost)
{
assert(geoIdx < numGeoTemplatesInitialized);
singleDistList[partIdx][geoIdx][mergeIdx] = SingleGeoMergeEntry(mergeIdx, cost);
}
int numGeoTemplatesInitialized;
};
#if JVET_W0097_GPM_MMVD_TM
struct SingleGeoMMVDMergeEntry
{
int mergeIdx;
int mmvdIdx; // 0 - mmvd OFF; 1 - mmvdIdx = 0; 2 - mmvdIdx = 1; 3 - mmvdIdx = 2; ...
double cost;
SingleGeoMMVDMergeEntry() : mergeIdx(0), mmvdIdx(0), cost(MAX_DOUBLE) {};
SingleGeoMMVDMergeEntry(int _mergeIdx, int _mmvdIdx, double _cost) : mergeIdx(_mergeIdx), mmvdIdx(_mmvdIdx), cost(_cost) {};
};
class FastGeoMMVDCostList
{
public:
FastGeoMMVDCostList()
{
for (int partIdx = 0; partIdx < 2; partIdx++)
{
singleDistList[partIdx] = new SingleGeoMMVDMergeEntry**[GEO_NUM_PARTITION_MODE];
for (int splitDir = 0; splitDir < GEO_NUM_PARTITION_MODE; splitDir++)
{
singleDistList[partIdx][splitDir] = new SingleGeoMMVDMergeEntry*[MRG_MAX_NUM_CANDS];
for (int candIdx = 0; candIdx < MRG_MAX_NUM_CANDS; candIdx++)
{
#if JVET_W0097_GPM_MMVD_TM && TM_MRG
singleDistList[partIdx][splitDir][candIdx] = new SingleGeoMMVDMergeEntry[GPM_EXT_MMVD_MAX_REFINE_NUM + 2];
#else
singleDistList[partIdx][splitDir][candIdx] = new SingleGeoMMVDMergeEntry[GPM_EXT_MMVD_MAX_REFINE_NUM + 1];
#endif
}
}
}
}
~FastGeoMMVDCostList()
{
for (int partIdx = 0; partIdx < 2; partIdx++)
{
for (int splitDir = 0; splitDir < GEO_NUM_PARTITION_MODE; splitDir++)
{
for (int candIdx = 0; candIdx < MRG_MAX_NUM_CANDS; candIdx++)
{
delete[] singleDistList[partIdx][splitDir][candIdx];
}
delete[] singleDistList[partIdx][splitDir];
}
delete[] singleDistList[partIdx];
singleDistList[partIdx] = nullptr;
}
}
SingleGeoMMVDMergeEntry*** singleDistList[2];
void insert(int geoIdx, int partIdx, int mergeIdx, int mmvdIdx, double cost)
{
singleDistList[partIdx][geoIdx][mergeIdx][mmvdIdx] = SingleGeoMMVDMergeEntry(mergeIdx, mmvdIdx, cost);
}
};
#endif
class EncCu
: DecCu
{
private:
bool m_bestModeUpdated;
struct CtxPair
{
Ctx start;
Ctx best;
};
std::vector<CtxPair> m_CtxBuffer;
CtxPair* m_CurrCtx;
CtxCache* m_CtxCache;
#if ENABLE_SPLIT_PARALLELISM
int m_dataId;
#endif
// Data : encoder control
int m_cuChromaQpOffsetIdxPlus1; // if 0, then cu_chroma_qp_offset_flag will be 0, otherwise cu_chroma_qp_offset_flag will be 1.
XUCache m_unitCache;
CodingStructure ***m_pTempCS;
CodingStructure ***m_pBestCS;
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
CodingStructure ***m_pTempCS2;
CodingStructure ***m_pBestCS2;
#endif
#if MULTI_HYP_PRED
MEResultVec m_baseResultsForMH;
#endif
#if ENABLE_OBMC
CodingStructure ***m_pTempCUWoOBMC; ///< Temporary CUs in each depth
PelStorage **m_pPredBufWoOBMC;
PelStorage m_tempWoOBMCBuffer;
#endif
// Access channel
EncCfg* m_pcEncCfg;
IntraSearch* m_pcIntraSearch;
InterSearch* m_pcInterSearch;
TrQuant* m_pcTrQuant;
RdCost* m_pcRdCost;
EncSlice* m_pcSliceEncoder;
LoopFilter* m_pcLoopFilter;
CABACWriter* m_CABACEstimator;
RateCtrl* m_pcRateCtrl;
IbcHashMap m_ibcHashMap;
EncModeCtrl *m_modeCtrl;
PelStorage m_acMergeBuffer[MMVD_MRG_MAX_RD_BUF_NUM];
#if INTER_LIC || MULTI_HYP_PRED
PelStorage m_acRealMergeBuffer[MRG_MAX_NUM_CANDS * 2];
#else
PelStorage m_acRealMergeBuffer[MRG_MAX_NUM_CANDS];
#endif
PelStorage m_acMergeTmpBuffer[MRG_MAX_NUM_CANDS];
#if JVET_X0141_CIIP_TIMD_TM && TM_MRG
PelStorage m_acTmMergeTmpBuffer[MRG_MAX_NUM_CANDS];
#endif
PelStorage m_ciipBuffer[2];
PelStorage m_acGeoWeightedBuffer[GEO_MAX_TRY_WEIGHTED_SAD]; // to store weighted prediction pixels
FastGeoCostList m_GeoCostList;
#if JVET_W0097_GPM_MMVD_TM
PelStorage m_acGeoMMVDBuffer[MRG_MAX_NUM_CANDS][GPM_EXT_MMVD_MAX_REFINE_NUM];
PelStorage m_acGeoMMVDTmpBuffer[MRG_MAX_NUM_CANDS][GPM_EXT_MMVD_MAX_REFINE_NUM];
FastGeoMMVDCostList m_GeoMMVDCostList;
bool fastGpmMmvdSearch;
bool fastGpmMmvdRelatedCU;
bool includeMoreMMVDCandFirstPass;
int maxNumGPMDirFirstPass;
int numCandPerPar;
#if TM_MRG
PelStorage m_acGeoMergeTmpBuffer[GEO_TM_MAX_NUM_CANDS];
PelStorage m_acGeoSADTmpBuffer[GEO_TM_MAX_NUM_CANDS];
#endif
#endif
double m_AFFBestSATDCost;
double m_mergeBestSATDCost;
MotionInfo m_SubPuMiBuf [( MAX_CU_SIZE * MAX_CU_SIZE ) >> ( MIN_CU_LOG2 << 1 )];
#if MULTI_PASS_DMVR
Mv m_mvBufBDMVR[(MRG_MAX_NUM_CANDS << 1)][MAX_NUM_SUBCU_DMVR];
#if TM_MRG
Mv m_mvBufBDMVR4TM[(TM_MRG_MAX_NUM_CANDS << 1)][MAX_NUM_SUBCU_DMVR];
#endif
Mv m_mvBufEncBDOF[MRG_MAX_NUM_CANDS][BDOF_SUBPU_MAX_NUM];
Mv m_mvBufEncBDOF4TM[MRG_MAX_NUM_CANDS][BDOF_SUBPU_MAX_NUM];
#if JVET_X0049_ADAPT_DMVR
Mv m_mvBufBDMVR4BM[(BM_MRG_MAX_NUM_CANDS << 1)<<1][MAX_NUM_SUBCU_DMVR];
Mv m_mvBufEncBDOF4BM[BM_MRG_MAX_NUM_CANDS<<1][BDOF_SUBPU_MAX_NUM];
#endif
#endif
#if JVET_X0083_BM_AMVP_MERGE_MODE
Mv m_mvBufEncAmBDMVR[2][MAX_NUM_SUBCU_DMVR];
MvField mvField_amList_enc[MAX_NUM_AMVP_CANDS_MAX_REF << 1];
#endif
int m_ctuIbcSearchRangeX;
int m_ctuIbcSearchRangeY;
#if ENABLE_SPLIT_PARALLELISM
EncLib* m_pcEncLib;
#endif
int m_bestBcwIdx[2];
double m_bestBcwCost[2];
GeoMotionInfo m_GeoModeTest[GEO_MAX_NUM_CANDS];
#if SHARP_LUMA_DELTA_QP || ENABLE_QPA_SUB_CTU
void updateLambda ( Slice* slice, const int dQP,
#if WCG_EXT && ER_CHROMA_QP_WCG_PPS
const bool useWCGChromaControl,
#endif
const bool updateRdCostLambda );
#endif
double m_sbtCostSave[2];
#if JVET_W0097_GPM_MMVD_TM
MergeCtx m_mergeCand;
bool m_mergeCandAvail;
#endif
public:
/// copy parameters from encoder class
void init ( EncLib* pcEncLib, const SPS& sps PARL_PARAM( const int jId = 0 ) );
void setDecCuReshaperInEncCU(EncReshape* pcReshape, ChromaFormat chromaFormatIDC) { initDecCuReshaper((Reshape*) pcReshape, chromaFormatIDC); }
/// create internal buffers
void create ( EncCfg* encCfg );
/// destroy internal buffers
void destroy ();
/// CTU analysis function
void compressCtu ( CodingStructure& cs, const UnitArea& area, const unsigned ctuRsAddr, const int prevQP[], const int currQP[] );
/// CTU encoding function
int updateCtuDataISlice ( const CPelBuf buf );
EncModeCtrl* getModeCtrl () { return m_modeCtrl; }
#if JVET_V0094_BILATERAL_FILTER || JVET_X0071_CHROMA_BILATERAL_FILTER
BilateralFilter *m_bilateralFilter = new BilateralFilter();
#endif
void setMergeBestSATDCost(double cost) { m_mergeBestSATDCost = cost; }
double getMergeBestSATDCost() { return m_mergeBestSATDCost; }
void setAFFBestSATDCost(double cost) { m_AFFBestSATDCost = cost; }
double getAFFBestSATDCost() { return m_AFFBestSATDCost; }
IbcHashMap& getIbcHashMap() { return m_ibcHashMap; }
EncCfg* getEncCfg() const { return m_pcEncCfg; }
EncCu();
~EncCu();
protected:
void xCalDebCost ( CodingStructure &cs, Partitioner &partitioner, bool calDist = false );
Distortion getDistortionDb ( CodingStructure &cs, CPelBuf org, CPelBuf reco, ComponentID compID, const CompArea& compArea, bool afterDb );
void xCompressCU ( CodingStructure*& tempCS, CodingStructure*& bestCS, Partitioner& pm, double maxCostAllowed = MAX_DOUBLE );
#if ENABLE_SPLIT_PARALLELISM
void xCompressCUParallel ( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm );
void copyState ( EncCu* other, Partitioner& pm, const UnitArea& currArea, const bool isDist );
#endif
bool
xCheckBestMode ( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestmode );
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
void xCheckModeSplit ( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestMode, const ModeType modeTypeParent, bool &skipInterPass );
#else
void xCheckModeSplit(CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestMode );
#endif
bool xCheckRDCostIntra(CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestMode, bool adaptiveColorTrans);
void xCheckDQP ( CodingStructure& cs, Partitioner& partitioner, bool bKeepCtx = false);
void xCheckChromaQPOffset ( CodingStructure& cs, Partitioner& partitioner);
#if !REMOVE_PCM
void xFillPCMBuffer ( CodingUnit &cu);
#endif
void xCheckRDCostHashInter ( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestMode );
#if MERGE_ENC_OPT
void xCheckSATDCostRegularMerge
( CodingStructure *&tempCS, CodingUnit &cu, PredictionUnit &pu, MergeCtx mergeCtx, PelUnitBuf *acMergeTempBuffer[MMVD_MRG_MAX_RD_NUM], PelUnitBuf *&singleMergeTempBuffer, PelUnitBuf acMergeTmpBuffer[MRG_MAX_NUM_CANDS]
#if !MULTI_PASS_DMVR
, Mv refinedMvdL0[MAX_NUM_PARTS_IN_CTU][MRG_MAX_NUM_CANDS]
#endif
, unsigned& uiNumMrgSATDCand, static_vector<ModeInfo, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &RdModeList, static_vector<double, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &candCostList, DistParam distParam, const TempCtx &ctxStart
#if MULTI_PASS_DMVR
, bool* applyBDMVR
#endif
);
#if JVET_X0049_ADAPT_DMVR
void xCheckSATDCostBMMerge
( CodingStructure *&tempCS, CodingUnit &cu, PredictionUnit &pu, MergeCtx& mrgCtx, PelUnitBuf *acMergeTempBuffer[MMVD_MRG_MAX_RD_NUM], PelUnitBuf *&singleMergeTempBuffer
, unsigned& uiNumMrgSATDCand, static_vector<ModeInfo, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &RdModeList, static_vector<double, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &candCostList, DistParam distParam, const TempCtx &ctxStart
#if MULTI_PASS_DMVR
, bool* applyBDMVR
#endif
);
#endif
void xCheckSATDCostCiipMerge
( CodingStructure *&tempCS, CodingUnit &cu, PredictionUnit &pu, MergeCtx mergeCtx, PelUnitBuf *acMergeTempBuffer[MMVD_MRG_MAX_RD_NUM], PelUnitBuf *&singleMergeTempBuffer, PelUnitBuf acMergeTmpBuffer[MRG_MAX_NUM_CANDS]
, unsigned& uiNumMrgSATDCand, static_vector<ModeInfo, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &RdModeList, static_vector<double, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &candCostList, DistParam distParam, const TempCtx &ctxStart);
#if JVET_X0141_CIIP_TIMD_TM && TM_MRG
void xCheckSATDCostCiipTmMerge
(CodingStructure *&tempCS, CodingUnit &cu, PredictionUnit &pu, MergeCtx mergeCtx, PelUnitBuf *acMergeTempBuffer[MMVD_MRG_MAX_RD_NUM], PelUnitBuf *&singleMergeTempBuffer, PelUnitBuf acTmMergeTmpBuffer[MRG_MAX_NUM_CANDS]
, unsigned& uiNumMrgSATDCand, static_vector<ModeInfo, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &RdModeList, static_vector<double, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &candCostList, DistParam distParam, const TempCtx &ctxStart);
#endif
void xCheckSATDCostMmvdMerge
( CodingStructure *&tempCS, CodingUnit &cu, PredictionUnit &pu, MergeCtx mergeCtx, PelUnitBuf *acMergeTempBuffer[MMVD_MRG_MAX_RD_NUM], PelUnitBuf *&singleMergeTempBuffer
, unsigned& uiNumMrgSATDCand, static_vector<ModeInfo, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &RdModeList, static_vector<double, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &candCostList, DistParam distParam, const TempCtx &ctxStart);
void xCheckSATDCostAffineMerge
( CodingStructure *&tempCS, CodingUnit &cu, PredictionUnit &pu, AffineMergeCtx affineMergeCtx, MergeCtx& mrgCtx, PelUnitBuf *acMergeTempBuffer[MMVD_MRG_MAX_RD_NUM], PelUnitBuf *&singleMergeTempBuffer
, unsigned& uiNumMrgSATDCand, static_vector<ModeInfo, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &RdModeList, static_vector<double, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &candCostList, DistParam distParam, const TempCtx &ctxStart);
#if AFFINE_MMVD
void xCheckSATDCostAffineMmvdMerge
( CodingStructure *&tempCS, CodingUnit &cu, PredictionUnit &pu, AffineMergeCtx affineMergeCtx, MergeCtx& mrgCtx, PelUnitBuf *acMergeTempBuffer[MMVD_MRG_MAX_RD_NUM], PelUnitBuf *&singleMergeTempBuffer
, unsigned& uiNumMrgSATDCand, static_vector<ModeInfo, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &RdModeList, static_vector<double, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &candCostList, DistParam distParam, const TempCtx &ctxStart);
#endif
#if TM_MRG
void xCheckSATDCostTMMerge
( CodingStructure *&tempCS, CodingUnit &cu, PredictionUnit &pu, MergeCtx& mrgCtx, PelUnitBuf *acMergeTempBuffer[MMVD_MRG_MAX_RD_NUM], PelUnitBuf *&singleMergeTempBuffer
, unsigned& uiNumMrgSATDCand, static_vector<ModeInfo, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &RdModeList, static_vector<double, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &candCostList, DistParam distParam, const TempCtx &ctxStart
#if MULTI_PASS_DMVR
, bool* applyBDMVR
#endif
);
#endif
#if !JVET_W0097_GPM_MMVD_TM
void xCheckSATDCostGeoMerge
( CodingStructure *&tempCS, CodingUnit &cu, PredictionUnit &pu, MergeCtx geoMergeCtx, PelUnitBuf *acMergeTempBuffer[MMVD_MRG_MAX_RD_NUM], PelUnitBuf *&singleMergeTempBuffer
, unsigned& uiNumMrgSATDCand, static_vector<ModeInfo, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &RdModeList, static_vector<double, MRG_MAX_NUM_CANDS + MMVD_ADD_NUM> &candCostList, DistParam distParam, const TempCtx &ctxStart);
#endif
#else
void xCheckRDCostAffineMerge2Nx2N
( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &partitioner, const EncTestMode& encTestMode );
#endif
#if AFFINE_MMVD && !MERGE_ENC_OPT
void xCheckRDCostAffineMmvd2Nx2N
( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &partitioner, const EncTestMode& encTestMode );
#endif
#if TM_MRG && !MERGE_ENC_OPT
void xCheckRDCostTMMerge2Nx2N
( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &partitioner, const EncTestMode& encTestMode );
#endif
void xCheckRDCostInter ( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestMode );
bool xCheckRDCostInterIMV(CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestMode, double &bestIntPelCost);
void xEncodeDontSplit ( CodingStructure &cs, Partitioner &partitioner);
void xCheckRDCostMerge2Nx2N ( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestMode );
#if MULTI_HYP_PRED
void xCheckRDCostInterMultiHyp2Nx2N(CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &partitioner, const EncTestMode& encTestMode);
void predInterSearchAdditionalHypothesisMulti(const MEResultVec& in, MEResultVec& out, PredictionUnit& pu, const MergeCtx &mrgCtx);
#endif
#if ENABLE_OBMC
void xCheckRDCostInterWoOBMC(CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestMode);
#endif
#if JVET_W0097_GPM_MMVD_TM
void xCheckRDCostMergeGeoComb2Nx2N(CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestMode, bool isSecondPass = false);
#else
void xCheckRDCostMergeGeo2Nx2N(CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestMode);
#endif
void xEncodeInterResidual( CodingStructure *&tempCS
, CodingStructure *&bestCS
, Partitioner &partitioner
, const EncTestMode& encTestMode
, int residualPass = 0
, bool* bestHasNonResi = NULL
, double* equBcwCost = NULL
);
#if REUSE_CU_RESULTS
void xReuseCachedResult ( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &Partitioner );
#endif
bool xIsBcwSkip(const CodingUnit& cu)
{
if (cu.slice->getSliceType() != B_SLICE)
{
return true;
}
return((m_pcEncCfg->getBaseQP() > 32) && ((cu.slice->getTLayer() >= 4)
|| ((cu.refIdxBi[0] >= 0 && cu.refIdxBi[1] >= 0)
&& (abs(cu.slice->getPOC() - cu.slice->getRefPOC(REF_PIC_LIST_0, cu.refIdxBi[0])) == 1
|| abs(cu.slice->getPOC() - cu.slice->getRefPOC(REF_PIC_LIST_1, cu.refIdxBi[1])) == 1))));
}
void xCheckRDCostIBCMode ( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &pm, const EncTestMode& encTestMode );
void xCheckRDCostIBCModeMerge2Nx2N( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &partitioner, const EncTestMode& encTestMode );
void xCheckPLT ( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &partitioner, const EncTestMode& encTestMode );
};
//! \}
#endif // __ENCMB__