-
Karsten Suehring authored
VVC follows the concept that parsing of SEIs shall be independent of parameter sets
Karsten Suehring authoredVVC follows the concept that parsing of SEIs shall be independent of parameter sets
EncGOP.cpp 211.86 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2020, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file EncGOP.cpp
\brief GOP encoder class
*/
#include <list>
#include <algorithm>
#include <functional>
#include "EncLib.h"
#include "EncGOP.h"
#include "Analyze.h"
#include "libmd5/MD5.h"
#include "CommonLib/SEI.h"
#include "CommonLib/NAL.h"
#include "NALwrite.h"
#include <math.h>
#include <deque>
#include <chrono>
#include <cinttypes>
#include "CommonLib/UnitTools.h"
#include "CommonLib/dtrace_codingstruct.h"
#include "CommonLib/dtrace_buffer.h"
#include "CommonLib/ProfileLevelTier.h"
#include "DecoderLib/DecLib.h"
#define ENCODE_SUB_SET 0
using namespace std;
//! \ingroup EncoderLib
//! \{
// ====================================================================================================================
// Constructor / destructor / initialization / destroy
// ====================================================================================================================
int getLSB(int poc, int maxLSB)
{
if (poc >= 0)
{
return poc % maxLSB;
}
else
{
return (maxLSB - ((-poc) % maxLSB)) % maxLSB;
}
}
EncGOP::EncGOP()
{
m_iLastIDR = 0;
m_iGopSize = 0;
m_iNumPicCoded = 0; //Niko
m_bFirst = true;
m_iLastRecoveryPicPOC = 0;
m_latestDRAPPOC = MAX_INT;
m_lastRasPoc = MAX_INT;
m_pcCfg = NULL;
m_pcSliceEncoder = NULL;
m_pcListPic = NULL;
m_HLSWriter = NULL;
m_bSeqFirst = true;
m_audIrapOrGdrAuFlag = false;
m_bRefreshPending = 0;
m_pocCRA = 0;
m_numLongTermRefPicSPS = 0;
::memset(m_ltRefPicPocLsbSps, 0, sizeof(m_ltRefPicPocLsbSps));
::memset(m_ltRefPicUsedByCurrPicFlag, 0, sizeof(m_ltRefPicUsedByCurrPicFlag));
::memset(m_lastBPSEI, 0, sizeof(m_lastBPSEI));
m_rapWithLeading = false;
m_bufferingPeriodSEIPresentInAU = false;
for (int i = 0; i < MAX_VPS_LAYERS; i++)
{
m_associatedIRAPType[i] = NAL_UNIT_CODED_SLICE_IDR_N_LP;
}
::memset(m_associatedIRAPPOC, 0, sizeof(m_associatedIRAPPOC));
#if W0038_DB_OPT
m_pcDeblockingTempPicYuv = NULL;
#endif
#if JVET_O0756_CALCULATE_HDRMETRICS
m_ppcFrameOrg = nullptr;
m_ppcFrameRec = nullptr;
m_pcConvertFormat = nullptr;
m_pcConvertIQuantize = nullptr;
m_pcColorTransform = nullptr;
m_pcDistortionDeltaE = nullptr;
m_pcTransferFct = nullptr;
m_pcColorTransformParams = nullptr;
m_pcFrameFormat = nullptr;
m_metricTime = std::chrono::milliseconds(0);
#endif
m_bInitAMaxBT = true;
m_bgPOC = -1;
m_picBg = NULL;
m_picOrig = NULL;
m_isEncodedLTRef = false;
m_isUseLTRef = false;
m_isPrepareLTRef = true;
m_lastLTRefPoc = 0;
}
EncGOP::~EncGOP()
{
if( !m_pcCfg->getDecodeBitstream(0).empty() || !m_pcCfg->getDecodeBitstream(1).empty() )
{
// reset potential decoder resources
tryDecodePicture( NULL, 0, std::string("") );
}
#if JVET_O0756_CALCULATE_HDRMETRICS
delete [] m_ppcFrameOrg;
delete [] m_ppcFrameRec;
m_ppcFrameOrg = m_ppcFrameRec = nullptr;
delete m_pcConvertFormat;
delete m_pcConvertIQuantize;
delete m_pcColorTransform;
delete m_pcDistortionDeltaE;
delete m_pcTransferFct;
delete m_pcColorTransformParams;
delete m_pcFrameFormat;
m_pcConvertFormat = nullptr;
m_pcConvertIQuantize = nullptr;
m_pcColorTransform = nullptr;
m_pcDistortionDeltaE = nullptr;
m_pcTransferFct = nullptr;
m_pcColorTransformParams = nullptr;
m_pcFrameFormat = nullptr;
#endif
}
/** Create list to contain pointers to CTU start addresses of slice.
*/
void EncGOP::create()
{
m_bLongtermTestPictureHasBeenCoded = 0;
m_bLongtermTestPictureHasBeenCoded2 = 0;
}
void EncGOP::destroy()
{
#if W0038_DB_OPT
if (m_pcDeblockingTempPicYuv)
{
m_pcDeblockingTempPicYuv->destroy();
delete m_pcDeblockingTempPicYuv;
m_pcDeblockingTempPicYuv = NULL;
}
#endif
if (m_picBg)
{
m_picBg->destroy();
delete m_picBg;
m_picBg = NULL;
}
if (m_picOrig)
{
m_picOrig->destroy();
delete m_picOrig;
m_picOrig = NULL;
}
}
void EncGOP::init ( EncLib* pcEncLib )
{
m_pcEncLib = pcEncLib;
m_pcCfg = pcEncLib;
m_seiEncoder.init(m_pcCfg, pcEncLib, this);
m_pcSliceEncoder = pcEncLib->getSliceEncoder();
m_pcListPic = pcEncLib->getListPic();
m_HLSWriter = pcEncLib->getHLSWriter();
m_pcLoopFilter = pcEncLib->getLoopFilter();
m_pcSAO = pcEncLib->getSAO();
m_pcALF = pcEncLib->getALF();
m_pcRateCtrl = pcEncLib->getRateCtrl();
::memset(m_lastBPSEI, 0, sizeof(m_lastBPSEI));
::memset(m_totalCoded, 0, sizeof(m_totalCoded));
m_HRD = pcEncLib->getHRD();
m_AUWriterIf = pcEncLib->getAUWriterIf();
#if WCG_EXT
if (m_pcCfg->getLmcs())
{
pcEncLib->getRdCost()->setReshapeInfo(m_pcCfg->getReshapeSignalType(), m_pcCfg->getBitDepth(CHANNEL_TYPE_LUMA));
pcEncLib->getRdCost()->initLumaLevelToWeightTableReshape();
}
else if (m_pcCfg->getLumaLevelToDeltaQPMapping().mode)
{
pcEncLib->getRdCost()->setReshapeInfo(RESHAPE_SIGNAL_PQ, m_pcCfg->getBitDepth(CHANNEL_TYPE_LUMA));
pcEncLib->getRdCost()->initLumaLevelToWeightTableReshape();
}
pcEncLib->getALF()->getLumaLevelWeightTable() = pcEncLib->getRdCost()->getLumaLevelWeightTable();
int alfWSSD = 0;
if (m_pcCfg->getLmcs() && m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_PQ )
{
alfWSSD = 1;
}
pcEncLib->getALF()->setAlfWSSD(alfWSSD);
#endif
m_pcReshaper = pcEncLib->getReshaper();
#if JVET_O0756_CALCULATE_HDRMETRICS
const bool calculateHdrMetrics = m_pcEncLib->getCalcluateHdrMetrics();
if(calculateHdrMetrics)
{
//allocate frame buffers and initialize class members
int chainNumber = 5;
m_ppcFrameOrg = new hdrtoolslib::Frame* [chainNumber];
m_ppcFrameRec = new hdrtoolslib::Frame* [chainNumber];
double* whitePointDeltaE = new double[hdrtoolslib::NB_REF_WHITE];
for (int i=0; i<hdrtoolslib::NB_REF_WHITE; i++)
{
whitePointDeltaE[i] = m_pcCfg->getWhitePointDeltaE(i);
}
double maxSampleValue = m_pcCfg->getMaxSampleValue();
hdrtoolslib::SampleRange sampleRange = m_pcCfg->getSampleRange();
hdrtoolslib::ChromaFormat chFmt = hdrtoolslib::ChromaFormat(m_pcCfg->getChromaFormatIdc());
int bitDepth = m_pcCfg->getBitDepth(CHANNEL_TYPE_LUMA);
hdrtoolslib::ColorPrimaries colorPrimaries = m_pcCfg->getColorPrimaries();
bool enableTFunctionLUT = m_pcCfg->getEnableTFunctionLUT();
hdrtoolslib::ChromaLocation* chromaLocation = new hdrtoolslib::ChromaLocation[2];
for (int i=0; i<2; i++)
{
chromaLocation[i] = m_pcCfg->getChromaLocation(i);
}
int chromaUpFilter = m_pcCfg->getChromaUPFilter();
int cropOffsetLeft = m_pcCfg->getCropOffsetLeft();
int cropOffsetTop = m_pcCfg->getCropOffsetTop();
int cropOffsetRight = m_pcCfg->getCropOffsetRight();
int cropOffsetBottom = m_pcCfg->getCropOffsetBottom();
int width = m_pcCfg->getSourceWidth() - cropOffsetLeft + cropOffsetRight;
int height = m_pcCfg->getSourceHeight() - cropOffsetTop + cropOffsetBottom;
m_ppcFrameOrg[0] = new hdrtoolslib::Frame(width, height, false, hdrtoolslib::CM_YCbCr, colorPrimaries, chFmt, sampleRange, bitDepth, false, hdrtoolslib::TF_PQ, 0);
m_ppcFrameRec[0] = new hdrtoolslib::Frame(width, height, false, hdrtoolslib::CM_YCbCr, colorPrimaries, chFmt, sampleRange, bitDepth, false, hdrtoolslib::TF_PQ, 0);
m_ppcFrameOrg[1] = new hdrtoolslib::Frame(m_ppcFrameOrg[0]->m_width[hdrtoolslib::Y_COMP], m_ppcFrameOrg[0]->m_height[hdrtoolslib::Y_COMP], false, hdrtoolslib::CM_YCbCr, colorPrimaries, hdrtoolslib::CF_444, sampleRange, bitDepth, false, hdrtoolslib::TF_PQ, 0);
m_ppcFrameRec[1] = new hdrtoolslib::Frame(m_ppcFrameRec[0]->m_width[hdrtoolslib::Y_COMP], m_ppcFrameRec[0]->m_height[hdrtoolslib::Y_COMP], false, hdrtoolslib::CM_YCbCr, colorPrimaries, hdrtoolslib::CF_444, sampleRange, bitDepth, false, hdrtoolslib::TF_PQ, 0); // 420 to 444 conversion
m_ppcFrameOrg[2] = new hdrtoolslib::Frame(m_ppcFrameOrg[0]->m_width[hdrtoolslib::Y_COMP], m_ppcFrameOrg[0]->m_height[hdrtoolslib::Y_COMP], true, hdrtoolslib::CM_YCbCr, colorPrimaries, hdrtoolslib::CF_444, hdrtoolslib::SR_UNKNOWN, 32, false, hdrtoolslib::TF_PQ, 0);
m_ppcFrameRec[2] = new hdrtoolslib::Frame(m_ppcFrameRec[0]->m_width[hdrtoolslib::Y_COMP], m_ppcFrameRec[0]->m_height[hdrtoolslib::Y_COMP], true, hdrtoolslib::CM_YCbCr, colorPrimaries, hdrtoolslib::CF_444, hdrtoolslib::SR_UNKNOWN, 32, false, hdrtoolslib::TF_PQ, 0); // 444 to Float conversion
m_ppcFrameOrg[3] = new hdrtoolslib::Frame(m_ppcFrameOrg[0]->m_width[hdrtoolslib::Y_COMP], m_ppcFrameOrg[0]->m_height[hdrtoolslib::Y_COMP], true, hdrtoolslib::CM_RGB, hdrtoolslib::CP_2020, hdrtoolslib::CF_444, hdrtoolslib::SR_UNKNOWN, 32, false, hdrtoolslib::TF_PQ, 0);
m_ppcFrameRec[3] = new hdrtoolslib::Frame(m_ppcFrameRec[0]->m_width[hdrtoolslib::Y_COMP], m_ppcFrameRec[0]->m_height[hdrtoolslib::Y_COMP], true, hdrtoolslib::CM_RGB, hdrtoolslib::CP_2020, hdrtoolslib::CF_444, hdrtoolslib::SR_UNKNOWN, 32, false, hdrtoolslib::TF_PQ, 0); // YCbCr to RGB conversion
m_ppcFrameOrg[4] = new hdrtoolslib::Frame(m_ppcFrameOrg[0]->m_width[hdrtoolslib::Y_COMP], m_ppcFrameOrg[0]->m_height[hdrtoolslib::Y_COMP], true, hdrtoolslib::CM_RGB, hdrtoolslib::CP_2020, hdrtoolslib::CF_444, hdrtoolslib::SR_UNKNOWN, 32, false, hdrtoolslib::TF_NULL, 0);
m_ppcFrameRec[4] = new hdrtoolslib::Frame(m_ppcFrameRec[0]->m_width[hdrtoolslib::Y_COMP], m_ppcFrameRec[0]->m_height[hdrtoolslib::Y_COMP], true, hdrtoolslib::CM_RGB, hdrtoolslib::CP_2020, hdrtoolslib::CF_444, hdrtoolslib::SR_UNKNOWN, 32, false, hdrtoolslib::TF_NULL, 0); // Inverse Transfer Function
m_pcFrameFormat = new hdrtoolslib::FrameFormat();
m_pcFrameFormat->m_isFloat = true;
m_pcFrameFormat->m_chromaFormat = hdrtoolslib::CF_UNKNOWN;
m_pcFrameFormat->m_colorSpace = hdrtoolslib::CM_RGB;
m_pcFrameFormat->m_colorPrimaries = hdrtoolslib::CP_2020;
m_pcFrameFormat->m_sampleRange = hdrtoolslib::SR_UNKNOWN;
m_pcConvertFormat = hdrtoolslib::ConvertColorFormat::create(width, height, chFmt, hdrtoolslib::CF_444, chromaUpFilter, chromaLocation, chromaLocation);
m_pcConvertIQuantize = hdrtoolslib::Convert::create(&m_ppcFrameOrg[1]->m_format, &m_ppcFrameOrg[2]->m_format);
m_pcColorTransform = hdrtoolslib::ColorTransform::create(m_ppcFrameOrg[2]->m_colorSpace, m_ppcFrameOrg[2]->m_colorPrimaries, m_ppcFrameOrg[3]->m_colorSpace, m_ppcFrameOrg[3]->m_colorPrimaries, true, 1);
m_pcDistortionDeltaE = new hdrtoolslib::DistortionMetricDeltaE(m_pcFrameFormat, false, maxSampleValue, whitePointDeltaE, 1);
m_pcTransferFct = hdrtoolslib::TransferFunction::create(hdrtoolslib::TF_PQ, true, (float) maxSampleValue, 0, 0.0, 1.0, enableTFunctionLUT);
}
#endif
}
int EncGOP::xWriteVPS (AccessUnit &accessUnit, const VPS *vps)
{
OutputNALUnit nalu(NAL_UNIT_VPS);
m_HLSWriter->setBitstream( &nalu.m_Bitstream );
CHECK( nalu.m_temporalId, "The value of TemporalId of VPS NAL units shall be equal to 0" );
m_HLSWriter->codeVPS( vps );
accessUnit.push_back(new NALUnitEBSP(nalu));
return (int)(accessUnit.back()->m_nalUnitData.str().size()) * 8;
}
int EncGOP::xWriteDCI(AccessUnit& accessUnit, const DCI* dci)
{
OutputNALUnit nalu(NAL_UNIT_DCI);
m_HLSWriter->setBitstream(&nalu.m_Bitstream);
CHECK(nalu.m_temporalId, "The value of TemporalId of DCI NAL units shall be equal to 0");
m_HLSWriter->codeDCI(dci);
accessUnit.push_back(new NALUnitEBSP(nalu));
return (int)(accessUnit.back()->m_nalUnitData.str().size()) * 8;
}
int EncGOP::xWriteSPS( AccessUnit &accessUnit, const SPS *sps, const int layerId )
{
OutputNALUnit nalu(NAL_UNIT_SPS);
m_HLSWriter->setBitstream( &nalu.m_Bitstream );
nalu.m_nuhLayerId = layerId;
CHECK( nalu.m_temporalId, "The value of TemporalId of SPS NAL units shall be equal to 0" );
m_HLSWriter->codeSPS( sps );
accessUnit.push_back(new NALUnitEBSP(nalu));
return (int)(accessUnit.back()->m_nalUnitData.str().size()) * 8;
}
int EncGOP::xWritePPS( AccessUnit &accessUnit, const PPS *pps, const int layerId )
{
OutputNALUnit nalu(NAL_UNIT_PPS);
m_HLSWriter->setBitstream( &nalu.m_Bitstream );
nalu.m_nuhLayerId = layerId;
CHECK( nalu.m_temporalId < accessUnit.temporalId, "TemporalId shall be greater than or equal to the TemporalId of the layer access unit containing the NAL unit" );
m_HLSWriter->codePPS( pps );
accessUnit.push_back(new NALUnitEBSP(nalu));
return (int)(accessUnit.back()->m_nalUnitData.str().size()) * 8;
}
int EncGOP::xWriteAPS( AccessUnit &accessUnit, APS *aps, const int layerId, const bool isPrefixNUT )
{
OutputNALUnit nalu( isPrefixNUT ? NAL_UNIT_PREFIX_APS : NAL_UNIT_SUFFIX_APS );
m_HLSWriter->setBitstream(&nalu.m_Bitstream);
nalu.m_nuhLayerId = layerId;
nalu.m_temporalId = aps->getTemporalId();
aps->setLayerId( layerId );
CHECK( nalu.m_temporalId < accessUnit.temporalId, "TemporalId shall be greater than or equal to the TemporalId of the layer access unit containing the NAL unit" );
m_HLSWriter->codeAPS(aps);
accessUnit.push_back(new NALUnitEBSP(nalu));
return (int)(accessUnit.back()->m_nalUnitData.str().size()) * 8;
}
int EncGOP::xWriteParameterSets(AccessUnit &accessUnit, Slice *slice, const bool bSeqFirst, const int layerIdx)
{
int actualTotalBits = 0;
if( bSeqFirst )
{
if (layerIdx == 0)
{
if (m_pcCfg->getDCIEnabled())
{
actualTotalBits += xWriteDCI(accessUnit, m_pcEncLib->getDCI());
}
if (slice->getSPS()->getVPSId() != 0)
{
actualTotalBits += xWriteVPS(accessUnit, m_pcEncLib->getVPS());
}
}
if( m_pcEncLib->SPSNeedsWriting( slice->getSPS()->getSPSId() ) ) // Note this assumes that all changes to the SPS are made at the EncLib level prior to picture creation (EncLib::xGetNewPicBuffer).
{
CHECK( !( bSeqFirst ), "Unspecified error" ); // Implementations that use more than 1 SPS need to be aware of activation issues.
actualTotalBits += xWriteSPS( accessUnit, slice->getSPS(), m_pcEncLib->getLayerId() );
}
}
if( m_pcEncLib->PPSNeedsWriting( slice->getPPS()->getPPSId() ) ) // Note this assumes that all changes to the PPS are made at the EncLib level prior to picture creation (EncLib::xGetNewPicBuffer).
{
actualTotalBits += xWritePPS( accessUnit, slice->getPPS(), m_pcEncLib->getLayerId() );
}
return actualTotalBits;
}
int EncGOP::xWritePicHeader( AccessUnit &accessUnit, PicHeader *picHeader )
{
OutputNALUnit nalu(NAL_UNIT_PH);
m_HLSWriter->setBitstream( &nalu.m_Bitstream );
nalu.m_temporalId = accessUnit.temporalId;
nalu.m_nuhLayerId = m_pcEncLib->getLayerId();
m_HLSWriter->codePictureHeader( picHeader, true );
accessUnit.push_back(new NALUnitEBSP(nalu));
return (int)(accessUnit.back()->m_nalUnitData.str().size()) * 8;
}
void EncGOP::xWriteAccessUnitDelimiter (AccessUnit &accessUnit, Slice *slice)
{
AUDWriter audWriter;
OutputNALUnit nalu(NAL_UNIT_ACCESS_UNIT_DELIMITER);
nalu.m_temporalId = slice->getTLayer();
int vpsId = slice->getSPS()->getVPSId();
if (vpsId == 0)
{
nalu.m_nuhLayerId = 0;
}
else
{
nalu.m_nuhLayerId = slice->getVPS()->getLayerId(0);
}
CHECK( nalu.m_temporalId != accessUnit.temporalId, "TemporalId shall be equal to the TemporalId of the AU containing the NAL unit" );
int picType = slice->isIntra() ? 0 : (slice->isInterP() ? 1 : 2);
audWriter.codeAUD(nalu.m_Bitstream, m_audIrapOrGdrAuFlag, picType);
accessUnit.push_front(new NALUnitEBSP(nalu));
}
// write SEI list into one NAL unit and add it to the Access unit at auPos
void EncGOP::xWriteSEI (NalUnitType naluType, SEIMessages& seiMessages, AccessUnit &accessUnit, AccessUnit::iterator &auPos, int temporalId)
{
// don't do anything, if we get an empty list
if (seiMessages.empty())
{
return;
}
OutputNALUnit nalu( naluType, m_pcEncLib->getLayerId(), temporalId );
m_seiWriter.writeSEImessages(nalu.m_Bitstream, seiMessages, *m_HRD, false, temporalId);
auPos = accessUnit.insert(auPos, new NALUnitEBSP(nalu));
auPos++;
}
void EncGOP::xWriteSEISeparately (NalUnitType naluType, SEIMessages& seiMessages, AccessUnit &accessUnit, AccessUnit::iterator &auPos, int temporalId)
{
// don't do anything, if we get an empty list
if (seiMessages.empty())
{
return;
}
for (SEIMessages::const_iterator sei = seiMessages.begin(); sei!=seiMessages.end(); sei++ )
{
SEIMessages tmpMessages;
tmpMessages.push_back(*sei);
OutputNALUnit nalu( naluType, m_pcEncLib->getLayerId(), temporalId );
m_seiWriter.writeSEImessages(nalu.m_Bitstream, tmpMessages, *m_HRD, false, temporalId);
auPos = accessUnit.insert(auPos, new NALUnitEBSP(nalu));
auPos++;
}
}
void EncGOP::xClearSEIs(SEIMessages& seiMessages, bool deleteMessages)
{
if (deleteMessages)
{
deleteSEIs(seiMessages);
}
else
{
seiMessages.clear();
}
}
// write SEI messages as separate NAL units ordered
void EncGOP::xWriteLeadingSEIOrdered (SEIMessages& seiMessages, SEIMessages& duInfoSeiMessages, AccessUnit &accessUnit, int temporalId, bool testWrite)
{
AccessUnit::iterator itNalu = accessUnit.begin();
while ((itNalu != accessUnit.end()) &&
((*itNalu)->m_nalUnitType == NAL_UNIT_ACCESS_UNIT_DELIMITER
|| (*itNalu)->m_nalUnitType == NAL_UNIT_VPS
|| (*itNalu)->m_nalUnitType == NAL_UNIT_DCI
|| (*itNalu)->m_nalUnitType == NAL_UNIT_SPS
|| (*itNalu)->m_nalUnitType == NAL_UNIT_PPS
))
{
itNalu++;
}
SEIMessages localMessages = seiMessages;
SEIMessages currentMessages;
#if ENABLE_TRACING
g_HLSTraceEnable = !testWrite;
#endif
// The case that a specific SEI is not present is handled in xWriteSEI (empty list)
// Buffering period SEI must always be following active parameter sets
currentMessages = extractSeisByType(localMessages, SEI::BUFFERING_PERIOD);
CHECK(!(currentMessages.size() <= 1), "Unspecified error");
xWriteSEI(NAL_UNIT_PREFIX_SEI, currentMessages, accessUnit, itNalu, temporalId);
xClearSEIs(currentMessages, !testWrite);
// Picture timing SEI must always be following buffering period
currentMessages = extractSeisByType(localMessages, SEI::PICTURE_TIMING);
CHECK(!(currentMessages.size() <= 1), "Unspecified error");
xWriteSEI(NAL_UNIT_PREFIX_SEI, currentMessages, accessUnit, itNalu, temporalId);
xClearSEIs(currentMessages, !testWrite);
// Decoding unit info SEI must always be following picture timing
if (!duInfoSeiMessages.empty())
{
currentMessages.push_back(duInfoSeiMessages.front());
if (!testWrite)
{
duInfoSeiMessages.pop_front();
}
xWriteSEI(NAL_UNIT_PREFIX_SEI, currentMessages, accessUnit, itNalu, temporalId);
xClearSEIs(currentMessages, !testWrite);
}
if (m_pcCfg->getScalableNestingSEIEnabled())
{
// Scalable nesting SEI must always be the following DU info
currentMessages = extractSeisByType(localMessages, SEI::SCALABLE_NESTING);
xWriteSEISeparately(NAL_UNIT_PREFIX_SEI, currentMessages, accessUnit, itNalu, temporalId);
xClearSEIs(currentMessages, !testWrite);
}
// And finally everything else one by one
xWriteSEISeparately(NAL_UNIT_PREFIX_SEI, localMessages, accessUnit, itNalu, temporalId);
xClearSEIs(localMessages, !testWrite);
if (!testWrite)
{
seiMessages.clear();
}
}
void EncGOP::xWriteLeadingSEIMessages (SEIMessages& seiMessages, SEIMessages& duInfoSeiMessages, AccessUnit &accessUnit, int temporalId, const SPS *sps, std::deque<DUData> &duData)
{
AccessUnit testAU;
SEIMessages picTimingSEIs = getSeisByType(seiMessages, SEI::PICTURE_TIMING);
CHECK(!(picTimingSEIs.size() < 2), "Unspecified error");
SEIPictureTiming * picTiming = picTimingSEIs.empty() ? NULL : (SEIPictureTiming*) picTimingSEIs.front();
// test writing
xWriteLeadingSEIOrdered(seiMessages, duInfoSeiMessages, testAU, temporalId, true);
// update Timing and DU info SEI
xUpdateDuData(testAU, duData);
xUpdateTimingSEI(picTiming, duData, sps);
xUpdateDuInfoSEI(duInfoSeiMessages, picTiming, sps->getMaxTLayers());
// actual writing
xWriteLeadingSEIOrdered(seiMessages, duInfoSeiMessages, accessUnit, temporalId, false);
// testAU will automatically be cleaned up when losing scope
}
void EncGOP::xWriteTrailingSEIMessages (SEIMessages& seiMessages, AccessUnit &accessUnit, int temporalId)
{
// Note: using accessUnit.end() works only as long as this function is called after slice coding and before EOS/EOB NAL units
AccessUnit::iterator pos = accessUnit.end();
xWriteSEISeparately(NAL_UNIT_SUFFIX_SEI, seiMessages, accessUnit, pos, temporalId);
deleteSEIs(seiMessages);
}
void EncGOP::xWriteDuSEIMessages (SEIMessages& duInfoSeiMessages, AccessUnit &accessUnit, int temporalId, std::deque<DUData> &duData)
{
if( m_pcCfg->getDecodingUnitInfoSEIEnabled() && m_HRD->getBufferingPeriodSEI()->m_decodingUnitCpbParamsInPicTimingSeiFlag )
{
int naluIdx = 0;
AccessUnit::iterator nalu = accessUnit.begin();
// skip over first DU, we have a DU info SEI there already
while (naluIdx < duData[0].accumNalsDU && nalu!=accessUnit.end())
{
naluIdx++;
nalu++;
}
SEIMessages::iterator duSEI = duInfoSeiMessages.begin();
// loop over remaining DUs
for (int duIdx = 1; duIdx < duData.size(); duIdx++)
{
if (duSEI == duInfoSeiMessages.end())
{
// if the number of generated SEIs matches the number of DUs, this should not happen
CHECK(!(false), "Unspecified error");
return;
}
// write the next SEI
SEIMessages tmpSEI;
tmpSEI.push_back(*duSEI);
xWriteSEI(NAL_UNIT_PREFIX_SEI, tmpSEI, accessUnit, nalu, temporalId);
// nalu points to the position after the SEI, so we have to increase the index as well
naluIdx++;
while ((naluIdx < duData[duIdx].accumNalsDU) && nalu!=accessUnit.end())
{
naluIdx++;
nalu++;
}
duSEI++;
}
}
deleteSEIs(duInfoSeiMessages);
}
void EncGOP::xCreateIRAPLeadingSEIMessages (SEIMessages& seiMessages, const SPS *sps, const PPS *pps)
{
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
if(m_pcCfg->getFramePackingArrangementSEIEnabled())
{
SEIFramePacking *sei = new SEIFramePacking;
m_seiEncoder.initSEIFramePacking (sei, m_iNumPicCoded);
seiMessages.push_back(sei);
}
if (m_pcCfg->getParameterSetsInclusionIndicationSEIEnabled())
{
SEIParameterSetsInclusionIndication* sei = new SEIParameterSetsInclusionIndication;
m_seiEncoder.initSEIParameterSetsInclusionIndication(sei);
seiMessages.push_back(sei);
}
#if U0033_ALTERNATIVE_TRANSFER_CHARACTERISTICS_SEI
if(m_pcCfg->getSEIAlternativeTransferCharacteristicsSEIEnable())
{
SEIAlternativeTransferCharacteristics *seiAlternativeTransferCharacteristics = new SEIAlternativeTransferCharacteristics;
m_seiEncoder.initSEIAlternativeTransferCharacteristics(seiAlternativeTransferCharacteristics);
seiMessages.push_back(seiAlternativeTransferCharacteristics);
}
#endif
if (m_pcCfg->getErpSEIEnabled())
{
SEIEquirectangularProjection *sei = new SEIEquirectangularProjection;
m_seiEncoder.initSEIErp(sei);
seiMessages.push_back(sei);
}
if (m_pcCfg->getSphereRotationSEIEnabled())
{
SEISphereRotation *sei = new SEISphereRotation;
m_seiEncoder.initSEISphereRotation(sei);
seiMessages.push_back(sei);
}
if (m_pcCfg->getOmniViewportSEIEnabled())
{
SEIOmniViewport *sei = new SEIOmniViewport;
m_seiEncoder.initSEIOmniViewport(sei);
seiMessages.push_back(sei);
}
if (m_pcCfg->getRwpSEIEnabled())
{
SEIRegionWisePacking *seiRegionWisePacking = new SEIRegionWisePacking;
m_seiEncoder.initSEIRegionWisePacking(seiRegionWisePacking);
seiMessages.push_back(seiRegionWisePacking);
}
if (m_pcCfg->getGcmpSEIEnabled())
{
SEIGeneralizedCubemapProjection *sei = new SEIGeneralizedCubemapProjection;
m_seiEncoder.initSEIGcmp(sei);
seiMessages.push_back(sei);
}
if (m_pcCfg->getSubpicureLevelInfoSEICfg().m_enabled)
{
SEISubpicureLevelInfo *seiSubpicureLevelInfo = new SEISubpicureLevelInfo;
m_seiEncoder.initSEISubpictureLevelInfo(seiSubpicureLevelInfo, sps);
seiMessages.push_back(seiSubpicureLevelInfo);
}
if (m_pcCfg->getSampleAspectRatioInfoSEIEnabled())
{
SEISampleAspectRatioInfo *seiSampleAspectRatioInfo = new SEISampleAspectRatioInfo;
m_seiEncoder.initSEISampleAspectRatioInfo(seiSampleAspectRatioInfo);
seiMessages.push_back(seiSampleAspectRatioInfo);
}
// film grain
if (m_pcCfg->getFilmGrainCharactersticsSEIEnabled())
{
SEIFilmGrainCharacteristics *sei = new SEIFilmGrainCharacteristics;
m_seiEncoder.initSEIFilmGrainCharacteristics(sei);
seiMessages.push_back(sei);
}
// mastering display colour volume
if (m_pcCfg->getMasteringDisplaySEI().colourVolumeSEIEnabled)
{
SEIMasteringDisplayColourVolume *sei = new SEIMasteringDisplayColourVolume;
m_seiEncoder.initSEIMasteringDisplayColourVolume(sei);
seiMessages.push_back(sei);
}
// content light level
if (m_pcCfg->getCLLSEIEnabled())
{
SEIContentLightLevelInfo *seiCLL = new SEIContentLightLevelInfo;
m_seiEncoder.initSEIContentLightLevel(seiCLL);
seiMessages.push_back(seiCLL);
}
// ambient viewing environment
if (m_pcCfg->getAmbientViewingEnvironmentSEIEnabled())
{
SEIAmbientViewingEnvironment *seiAVE = new SEIAmbientViewingEnvironment;
m_seiEncoder.initSEIAmbientViewingEnvironment(seiAVE);
seiMessages.push_back(seiAVE);
}
// content colour volume
if (m_pcCfg->getCcvSEIEnabled())
{
SEIContentColourVolume *seiContentColourVolume = new SEIContentColourVolume;
m_seiEncoder.initSEIContentColourVolume(seiContentColourVolume);
seiMessages.push_back(seiContentColourVolume);
}
}
void EncGOP::xCreatePerPictureSEIMessages (int picInGOP, SEIMessages& seiMessages, SEIMessages& nestedSeiMessages, Slice *slice)
{
if ((m_pcCfg->getBufferingPeriodSEIEnabled()) && (slice->isIRAP() || slice->getNalUnitType() == NAL_UNIT_CODED_SLICE_GDR) &&
slice->getNalUnitLayerId()==slice->getVPS()->getLayerId(0) &&
(slice->getSPS()->getGeneralHrdParametersPresentFlag()))
{
SEIBufferingPeriod *bufferingPeriodSEI = new SEIBufferingPeriod();
bool noLeadingPictures = ( (slice->getNalUnitType()!= NAL_UNIT_CODED_SLICE_IDR_W_RADL) && (slice->getNalUnitType()!= NAL_UNIT_CODED_SLICE_CRA) )?(true):(false);
m_seiEncoder.initSEIBufferingPeriod(bufferingPeriodSEI,noLeadingPictures);
m_HRD->setBufferingPeriodSEI(bufferingPeriodSEI);
seiMessages.push_back(bufferingPeriodSEI);
m_bufferingPeriodSEIPresentInAU = true;
if (m_pcCfg->getScalableNestingSEIEnabled())
{
SEIBufferingPeriod *bufferingPeriodSEIcopy = new SEIBufferingPeriod();
bufferingPeriodSEI->copyTo(*bufferingPeriodSEIcopy);
nestedSeiMessages.push_back(bufferingPeriodSEIcopy);
}
}
if (m_pcEncLib->getDependentRAPIndicationSEIEnabled() && slice->isDRAP())
{
SEIDependentRAPIndication *dependentRAPIndicationSEI = new SEIDependentRAPIndication();
m_seiEncoder.initSEIDependentRAPIndication(dependentRAPIndicationSEI);
seiMessages.push_back(dependentRAPIndicationSEI);
}
}
void EncGOP::xCreateScalableNestingSEI(SEIMessages& seiMessages, SEIMessages& nestedSeiMessages, const std::vector<uint16_t>& subpicIDs)
{
SEIMessages tmpMessages;
while (!nestedSeiMessages.empty())
{
SEI* sei = nestedSeiMessages.front();
nestedSeiMessages.pop_front();
tmpMessages.push_back(sei);
SEIScalableNesting *nestingSEI = new SEIScalableNesting();
m_seiEncoder.initSEIScalableNesting(nestingSEI, tmpMessages, subpicIDs);
seiMessages.push_back(nestingSEI);
tmpMessages.clear();
}
}
void EncGOP::xCreateFrameFieldInfoSEI (SEIMessages& seiMessages, Slice *slice, bool isField)
{
if (m_pcCfg->getFrameFieldInfoSEIEnabled())
{
SEIFrameFieldInfo *frameFieldInfoSEI = new SEIFrameFieldInfo();
// encode only very basic information. if more feature are supported, this should be moved to SEIEncoder
frameFieldInfoSEI->m_fieldPicFlag = isField;
if (isField)
{
frameFieldInfoSEI->m_bottomFieldFlag = !slice->getPic()->topField;
}
seiMessages.push_back(frameFieldInfoSEI);
}
}
void EncGOP::xCreatePictureTimingSEI (int IRAPGOPid, SEIMessages& seiMessages, SEIMessages& nestedSeiMessages, SEIMessages& duInfoSeiMessages, Slice *slice, bool isField, std::deque<DUData> &duData)
{
// Picture timing depends on buffering period. When either of those is not disabled,
// initialization would fail. Needs more cleanup after DU timing is integrated.
if (!(m_pcCfg->getPictureTimingSEIEnabled() && m_pcCfg->getBufferingPeriodSEIEnabled()))
{
return;
}
const GeneralHrdParams *hrd = slice->getSPS()->getGeneralHrdParameters();
// update decoding unit parameters
if ((m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled()) && slice->getNalUnitLayerId() == slice->getVPS()->getLayerId(0))
{
int picSptDpbOutputDuDelay = 0;
SEIPictureTiming *pictureTimingSEI = new SEIPictureTiming();
// DU parameters
if( hrd->getGeneralDecodingUnitHrdParamsPresentFlag() )
{
uint32_t numDU = (uint32_t) duData.size();
pictureTimingSEI->m_numDecodingUnitsMinus1 = ( numDU - 1 );
pictureTimingSEI->m_duCommonCpbRemovalDelayFlag = false;
pictureTimingSEI->m_numNalusInDuMinus1.resize( numDU );
const uint32_t maxNumSubLayers = slice->getSPS()->getMaxTLayers();
pictureTimingSEI->m_duCpbRemovalDelayMinus1.resize( numDU * maxNumSubLayers );
}
const uint32_t cpbRemovalDelayLegth = m_HRD->getBufferingPeriodSEI()->m_cpbRemovalDelayLength;
const uint32_t maxNumSubLayers = slice->getSPS()->getMaxTLayers();
pictureTimingSEI->m_auCpbRemovalDelay[maxNumSubLayers-1] = std::min<int>(std::max<int>(1, m_totalCoded[maxNumSubLayers-1] - m_lastBPSEI[maxNumSubLayers-1]), static_cast<int>(pow(2, static_cast<double>(cpbRemovalDelayLegth)))); // Syntax element signalled as minus, hence the .
CHECK( (m_totalCoded[maxNumSubLayers-1] - m_lastBPSEI[maxNumSubLayers-1]) > pow(2, static_cast<double>(cpbRemovalDelayLegth)), " cpbRemovalDelayLegth too small for m_auCpbRemovalDelay[pt_max_sub_layers_minus1] at picture timing SEI " );
const uint32_t temporalId = slice->getTLayer();
for( int i = temporalId ; i < maxNumSubLayers - 1 ; i ++ )
{
int indexWithinGOP = (m_totalCoded[maxNumSubLayers - 1] - m_lastBPSEI[maxNumSubLayers - 1]) % m_pcCfg->getGOPSize();
pictureTimingSEI->m_ptSubLayerDelaysPresentFlag[i] = true;
if( ((m_rapWithLeading == true) && (indexWithinGOP == 0)) || (m_totalCoded[maxNumSubLayers - 1] == 0) || m_bufferingPeriodSEIPresentInAU || (slice->getPOC() + m_pcCfg->getGOPSize()) > m_pcCfg->getFramesToBeEncoded() )
{
pictureTimingSEI->m_cpbRemovalDelayDeltaEnabledFlag[i] = false;
}
else
{
pictureTimingSEI->m_cpbRemovalDelayDeltaEnabledFlag[i] = m_HRD->getBufferingPeriodSEI()->m_cpbRemovalDelayDeltasPresentFlag;
}
if( pictureTimingSEI->m_cpbRemovalDelayDeltaEnabledFlag[i] )
{
if( m_rapWithLeading == false )
{
switch (m_pcCfg->getGOPSize())
{
case 8:
{
if((indexWithinGOP == 1 && i == 2))
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 0;
}
else if((indexWithinGOP == 2 && i == 2) || (indexWithinGOP == 6 && i == 2))
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 1;
}
else if((indexWithinGOP == 1 && i == 1) || (indexWithinGOP == 3 && i == 2))
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 2;
}
else if(indexWithinGOP == 2 && i == 1)
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 3;
}
else if(indexWithinGOP == 1 && i == 0)
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 4;
}
else
{
THROW("m_cpbRemovalDelayDeltaIdx not applicable for the sub-layer and GOP size");
}
}
break;
case 16:
{
if((indexWithinGOP == 1 && i == 3))
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 0;
}
else if((indexWithinGOP == 2 && i == 3) || (indexWithinGOP == 10 && i == 3) || (indexWithinGOP == 14 && i == 3))
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 1;
}
else if((indexWithinGOP == 1 && i == 2) || (indexWithinGOP == 3 && i == 3) || (indexWithinGOP == 7 && i == 3) || (indexWithinGOP == 11 && i == 3))
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 2;
}
else if(indexWithinGOP == 4 && i == 3)
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 3;
}
else if((indexWithinGOP == 2 && i == 2) || (indexWithinGOP == 10 && i == 2))
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 4;
}
else if(indexWithinGOP == 1 && i == 1)
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 5;
}
else if(indexWithinGOP == 3 && i == 2)
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 6;
}
else if(indexWithinGOP == 2 && i == 1)
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 7;
}
else if(indexWithinGOP == 1 && i == 0)
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 8;
}
else
{
THROW("m_cpbRemovalDelayDeltaIdx not applicable for the sub-layer and GOP size");
}
}
break;
default:
{
THROW("m_cpbRemovalDelayDeltaIdx not supported for the current GOP size");
}
break;
}
}
else
{
switch (m_pcCfg->getGOPSize())
{
case 8:
{
if((indexWithinGOP == 1 && i == 2) || (indexWithinGOP == 5 && i == 2))
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 0;
}
else if(indexWithinGOP == 2 && i == 2)
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 1;
}
else if(indexWithinGOP == 1 && i == 1)
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 2;
}
else
{
THROW("m_cpbRemovalDelayDeltaIdx not applicable for the sub-layer and GOP size");
}
}
break;
case 16:
{
if((indexWithinGOP == 1 && i == 3) || (indexWithinGOP == 9 && i == 3) || (indexWithinGOP == 13 && i == 3))
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 0;
}
else if((indexWithinGOP == 2 && i == 3) || (indexWithinGOP == 6 && i == 3) || (indexWithinGOP == 10 && i == 3))
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 1;
}
else if((indexWithinGOP == 1 && i == 2) || (indexWithinGOP == 9 && i == 2) || (indexWithinGOP == 3 && i == 3))
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 2;
}
else if(indexWithinGOP == 2 && i == 2)
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 3;
}
else if(indexWithinGOP == 1 && i == 1)
{
pictureTimingSEI->m_cpbRemovalDelayDeltaIdx[i] = 4;
}
else
{
THROW("m_cpbRemovalDelayDeltaIdx not applicable for the sub-layer and GOP size");
}
}
break;
default:
{
THROW("m_cpbRemovalDelayDeltaIdx not applicable for the sub-layer and GOP size");
}
break;
}
}
}
else
{
int scaledDistToBuffPeriod = (m_totalCoded[i] - m_lastBPSEI[i]) * static_cast<int>(pow(2, static_cast<double>(maxNumSubLayers - 1 - i)));
pictureTimingSEI->m_auCpbRemovalDelay[i] = std::min<int>(std::max<int>(1, scaledDistToBuffPeriod), static_cast<int>(pow(2, static_cast<double>(cpbRemovalDelayLegth)))); // Syntax element signalled as minus, hence the .
CHECK( (scaledDistToBuffPeriod) > pow(2, static_cast<double>(cpbRemovalDelayLegth)), " cpbRemovalDelayLegth too small for m_auCpbRemovalDelay[i] at picture timing SEI " );
}
}
pictureTimingSEI->m_picDpbOutputDelay = slice->getSPS()->getNumReorderPics(slice->getSPS()->getMaxTLayers()-1) + slice->getPOC() - m_totalCoded[maxNumSubLayers-1];
if(m_pcCfg->getEfficientFieldIRAPEnabled() && IRAPGOPid > 0 && IRAPGOPid < m_iGopSize)
{
// if pictures have been swapped there is likely one more picture delay on their tid. Very rough approximation
pictureTimingSEI->m_picDpbOutputDelay ++;
}
int factor = hrd->getTickDivisorMinus2() + 2;
pictureTimingSEI->m_picDpbOutputDuDelay = factor * pictureTimingSEI->m_picDpbOutputDelay;
if( m_pcCfg->getDecodingUnitInfoSEIEnabled() )
{
picSptDpbOutputDuDelay = factor * pictureTimingSEI->m_picDpbOutputDelay;
}
if (m_bufferingPeriodSEIPresentInAU)
{
for( int i = temporalId ; i < maxNumSubLayers ; i ++ )
{
m_lastBPSEI[i] = m_totalCoded[i];
}
if( (slice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL)||(slice->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA) )
{
m_rapWithLeading = true;
}
}
if( m_pcCfg->getPictureTimingSEIEnabled() )
{
seiMessages.push_back(pictureTimingSEI);
if (m_pcCfg->getScalableNestingSEIEnabled() && !m_pcCfg->getSamePicTimingInAllOLS())
{
SEIPictureTiming *pictureTimingSEIcopy = new SEIPictureTiming();
pictureTimingSEI->copyTo(*pictureTimingSEIcopy);
nestedSeiMessages.push_back(pictureTimingSEIcopy);
}
}
if( m_pcCfg->getDecodingUnitInfoSEIEnabled() && hrd->getGeneralDecodingUnitHrdParamsPresentFlag() )
{
for( int i = 0; i < ( pictureTimingSEI->m_numDecodingUnitsMinus1 + 1 ); i ++ )
{
SEIDecodingUnitInfo *duInfoSEI = new SEIDecodingUnitInfo();
duInfoSEI->m_decodingUnitIdx = i;
for( int j = temporalId; j <= maxNumSubLayers; j++ )
duInfoSEI->m_duSptCpbRemovalDelayIncrement[j] = pictureTimingSEI->m_duCpbRemovalDelayMinus1[i*maxNumSubLayers+j] + 1;
duInfoSEI->m_dpbOutputDuDelayPresentFlag = false;
duInfoSEI->m_picSptDpbOutputDuDelay = picSptDpbOutputDuDelay;
duInfoSeiMessages.push_back(duInfoSEI);
}
}
if( !m_pcCfg->getPictureTimingSEIEnabled() && pictureTimingSEI )
{
delete pictureTimingSEI;
}
}
}
void EncGOP::xUpdateDuData(AccessUnit &testAU, std::deque<DUData> &duData)
{
if (duData.empty())
{
return;
}
// fix first
uint32_t numNalUnits = (uint32_t)testAU.size();
uint32_t numRBSPBytes = 0;
for (AccessUnit::const_iterator it = testAU.begin(); it != testAU.end(); it++)
{
numRBSPBytes += uint32_t((*it)->m_nalUnitData.str().size());
}
duData[0].accumBitsDU += ( numRBSPBytes << 3 );
duData[0].accumNalsDU += numNalUnits;
// adapt cumulative sums for all following DUs
// and add one DU info SEI, if enabled
for (int i=1; i<duData.size(); i++)
{
if (m_pcCfg->getDecodingUnitInfoSEIEnabled())
{
numNalUnits += 1;
numRBSPBytes += ( 5 << 3 );
}
duData[i].accumBitsDU += numRBSPBytes; // probably around 5 bytes
duData[i].accumNalsDU += numNalUnits;
}
// The last DU may have a trailing SEI
if (m_pcCfg->getDecodedPictureHashSEIType()!=HASHTYPE_NONE)
{
duData.back().accumBitsDU += ( 20 << 3 ); // probably around 20 bytes - should be further adjusted, e.g. by type
duData.back().accumNalsDU += 1;
}
}
void EncGOP::xUpdateTimingSEI(SEIPictureTiming *pictureTimingSEI, std::deque<DUData> &duData, const SPS *sps)
{
if (!pictureTimingSEI)
{
return;
}
const GeneralHrdParams *hrd = sps->getGeneralHrdParameters();
if( hrd->getGeneralDecodingUnitHrdParamsPresentFlag() )
{
int i;
uint64_t ui64Tmp;
uint32_t uiPrev = 0;
uint32_t numDU = ( pictureTimingSEI->m_numDecodingUnitsMinus1 + 1 );
std::vector<uint32_t> &rDuCpbRemovalDelayMinus1 = pictureTimingSEI->m_duCpbRemovalDelayMinus1;
uint32_t maxDiff = ( hrd->getTickDivisorMinus2() + 2 ) - 1;
int maxNumSubLayers = sps->getMaxTLayers();
for( int j = 0; j < maxNumSubLayers - 1; j++ )
pictureTimingSEI->m_ptSubLayerDelaysPresentFlag[j] = false;
for( i = 0; i < numDU; i ++ )
{
pictureTimingSEI->m_numNalusInDuMinus1[ i ] = ( i == 0 ) ? ( duData[i].accumNalsDU - 1 ) : ( duData[i].accumNalsDU- duData[i-1].accumNalsDU - 1 );
}
if( numDU == 1 )
{
rDuCpbRemovalDelayMinus1[ 0 + maxNumSubLayers - 1 ] = 0; /* don't care */
}
else
{
rDuCpbRemovalDelayMinus1[ (numDU - 1) * maxNumSubLayers + maxNumSubLayers - 1 ] = 0;/* by definition */
uint32_t tmp = 0;
uint32_t accum = 0;
for( i = ( numDU - 2 ); i >= 0; i -- )
{
ui64Tmp = (((duData[numDU - 1].accumBitsDU - duData[i].accumBitsDU) * (sps->getGeneralHrdParameters()->getTimeScale() / sps->getGeneralHrdParameters()->getNumUnitsInTick()) * (hrd->getTickDivisorMinus2() + 2)) / (m_pcCfg->getTargetBitrate()));
if( (uint32_t)ui64Tmp > maxDiff )
{
tmp ++;
}
}
uiPrev = 0;
uint32_t flag = 0;
for( i = ( numDU - 2 ); i >= 0; i -- )
{
flag = 0;
ui64Tmp = (((duData[numDU - 1].accumBitsDU - duData[i].accumBitsDU) * (sps->getGeneralHrdParameters()->getTimeScale() / sps->getGeneralHrdParameters()->getNumUnitsInTick()) * (hrd->getTickDivisorMinus2() + 2)) / (m_pcCfg->getTargetBitrate()));
if( (uint32_t)ui64Tmp > maxDiff )
{
if(uiPrev >= maxDiff - tmp)
{
ui64Tmp = uiPrev + 1;
flag = 1;
}
else ui64Tmp = maxDiff - tmp + 1;
}
rDuCpbRemovalDelayMinus1[ i * maxNumSubLayers + maxNumSubLayers - 1 ] = (uint32_t)ui64Tmp - uiPrev - 1;
if( (int)rDuCpbRemovalDelayMinus1[ i * maxNumSubLayers + maxNumSubLayers - 1 ] < 0 )
{
rDuCpbRemovalDelayMinus1[ i * maxNumSubLayers + maxNumSubLayers - 1 ] = 0;
}
else if (tmp > 0 && flag == 1)
{
tmp --;
}
accum += rDuCpbRemovalDelayMinus1[ i * maxNumSubLayers + maxNumSubLayers - 1 ] + 1;
uiPrev = accum;
}
}
}
}
void EncGOP::xUpdateDuInfoSEI(SEIMessages &duInfoSeiMessages, SEIPictureTiming *pictureTimingSEI, int maxSubLayers)
{
if (duInfoSeiMessages.empty() || (pictureTimingSEI == NULL))
{
return;
}
int i=0;
for (SEIMessages::iterator du = duInfoSeiMessages.begin(); du!= duInfoSeiMessages.end(); du++)
{
SEIDecodingUnitInfo *duInfoSEI = (SEIDecodingUnitInfo*) (*du);
duInfoSEI->m_decodingUnitIdx = i;
for ( int j = 0; j < maxSubLayers; j++ )
{
duInfoSEI->m_duiSubLayerDelaysPresentFlag[j] = pictureTimingSEI->m_ptSubLayerDelaysPresentFlag[j];
duInfoSEI->m_duSptCpbRemovalDelayIncrement[j] = pictureTimingSEI->m_duCpbRemovalDelayMinus1[i*maxSubLayers+j] + 1;
}
duInfoSEI->m_dpbOutputDuDelayPresentFlag = false;
i++;
}
}
static void
validateMinCrRequirements(const ProfileLevelTierFeatures &plt, std::size_t numBytesInVclNalUnits, const Picture *pPic, const EncCfg *pCfg)
{
// numBytesInVclNalUnits shall be less than or equal to
// FormatCapabilityFactor * MaxLumaSr * framePeriod / MinCr,
// ( = FormatCapabilityFactor * MaxLumaSr / (MinCr * frameRate),
if (plt.getLevelTierFeatures() && plt.getProfileFeatures() && plt.getLevelTierFeatures()->level!=Level::LEVEL15_5)
{
const uint32_t formatCapabilityFactorx1000 = plt.getProfileFeatures()->formatCapabilityFactorx1000;
const uint64_t maxLumaSr = plt.getLevelTierFeatures()->maxLumaSr;
const uint32_t frameRate = pCfg->getFrameRate();
const double minCr = plt.getMinCr();
const double denominator = (minCr * frameRate * 1000);
if (denominator!=0)
{
const double threshold =(formatCapabilityFactorx1000 * maxLumaSr) / (denominator);
if (numBytesInVclNalUnits > threshold)
{
msg( WARNING, "WARNING: Encoded stream does not meet MinCr requirements numBytesInVclNalUnits (%.0f) must be <= %.0f. Try increasing Qp, tier or level\n",
(double) numBytesInVclNalUnits, threshold );
}
}
}
}
#if JVET_Q0406_CABAC_ZERO
static std::size_t
#else
static void
#endif
cabac_zero_word_padding(const Slice *const pcSlice,
const Picture *const pcPic,
const std::size_t binCountsInNalUnits,
const std::size_t numBytesInVclNalUnits,
#if JVET_Q0406_CABAC_ZERO
const std::size_t numZeroWordsAlreadyInserted,
#endif
std::ostringstream &nalUnitData,
const bool cabacZeroWordPaddingEnabled,
const ProfileLevelTierFeatures &plt)
{
const SPS &sps=*(pcSlice->getSPS());
const ChromaFormat format = sps.getChromaFormatIdc();
const int log2subWidthCxsubHeightC = (::getComponentScaleX(COMPONENT_Cb, format)+::getComponentScaleY(COMPONENT_Cb, format));
const int minCuWidth = 1 << pcSlice->getSPS()->getLog2MinCodingBlockSize();
const int minCuHeight = 1 << pcSlice->getSPS()->getLog2MinCodingBlockSize();
const int paddedWidth = ( ( pcSlice->getPPS()->getPicWidthInLumaSamples() + minCuWidth - 1 ) / minCuWidth ) * minCuWidth;
const int paddedHeight = ( ( pcSlice->getPPS()->getPicHeightInLumaSamples() + minCuHeight - 1 ) / minCuHeight ) * minCuHeight;
const int rawBits = paddedWidth * paddedHeight *
(sps.getBitDepth(CHANNEL_TYPE_LUMA) + ((2*sps.getBitDepth(CHANNEL_TYPE_CHROMA))>>log2subWidthCxsubHeightC));
const int vclByteScaleFactor_x3 = ( 32 + 4 * (plt.getTier()==Level::HIGH ? 1 : 0) );
const std::size_t threshold = (vclByteScaleFactor_x3*numBytesInVclNalUnits/3) + (rawBits/32);
// "The value of BinCountsInPicNalUnits shall be less than or equal to vclByteScaleFactor * NumBytesInPicVclNalUnits + ( RawMinCuBits * PicSizeInMinCbsY ) / 32."
// binCountsInNalUnits <= vclByteScaleFactor_x3 * numBytesInVclNalUnits / 3 + rawBits / 32.
// If it is currently not, then add cabac_zero_words to increase numBytesInVclNalUnits.
if (binCountsInNalUnits >= threshold)
{
// need to add additional cabac zero words (each one accounts for 3 bytes (=00 00 03)) to increase numBytesInVclNalUnits
const std::size_t targetNumBytesInVclNalUnits = ((binCountsInNalUnits - (rawBits/32))*3+vclByteScaleFactor_x3-1)/vclByteScaleFactor_x3;
if (targetNumBytesInVclNalUnits>numBytesInVclNalUnits) // It should be!
{
#if JVET_Q0406_CABAC_ZERO
const std::size_t numberOfAdditionalBytesNeeded= std::max<std::size_t>(0, targetNumBytesInVclNalUnits - numBytesInVclNalUnits - numZeroWordsAlreadyInserted * 3);
#else
const std::size_t numberOfAdditionalBytesNeeded=targetNumBytesInVclNalUnits - numBytesInVclNalUnits;
#endif
const std::size_t numberOfAdditionalCabacZeroWords=(numberOfAdditionalBytesNeeded+2)/3;
const std::size_t numberOfAdditionalCabacZeroBytes=numberOfAdditionalCabacZeroWords*3;
if (cabacZeroWordPaddingEnabled)
{
std::vector<uint8_t> zeroBytesPadding(numberOfAdditionalCabacZeroBytes, uint8_t(0));
for(std::size_t i=0; i<numberOfAdditionalCabacZeroWords; i++)
{
zeroBytesPadding[i*3+2]=3; // 00 00 03
}
nalUnitData.write(reinterpret_cast<const char*>(&(zeroBytesPadding[0])), numberOfAdditionalCabacZeroBytes);
msg( NOTICE, "Adding %d bytes of padding\n", uint32_t( numberOfAdditionalCabacZeroWords * 3 ) );
}
else
{
msg( NOTICE, "Standard would normally require adding %d bytes of padding\n", uint32_t( numberOfAdditionalCabacZeroWords * 3 ) );
}
#if JVET_Q0406_CABAC_ZERO
return numberOfAdditionalCabacZeroWords;
#endif
}
}
#if JVET_Q0406_CABAC_ZERO
return 0;
#endif
}
class EfficientFieldIRAPMapping
{
private:
int IRAPGOPid;
bool IRAPtoReorder;
bool swapIRAPForward;
public:
EfficientFieldIRAPMapping() :
IRAPGOPid(-1),
IRAPtoReorder(false),
swapIRAPForward(false)
{ }
void initialize(const bool isField, const int gopSize, const int POCLast, const int numPicRcvd, const int lastIDR, EncGOP *pEncGop, EncCfg *pCfg);
int adjustGOPid(const int gopID);
int restoreGOPid(const int gopID);
int GetIRAPGOPid() const { return IRAPGOPid; }
};
void EfficientFieldIRAPMapping::initialize(const bool isField, const int gopSize, const int POCLast, const int numPicRcvd, const int lastIDR, EncGOP *pEncGop, EncCfg *pCfg )
{
if(isField)
{
int pocCurr;
for ( int iGOPid=0; iGOPid < gopSize; iGOPid++ )
{
// determine actual POC
if(POCLast == 0) //case first frame or first top field
{
pocCurr=0;
}
else if(POCLast == 1 && isField) //case first bottom field, just like the first frame, the poc computation is not right anymore, we set the right value
{
pocCurr = 1;
}
else
{
pocCurr = POCLast - numPicRcvd + pCfg->getGOPEntry(iGOPid).m_POC - isField;
}
// check if POC corresponds to IRAP
NalUnitType tmpUnitType = pEncGop->getNalUnitType(pocCurr, lastIDR, isField);
if (tmpUnitType >= NAL_UNIT_CODED_SLICE_IDR_W_RADL && tmpUnitType <= NAL_UNIT_CODED_SLICE_CRA) // if picture is an IRAP
{
if(pocCurr%2 == 0 && iGOPid < gopSize-1 && pCfg->getGOPEntry(iGOPid).m_POC == pCfg->getGOPEntry(iGOPid+1).m_POC-1)
{ // if top field and following picture in enc order is associated bottom field
IRAPGOPid = iGOPid;
IRAPtoReorder = true;
swapIRAPForward = true;
break;
}
if(pocCurr%2 != 0 && iGOPid > 0 && pCfg->getGOPEntry(iGOPid).m_POC == pCfg->getGOPEntry(iGOPid-1).m_POC+1)
{
// if picture is an IRAP remember to process it first
IRAPGOPid = iGOPid;
IRAPtoReorder = true;
swapIRAPForward = false;
break;
}
}
}
}
}
int EfficientFieldIRAPMapping::adjustGOPid(const int GOPid)
{
if(IRAPtoReorder)
{
if(swapIRAPForward)
{
if(GOPid == IRAPGOPid)
{
return IRAPGOPid +1;
}
else if(GOPid == IRAPGOPid +1)
{
return IRAPGOPid;
}
}
else
{
if(GOPid == IRAPGOPid -1)
{
return IRAPGOPid;
}
else if(GOPid == IRAPGOPid)
{
return IRAPGOPid -1;
}
}
}
return GOPid;
}
int EfficientFieldIRAPMapping::restoreGOPid(const int GOPid)
{
if(IRAPtoReorder)
{
if(swapIRAPForward)
{
if(GOPid == IRAPGOPid)
{
IRAPtoReorder = false;
return IRAPGOPid +1;
}
else if(GOPid == IRAPGOPid +1)
{
return GOPid -1;
}
}
else
{
if(GOPid == IRAPGOPid)
{
return IRAPGOPid -1;
}
else if(GOPid == IRAPGOPid -1)
{
IRAPtoReorder = false;
return IRAPGOPid;
}
}
}
return GOPid;
}
static void
printHash(const HashType hashType, const std::string &digestStr)
{
const char *decodedPictureHashModeName;
switch (hashType)
{
case HASHTYPE_MD5:
decodedPictureHashModeName = "MD5";
break;
case HASHTYPE_CRC:
decodedPictureHashModeName = "CRC";
break;
case HASHTYPE_CHECKSUM:
decodedPictureHashModeName = "Checksum";
break;
default:
decodedPictureHashModeName = NULL;
break;
}
if (decodedPictureHashModeName != NULL)
{
if (digestStr.empty())
{
msg( NOTICE, " [%s:%s]", decodedPictureHashModeName, "?");
}
else
{
msg( NOTICE, " [%s:%s]", decodedPictureHashModeName, digestStr.c_str());
}
}
}
bool isPicEncoded( int targetPoc, int curPoc, int curTLayer, int gopSize, int intraPeriod )
{
int tarGop = targetPoc / gopSize;
int curGop = curPoc / gopSize;
if( tarGop + 1 == curGop )
{
// part of next GOP only for tl0 pics
return curTLayer == 0;
}
int tarIFr = ( targetPoc / intraPeriod ) * intraPeriod;
int curIFr = ( curPoc / intraPeriod ) * intraPeriod;
if( curIFr != tarIFr )
{
return false;
}
int tarId = targetPoc - tarGop * gopSize;
if( tarGop > curGop )
{
return ( tarId == 0 ) ? ( 0 == curTLayer ) : ( 1 >= curTLayer );
}
if( tarGop + 1 < curGop )
{
return false;
}
int curId = curPoc - curGop * gopSize;
int tarTL = 0;
while( tarId != 0 )
{
gopSize /= 2;
if( tarId >= gopSize )
{
tarId -= gopSize;
if( curId != 0 ) curId -= gopSize;
}
else if( curId == gopSize )
{
curId = 0;
}
tarTL++;
}
return curTLayer <= tarTL && curId == 0;
}
void trySkipOrDecodePicture( bool& decPic, bool& encPic, const EncCfg& cfg, Picture* pcPic, ParameterSetMap<APS> *apsMap )
{
// check if we should decode a leading bitstream
if( !cfg.getDecodeBitstream( 0 ).empty() )
{
static bool bDecode1stPart = true; /* TODO: MT */
if( bDecode1stPart )
{
if( cfg.getForceDecodeBitstream1() )
{
if( ( bDecode1stPart = tryDecodePicture( pcPic, pcPic->getPOC(), cfg.getDecodeBitstream( 0 ), apsMap, false ) ) )
{
decPic = bDecode1stPart;
}
}
else
{
// update decode decision
bool dbgCTU = cfg.getDebugCTU() != -1 && cfg.getSwitchPOC() == pcPic->getPOC();
if( ( bDecode1stPart = ( cfg.getSwitchPOC() != pcPic->getPOC() ) || dbgCTU ) && ( bDecode1stPart = tryDecodePicture( pcPic, pcPic->getPOC(), cfg.getDecodeBitstream( 0 ), apsMap, false, cfg.getDebugCTU(), cfg.getSwitchPOC() ) ) )
{
if( dbgCTU )
{
encPic = true;
decPic = false;
bDecode1stPart = false;
return;
}
decPic = bDecode1stPart;
return;
}
else if( pcPic->getPOC() )
{
// reset decoder if used and not required any further
tryDecodePicture( NULL, 0, std::string( "" ) );
}
}
}
encPic |= cfg.getForceDecodeBitstream1() && !decPic;
if( cfg.getForceDecodeBitstream1() ) { return; }
}
// check if we should decode a trailing bitstream
if( ! cfg.getDecodeBitstream(1).empty() )
{
const int iNextKeyPOC = (1+cfg.getSwitchPOC() / cfg.getGOPSize()) *cfg.getGOPSize();
const int iNextIntraPOC = (1+(cfg.getSwitchPOC() / cfg.getIntraPeriod()))*cfg.getIntraPeriod();
const int iRestartIntraPOC = iNextIntraPOC + (((iNextKeyPOC == iNextIntraPOC) && cfg.getSwitchDQP() ) ? cfg.getIntraPeriod() : 0);
bool bDecode2ndPart = (pcPic->getPOC() >= iRestartIntraPOC);
int expectedPoc = pcPic->getPOC();
Slice slice0;
if ( cfg.getBs2ModPOCAndType() )
{
expectedPoc = pcPic->getPOC() - iRestartIntraPOC;
slice0.copySliceInfo( pcPic->slices[ 0 ], false );
}
if( bDecode2ndPart && (bDecode2ndPart = tryDecodePicture( pcPic, expectedPoc, cfg.getDecodeBitstream(1), apsMap, true )) )
{
decPic = bDecode2ndPart;
if ( cfg.getBs2ModPOCAndType() )
{
for( int i = 0; i < pcPic->slices.size(); i++ )
{
pcPic->slices[ i ]->setPOC ( slice0.getPOC() );
if ( pcPic->slices[ i ]->getNalUnitType() != slice0.getNalUnitType()
&& pcPic->slices[ i ]->getIdrPicFlag()
&& slice0.getRapPicFlag()
&& slice0.isIntra() )
{
// patch IDR-slice to CRA-Intra-slice
pcPic->slices[ i ]->setNalUnitType ( slice0.getNalUnitType() );
pcPic->slices[ i ]->setLastIDR ( slice0.getLastIDR() );
if ( pcPic->cs->picHeader->getEnableTMVPFlag() )
{
pcPic->slices[ i ]->setColFromL0Flag( slice0.getColFromL0Flag() );
pcPic->slices[ i ]->setColRefIdx ( slice0.getColRefIdx() );
}
}
}
}
return;
}
}
// leave here if we do not use forward to poc
if( ! cfg.useFastForwardToPOC() )
{
// let's encode
encPic = true;
return;
}
// this is the forward to poc section
static bool bHitFastForwardPOC = false; /* TODO: MT */
if( bHitFastForwardPOC || isPicEncoded( cfg.getFastForwardToPOC(), pcPic->getPOC(), pcPic->temporalId, cfg.getGOPSize(), cfg.getIntraPeriod() ) )
{
bHitFastForwardPOC |= cfg.getFastForwardToPOC() == pcPic->getPOC(); // once we hit the poc we continue encoding
if( bHitFastForwardPOC && cfg.getStopAfterFFtoPOC() && cfg.getFastForwardToPOC() != pcPic->getPOC() )
{
return;
}
//except if FastForwardtoPOC is meant to be a SwitchPOC in thist case drop all preceding pictures
if( bHitFastForwardPOC && ( cfg.getSwitchPOC() == cfg.getFastForwardToPOC() ) && ( cfg.getFastForwardToPOC() > pcPic->getPOC() ) )
{
return;
}
// let's encode
encPic = true;
}
}
void EncGOP::xPicInitHashME( Picture *pic, const PPS *pps, PicList &rcListPic )
{
if (! m_pcCfg->getUseHashME())
{
return;
}
PicList::iterator iterPic = rcListPic.begin();
while (iterPic != rcListPic.end())
{
Picture* refPic = *(iterPic++);
if (refPic->poc != pic->poc && refPic->referenced)
{
if (!refPic->getHashMap()->isInitial())
{
if (refPic->getPOC() == 0)
{
Pel* picSrc = refPic->getOrigBuf().get(COMPONENT_Y).buf;
int stridePic = refPic->getOrigBuf().get(COMPONENT_Y).stride;
int picWidth = pps->getPicWidthInLumaSamples();
int picHeight = pps->getPicHeightInLumaSamples();
int blockSize = 4;
int allNum = 0;
int simpleNum = 0;
for (int j = 0; j <= picHeight - blockSize; j += blockSize)
{
for (int i = 0; i <= picWidth - blockSize; i += blockSize)
{
Pel* curBlock = picSrc + j * stridePic + i;
bool isHorSame = true;
for (int m = 0; m < blockSize&&isHorSame; m++)
{
for (int n = 1; n < blockSize&&isHorSame; n++)
{
if (curBlock[m*stridePic] != curBlock[m*stridePic + n])
{
isHorSame = false;
}
}
}
bool isVerSame = true;
for (int m = 1; m < blockSize&&isVerSame; m++)
{
for (int n = 0; n < blockSize&&isVerSame; n++)
{
if (curBlock[n] != curBlock[m*stridePic + n])
{
isVerSame = false;
}
}
}
allNum++;
if (isHorSame || isVerSame)
{
simpleNum++;
}
}
}
if (simpleNum < 0.3*allNum)
{
m_pcCfg->setUseHashME(false);
break;
}
}
refPic->addPictureToHashMapForInter();
}
}
}
}
void EncGOP::xPicInitRateControl(int &estimatedBits, int gopId, double &lambda, Picture *pic, Slice *slice)
{
if ( !m_pcCfg->getUseRateCtrl() ) // TODO: does this work with multiple slices and slice-segments?
{
return;
}
int frameLevel = m_pcRateCtrl->getRCSeq()->getGOPID2Level( gopId );
if ( pic->slices[0]->isIRAP() )
{
frameLevel = 0;
}
m_pcRateCtrl->initRCPic( frameLevel );
estimatedBits = m_pcRateCtrl->getRCPic()->getTargetBits();
#if U0132_TARGET_BITS_SATURATION
if (m_pcRateCtrl->getCpbSaturationEnabled() && frameLevel != 0)
{
int estimatedCpbFullness = m_pcRateCtrl->getCpbState() + m_pcRateCtrl->getBufferingRate();
// prevent overflow
if (estimatedCpbFullness - estimatedBits > (int)(m_pcRateCtrl->getCpbSize()*0.9f))
{
estimatedBits = estimatedCpbFullness - (int)(m_pcRateCtrl->getCpbSize()*0.9f);
}
estimatedCpbFullness -= m_pcRateCtrl->getBufferingRate();
// prevent underflow
#if V0078_ADAPTIVE_LOWER_BOUND
if (estimatedCpbFullness - estimatedBits < m_pcRateCtrl->getRCPic()->getLowerBound())
{
estimatedBits = std::max(200, estimatedCpbFullness - m_pcRateCtrl->getRCPic()->getLowerBound());
}
#else
if (estimatedCpbFullness - estimatedBits < (int)(m_pcRateCtrl->getCpbSize()*0.1f))
{
estimatedBits = std::max(200, estimatedCpbFullness - (int)(m_pcRateCtrl->getCpbSize()*0.1f));
}
#endif
m_pcRateCtrl->getRCPic()->setTargetBits(estimatedBits);
}
#endif
int sliceQP = m_pcCfg->getInitialQP();
if ( ( slice->getPOC() == 0 && m_pcCfg->getInitialQP() > 0 ) || ( frameLevel == 0 && m_pcCfg->getForceIntraQP() ) ) // QP is specified
{
int NumberBFrames = ( m_pcCfg->getGOPSize() - 1 );
double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(double)NumberBFrames );
double dQPFactor = 0.57*dLambda_scale;
int SHIFT_QP = 12;
int bitdepth_luma_qp_scale = 6 * (slice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 8
- DISTORTION_PRECISION_ADJUSTMENT(slice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA)));
double qp_temp = (double) sliceQP + bitdepth_luma_qp_scale - SHIFT_QP;
lambda = dQPFactor*pow( 2.0, qp_temp/3.0 );
}
else if ( frameLevel == 0 ) // intra case, but use the model
{
m_pcSliceEncoder->calCostPictureI(pic);
if ( m_pcCfg->getIntraPeriod() != 1 ) // do not refine allocated bits for all intra case
{
int bits = m_pcRateCtrl->getRCSeq()->getLeftAverageBits();
bits = m_pcRateCtrl->getRCPic()->getRefineBitsForIntra( bits );
#if U0132_TARGET_BITS_SATURATION
if (m_pcRateCtrl->getCpbSaturationEnabled() )
{
int estimatedCpbFullness = m_pcRateCtrl->getCpbState() + m_pcRateCtrl->getBufferingRate();
// prevent overflow
if (estimatedCpbFullness - bits > (int)(m_pcRateCtrl->getCpbSize()*0.9f))
{
bits = estimatedCpbFullness - (int)(m_pcRateCtrl->getCpbSize()*0.9f);
}
estimatedCpbFullness -= m_pcRateCtrl->getBufferingRate();
// prevent underflow
#if V0078_ADAPTIVE_LOWER_BOUND
if (estimatedCpbFullness - bits < m_pcRateCtrl->getRCPic()->getLowerBound())
{
bits = estimatedCpbFullness - m_pcRateCtrl->getRCPic()->getLowerBound();
}
#else
if (estimatedCpbFullness - bits < (int)(m_pcRateCtrl->getCpbSize()*0.1f))
{
bits = estimatedCpbFullness - (int)(m_pcRateCtrl->getCpbSize()*0.1f);
}
#endif
}
#endif
if ( bits < 200 )
{
bits = 200;
}
m_pcRateCtrl->getRCPic()->setTargetBits( bits );
}
list<EncRCPic*> listPreviousPicture = m_pcRateCtrl->getPicList();
m_pcRateCtrl->getRCPic()->getLCUInitTargetBits();
lambda = m_pcRateCtrl->getRCPic()->estimatePicLambda( listPreviousPicture, slice->isIRAP());
sliceQP = m_pcRateCtrl->getRCPic()->estimatePicQP( lambda, listPreviousPicture );
}
else // normal case
{
list<EncRCPic*> listPreviousPicture = m_pcRateCtrl->getPicList();
lambda = m_pcRateCtrl->getRCPic()->estimatePicLambda( listPreviousPicture, slice->isIRAP());
sliceQP = m_pcRateCtrl->getRCPic()->estimatePicQP( lambda, listPreviousPicture );
}
sliceQP = Clip3( -slice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, sliceQP );
m_pcRateCtrl->getRCPic()->setPicEstQP( sliceQP );
m_pcSliceEncoder->resetQP( pic, sliceQP, lambda );
}
void EncGOP::xPicInitLMCS(Picture *pic, PicHeader *picHeader, Slice *slice)
{
if (slice->getSPS()->getUseLmcs())
{
const SliceType realSliceType = slice->getSliceType();
SliceType condSliceType = realSliceType;
if (condSliceType != I_SLICE && slice->getNalUnitLayerId() > 0 && (slice->getNalUnitType()>= NAL_UNIT_CODED_SLICE_IDR_W_RADL && slice->getNalUnitType()<= NAL_UNIT_CODED_SLICE_CRA))
{
condSliceType = I_SLICE;
}
m_pcReshaper->getReshapeCW()->rspTid = slice->getTLayer() + (slice->isIntra() ? 0 : 1);
m_pcReshaper->getReshapeCW()->rspSliceQP = slice->getSliceQp();
m_pcReshaper->setSrcReshaped(false);
m_pcReshaper->setRecReshaped(true);
m_pcReshaper->getSliceReshaperInfo().chrResScalingOffset = m_pcCfg->getReshapeCSoffset();
if (m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_PQ)
{
m_pcReshaper->preAnalyzerHDR(pic, condSliceType, m_pcCfg->getReshapeCW(), m_pcCfg->getDualITree());
}
else if (m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_SDR || m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_HLG)
{
m_pcReshaper->preAnalyzerLMCS(pic, m_pcCfg->getReshapeSignalType(), condSliceType, m_pcCfg->getReshapeCW());
}
else
{
THROW("Reshaper for other signal currently not defined!");
}
if (condSliceType == I_SLICE )
{
if (m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_PQ)
{
m_pcReshaper->initLUTfromdQPModel();
m_pcEncLib->getRdCost()->updateReshapeLumaLevelToWeightTableChromaMD(m_pcReshaper->getInvLUT());
}
else if (m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_SDR || m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_HLG)
{
if (m_pcReshaper->getReshapeFlag())
{
m_pcReshaper->constructReshaperLMCS();
m_pcEncLib->getRdCost()->updateReshapeLumaLevelToWeightTable(m_pcReshaper->getSliceReshaperInfo(), m_pcReshaper->getWeightTable(), m_pcReshaper->getCWeight());
}
}
else
{
THROW("Reshaper for other signal currently not defined!");
}
m_pcReshaper->setCTUFlag(false);
if (realSliceType != condSliceType)
{
m_pcReshaper->setCTUFlag(true);
}
}
else
{
if (!m_pcReshaper->getReshapeFlag())
{
m_pcReshaper->setCTUFlag(false);
}
else
m_pcReshaper->setCTUFlag(true);
m_pcReshaper->getSliceReshaperInfo().setSliceReshapeModelPresentFlag(false);
if (m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_PQ)
{
m_pcEncLib->getRdCost()->restoreReshapeLumaLevelToWeightTable();
}
else if (m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_SDR || m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_HLG)
{
int modIP = pic->getPOC() - pic->getPOC() / m_pcCfg->getReshapeCW().rspFpsToIp * m_pcCfg->getReshapeCW().rspFpsToIp;
if (m_pcReshaper->getReshapeFlag() && m_pcCfg->getReshapeCW().updateCtrl == 2 && modIP == 0)
{
m_pcReshaper->getSliceReshaperInfo().setSliceReshapeModelPresentFlag(true);
m_pcReshaper->constructReshaperLMCS();
m_pcEncLib->getRdCost()->updateReshapeLumaLevelToWeightTable(m_pcReshaper->getSliceReshaperInfo(), m_pcReshaper->getWeightTable(), m_pcReshaper->getCWeight());
}
}
else
{
THROW("Reshaper for other signal currently not defined!");
}
}
//set all necessary information in LMCS APS and picture header
picHeader->setLmcsEnabledFlag(m_pcReshaper->getSliceReshaperInfo().getUseSliceReshaper());
slice->setLmcsEnabledFlag(m_pcReshaper->getSliceReshaperInfo().getUseSliceReshaper());
picHeader->setLmcsChromaResidualScaleFlag(m_pcReshaper->getSliceReshaperInfo().getSliceReshapeChromaAdj() == 1);
if (m_pcReshaper->getSliceReshaperInfo().getSliceReshapeModelPresentFlag())
{
int apsId = std::min<int>( 3, m_pcEncLib->getVPS() == nullptr ? 0 : m_pcEncLib->getVPS()->getGeneralLayerIdx( m_pcEncLib->getLayerId() ) );
picHeader->setLmcsAPSId(apsId);
APS* lmcsAPS = picHeader->getLmcsAPS();
if (lmcsAPS == nullptr)
{
ParameterSetMap<APS> *apsMap = m_pcEncLib->getApsMap();
lmcsAPS = apsMap->getPS((apsId << NUM_APS_TYPE_LEN) + LMCS_APS);
if (lmcsAPS == NULL)
{
lmcsAPS = apsMap->allocatePS((apsId << NUM_APS_TYPE_LEN) + LMCS_APS);
lmcsAPS->setAPSId(apsId);
lmcsAPS->setAPSType(LMCS_APS);
}
picHeader->setLmcsAPS(lmcsAPS);
}
//m_pcReshaper->copySliceReshaperInfo(lmcsAPS->getReshaperAPSInfo(), m_pcReshaper->getSliceReshaperInfo());
SliceReshapeInfo& tInfo = lmcsAPS->getReshaperAPSInfo();
SliceReshapeInfo& sInfo = m_pcReshaper->getSliceReshaperInfo();
tInfo.reshaperModelMaxBinIdx = sInfo.reshaperModelMaxBinIdx;
tInfo.reshaperModelMinBinIdx = sInfo.reshaperModelMinBinIdx;
memcpy(tInfo.reshaperModelBinCWDelta, sInfo.reshaperModelBinCWDelta, sizeof(int)*(PIC_CODE_CW_BINS));
tInfo.maxNbitsNeededDeltaCW = sInfo.maxNbitsNeededDeltaCW;
tInfo.chrResScalingOffset = sInfo.chrResScalingOffset;
m_pcEncLib->getApsMap()->setChangedFlag((lmcsAPS->getAPSId() << NUM_APS_TYPE_LEN) + LMCS_APS);
}
if (picHeader->getLmcsEnabledFlag())
{
int apsId = std::min<int>( 3, m_pcEncLib->getVPS() == nullptr ? 0 : m_pcEncLib->getVPS()->getGeneralLayerIdx( m_pcEncLib->getLayerId() ) );
picHeader->setLmcsAPSId(apsId);
}
}
else
{
m_pcReshaper->setCTUFlag(false);
}
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
void EncGOP::compressGOP( int iPOCLast, int iNumPicRcvd, PicList& rcListPic,
std::list<PelUnitBuf*>& rcListPicYuvRecOut,
bool isField, bool isTff, const InputColourSpaceConversion snr_conversion, const bool printFrameMSE
, bool isEncodeLtRef
, const int picIdInGOP
)
{
// TODO: Split this function up.
Picture* pcPic = NULL;
PicHeader* picHeader = NULL;
Slice* pcSlice;
OutputBitstream *pcBitstreamRedirect;
pcBitstreamRedirect = new OutputBitstream;
AccessUnit::iterator itLocationToPushSliceHeaderNALU; // used to store location where NALU containing slice header is to be inserted
Picture* scaledRefPic[MAX_NUM_REF] = {};
xInitGOP( iPOCLast, iNumPicRcvd, isField, isEncodeLtRef );
m_iNumPicCoded = 0;
SEIMessages leadingSeiMessages;
SEIMessages nestedSeiMessages;
SEIMessages duInfoSeiMessages;
SEIMessages trailingSeiMessages;
std::deque<DUData> duData;
EfficientFieldIRAPMapping effFieldIRAPMap;
if (m_pcCfg->getEfficientFieldIRAPEnabled())
{
effFieldIRAPMap.initialize(isField, m_iGopSize, iPOCLast, iNumPicRcvd, m_iLastIDR, this, m_pcCfg);
}
if( isField && picIdInGOP == 0 )
{
for( int iGOPid = 0; iGOPid < max(2, m_iGopSize); iGOPid++ )
{
m_pcCfg->setEncodedFlag( iGOPid, false );
}
}
for( int iGOPid = picIdInGOP; iGOPid <= picIdInGOP; iGOPid++ )
{
// reset flag indicating whether pictures have been encoded
m_pcCfg->setEncodedFlag( iGOPid, false );
if (m_pcCfg->getEfficientFieldIRAPEnabled())
{
iGOPid=effFieldIRAPMap.adjustGOPid(iGOPid);
}
//-- For time output for each slice
auto beforeTime = std::chrono::steady_clock::now();
#if !X0038_LAMBDA_FROM_QP_CAPABILITY
uint32_t uiColDir = calculateCollocatedFromL1Flag(m_pcCfg, iGOPid, m_iGopSize);
#endif
/////////////////////////////////////////////////////////////////////////////////////////////////// Initial to start encoding
int iTimeOffset;
int pocCurr;
int multipleFactor = m_pcCfg->getUseCompositeRef() ? 2 : 1;
if(iPOCLast == 0) //case first frame or first top field
{
pocCurr=0;
iTimeOffset = isField ? (1 - multipleFactor) : multipleFactor;
}
else if(iPOCLast == 1 && isField) //case first bottom field, just like the first frame, the poc computation is not right anymore, we set the right value
{
pocCurr = 1;
iTimeOffset = multipleFactor + 1;
}
else
{
pocCurr = iPOCLast - iNumPicRcvd * multipleFactor + m_pcCfg->getGOPEntry(iGOPid).m_POC - ((isField && m_iGopSize>1) ? 1 : 0);
iTimeOffset = m_pcCfg->getGOPEntry(iGOPid).m_POC;
}
if (m_pcCfg->getUseCompositeRef() && isEncodeLtRef)
{
pocCurr++;
iTimeOffset--;
}
if (pocCurr / multipleFactor >= m_pcCfg->getFramesToBeEncoded())
{
if (m_pcCfg->getEfficientFieldIRAPEnabled())
{
iGOPid=effFieldIRAPMap.restoreGOPid(iGOPid);
}
continue;
}
if( getNalUnitType(pocCurr, m_iLastIDR, isField) == NAL_UNIT_CODED_SLICE_IDR_W_RADL || getNalUnitType(pocCurr, m_iLastIDR, isField) == NAL_UNIT_CODED_SLICE_IDR_N_LP )
{
m_iLastIDR = pocCurr;
}
// start a new access unit: create an entry in the list of output access units
AccessUnit accessUnit;
accessUnit.temporalId = m_pcCfg->getGOPEntry( iGOPid ).m_temporalId;
xGetBuffer( rcListPic, rcListPicYuvRecOut,
iNumPicRcvd, iTimeOffset, pcPic, pocCurr, isField );
picHeader = pcPic->cs->picHeader;
picHeader->setSPSId( pcPic->cs->pps->getSPSId() );
picHeader->setPPSId( pcPic->cs->pps->getPPSId() );
picHeader->setSplitConsOverrideFlag(false);
// initial two flags to be false
picHeader->setPicInterSliceAllowedFlag(false);
picHeader->setPicIntraSliceAllowedFlag(false);
#if ER_CHROMA_QP_WCG_PPS
// th this is a hot fix for the choma qp control
if( m_pcEncLib->getWCGChromaQPControl().isEnabled() && m_pcEncLib->getSwitchPOC() != -1 )
{
static int usePPS = 0; /* TODO: MT */
if( pocCurr == m_pcEncLib->getSwitchPOC() )
{
usePPS = 1;
}
const PPS *pPPS = m_pcEncLib->getPPS(usePPS);
// replace the pps with a more appropriated one
pcPic->cs->pps = pPPS;
}
#endif
// create objects based on the picture size
const int picWidth = pcPic->cs->pps->getPicWidthInLumaSamples();
const int picHeight = pcPic->cs->pps->getPicHeightInLumaSamples();
const int maxCUWidth = pcPic->cs->sps->getMaxCUWidth();
const int maxCUHeight = pcPic->cs->sps->getMaxCUHeight();
const ChromaFormat chromaFormatIDC = pcPic->cs->sps->getChromaFormatIdc();
const int maxTotalCUDepth = floorLog2(maxCUWidth) - pcPic->cs->sps->getLog2MinCodingBlockSize();
m_pcSliceEncoder->create( picWidth, picHeight, chromaFormatIDC, maxCUWidth, maxCUHeight, maxTotalCUDepth );
#if ENABLE_SPLIT_PARALLELISM
pcPic->scheduler.init( pcPic->cs->pcv->heightInCtus, pcPic->cs->pcv->widthInCtus, 1 , 0 , m_pcCfg->getNumSplitThreads() );
#endif
pcPic->createTempBuffers( pcPic->cs->pps->pcv->maxCUWidth );
pcPic->cs->createCoeffs((bool)pcPic->cs->sps->getPLTMode());
// Slice data initialization
pcPic->clearSliceBuffer();
pcPic->allocateNewSlice();
m_pcSliceEncoder->setSliceSegmentIdx(0);
m_pcSliceEncoder->initEncSlice(pcPic, iPOCLast, pocCurr, iGOPid, pcSlice, isField, isEncodeLtRef, m_pcEncLib->getLayerId() );
DTRACE_UPDATE( g_trace_ctx, ( std::make_pair( "poc", pocCurr ) ) );
DTRACE_UPDATE( g_trace_ctx, ( std::make_pair( "final", 0 ) ) );
#if !SHARP_LUMA_DELTA_QP
//Set Frame/Field coding
pcPic->fieldPic = isField;
#endif
pcSlice->setLastIDR(m_iLastIDR);
pcSlice->setIndependentSliceIdx(0);
if(pcSlice->getSliceType()==B_SLICE&&m_pcCfg->getGOPEntry(iGOPid).m_sliceType=='P')
{
pcSlice->setSliceType(P_SLICE);
}
if(pcSlice->getSliceType()==B_SLICE&&m_pcCfg->getGOPEntry(iGOPid).m_sliceType=='I')
{
pcSlice->setSliceType(I_SLICE);
}
pcSlice->setTLayer(m_pcCfg->getGOPEntry(iGOPid).m_temporalId);
// Set the nal unit type
pcSlice->setNalUnitType(getNalUnitType(pocCurr, m_iLastIDR, isField));
// set two flags according to slice type presented in the picture
if (pcSlice->getSliceType() != I_SLICE)
{
picHeader->setPicInterSliceAllowedFlag(true);
}
if (pcSlice->getSliceType() == I_SLICE)
{
picHeader->setPicIntraSliceAllowedFlag(true);
}
picHeader->setGdrOrIrapPicFlag(picHeader->getGdrPicFlag() || pcSlice->isIRAP());
if (m_pcCfg->getEfficientFieldIRAPEnabled())
{
if ( pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA) // IRAP picture
{
m_associatedIRAPType[pcPic->layerId] = pcSlice->getNalUnitType();
m_associatedIRAPPOC[pcPic->layerId] = pocCurr;
}
pcSlice->setAssociatedIRAPType(m_associatedIRAPType[pcPic->layerId]);
pcSlice->setAssociatedIRAPPOC(m_associatedIRAPPOC[pcPic->layerId]);
}
pcSlice->decodingRefreshMarking(m_pocCRA, m_bRefreshPending, rcListPic, m_pcCfg->getEfficientFieldIRAPEnabled());
if (m_pcCfg->getUseCompositeRef() && isEncodeLtRef)
{
setUseLTRef(true);
setPrepareLTRef(false);
setNewestBgPOC(pocCurr);
setLastLTRefPoc(pocCurr);
}
else if (m_pcCfg->getUseCompositeRef() && getLastLTRefPoc() >= 0 && getEncodedLTRef()==false && !getPicBg()->getSpliceFull() && (pocCurr - getLastLTRefPoc()) > (m_pcCfg->getFrameRate() * 2))
{
setUseLTRef(false);
setPrepareLTRef(false);
setEncodedLTRef(true);
setNewestBgPOC(-1);
setLastLTRefPoc(-1);
}
if (m_pcCfg->getUseCompositeRef() && m_picBg->getSpliceFull() && getUseLTRef())
{
m_pcEncLib->selectReferencePictureList(pcSlice, pocCurr, iGOPid, m_bgPOC);
}
else
{
m_pcEncLib->selectReferencePictureList(pcSlice, pocCurr, iGOPid, -1);
}
if (!m_pcCfg->getEfficientFieldIRAPEnabled())
{
if ( pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA) // IRAP picture
{
m_associatedIRAPType[pcPic->layerId] = pcSlice->getNalUnitType();
m_associatedIRAPPOC[pcPic->layerId] = pocCurr;
}
pcSlice->setAssociatedIRAPType(m_associatedIRAPType[pcPic->layerId]);
pcSlice->setAssociatedIRAPPOC(m_associatedIRAPPOC[pcPic->layerId]);
}
pcSlice->setEnableDRAPSEI(m_pcEncLib->getDependentRAPIndicationSEIEnabled());
if (m_pcEncLib->getDependentRAPIndicationSEIEnabled())
{
// Only mark the picture as DRAP if all of the following applies:
// 1) DRAP indication SEI messages are enabled
// 2) The current picture is not an intra picture
// 3) The current picture is in the DRAP period
// 4) The current picture is a trailing picture
pcSlice->setDRAP(m_pcEncLib->getDependentRAPIndicationSEIEnabled() && m_pcEncLib->getDrapPeriod() > 0 && !pcSlice->isIntra() &&
pocCurr % m_pcEncLib->getDrapPeriod() == 0 && pocCurr > pcSlice->getAssociatedIRAPPOC());
if (pcSlice->isDRAP())
{
int pocCycle = 1 << (pcSlice->getSPS()->getBitsForPOC());
int deltaPOC = pocCurr > pcSlice->getAssociatedIRAPPOC() ? pocCurr - pcSlice->getAssociatedIRAPPOC() : pocCurr - ( pcSlice->getAssociatedIRAPPOC() & (pocCycle -1) );
CHECK(deltaPOC > (pocCycle >> 1), "Use a greater value for POC wraparound to enable a POC distance between IRAP and DRAP of " << deltaPOC << ".");
m_latestDRAPPOC = pocCurr;
pcSlice->setTLayer(0); // Force DRAP picture to have temporal layer 0
}
pcSlice->setLatestDRAPPOC(m_latestDRAPPOC);
pcSlice->setUseLTforDRAP(false); // When set, sets the associated IRAP as long-term in RPL0 at slice level, unless the associated IRAP is already included in RPL0 or RPL1 defined in SPS
PicList::iterator iterPic = rcListPic.begin();
Picture *rpcPic;
while (iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if ( pcSlice->isDRAP() && rpcPic->getPOC() != pocCurr )
{
rpcPic->precedingDRAP = true;
}
else if ( !pcSlice->isDRAP() && rpcPic->getPOC() == pocCurr )
{
rpcPic->precedingDRAP = false;
}
}
}
if (pcSlice->checkThatAllRefPicsAreAvailable(rcListPic, pcSlice->getRPL0(), 0, false) != 0 || pcSlice->checkThatAllRefPicsAreAvailable(rcListPic, pcSlice->getRPL1(), 1, false) != 0 ||
(m_pcEncLib->getDependentRAPIndicationSEIEnabled() && !pcSlice->isIRAP() && ( pcSlice->isDRAP() || !pcSlice->isPOCInRefPicList(pcSlice->getRPL0(), pcSlice->getAssociatedIRAPPOC())) )
|| ((m_pcEncLib->getAvoidIntraInDepLayer() || !pcSlice->isIRAP()) && pcSlice->getPic()->cs->vps && m_pcEncLib->getNumRefLayers(pcSlice->getPic()->cs->vps->getGeneralLayerIdx(m_pcEncLib->getLayerId())))
)
{
xCreateExplicitReferencePictureSetFromReference( pcSlice, rcListPic, pcSlice->getRPL0(), pcSlice->getRPL1() );
}
pcSlice->applyReferencePictureListBasedMarking( rcListPic, pcSlice->getRPL0(), pcSlice->getRPL1(), pcSlice->getPic()->layerId, *(pcSlice->getPPS()));
if(pcSlice->getTLayer() > 0
&& !(pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RADL // Check if not a leading picture
|| pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RASL)
)
{
if (pcSlice->isStepwiseTemporalLayerSwitchingPointCandidate(rcListPic))
{
bool isSTSA=true;
for(int ii=0;(ii<m_pcCfg->getGOPSize() && isSTSA==true);ii++)
{
int lTid = m_pcCfg->getRPLEntry(0, ii).m_temporalId;
if (lTid == pcSlice->getTLayer())
{
const ReferencePictureList* rpl0 = pcSlice->getSPS()->getRPLList0()->getReferencePictureList(ii);
for (int jj = 0; jj < pcSlice->getRPL0()->getNumberOfActivePictures(); jj++)
{
int tPoc = pcSlice->getPOC() - rpl0->getRefPicIdentifier(jj);
int kk = 0;
for (kk = 0; kk<m_pcCfg->getGOPSize(); kk++)
{
if (m_pcCfg->getRPLEntry(0, kk).m_POC == tPoc)
{
break;
}
}
int tTid = m_pcCfg->getRPLEntry(0, kk).m_temporalId;
if (tTid >= pcSlice->getTLayer())
{
isSTSA = false;
break;
}
}
const ReferencePictureList* rpl1 = pcSlice->getSPS()->getRPLList1()->getReferencePictureList(ii);
for (int jj = 0; jj < pcSlice->getRPL1()->getNumberOfActivePictures(); jj++)
{
int tPoc = pcSlice->getPOC() - rpl1->getRefPicIdentifier(jj);
int kk = 0;
for (kk = 0; kk<m_pcCfg->getGOPSize(); kk++)
{
if (m_pcCfg->getRPLEntry(1, kk).m_POC == tPoc)
{
break;
}
}
int tTid = m_pcCfg->getRPLEntry(1, kk).m_temporalId;
if (tTid >= pcSlice->getTLayer())
{
isSTSA = false;
break;
}
}
}
}
if(isSTSA==true)
{
pcSlice->setNalUnitType(NAL_UNIT_CODED_SLICE_STSA);
}
}
}
if (m_pcCfg->getUseCompositeRef() && getUseLTRef() && (pocCurr > getLastLTRefPoc()))
{
pcSlice->setNumRefIdx(REF_PIC_LIST_0, (pcSlice->isIntra()) ? 0 : min(m_pcCfg->getRPLEntry(0, iGOPid).m_numRefPicsActive + 1, pcSlice->getRPL0()->getNumberOfActivePictures()));
pcSlice->setNumRefIdx(REF_PIC_LIST_1, (!pcSlice->isInterB()) ? 0 : min(m_pcCfg->getRPLEntry(1, iGOPid).m_numRefPicsActive + 1, pcSlice->getRPL1()->getNumberOfActivePictures()));
}
else
{
pcSlice->setNumRefIdx(REF_PIC_LIST_0, (pcSlice->isIntra()) ? 0 : pcSlice->getRPL0()->getNumberOfActivePictures());
pcSlice->setNumRefIdx(REF_PIC_LIST_1, (!pcSlice->isInterB()) ? 0 : pcSlice->getRPL1()->getNumberOfActivePictures());
}
if (m_pcCfg->getUseCompositeRef() && getPrepareLTRef()) {
arrangeCompositeReference(pcSlice, rcListPic, pocCurr);
}
// Set reference list
pcSlice->constructRefPicList(rcListPic);
// store sub-picture numbers, sizes, and locations with a picture
#if JVET_S0258_SUBPIC_CONSTRAINTS
pcSlice->getPic()->subPictures.clear();
for( int subPicIdx = 0; subPicIdx < pcPic->cs->pps->getNumSubPics(); subPicIdx++ )
{
pcSlice->getPic()->subPictures.push_back( pcPic->cs->pps->getSubPic( subPicIdx ) );
}
#else
pcSlice->getPic()->numSubpics = pcPic->cs->pps->getNumSubPics();
pcSlice->getPic()->subpicWidthInCTUs.clear();
pcSlice->getPic()->subpicHeightInCTUs.clear();
pcSlice->getPic()->subpicCtuTopLeftX.clear();
pcSlice->getPic()->subpicCtuTopLeftY.clear();
for (int subPicIdx = 0; subPicIdx < pcPic->cs->pps->getNumSubPics(); subPicIdx++)
{
pcSlice->getPic()->subpicWidthInCTUs.push_back(pcPic->cs->pps->getSubPic(subPicIdx).getSubPicWidthInCTUs());
pcSlice->getPic()->subpicHeightInCTUs.push_back(pcPic->cs->pps->getSubPic(subPicIdx).getSubPicHeightInCTUs());
pcSlice->getPic()->subpicCtuTopLeftX.push_back(pcPic->cs->pps->getSubPic(subPicIdx).getSubPicCtuTopLeftX());
pcSlice->getPic()->subpicCtuTopLeftY.push_back(pcPic->cs->pps->getSubPic(subPicIdx).getSubPicCtuTopLeftY());
}
#endif
const VPS* vps = pcPic->cs->vps;
int layerIdx = vps == nullptr ? 0 : vps->getGeneralLayerIdx(pcPic->layerId);
if (vps && !vps->getIndependentLayerFlag(layerIdx) && pcPic->cs->pps->getNumSubPics() > 1)
{
CU::checkConformanceILRP(pcSlice);
}
xPicInitHashME( pcPic, pcSlice->getPPS(), rcListPic );
if( m_pcCfg->getUseAMaxBT() )
{
if( !pcSlice->isIntra() )
{
int refLayer = pcSlice->getDepth();
if( refLayer > 9 ) refLayer = 9; // Max layer is 10
if( m_bInitAMaxBT && pcSlice->getPOC() > m_uiPrevISlicePOC )
{
::memset( m_uiBlkSize, 0, sizeof( m_uiBlkSize ) );
::memset( m_uiNumBlk, 0, sizeof( m_uiNumBlk ) );
m_bInitAMaxBT = false;
}
if( refLayer >= 0 && m_uiNumBlk[refLayer] != 0 )
{
picHeader->setSplitConsOverrideFlag(true);
double dBlkSize = sqrt( ( double ) m_uiBlkSize[refLayer] / m_uiNumBlk[refLayer] );
unsigned int newMaxBtSize = picHeader->getMaxBTSize(pcSlice->getSliceType(), CHANNEL_TYPE_LUMA);
if( dBlkSize < AMAXBT_TH32 )
{
newMaxBtSize = 32;
}
else if( dBlkSize < AMAXBT_TH64 )
{
newMaxBtSize = 64;
}
else
{
newMaxBtSize = 128;
}
newMaxBtSize = Clip3(picHeader->getMinQTSize(pcSlice->getSliceType()), pcPic->cs->sps->getCTUSize(), newMaxBtSize);
picHeader->setMaxBTSize(1, newMaxBtSize);
m_uiBlkSize[refLayer] = 0;
m_uiNumBlk [refLayer] = 0;
}
}
else
{
if( m_bInitAMaxBT )
{
::memset( m_uiBlkSize, 0, sizeof( m_uiBlkSize ) );
::memset( m_uiNumBlk, 0, sizeof( m_uiNumBlk ) );
}
m_uiPrevISlicePOC = pcSlice->getPOC();
m_bInitAMaxBT = true;
}
#if JVET_S0133_PH_SYNTAX_OVERRIDE_ENC_FIX
bool identicalToSPS=true;
const SPS* sps =pcSlice->getSPS();
if (picHeader->getPicInterSliceAllowedFlag())
{
if (picHeader->getMinQTSize(pcSlice->getSliceType()) != pcSlice->getSPS()->getMinQTSize(pcSlice->getSliceType()) ||
picHeader->getMaxMTTHierarchyDepth(pcSlice->getSliceType()) != pcSlice->getSPS()->getMaxMTTHierarchyDepth() ||
picHeader->getMaxBTSize(pcSlice->getSliceType()) != pcSlice->getSPS()->getMaxBTSize() ||
picHeader->getMaxTTSize(pcSlice->getSliceType()) != pcSlice->getSPS()->getMaxTTSize()
)
{
identicalToSPS=false;
}
}
if (identicalToSPS && picHeader->getPicIntraSliceAllowedFlag())
{
if (picHeader->getMinQTSize(I_SLICE) != sps->getMinQTSize(I_SLICE) ||
picHeader->getMaxMTTHierarchyDepth(I_SLICE) != sps->getMaxMTTHierarchyDepthI() ||
picHeader->getMaxBTSize(I_SLICE) != sps->getMaxBTSizeI() ||
picHeader->getMaxTTSize(I_SLICE) != sps->getMaxTTSizeI()
)
{
identicalToSPS=false;
}
if (identicalToSPS && sps->getUseDualITree())
{
if (picHeader->getMinQTSize(I_SLICE, CHANNEL_TYPE_CHROMA) != sps->getMinQTSize(I_SLICE, CHANNEL_TYPE_CHROMA) ||
picHeader->getMaxMTTHierarchyDepth(I_SLICE, CHANNEL_TYPE_CHROMA) != sps->getMaxMTTHierarchyDepthIChroma() ||
picHeader->getMaxBTSize(I_SLICE, CHANNEL_TYPE_CHROMA) != sps->getMaxBTSizeIChroma() ||
picHeader->getMaxTTSize(I_SLICE, CHANNEL_TYPE_CHROMA) != sps->getMaxTTSizeIChroma()
)
{
identicalToSPS=false;
}
}
}
if (identicalToSPS)
{
picHeader->setSplitConsOverrideFlag(false);
}
#endif
}
// Slice info. refinement
if ( (pcSlice->getSliceType() == B_SLICE) && (pcSlice->getNumRefIdx(REF_PIC_LIST_1) == 0) )
{
pcSlice->setSliceType ( P_SLICE );
}
xUpdateRasInit( pcSlice );
if ( pcSlice->getPendingRasInit() )
{
// this ensures that independently encoded bitstream chunks can be combined to bit-equal
pcSlice->setEncCABACTableIdx( pcSlice->getSliceType() );
}
else
{
pcSlice->setEncCABACTableIdx( m_pcSliceEncoder->getEncCABACTableIdx() );
}
if (pcSlice->getSliceType() == B_SLICE)
{
bool bLowDelay = true;
int iCurrPOC = pcSlice->getPOC();
int iRefIdx = 0;
for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_0) && bLowDelay; iRefIdx++)
{
if ( pcSlice->getRefPic(REF_PIC_LIST_0, iRefIdx)->getPOC() > iCurrPOC )
{
bLowDelay = false;
}
}
for (iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(REF_PIC_LIST_1) && bLowDelay; iRefIdx++)
{
if ( pcSlice->getRefPic(REF_PIC_LIST_1, iRefIdx)->getPOC() > iCurrPOC )
{
bLowDelay = false;
}
}
pcSlice->setCheckLDC(bLowDelay);
}
else
{
pcSlice->setCheckLDC(true);
}
//-------------------------------------------------------------
pcSlice->setRefPOCList();
pcSlice->setList1IdxToList0Idx();
if (m_pcEncLib->getTMVPModeId() == 2)
{
if (iGOPid == 0) // first picture in SOP (i.e. forward B)
{
picHeader->setEnableTMVPFlag(0);
}
else
{
// Note: pcSlice->getColFromL0Flag() is assumed to be always 0 and getcolRefIdx() is always 0.
picHeader->setEnableTMVPFlag(1);
}
}
else if (m_pcEncLib->getTMVPModeId() == 1)
{
picHeader->setEnableTMVPFlag(1);
}
else
{
picHeader->setEnableTMVPFlag(0);
}
// disable TMVP when current picture is the only ref picture
if (pcSlice->isIRAP() && pcSlice->getSPS()->getIBCFlag())
{
picHeader->setEnableTMVPFlag(0);
}
if( pcSlice->getSliceType() != I_SLICE && picHeader->getEnableTMVPFlag() )
{
int colRefIdxL0 = -1, colRefIdxL1 = -1;
for( int refIdx = 0; refIdx < pcSlice->getNumRefIdx( REF_PIC_LIST_0 ); refIdx++ )
{
if( pcSlice->getRefPic( REF_PIC_LIST_0, refIdx )->isRefScaled( pcSlice->getPPS() ) == false )
{
colRefIdxL0 = refIdx;
break;
}
}
if( pcSlice->getSliceType() == B_SLICE )
{
for( int refIdx = 0; refIdx < pcSlice->getNumRefIdx( REF_PIC_LIST_1 ); refIdx++ )
{
if( pcSlice->getRefPic( REF_PIC_LIST_1, refIdx )->isRefScaled( pcSlice->getPPS() ) == false )
{
colRefIdxL1 = refIdx;
break;
}
}
}
if( colRefIdxL0 >= 0 && colRefIdxL1 >= 0 )
{
const Picture *refPicL0 = pcSlice->getRefPic( REF_PIC_LIST_0, colRefIdxL0 );
if( !refPicL0->slices.size() )
{
refPicL0 = refPicL0->unscaledPic;
}
const Picture *refPicL1 = pcSlice->getRefPic( REF_PIC_LIST_1, colRefIdxL1 );
if( !refPicL1->slices.size() )
{
refPicL1 = refPicL1->unscaledPic;
}
const uint32_t uiColFromL0 = refPicL0->slices[0]->getSliceQp() > refPicL1->slices[0]->getSliceQp();
picHeader->setPicColFromL0Flag( uiColFromL0 );
pcSlice->setColFromL0Flag( uiColFromL0 );
pcSlice->setColRefIdx( uiColFromL0 ? colRefIdxL0 : colRefIdxL1 );
picHeader->setColRefIdx( uiColFromL0 ? colRefIdxL0 : colRefIdxL1 );
}
else if( colRefIdxL0 < 0 && colRefIdxL1 >= 0 )
{
picHeader->setPicColFromL0Flag( false );
pcSlice->setColFromL0Flag( false );
pcSlice->setColRefIdx( colRefIdxL1 );
picHeader->setColRefIdx( colRefIdxL1 );
}
else if( colRefIdxL0 >= 0 && colRefIdxL1 < 0 )
{
picHeader->setPicColFromL0Flag( true );
pcSlice->setColFromL0Flag( true );
pcSlice->setColRefIdx( colRefIdxL0 );
picHeader->setColRefIdx( colRefIdxL0 );
}
else
{
picHeader->setEnableTMVPFlag( 0 );
}
}
pcSlice->scaleRefPicList( scaledRefPic, pcPic->cs->picHeader, m_pcEncLib->getApss(), picHeader->getLmcsAPS(), picHeader->getScalingListAPS(), false );
// set adaptive search range for non-intra-slices
if (m_pcCfg->getUseASR() && !pcSlice->isIntra())
{
m_pcSliceEncoder->setSearchRange(pcSlice);
}
bool bGPBcheck=false;
if ( pcSlice->getSliceType() == B_SLICE)
{
if ( pcSlice->getNumRefIdx(RefPicList( 0 ) ) == pcSlice->getNumRefIdx(RefPicList( 1 ) ) )
{
bGPBcheck=true;
int i;
for ( i=0; i < pcSlice->getNumRefIdx(RefPicList( 1 ) ); i++ )
{
if ( pcSlice->getRefPOC(RefPicList(1), i) != pcSlice->getRefPOC(RefPicList(0), i) )
{
bGPBcheck=false;
break;
}
}
}
}
if(bGPBcheck)
{
picHeader->setMvdL1ZeroFlag(true);
}
else
{
picHeader->setMvdL1ZeroFlag(false);
}
if ( pcSlice->getSPS()->getUseSMVD() && pcSlice->getCheckLDC() == false
&& picHeader->getMvdL1ZeroFlag() == false
)
{
int currPOC = pcSlice->getPOC();
int forwardPOC = currPOC;
int backwardPOC = currPOC;
int ref = 0, refIdx0 = -1, refIdx1 = -1;
// search nearest forward POC in List 0
for ( ref = 0; ref < pcSlice->getNumRefIdx( REF_PIC_LIST_0 ); ref++ )
{
int poc = pcSlice->getRefPic( REF_PIC_LIST_0, ref )->getPOC();
const bool isRefLongTerm = pcSlice->getRefPic(REF_PIC_LIST_0, ref)->longTerm;
if ( poc < currPOC && (poc > forwardPOC || refIdx0 == -1) && !isRefLongTerm )
{
forwardPOC = poc;
refIdx0 = ref;
}
}
// search nearest backward POC in List 1
for ( ref = 0; ref < pcSlice->getNumRefIdx( REF_PIC_LIST_1 ); ref++ )
{
int poc = pcSlice->getRefPic( REF_PIC_LIST_1, ref )->getPOC();
const bool isRefLongTerm = pcSlice->getRefPic(REF_PIC_LIST_1, ref)->longTerm;
if ( poc > currPOC && (poc < backwardPOC || refIdx1 == -1) && !isRefLongTerm )
{
backwardPOC = poc;
refIdx1 = ref;
}
}
if ( !(forwardPOC < currPOC && backwardPOC > currPOC) )
{
forwardPOC = currPOC;
backwardPOC = currPOC;
refIdx0 = -1;
refIdx1 = -1;
// search nearest backward POC in List 0
for ( ref = 0; ref < pcSlice->getNumRefIdx( REF_PIC_LIST_0 ); ref++ )
{
int poc = pcSlice->getRefPic( REF_PIC_LIST_0, ref )->getPOC();
const bool isRefLongTerm = pcSlice->getRefPic(REF_PIC_LIST_0, ref)->longTerm;
if ( poc > currPOC && (poc < backwardPOC || refIdx0 == -1) && !isRefLongTerm )
{
backwardPOC = poc;
refIdx0 = ref;
}
}
// search nearest forward POC in List 1
for ( ref = 0; ref < pcSlice->getNumRefIdx( REF_PIC_LIST_1 ); ref++ )
{
int poc = pcSlice->getRefPic( REF_PIC_LIST_1, ref )->getPOC();
const bool isRefLongTerm = pcSlice->getRefPic(REF_PIC_LIST_1, ref)->longTerm;
if ( poc < currPOC && (poc > forwardPOC || refIdx1 == -1) && !isRefLongTerm )
{
forwardPOC = poc;
refIdx1 = ref;
}
}
}
if ( forwardPOC < currPOC && backwardPOC > currPOC )
{
pcSlice->setBiDirPred( true, refIdx0, refIdx1 );
}
else
{
pcSlice->setBiDirPred( false, -1, -1 );
}
}
else
{
pcSlice->setBiDirPred( false, -1, -1 );
}
double lambda = 0.0;
int actualHeadBits = 0;
int actualTotalBits = 0;
int estimatedBits = 0;
int tmpBitsBeforeWriting = 0;
xPicInitRateControl(estimatedBits, iGOPid, lambda, pcPic, pcSlice);
uint32_t uiNumSliceSegments = 1;
{
pcSlice->setDefaultClpRng( *pcSlice->getSPS() );
}
// Allocate some coders, now the number of tiles are known.
const uint32_t numberOfCtusInFrame = pcPic->cs->pcv->sizeInCtus;
const int numSubstreamsColumns = pcSlice->getPPS()->getNumTileColumns();
const int numSubstreamRows = pcSlice->getSPS()->getEntropyCodingSyncEnabledFlag() ? pcPic->cs->pcv->heightInCtus : (pcSlice->getPPS()->getNumTileRows());
const int numSubstreams = std::max<int> (numSubstreamRows * numSubstreamsColumns, (int) pcPic->cs->pps->getNumSlicesInPic());
std::vector<OutputBitstream> substreamsOut(numSubstreams);
#if ENABLE_QPA
pcPic->m_uEnerHpCtu.resize (numberOfCtusInFrame);
pcPic->m_iOffsetCtu.resize (numberOfCtusInFrame);
#if ENABLE_QPA_SUB_CTU
if (pcSlice->getPPS()->getUseDQP() && pcSlice->getCuQpDeltaSubdiv() > 0)
{
const PreCalcValues &pcv = *pcPic->cs->pcv;
const unsigned mtsLog2 = (unsigned)floorLog2(std::min (pcPic->cs->sps->getMaxTbSize(), pcv.maxCUWidth));
pcPic->m_subCtuQP.resize ((pcv.maxCUWidth >> mtsLog2) * (pcv.maxCUHeight >> mtsLog2));
}
#endif
#endif
if (pcSlice->getSPS()->getSAOEnabledFlag())
{
pcPic->resizeSAO( numberOfCtusInFrame, 0 );
pcPic->resizeSAO( numberOfCtusInFrame, 1 );
}
// it is used for signalling during CTU mode decision, i.e. before ALF processing
if( pcSlice->getSPS()->getALFEnabledFlag() )
{
pcPic->resizeAlfCtuEnableFlag( numberOfCtusInFrame );
pcPic->resizeAlfCtuAlternative( numberOfCtusInFrame );
pcPic->resizeAlfCtbFilterIndex(numberOfCtusInFrame);
}
bool decPic = false;
bool encPic = false;
// test if we can skip the picture entirely or decode instead of encoding
trySkipOrDecodePicture( decPic, encPic, *m_pcCfg, pcPic, m_pcEncLib->getApsMap() );
pcPic->cs->slice = pcSlice; // please keep this
#if ENABLE_QPA
if (pcSlice->getPPS()->getSliceChromaQpFlag() && CS::isDualITree (*pcSlice->getPic()->cs) && !m_pcCfg->getUsePerceptQPA() && (m_pcCfg->getSliceChromaOffsetQpPeriodicity() == 0))
#else
if (pcSlice->getPPS()->getSliceChromaQpFlag() && CS::isDualITree (*pcSlice->getPic()->cs))
#endif
{
// overwrite chroma qp offset for dual tree
pcSlice->setSliceChromaQpDelta(COMPONENT_Cb, m_pcCfg->getChromaCbQpOffsetDualTree());
pcSlice->setSliceChromaQpDelta(COMPONENT_Cr, m_pcCfg->getChromaCrQpOffsetDualTree());
if (pcSlice->getSPS()->getJointCbCrEnabledFlag())
{
pcSlice->setSliceChromaQpDelta(JOINT_CbCr, m_pcCfg->getChromaCbCrQpOffsetDualTree());
}
m_pcSliceEncoder->setUpLambda(pcSlice, pcSlice->getLambdas()[0], pcSlice->getSliceQp());
}
xPicInitLMCS(pcPic, picHeader, pcSlice);
if( pcSlice->getSPS()->getScalingListFlag() && m_pcCfg->getUseScalingListId() == SCALING_LIST_FILE_READ )
{
picHeader->setExplicitScalingListEnabledFlag( true );
pcSlice->setExplicitScalingListUsed( true );
int apsId = std::min<int>( 7, m_pcEncLib->getVPS() == nullptr ? 0 : m_pcEncLib->getVPS()->getGeneralLayerIdx( m_pcEncLib->getLayerId() ) );
picHeader->setScalingListAPSId( apsId );
ParameterSetMap<APS> *apsMap = m_pcEncLib->getApsMap();
APS* scalingListAPS = apsMap->getPS( ( apsId << NUM_APS_TYPE_LEN ) + SCALING_LIST_APS );
assert( scalingListAPS != NULL );
picHeader->setScalingListAPS( scalingListAPS );
}
pcPic->cs->picHeader->setPic(pcPic);
pcPic->cs->picHeader->setValid();
if(pcPic->cs->sps->getFpelMmvdEnabledFlag())
{
// cannot set ph_fpel_mmvd_enabled_flag at slice level - need new picture-level version of checkDisFracMmvd algorithm?
// m_pcSliceEncoder->checkDisFracMmvd( pcPic, 0, numberOfCtusInFrame );
bool useIntegerMVD = (pcPic->lwidth()*pcPic->lheight() > 1920 * 1080);
pcPic->cs->picHeader->setDisFracMMVD( useIntegerMVD );
}
if (pcSlice->getSPS()->getJointCbCrEnabledFlag())
{
m_pcSliceEncoder->setJointCbCrModes(*pcPic->cs, Position(0, 0), pcPic->cs->area.lumaSize());
}
if( encPic )
// now compress (trial encode) the various slice segments (slices, and dependent slices)
{
DTRACE_UPDATE( g_trace_ctx, ( std::make_pair( "poc", pocCurr ) ) );
const std::vector<uint16_t> sliceLosslessArray = *(m_pcCfg->getSliceLosslessArray());
bool mixedLossyLossless = m_pcCfg->getMixedLossyLossless();
if (m_pcCfg->getCostMode() == COST_LOSSLESS_CODING)
{
pcPic->fillSliceLossyLosslessArray(sliceLosslessArray, mixedLossyLossless);
}
for(uint32_t sliceIdx = 0; sliceIdx < pcPic->cs->pps->getNumSlicesInPic(); sliceIdx++ )
{
pcSlice->setSliceMap( pcPic->cs->pps->getSliceMap( sliceIdx ) );
if( pcPic->cs->pps->getRectSliceFlag() )
{
Position firstCtu;
firstCtu.x = pcSlice->getFirstCtuRsAddrInSlice() % pcPic->cs->pps->getPicWidthInCtu();
firstCtu.y = pcSlice->getFirstCtuRsAddrInSlice() / pcPic->cs->pps->getPicWidthInCtu();
int subPicIdx = NOT_VALID;
for( int sp = 0; sp < pcPic->cs->pps->getNumSubPics(); sp++ )
{
if( pcPic->cs->pps->getSubPic( sp ).containsCtu( firstCtu ) )
{
subPicIdx = sp;
break;
}
}
CHECK( subPicIdx == NOT_VALID, "Sub-picture was not found" );
pcSlice->setSliceSubPicId( pcPic->cs->pps->getSubPic( subPicIdx ).getSubPicID() );
}
if (pcPic->cs->sps->getUseLmcs())
{
pcSlice->setLmcsEnabledFlag(picHeader->getLmcsEnabledFlag());
if (pcSlice->getSliceType() == I_SLICE)
{
//reshape original signal
pcPic->getOrigBuf().copyFrom(pcPic->getTrueOrigBuf());
if (pcSlice->getLmcsEnabledFlag())
{
pcPic->getOrigBuf(COMPONENT_Y).rspSignal(m_pcReshaper->getFwdLUT());
m_pcReshaper->setSrcReshaped(true);
m_pcReshaper->setRecReshaped(true);
}
else
{
m_pcReshaper->setSrcReshaped(false);
m_pcReshaper->setRecReshaped(false);
}
}
}
bool isLossless = false;
if (m_pcCfg->getCostMode() == COST_LOSSLESS_CODING)
{
isLossless = pcPic->losslessSlice(sliceIdx);
}
m_pcSliceEncoder->setLosslessSlice(pcPic, isLossless);
#if JVET_S0258_SUBPIC_CONSTRAINTS
if( pcSlice->getSliceType() != I_SLICE && pcSlice->getRefPic( REF_PIC_LIST_0, 0 )->subPictures.size() > 1 )
#else
if (pcSlice->getSliceType() != I_SLICE && pcSlice->getRefPic(REF_PIC_LIST_0, 0)->numSubpics > 1)
#endif
{
clipMv = clipMvInSubpic;
m_pcEncLib->getInterSearch()->setClipMvInSubPic(true);
}
else
{
clipMv = clipMvInPic;
m_pcEncLib->getInterSearch()->setClipMvInSubPic(false);
}
m_pcSliceEncoder->precompressSlice( pcPic );
m_pcSliceEncoder->compressSlice ( pcPic, false, false );
if(sliceIdx < pcPic->cs->pps->getNumSlicesInPic() - 1)
{
uint32_t independentSliceIdx = pcSlice->getIndependentSliceIdx();
pcPic->allocateNewSlice();
m_pcSliceEncoder->setSliceSegmentIdx (uiNumSliceSegments);
// prepare for next slice
pcSlice = pcPic->slices[uiNumSliceSegments];
CHECK(!(pcSlice->getPPS() != 0), "Unspecified error");
pcSlice->copySliceInfo(pcPic->slices[uiNumSliceSegments - 1]);
pcSlice->setSliceBits(0);
independentSliceIdx++;
pcSlice->setIndependentSliceIdx(independentSliceIdx);
uiNumSliceSegments++;
}
}
duData.clear();
CodingStructure& cs = *pcPic->cs;
pcSlice = pcPic->slices[0];
if (cs.sps->getUseLmcs() && m_pcReshaper->getSliceReshaperInfo().getUseSliceReshaper())
{
picHeader->setLmcsEnabledFlag(true);
int apsId = std::min<int>(3, m_pcEncLib->getVPS() == nullptr ? 0 : m_pcEncLib->getVPS()->getGeneralLayerIdx(m_pcEncLib->getLayerId()));
picHeader->setLmcsAPSId(apsId);
const PreCalcValues& pcv = *cs.pcv;
for (uint32_t yPos = 0; yPos < pcv.lumaHeight; yPos += pcv.maxCUHeight)
{
for (uint32_t xPos = 0; xPos < pcv.lumaWidth; xPos += pcv.maxCUWidth)
{
const CodingUnit* cu = cs.getCU(Position(xPos, yPos), CHANNEL_TYPE_LUMA);
if (cu->slice->getLmcsEnabledFlag())
{
const uint32_t width = (xPos + pcv.maxCUWidth > pcv.lumaWidth) ? (pcv.lumaWidth - xPos) : pcv.maxCUWidth;
const uint32_t height = (yPos + pcv.maxCUHeight > pcv.lumaHeight) ? (pcv.lumaHeight - yPos) : pcv.maxCUHeight;
const UnitArea area(cs.area.chromaFormat, Area(xPos, yPos, width, height));
cs.getRecoBuf(area).get(COMPONENT_Y).rspSignal(m_pcReshaper->getInvLUT());
}
}
}
m_pcReshaper->setRecReshaped(false);
pcPic->getOrigBuf().copyFrom(pcPic->getTrueOrigBuf());
}
// create SAO object based on the picture size
if( pcSlice->getSPS()->getSAOEnabledFlag() )
{
const uint32_t widthInCtus = ( picWidth + maxCUWidth - 1 ) / maxCUWidth;
const uint32_t heightInCtus = ( picHeight + maxCUHeight - 1 ) / maxCUHeight;
const uint32_t numCtuInFrame = widthInCtus * heightInCtus;
const uint32_t log2SaoOffsetScaleLuma = (uint32_t) std::max(0, pcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA ) - MAX_SAO_TRUNCATED_BITDEPTH);
const uint32_t log2SaoOffsetScaleChroma = (uint32_t) std::max(0, pcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_CHROMA) - MAX_SAO_TRUNCATED_BITDEPTH);
m_pcSAO->create( picWidth, picHeight, chromaFormatIDC, maxCUWidth, maxCUHeight, maxTotalCUDepth, log2SaoOffsetScaleLuma, log2SaoOffsetScaleChroma );
m_pcSAO->destroyEncData();
m_pcSAO->createEncData( m_pcCfg->getSaoCtuBoundary(), numCtuInFrame );
m_pcSAO->setReshaper( m_pcReshaper );
}
if( pcSlice->getSPS()->getScalingListFlag() && m_pcCfg->getUseScalingListId() == SCALING_LIST_FILE_READ )
{
picHeader->setExplicitScalingListEnabledFlag(true);
pcSlice->setExplicitScalingListUsed(true);
int apsId = 0;
picHeader->setScalingListAPSId( apsId );
}
// SAO parameter estimation using non-deblocked pixels for CTU bottom and right boundary areas
if( pcSlice->getSPS()->getSAOEnabledFlag() && m_pcCfg->getSaoCtuBoundary() )
{
m_pcSAO->getPreDBFStatistics( cs );
}
//-- Loop filter
if ( m_pcCfg->getDeblockingFilterMetric() )
{
#if W0038_DB_OPT
if ( m_pcCfg->getDeblockingFilterMetric()==2 )
{
applyDeblockingFilterParameterSelection(pcPic, uiNumSliceSegments, iGOPid);
}
else
{
#endif
applyDeblockingFilterMetric(pcPic, uiNumSliceSegments);
#if W0038_DB_OPT
}
#endif
}
if (m_pcCfg->getCostMode() == COST_LOSSLESS_CODING)
{
for (int s = 0; s < uiNumSliceSegments; s++)
{
if (pcPic->slices[s]->isLossless())
{
pcPic->slices[s]->setDeblockingFilterDisable(true);
}
}
}
m_pcLoopFilter->loopFilterPic( cs );
CS::setRefinedMotionField(cs);
if( pcSlice->getSPS()->getSAOEnabledFlag() )
{
bool sliceEnabled[MAX_NUM_COMPONENT];
m_pcSAO->initCABACEstimator( m_pcEncLib->getCABACEncoder(), m_pcEncLib->getCtxCache(), pcSlice );
m_pcSAO->SAOProcess( cs, sliceEnabled, pcSlice->getLambdas(),
#if ENABLE_QPA
(m_pcCfg->getUsePerceptQPA() && !m_pcCfg->getUseRateCtrl() && pcSlice->getPPS()->getUseDQP() ? m_pcEncLib->getRdCost (PARL_PARAM0 (0))->getChromaWeight() : 0.0),
#endif
m_pcCfg->getTestSAODisableAtPictureLevel(), m_pcCfg->getSaoEncodingRate(), m_pcCfg->getSaoEncodingRateChroma(), m_pcCfg->getSaoCtuBoundary(), m_pcCfg->getSaoGreedyMergeEnc() );
//assign SAO slice header
for (int s = 0; s < uiNumSliceSegments; s++)
{
if (pcPic->slices[s]->isLossless() && m_pcCfg->getCostMode() == COST_LOSSLESS_CODING)
{
pcPic->slices[s]->setSaoEnabledFlag(CHANNEL_TYPE_LUMA, false);
pcPic->slices[s]->setSaoEnabledFlag(CHANNEL_TYPE_CHROMA, false);
}
else
{
pcPic->slices[s]->setSaoEnabledFlag(CHANNEL_TYPE_LUMA, sliceEnabled[COMPONENT_Y]);
CHECK(!(sliceEnabled[COMPONENT_Cb] == sliceEnabled[COMPONENT_Cr]), "Unspecified error");
pcPic->slices[s]->setSaoEnabledFlag(CHANNEL_TYPE_CHROMA, sliceEnabled[COMPONENT_Cb]);
}
}
}
if( pcSlice->getSPS()->getALFEnabledFlag() )
{
m_pcALF->destroy();
m_pcALF->create( m_pcCfg, picWidth, picHeight, chromaFormatIDC, maxCUWidth, maxCUHeight, maxTotalCUDepth, m_pcCfg->getBitDepth(), m_pcCfg->getInputBitDepth() );
for (int s = 0; s < uiNumSliceSegments; s++)
{
pcPic->slices[s]->setTileGroupAlfEnabledFlag(COMPONENT_Y, false);
}
m_pcALF->initCABACEstimator(m_pcEncLib->getCABACEncoder(), m_pcEncLib->getCtxCache(), pcSlice, m_pcEncLib->getApsMap());
m_pcALF->ALFProcess(cs, pcSlice->getLambdas()
#if ENABLE_QPA
, (m_pcCfg->getUsePerceptQPA() && !m_pcCfg->getUseRateCtrl() && pcSlice->getPPS()->getUseDQP() ? m_pcEncLib->getRdCost(PARL_PARAM0(0))->getChromaWeight() : 0.0)
#endif
, pcPic, uiNumSliceSegments
);
pcSlice->m_ccAlfFilterParam = m_pcALF->getCcAlfFilterParam();
pcSlice->m_ccAlfFilterControl[0] = m_pcALF->getCcAlfControlIdc(COMPONENT_Cb);
pcSlice->m_ccAlfFilterControl[1] = m_pcALF->getCcAlfControlIdc(COMPONENT_Cr);
//assign ALF slice header
for (int s = 0; s < uiNumSliceSegments; s++)
{
//For the first slice, even if it is lossless, slice level ALF is not disabled and ALF-APS is signaled so that the later lossy slices can use APS of the first slice.
//However, if the first slice is lossless, the ALF process is disabled for all of the CTUs ( m_ctuEnableFlag == 0) of that slice which is implemented in the function void EncAdaptiveLoopFilter::ALFProcess.
if (pcPic->slices[s]->isLossless() && s && m_pcCfg->getCostMode() == COST_LOSSLESS_CODING)
{
pcPic->slices[s]->setTileGroupAlfEnabledFlag(COMPONENT_Y, false);
pcPic->slices[s]->setTileGroupAlfEnabledFlag(COMPONENT_Cb, false);
pcPic->slices[s]->setTileGroupAlfEnabledFlag(COMPONENT_Cr, false);
}
else
{
pcPic->slices[s]->setTileGroupAlfEnabledFlag(COMPONENT_Y, cs.slice->getTileGroupAlfEnabledFlag(COMPONENT_Y));
pcPic->slices[s]->setTileGroupAlfEnabledFlag(COMPONENT_Cb, cs.slice->getTileGroupAlfEnabledFlag(COMPONENT_Cb));
pcPic->slices[s]->setTileGroupAlfEnabledFlag(COMPONENT_Cr, cs.slice->getTileGroupAlfEnabledFlag(COMPONENT_Cr));
}
if (pcPic->slices[s]->getTileGroupAlfEnabledFlag(COMPONENT_Y))
{
pcPic->slices[s]->setTileGroupNumAps(cs.slice->getTileGroupNumAps());
pcPic->slices[s]->setAlfAPSs(cs.slice->getTileGroupApsIdLuma());
}
else
{
pcPic->slices[s]->setTileGroupNumAps(0);
}
pcPic->slices[s]->setAlfAPSs(cs.slice->getAlfAPSs());
pcPic->slices[s]->setTileGroupApsIdChroma(cs.slice->getTileGroupApsIdChroma());
pcPic->slices[s]->setTileGroupCcAlfCbApsId(cs.slice->getTileGroupCcAlfCbApsId());
pcPic->slices[s]->setTileGroupCcAlfCrApsId(cs.slice->getTileGroupCcAlfCrApsId());
}
}
DTRACE_UPDATE( g_trace_ctx, ( std::make_pair( "final", 1 ) ) );
if (m_pcCfg->getUseCompositeRef() && getPrepareLTRef())
{
updateCompositeReference(pcSlice, rcListPic, pocCurr);
}
}
else // skip enc picture
{
pcSlice->setSliceQpBase( pcSlice->getSliceQp() );
#if ENABLE_QPA
if (m_pcCfg->getUsePerceptQPA() && !m_pcCfg->getUseRateCtrl() && pcSlice->getPPS()->getUseDQP())
{
const double picLambda = pcSlice->getLambdas()[0];
for (uint32_t ctuRsAddr = 0; ctuRsAddr < numberOfCtusInFrame; ctuRsAddr++)
{
pcPic->m_uEnerHpCtu[ctuRsAddr] = picLambda; // initialize to slice lambda (just for safety)
}
}
#endif
if( pcSlice->getSPS()->getSAOEnabledFlag() )
{
m_pcSAO->disabledRate( *pcPic->cs, pcPic->getSAO(1), m_pcCfg->getSaoEncodingRate(), m_pcCfg->getSaoEncodingRateChroma());
}
if (pcSlice->getSPS()->getALFEnabledFlag() && (pcSlice->getTileGroupAlfEnabledFlag(COMPONENT_Y) || pcSlice->getTileGroupCcAlfCbEnabledFlag() || pcSlice->getTileGroupCcAlfCrEnabledFlag()))
{
// IRAP AU: reset APS map
{
int layerIdx = pcSlice->getVPS() == nullptr ? 0 : pcSlice->getVPS()->getGeneralLayerIdx( pcSlice->getPic()->layerId );
if( !layerIdx && ( pcSlice->getPendingRasInit() || pcSlice->isIDRorBLA() ) )
{
// We have to reset all APS on IRAP, but in not encoding case we have to keep the parsed APS of current slice
// Get active ALF APSs from picture/slice header
const std::vector<int> sliceApsIdsLuma = pcSlice->getTileGroupApsIdLuma();
m_pcALF->setApsIdStart( ALF_CTB_MAX_NUM_APS );
ParameterSetMap<APS>* apsMap = m_pcEncLib->getApsMap();
apsMap->clear();
for( int apsId = 0; apsId < ALF_CTB_MAX_NUM_APS; apsId++ )
{
int psId = ( apsId << NUM_APS_TYPE_LEN ) + ALF_APS;
APS* aps = apsMap->getPS( psId );
if( aps )
{
// Check if this APS is currently the active one (used in current slice)
bool activeAps = false;
bool activeApsCcAlf = false;
// Luma
for( int i = 0; i < sliceApsIdsLuma.size(); i++ )
{
if( aps->getAPSId() == sliceApsIdsLuma[i] )
{
activeAps = true;
break;
}
}
// Chroma
activeAps |= aps->getAPSId() == pcSlice->getTileGroupApsIdChroma();
// CC-ALF
activeApsCcAlf |= pcSlice->getTileGroupCcAlfCbEnabledFlag() && aps->getAPSId() == pcSlice->getTileGroupCcAlfCbApsId();
activeApsCcAlf |= pcSlice->getTileGroupCcAlfCrEnabledFlag() && aps->getAPSId() == pcSlice->getTileGroupCcAlfCrApsId();
if( !activeAps && !activeApsCcAlf )
{
apsMap->clearChangedFlag( psId );
}
if( !activeAps )
{
aps->getAlfAPSParam().reset();
}
if( !activeApsCcAlf )
{
aps->getCcAlfAPSParam().reset();
}
}
}
}
}
// Assign tne correct APS to slice and emulate the setting of ALF start APS ID
int changedApsId = -1;
for( int apsId = ALF_CTB_MAX_NUM_APS - 1; apsId >= 0; apsId-- )
{
ParameterSetMap<APS>* apsMap = m_pcEncLib->getApsMap();
int psId = ( apsId << NUM_APS_TYPE_LEN ) + ALF_APS;
APS* aps = apsMap->getPS( psId );
if( aps )
{
// In slice, replace the old APS (from decoder map) with the APS from encoder map due to later checks while bitstream writing
if( pcSlice->getAlfAPSs() && pcSlice->getAlfAPSs()[apsId] )
{
pcSlice->getAlfAPSs()[apsId] = aps;
}
if( apsMap->getChangedFlag( psId ) )
changedApsId = apsId;
}
}
if( changedApsId >= 0 )
m_pcALF->setApsIdStart( changedApsId );
}
}
pcSlice->freeScaledRefPicList( scaledRefPic );
if( m_pcCfg->getUseAMaxBT() )
{
for( const CodingUnit *cu : pcPic->cs->cus )
{
if( !pcSlice->isIntra() )
{
m_uiBlkSize[pcSlice->getDepth()] += cu->Y().area();
m_uiNumBlk [pcSlice->getDepth()]++;
}
}
}
if( encPic || decPic )
{
pcSlice = pcPic->slices[0];
/////////////////////////////////////////////////////////////////////////////////////////////////// File writing
// write various parameter sets
bool writePS = m_bSeqFirst || (m_pcCfg->getReWriteParamSets() && (pcSlice->isIRAP()));
if (writePS)
{
m_pcEncLib->setParamSetChanged(pcSlice->getSPS()->getSPSId(), pcSlice->getPPS()->getPPSId());
}
int layerIdx = m_pcEncLib->getVPS() == nullptr ? 0 : m_pcEncLib->getVPS()->getGeneralLayerIdx( m_pcEncLib->getLayerId() );
// it is assumed that layerIdx equal to 0 is always present
m_audIrapOrGdrAuFlag = pcSlice->getPicHeader()->getGdrPicFlag() || (pcSlice->isIRAP() && !pcSlice->getPPS()->getMixedNaluTypesInPicFlag());
if ((( m_pcEncLib->getVPS()->getMaxLayers() > 1 && m_audIrapOrGdrAuFlag) || m_pcCfg->getAccessUnitDelimiter()) && !layerIdx )
{
xWriteAccessUnitDelimiter(accessUnit, pcSlice);
}
// it is assumed that layerIdx equal to 0 is always present
actualTotalBits += xWriteParameterSets(accessUnit, pcSlice, writePS, layerIdx);
if (writePS)
{
// create prefix SEI messages at the beginning of the sequence
CHECK(!(leadingSeiMessages.empty()), "Unspecified error");
xCreateIRAPLeadingSEIMessages(leadingSeiMessages, pcSlice->getSPS(), pcSlice->getPPS());
m_bSeqFirst = false;
}
//send LMCS APS when LMCSModel is updated. It can be updated even current slice does not enable reshaper.
//For example, in RA, update is on intra slice, but intra slice may not use reshaper
if (pcSlice->getSPS()->getUseLmcs())
{
//only 1 LMCS data for 1 picture
int apsId = picHeader->getLmcsAPSId();
ParameterSetMap<APS> *apsMap = m_pcEncLib->getApsMap();
APS* aps = apsMap->getPS((apsId << NUM_APS_TYPE_LEN) + LMCS_APS);
bool writeAPS = aps && apsMap->getChangedFlag((apsId << NUM_APS_TYPE_LEN) + LMCS_APS);
if (writeAPS)
{
#if JVET_R0433
aps->chromaPresentFlag = pcSlice->getSPS()->getChromaFormatIdc() != CHROMA_400;
#endif
actualTotalBits += xWriteAPS( accessUnit, aps, m_pcEncLib->getLayerId(), true );
apsMap->clearChangedFlag((apsId << NUM_APS_TYPE_LEN) + LMCS_APS);
CHECK(aps != picHeader->getLmcsAPS(), "Wrong LMCS APS pointer in compressGOP");
}
}
// only 1 SCALING LIST data for 1 picture
if( pcSlice->getSPS()->getScalingListFlag() && ( m_pcCfg->getUseScalingListId() == SCALING_LIST_FILE_READ ) )
{
int apsId = picHeader->getScalingListAPSId();
ParameterSetMap<APS> *apsMap = m_pcEncLib->getApsMap();
APS* aps = apsMap->getPS( ( apsId << NUM_APS_TYPE_LEN ) + SCALING_LIST_APS );
bool writeAPS = aps && apsMap->getChangedFlag( ( apsId << NUM_APS_TYPE_LEN ) + SCALING_LIST_APS );
if( writeAPS )
{
#if JVET_R0433
aps->chromaPresentFlag = pcSlice->getSPS()->getChromaFormatIdc() != CHROMA_400;
#endif
actualTotalBits += xWriteAPS( accessUnit, aps, m_pcEncLib->getLayerId(), true );
apsMap->clearChangedFlag( ( apsId << NUM_APS_TYPE_LEN ) + SCALING_LIST_APS );
CHECK( aps != picHeader->getScalingListAPS(), "Wrong SCALING LIST APS pointer in compressGOP" );
}
}
if (pcSlice->getSPS()->getALFEnabledFlag() && (pcSlice->getTileGroupAlfEnabledFlag(COMPONENT_Y) || pcSlice->getTileGroupCcAlfCbEnabledFlag() || pcSlice->getTileGroupCcAlfCrEnabledFlag()))
{
for (int apsId = 0; apsId < ALF_CTB_MAX_NUM_APS; apsId++)
{
ParameterSetMap<APS> *apsMap = m_pcEncLib->getApsMap();
APS* aps = apsMap->getPS((apsId << NUM_APS_TYPE_LEN) + ALF_APS);
bool writeAPS = aps && apsMap->getChangedFlag((apsId << NUM_APS_TYPE_LEN) + ALF_APS);
if (!aps && pcSlice->getAlfAPSs() && pcSlice->getAlfAPSs()[apsId])
{
writeAPS = true;
aps = pcSlice->getAlfAPSs()[apsId]; // use asp from slice header
*apsMap->allocatePS((apsId << NUM_APS_TYPE_LEN) + ALF_APS) = *aps; //allocate and cpy
m_pcALF->setApsIdStart( apsId );
}
else if (pcSlice->getTileGroupCcAlfCbEnabledFlag() && !aps && apsId == pcSlice->getTileGroupCcAlfCbApsId())
{
writeAPS = true;
aps = apsMap->getPS((pcSlice->getTileGroupCcAlfCbApsId() << NUM_APS_TYPE_LEN) + ALF_APS);
}
else if (pcSlice->getTileGroupCcAlfCrEnabledFlag() && !aps && apsId == pcSlice->getTileGroupCcAlfCrApsId())
{
writeAPS = true;
aps = apsMap->getPS((pcSlice->getTileGroupCcAlfCrApsId() << NUM_APS_TYPE_LEN) + ALF_APS);
}
if (writeAPS )
{
#if JVET_R0433
aps->chromaPresentFlag = pcSlice->getSPS()->getChromaFormatIdc() != CHROMA_400;
#endif
actualTotalBits += xWriteAPS( accessUnit, aps, m_pcEncLib->getLayerId(), true );
apsMap->clearChangedFlag((apsId << NUM_APS_TYPE_LEN) + ALF_APS);
CHECK(aps != pcSlice->getAlfAPSs()[apsId] && apsId != pcSlice->getTileGroupCcAlfCbApsId() && apsId != pcSlice->getTileGroupCcAlfCrApsId(), "Wrong APS pointer in compressGOP");
}
}
}
// reset presence of BP SEI indication
m_bufferingPeriodSEIPresentInAU = false;
// create prefix SEI associated with a picture
xCreatePerPictureSEIMessages(iGOPid, leadingSeiMessages, nestedSeiMessages, pcSlice);
// pcSlice is currently slice 0.
std::size_t binCountsInNalUnits = 0; // For implementation of cabac_zero_word stuffing (section 7.4.3.10)
std::size_t numBytesInVclNalUnits = 0; // For implementation of cabac_zero_word stuffing (section 7.4.3.10)
#if JVET_Q0406_CABAC_ZERO
std::size_t sumZeroWords = 0; // sum of cabac_zero_word inserted per sub-picture
std::vector<EncBitstreamParams> subPicStats (pcPic->cs->pps->getNumSubPics());
#endif
for(uint32_t sliceSegmentIdxCount = 0; sliceSegmentIdxCount < pcPic->cs->pps->getNumSlicesInPic(); sliceSegmentIdxCount++ )
{
pcSlice = pcPic->slices[sliceSegmentIdxCount];
if(sliceSegmentIdxCount > 0 && pcSlice->getSliceType()!= I_SLICE)
{
pcSlice->checkColRefIdx(sliceSegmentIdxCount, pcPic);
}
m_pcSliceEncoder->setSliceSegmentIdx(sliceSegmentIdxCount);
pcSlice->setRPL0(pcPic->slices[0]->getRPL0());
pcSlice->setRPL1(pcPic->slices[0]->getRPL1());
pcSlice->setRPL0idx(pcPic->slices[0]->getRPL0idx());
pcSlice->setRPL1idx(pcPic->slices[0]->getRPL1idx());
picHeader->setNoOutputBeforeRecoveryFlag( false );
if (pcSlice->isIRAP())
{
if (pcSlice->getNalUnitType() >= NAL_UNIT_CODED_SLICE_IDR_W_RADL && pcSlice->getNalUnitType() <= NAL_UNIT_CODED_SLICE_IDR_N_LP)
{
picHeader->setNoOutputBeforeRecoveryFlag( true );
}
//the inference for NoOutputPriorPicsFlag
// KJS: This cannot happen at the encoder
if( !m_bFirst && ( pcSlice->isIRAP() || pcSlice->getNalUnitType() >= NAL_UNIT_CODED_SLICE_GDR ) && picHeader->getNoOutputBeforeRecoveryFlag() )
{
if (pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA || pcSlice->getNalUnitType() >= NAL_UNIT_CODED_SLICE_GDR)
{
picHeader->setNoOutputOfPriorPicsFlag(true);
}
}
}
// code picture header before first slice
if(sliceSegmentIdxCount == 0)
{
// code RPL in picture header or slice headers
if( !m_pcCfg->getSliceLevelRpl() && (!pcSlice->getIdrPicFlag() || pcSlice->getSPS()->getIDRRefParamListPresent()) )
{
picHeader->setRPL0idx(pcSlice->getRPL0idx());
picHeader->setRPL1idx(pcSlice->getRPL1idx());
picHeader->setRPL0(pcSlice->getRPL0());
picHeader->setRPL1(pcSlice->getRPL1());
*picHeader->getLocalRPL0() = *pcSlice->getLocalRPL0();
*picHeader->getLocalRPL1() = *pcSlice->getLocalRPL1();
}
// code DBLK in picture header or slice headers
if( !m_pcCfg->getSliceLevelDblk() )
{
picHeader->setDeblockingFilterOverrideFlag ( pcSlice->getDeblockingFilterOverrideFlag() );
picHeader->setDeblockingFilterDisable ( pcSlice->getDeblockingFilterDisable() );
picHeader->setDeblockingFilterBetaOffsetDiv2 ( pcSlice->getDeblockingFilterBetaOffsetDiv2() );
picHeader->setDeblockingFilterTcOffsetDiv2 ( pcSlice->getDeblockingFilterTcOffsetDiv2() );
picHeader->setDeblockingFilterCbBetaOffsetDiv2( pcSlice->getDeblockingFilterCbBetaOffsetDiv2() );
picHeader->setDeblockingFilterCbTcOffsetDiv2 ( pcSlice->getDeblockingFilterCbTcOffsetDiv2() );
picHeader->setDeblockingFilterCrBetaOffsetDiv2( pcSlice->getDeblockingFilterCrBetaOffsetDiv2() );
picHeader->setDeblockingFilterCrTcOffsetDiv2 ( pcSlice->getDeblockingFilterCrTcOffsetDiv2() );
}
if (!m_pcCfg->getSliceLevelDeltaQp())
{
picHeader->setQpDelta(pcSlice->getSliceQp() - (pcSlice->getPPS()->getPicInitQPMinus26() + 26));
}
// code SAO parameters in picture header or slice headers
if( !m_pcCfg->getSliceLevelSao() )
{
picHeader->setSaoEnabledFlag(CHANNEL_TYPE_LUMA, pcSlice->getSaoEnabledFlag(CHANNEL_TYPE_LUMA ));
picHeader->setSaoEnabledFlag(CHANNEL_TYPE_CHROMA, pcSlice->getSaoEnabledFlag(CHANNEL_TYPE_CHROMA));
}
// code ALF parameters in picture header or slice headers
if( !m_pcCfg->getSliceLevelAlf() )
{
picHeader->setAlfEnabledFlag(COMPONENT_Y, pcSlice->getTileGroupAlfEnabledFlag(COMPONENT_Y ) );
picHeader->setAlfEnabledFlag(COMPONENT_Cb, pcSlice->getTileGroupAlfEnabledFlag(COMPONENT_Cb) );
picHeader->setAlfEnabledFlag(COMPONENT_Cr, pcSlice->getTileGroupAlfEnabledFlag(COMPONENT_Cr) );
picHeader->setNumAlfAps(pcSlice->getTileGroupNumAps());
picHeader->setAlfAPSs(pcSlice->getTileGroupApsIdLuma());
picHeader->setAlfApsIdChroma(pcSlice->getTileGroupApsIdChroma());
picHeader->setCcAlfEnabledFlag(COMPONENT_Cb, pcSlice->getTileGroupCcAlfCbEnabledFlag());
picHeader->setCcAlfEnabledFlag(COMPONENT_Cr, pcSlice->getTileGroupCcAlfCrEnabledFlag());
picHeader->setCcAlfCbApsId(pcSlice->getTileGroupCcAlfCbApsId());
picHeader->setCcAlfCrApsId(pcSlice->getTileGroupCcAlfCrApsId());
}
// code WP parameters in picture header or slice headers
if (!m_pcCfg->getSliceLevelWp())
{
picHeader->setWpScaling(pcSlice->getWpScalingAll());
picHeader->setNumL0Weights(pcSlice->getNumRefIdx(REF_PIC_LIST_0));
picHeader->setNumL0Weights(pcSlice->getNumRefIdx(REF_PIC_LIST_1));
}
pcPic->cs->picHeader->setPic(pcPic);
pcPic->cs->picHeader->setValid();
if (pcPic->cs->pps->getNumSlicesInPic() > 1 || !m_pcCfg->getEnablePictureHeaderInSliceHeader())
{
pcSlice->setPictureHeaderInSliceHeader(false);
actualTotalBits += xWritePicHeader(accessUnit, pcPic->cs->picHeader);
}
else
{
pcSlice->setPictureHeaderInSliceHeader(true);
}
if (pcSlice->getSPS()->getProfileTierLevel()->getConstraintInfo()->getPicHeaderInSliceHeaderConstraintFlag())
{
CHECK(pcSlice->getPictureHeaderInSliceHeader() == false, "PH shall be present in SH, when pic_header_in_slice_header_constraint_flag is equal to 1");
}
}
pcSlice->setPicHeader( pcPic->cs->picHeader );
pcSlice->setNalUnitLayerId( m_pcEncLib->getLayerId() );
for ( uint32_t ui = 0 ; ui < numSubstreams; ui++ )
{
substreamsOut[ui].clear();
}
/* start slice NALunit */
OutputNALUnit nalu( pcSlice->getNalUnitType(), m_pcEncLib->getLayerId(), pcSlice->getTLayer() );
m_HLSWriter->setBitstream( &nalu.m_Bitstream );
tmpBitsBeforeWriting = m_HLSWriter->getNumberOfWrittenBits();
m_HLSWriter->codeSliceHeader( pcSlice );
actualHeadBits += ( m_HLSWriter->getNumberOfWrittenBits() - tmpBitsBeforeWriting );
pcSlice->setFinalized(true);
pcSlice->resetNumberOfSubstream( );
pcSlice->setNumSubstream( pcSlice->getSPS(), pcSlice->getPPS() );
pcSlice->clearSubstreamSizes( );
#if JVET_Q0406_CABAC_ZERO
const int subpicIdx = pcPic->cs->pps->getSubPicIdxFromSubPicId(pcSlice->getSliceSubPicId());
#endif
{
uint32_t numBinsCoded = 0;
m_pcSliceEncoder->encodeSlice(pcPic, &(substreamsOut[0]), numBinsCoded);
binCountsInNalUnits+=numBinsCoded;
#if JVET_Q0406_CABAC_ZERO
subPicStats[subpicIdx].numBinsWritten += numBinsCoded;
#endif
}
{
// Construct the final bitstream by concatenating substreams.
// The final bitstream is either nalu.m_Bitstream or pcBitstreamRedirect;
// Complete the slice header info.
m_HLSWriter->setBitstream( &nalu.m_Bitstream );
m_HLSWriter->codeTilesWPPEntryPoint( pcSlice );
// Append substreams...
OutputBitstream *pcOut = pcBitstreamRedirect;
const int numSubstreamsToCode = pcSlice->getNumberOfSubstream() + 1;
for ( uint32_t ui = 0 ; ui < numSubstreamsToCode; ui++ )
{
pcOut->addSubstream(&(substreamsOut[ui]));
}
}
// If current NALU is the first NALU of slice (containing slice header) and more NALUs exist (due to multiple dependent slices) then buffer it.
// If current NALU is the last NALU of slice and a NALU was buffered, then (a) Write current NALU (b) Update an write buffered NALU at approproate location in NALU list.
bool bNALUAlignedWrittenToList = false; // used to ensure current NALU is not written more than once to the NALU list.
xAttachSliceDataToNalUnit(nalu, pcBitstreamRedirect);
accessUnit.push_back(new NALUnitEBSP(nalu));
actualTotalBits += uint32_t(accessUnit.back()->m_nalUnitData.str().size()) * 8;
numBytesInVclNalUnits += (std::size_t)(accessUnit.back()->m_nalUnitData.str().size());
#if JVET_Q0406_CABAC_ZERO
subPicStats[subpicIdx].numBytesInVclNalUnits += (std::size_t)(accessUnit.back()->m_nalUnitData.str().size());
#endif
bNALUAlignedWrittenToList = true;
if (!bNALUAlignedWrittenToList)
{
nalu.m_Bitstream.writeAlignZero();
accessUnit.push_back(new NALUnitEBSP(nalu));
}
if( ( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) &&
((pcSlice->getSPS()->getGeneralHrdParameters()->getGeneralNalHrdParametersPresentFlag())
|| (pcSlice->getSPS()->getGeneralHrdParameters()->getGeneralVclHrdParametersPresentFlag())) &&
(pcSlice->getSPS()->getGeneralHrdParameters()->getGeneralDecodingUnitHrdParamsPresentFlag()))
{
uint32_t numNalus = 0;
uint32_t numRBSPBytes = 0;
for (AccessUnit::const_iterator it = accessUnit.begin(); it != accessUnit.end(); it++)
{
numRBSPBytes += uint32_t((*it)->m_nalUnitData.str().size());
numNalus ++;
}
duData.push_back(DUData());
duData.back().accumBitsDU = ( numRBSPBytes << 3 );
duData.back().accumNalsDU = numNalus;
}
#if JVET_Q0406_CABAC_ZERO
if (pcSlice->isLastSliceInSubpic())
{
// Check picture level encoding constraints/requirements
ProfileLevelTierFeatures profileLevelTierFeatures;
profileLevelTierFeatures.extractPTLInformation(*(pcSlice->getSPS()));
sumZeroWords += cabac_zero_word_padding(pcSlice, pcPic, subPicStats[subpicIdx].numBinsWritten, subPicStats[subpicIdx].numBytesInVclNalUnits, 0,
accessUnit.back()->m_nalUnitData, m_pcCfg->getCabacZeroWordPaddingEnabled(), profileLevelTierFeatures);
}
#endif
} // end iteration over slices
{
// Check picture level encoding constraints/requirements
ProfileLevelTierFeatures profileLevelTierFeatures;
profileLevelTierFeatures.extractPTLInformation(*(pcSlice->getSPS()));
validateMinCrRequirements(profileLevelTierFeatures, numBytesInVclNalUnits, pcPic, m_pcCfg);
// cabac_zero_words processing
#if JVET_Q0406_CABAC_ZERO
cabac_zero_word_padding(pcSlice, pcPic, binCountsInNalUnits, numBytesInVclNalUnits, sumZeroWords, accessUnit.back()->m_nalUnitData, m_pcCfg->getCabacZeroWordPaddingEnabled(), profileLevelTierFeatures);
#else
cabac_zero_word_padding(pcSlice, pcPic, binCountsInNalUnits, numBytesInVclNalUnits, accessUnit.back()->m_nalUnitData, m_pcCfg->getCabacZeroWordPaddingEnabled(), profileLevelTierFeatures);
#endif
}
//-- For time output for each slice
auto elapsed = std::chrono::steady_clock::now() - beforeTime;
auto encTime = std::chrono::duration_cast<std::chrono::seconds>( elapsed ).count();
std::string digestStr;
if (m_pcCfg->getDecodedPictureHashSEIType()!=HASHTYPE_NONE)
{
SEIDecodedPictureHash *decodedPictureHashSei = new SEIDecodedPictureHash();
PelUnitBuf recoBuf = pcPic->cs->getRecoBuf();
m_seiEncoder.initDecodedPictureHashSEI(decodedPictureHashSei, recoBuf, digestStr, pcSlice->getSPS()->getBitDepths());
trailingSeiMessages.push_back(decodedPictureHashSei);
}
m_pcCfg->setEncodedFlag(iGOPid, true);
double PSNR_Y;
xCalculateAddPSNRs(isField, isTff, iGOPid, pcPic, accessUnit, rcListPic, encTime, snr_conversion, printFrameMSE, &PSNR_Y, isEncodeLtRef );
xWriteTrailingSEIMessages(trailingSeiMessages, accessUnit, pcSlice->getTLayer());
printHash(m_pcCfg->getDecodedPictureHashSEIType(), digestStr);
if ( m_pcCfg->getUseRateCtrl() )
{
double avgQP = m_pcRateCtrl->getRCPic()->calAverageQP();
double avgLambda = m_pcRateCtrl->getRCPic()->calAverageLambda();
if ( avgLambda < 0.0 )
{
avgLambda = lambda;
}
m_pcRateCtrl->getRCPic()->updateAfterPicture( actualHeadBits, actualTotalBits, avgQP, avgLambda, pcSlice->isIRAP());
m_pcRateCtrl->getRCPic()->addToPictureLsit( m_pcRateCtrl->getPicList() );
m_pcRateCtrl->getRCSeq()->updateAfterPic( actualTotalBits );
if ( !pcSlice->isIRAP() )
{
m_pcRateCtrl->getRCGOP()->updateAfterPicture( actualTotalBits );
}
else // for intra picture, the estimated bits are used to update the current status in the GOP
{
m_pcRateCtrl->getRCGOP()->updateAfterPicture( estimatedBits );
}
#if U0132_TARGET_BITS_SATURATION
if (m_pcRateCtrl->getCpbSaturationEnabled())
{
m_pcRateCtrl->updateCpbState(actualTotalBits);
msg( NOTICE, " [CPB %6d bits]", m_pcRateCtrl->getCpbState() );
}
#endif
}
xCreateFrameFieldInfoSEI( leadingSeiMessages, pcSlice, isField );
xCreatePictureTimingSEI( m_pcCfg->getEfficientFieldIRAPEnabled() ? effFieldIRAPMap.GetIRAPGOPid() : 0, leadingSeiMessages, nestedSeiMessages, duInfoSeiMessages, pcSlice, isField, duData );
if (m_pcCfg->getScalableNestingSEIEnabled())
{
const SPS* sps = pcSlice->getSPS();
const PPS* pps = pcSlice->getPPS();
std::vector<uint16_t> subpicIDs;
if (sps->getSubPicInfoPresentFlag())
{
if(sps->getSubPicIdMappingExplicitlySignalledFlag())
{
if(sps->getSubPicIdMappingInSpsFlag())
{
subpicIDs = sps->getSubPicIds();
}
else
{
subpicIDs = pps->getSubPicIds();
}
}
else
{
const int numSubPics = sps->getNumSubPics();
subpicIDs.resize(numSubPics);
for (int i = 0 ; i < numSubPics; i++)
{
subpicIDs[i] = (uint16_t) i;
}
}
}
xCreateScalableNestingSEI(leadingSeiMessages, nestedSeiMessages, subpicIDs);
}
xWriteLeadingSEIMessages( leadingSeiMessages, duInfoSeiMessages, accessUnit, pcSlice->getTLayer(), pcSlice->getSPS(), duData );
xWriteDuSEIMessages( duInfoSeiMessages, accessUnit, pcSlice->getTLayer(), duData );
m_AUWriterIf->outputAU( accessUnit );
msg( NOTICE, "\n" );
fflush( stdout );
}
DTRACE_UPDATE( g_trace_ctx, ( std::make_pair( "final", 0 ) ) );
pcPic->reconstructed = true;
m_bFirst = false;
m_iNumPicCoded++;
if (!(m_pcCfg->getUseCompositeRef() && isEncodeLtRef))
{
for( int i = pcSlice->getTLayer() ; i < pcSlice->getSPS()->getMaxTLayers() ; i ++ )
{
m_totalCoded[i]++;
}
}
/* logging: insert a newline at end of picture period */
if (m_pcCfg->getEfficientFieldIRAPEnabled())
{
iGOPid=effFieldIRAPMap.restoreGOPid(iGOPid);
}
pcPic->destroyTempBuffers();
pcPic->cs->destroyCoeffs();
pcPic->cs->releaseIntermediateData();
} // iGOPid-loop
delete pcBitstreamRedirect;
CHECK( m_iNumPicCoded > 1, "Unspecified error" );
}
void EncGOP::printOutSummary( uint32_t uiNumAllPicCoded, bool isField, const bool printMSEBasedSNR, const bool printSequenceMSE, const bool printHexPsnr, const bool printRprPSNR, const BitDepths &bitDepths )
{
#if ENABLE_QPA
const bool useWPSNR = m_pcEncLib->getUseWPSNR();
#endif
#if WCG_WPSNR
const bool useLumaWPSNR = m_pcEncLib->getLumaLevelToDeltaQPMapping().isEnabled() || (m_pcCfg->getLmcs() && m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_PQ);
#endif
if( m_pcCfg->getDecodeBitstream(0).empty() && m_pcCfg->getDecodeBitstream(1).empty() && !m_pcCfg->useFastForwardToPOC() )
{
CHECK( !( uiNumAllPicCoded == m_gcAnalyzeAll.getNumPic() ), "Unspecified error" );
}
//--CFG_KDY
const int rateMultiplier=(isField?2:1);
m_gcAnalyzeAll.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier / (double)m_pcCfg->getTemporalSubsampleRatio());
m_gcAnalyzeI.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier / (double)m_pcCfg->getTemporalSubsampleRatio());
m_gcAnalyzeP.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier / (double)m_pcCfg->getTemporalSubsampleRatio());
m_gcAnalyzeB.setFrmRate( m_pcCfg->getFrameRate()*rateMultiplier / (double)m_pcCfg->getTemporalSubsampleRatio());
#if WCG_WPSNR
if (useLumaWPSNR)
{
m_gcAnalyzeWPSNR.setFrmRate(m_pcCfg->getFrameRate()*rateMultiplier / (double)m_pcCfg->getTemporalSubsampleRatio());
}
#endif
const ChromaFormat chFmt = m_pcCfg->getChromaFormatIdc();
//-- all
msg( INFO, "\n" );
msg( DETAILS,"\nSUMMARY --------------------------------------------------------\n" );
#if JVET_O0756_CALCULATE_HDRMETRICS
const bool calculateHdrMetrics = m_pcEncLib->getCalcluateHdrMetrics();
#endif
#if ENABLE_QPA
m_gcAnalyzeAll.printOut( 'a', chFmt, printMSEBasedSNR, printSequenceMSE, printHexPsnr, printRprPSNR, bitDepths, useWPSNR
#if JVET_O0756_CALCULATE_HDRMETRICS
, calculateHdrMetrics
#endif
);
#else
m_gcAnalyzeAll.printOut('a', chFmt, printMSEBasedSNR, printSequenceMSE, printHexPsnr, bitDepths
#if JVET_O0756_CALCULATE_HDRMETRICS
, calculateHdrMetrics
#endif
);
#endif
msg( DETAILS, "\n\nI Slices--------------------------------------------------------\n" );
m_gcAnalyzeI.printOut( 'i', chFmt, printMSEBasedSNR, printSequenceMSE, printHexPsnr, printRprPSNR, bitDepths );
msg( DETAILS, "\n\nP Slices--------------------------------------------------------\n" );
m_gcAnalyzeP.printOut( 'p', chFmt, printMSEBasedSNR, printSequenceMSE, printHexPsnr, printRprPSNR, bitDepths );
msg( DETAILS, "\n\nB Slices--------------------------------------------------------\n" );
m_gcAnalyzeB.printOut( 'b', chFmt, printMSEBasedSNR, printSequenceMSE, printHexPsnr, printRprPSNR, bitDepths );
#if WCG_WPSNR
if (useLumaWPSNR)
{
msg(DETAILS, "\nWPSNR SUMMARY --------------------------------------------------------\n");
m_gcAnalyzeWPSNR.printOut( 'w', chFmt, printMSEBasedSNR, printSequenceMSE, printHexPsnr, printRprPSNR, bitDepths, useLumaWPSNR );
}
#endif
if (!m_pcCfg->getSummaryOutFilename().empty())
{
m_gcAnalyzeAll.printSummary(chFmt, printSequenceMSE, printHexPsnr, bitDepths, m_pcCfg->getSummaryOutFilename());
}
if (!m_pcCfg->getSummaryPicFilenameBase().empty())
{
m_gcAnalyzeI.printSummary(chFmt, printSequenceMSE, printHexPsnr, bitDepths, m_pcCfg->getSummaryPicFilenameBase()+"I.txt");
m_gcAnalyzeP.printSummary(chFmt, printSequenceMSE, printHexPsnr, bitDepths, m_pcCfg->getSummaryPicFilenameBase()+"P.txt");
m_gcAnalyzeB.printSummary(chFmt, printSequenceMSE, printHexPsnr, bitDepths, m_pcCfg->getSummaryPicFilenameBase()+"B.txt");
}
#if WCG_WPSNR
if (!m_pcCfg->getSummaryOutFilename().empty() && useLumaWPSNR)
{
m_gcAnalyzeWPSNR.printSummary(chFmt, printSequenceMSE, printHexPsnr, bitDepths, m_pcCfg->getSummaryOutFilename());
}
#endif
if(isField)
{
//-- interlaced summary
m_gcAnalyzeAll_in.setFrmRate( m_pcCfg->getFrameRate() / (double)m_pcCfg->getTemporalSubsampleRatio());
m_gcAnalyzeAll_in.setBits(m_gcAnalyzeAll.getBits());
// prior to the above statement, the interlace analyser does not contain the correct total number of bits.
msg( INFO,"\n\nSUMMARY INTERLACED ---------------------------------------------\n" );
#if ENABLE_QPA
m_gcAnalyzeAll_in.printOut( 'a', chFmt, printMSEBasedSNR, printSequenceMSE, printHexPsnr, printRprPSNR, bitDepths, useWPSNR );
#else
m_gcAnalyzeAll_in.printOut('a', chFmt, printMSEBasedSNR, printSequenceMSE, printHexPsnr, bitDepths);
#endif
if (!m_pcCfg->getSummaryOutFilename().empty())
{
m_gcAnalyzeAll_in.printSummary(chFmt, printSequenceMSE, printHexPsnr, bitDepths, m_pcCfg->getSummaryOutFilename());
#if WCG_WPSNR
if (useLumaWPSNR)
{
m_gcAnalyzeWPSNR.printSummary(chFmt, printSequenceMSE, printHexPsnr, bitDepths, m_pcCfg->getSummaryOutFilename());
}
#endif
}
}
msg( DETAILS,"\nRVM: %.3lf\n", xCalculateRVM() );
}
#if W0038_DB_OPT
uint64_t EncGOP::preLoopFilterPicAndCalcDist( Picture* pcPic )
{
CodingStructure& cs = *pcPic->cs;
m_pcLoopFilter->loopFilterPic( cs );
const CPelUnitBuf picOrg = pcPic->getRecoBuf();
const CPelUnitBuf picRec = cs.getRecoBuf();
uint64_t uiDist = 0;
for( uint32_t comp = 0; comp < (uint32_t)picRec.bufs.size(); comp++)
{
const ComponentID compID = ComponentID(comp);
const uint32_t rshift = 2 * DISTORTION_PRECISION_ADJUSTMENT(cs.sps->getBitDepth(toChannelType(compID)));
#if ENABLE_QPA
CHECK( rshift >= 8, "shifts greater than 7 are not supported." );
#endif
uiDist += xFindDistortionPlane( picOrg.get(compID), picRec.get(compID), rshift );
}
return uiDist;
}
#endif
// ====================================================================================================================
// Protected member functions
// ====================================================================================================================
void EncGOP::xInitGOP( int iPOCLast, int iNumPicRcvd, bool isField
, bool isEncodeLtRef
)
{
CHECK(!( iNumPicRcvd > 0 ), "Unspecified error");
// Exception for the first frames
if ((isField && (iPOCLast == 0 || iPOCLast == 1)) || (!isField && (iPOCLast == 0)) || isEncodeLtRef)
{
m_iGopSize = 1;
}
else
{
m_iGopSize = m_pcCfg->getGOPSize();
}
CHECK(!(m_iGopSize > 0), "Unspecified error");
return;
}
void EncGOP::xGetBuffer( PicList& rcListPic,
std::list<PelUnitBuf*>& rcListPicYuvRecOut,
int iNumPicRcvd,
int iTimeOffset,
Picture*& rpcPic,
int pocCurr,
bool isField )
{
int i;
// Rec. output
std::list<PelUnitBuf*>::iterator iterPicYuvRec = rcListPicYuvRecOut.end();
if (isField && pocCurr > 1 && m_iGopSize!=1)
{
iTimeOffset--;
}
int multipleFactor = m_pcCfg->getUseCompositeRef() ? 2 : 1;
for (i = 0; i < (iNumPicRcvd * multipleFactor - iTimeOffset + 1); i += multipleFactor)
{
iterPicYuvRec--;
}
// Current pic.
PicList::iterator iterPic = rcListPic.begin();
while (iterPic != rcListPic.end())
{
rpcPic = *(iterPic);
if( rpcPic->getPOC() == pocCurr && rpcPic->layerId == m_pcEncLib->getLayerId() )
{
break;
}
iterPic++;
}
CHECK(!(rpcPic != NULL), "Unspecified error");
CHECK(!(rpcPic->getPOC() == pocCurr), "Unspecified error");
(**iterPicYuvRec) = rpcPic->getRecoBuf();
return;
}
#if ENABLE_QPA
#ifndef BETA
#define BETA 0.5 // value between 0.0 and 1; use 0.0 to obtain traditional PSNR
#endif
static inline double calcWeightedSquaredError(const CPelBuf& org, const CPelBuf& rec,
double &sumAct, const uint32_t bitDepth,
const uint32_t imageWidth, const uint32_t imageHeight,
const uint32_t offsetX, const uint32_t offsetY,
int blockWidth, int blockHeight)
{
const int O = org.stride;
const int R = rec.stride;
const Pel *o = org.bufAt(offsetX, offsetY);
const Pel *r = rec.bufAt(offsetX, offsetY);
const int yAct = offsetY > 0 ? 0 : 1;
const int xAct = offsetX > 0 ? 0 : 1;
if (offsetY + (uint32_t)blockHeight > imageHeight) blockHeight = imageHeight - offsetY;
if (offsetX + (uint32_t)blockWidth > imageWidth ) blockWidth = imageWidth - offsetX;
const int hAct = offsetY + (uint32_t)blockHeight < imageHeight ? blockHeight : blockHeight - 1;
const int wAct = offsetX + (uint32_t)blockWidth < imageWidth ? blockWidth : blockWidth - 1;
uint64_t ssErr = 0; // sum of squared diffs
uint64_t saAct = 0; // sum of abs. activity
double msAct;
int x, y;
// calculate image differences and activity
for (y = 0; y < blockHeight; y++) // error
{
for (x = 0; x < blockWidth; x++)
{
const int64_t iDiff = (int64_t)o[y*O + x] - (int64_t)r[y*R + x];
ssErr += uint64_t(iDiff * iDiff);
}
}
if (wAct <= xAct || hAct <= yAct) return (double)ssErr;
for (y = yAct; y < hAct; y++) // activity
{
for (x = xAct; x < wAct; x++)
{
const int f = 12 * (int)o[y*O + x] - 2 * ((int)o[y*O + x-1] + (int)o[y*O + x+1] + (int)o[(y-1)*O + x] + (int)o[(y+1)*O + x])
- (int)o[(y-1)*O + x-1] - (int)o[(y-1)*O + x+1] - (int)o[(y+1)*O + x-1] - (int)o[(y+1)*O + x+1];
saAct += abs(f);
}
}
// calculate weight (mean squared activity)
msAct = (double)saAct / (double(wAct - xAct) * double(hAct - yAct));
// lower limit, accounts for high-pass gain
if (msAct < double(1 << (bitDepth - 4))) msAct = double(1 << (bitDepth - 4));
msAct *= msAct; // because ssErr is squared
sumAct += msAct; // includes high-pass gain
// calculate activity weighted error square
return (double)ssErr * pow(msAct, -1.0 * BETA);
}
#endif // ENABLE_QPA
uint64_t EncGOP::xFindDistortionPlane(const CPelBuf& pic0, const CPelBuf& pic1, const uint32_t rshift
#if ENABLE_QPA
, const uint32_t chromaShiftHor /*= 0*/, const uint32_t chromaShiftVer /*= 0*/
#endif
)
{
uint64_t uiTotalDiff;
const Pel* pSrc0 = pic0.bufAt(0, 0);
const Pel* pSrc1 = pic1.bufAt(0, 0);
CHECK(pic0.width != pic1.width , "Unspecified error");
CHECK(pic0.height != pic1.height, "Unspecified error");
if( rshift > 0 )
{
#if ENABLE_QPA
const uint32_t BD = rshift; // image bit-depth
if (BD >= 8)
{
const uint32_t W = pic0.width; // image width
const uint32_t H = pic0.height; // image height
const double R = double(W * H) / (1920.0 * 1080.0);
const uint32_t B = Clip3<uint32_t>(0, 128 >> chromaShiftVer, 4 * uint32_t(16.0 * sqrt(R) + 0.5)); // WPSNR block size in integer multiple of 4 (for SIMD, = 64 at full-HD)
uint32_t x, y;
if (B < 4) // image is too small to use WPSNR, resort to traditional PSNR
{
uiTotalDiff = 0;
for (y = 0; y < H; y++)
{
for (x = 0; x < W; x++)
{
const int64_t iDiff = (int64_t)pSrc0[x] - (int64_t)pSrc1[x];
uiTotalDiff += uint64_t(iDiff * iDiff);
}
pSrc0 += pic0.stride;
pSrc1 += pic1.stride;
}
return uiTotalDiff;
}
double wmse = 0.0, sumAct = 0.0; // compute activity normalized SNR value
for (y = 0; y < H; y += B)
{
for (x = 0; x < W; x += B)
{
wmse += calcWeightedSquaredError(pic1, pic0,
sumAct, BD,
W, H,
x, y,
B, B);
}
}
// integer weighted distortion
sumAct = 16.0 * sqrt ((3840.0 * 2160.0) / double((W << chromaShiftHor) * (H << chromaShiftVer))) * double(1 << BD);
return (wmse <= 0.0) ? 0 : uint64_t(wmse * pow(sumAct, BETA) + 0.5);
}
#endif // ENABLE_QPA
uiTotalDiff = 0;
for (int y = 0; y < pic0.height; y++)
{
for (int x = 0; x < pic0.width; x++)
{
Intermediate_Int iTemp = pSrc0[x] - pSrc1[x];
uiTotalDiff += uint64_t((iTemp * iTemp) >> rshift);
}
pSrc0 += pic0.stride;
pSrc1 += pic1.stride;
}
}
else
{
uiTotalDiff = 0;
for (int y = 0; y < pic0.height; y++)
{
for (int x = 0; x < pic0.width; x++)
{
Intermediate_Int iTemp = pSrc0[x] - pSrc1[x];
uiTotalDiff += uint64_t(iTemp * iTemp);
}
pSrc0 += pic0.stride;
pSrc1 += pic1.stride;
}
}
return uiTotalDiff;
}
#if WCG_WPSNR
double EncGOP::xFindDistortionPlaneWPSNR(const CPelBuf& pic0, const CPelBuf& pic1, const uint32_t rshift, const CPelBuf& picLuma0,
ComponentID compID, const ChromaFormat chfmt )
{
const bool useLumaWPSNR = m_pcEncLib->getLumaLevelToDeltaQPMapping().isEnabled() || (m_pcCfg->getLmcs() && m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_PQ);
if (!useLumaWPSNR)
{
return 0;
}
double uiTotalDiffWPSNR;
const Pel* pSrc0 = pic0.bufAt(0, 0);
const Pel* pSrc1 = pic1.bufAt(0, 0);
const Pel* pSrcLuma = picLuma0.bufAt(0, 0);
CHECK(pic0.width != pic1.width , "Unspecified error");
CHECK(pic0.height != pic1.height, "Unspecified error");
if( rshift > 0 )
{
uiTotalDiffWPSNR = 0;
for (int y = 0; y < pic0.height; y++)
{
for (int x = 0; x < pic0.width; x++)
{
Intermediate_Int iTemp = pSrc0[x] - pSrc1[x];
double dW = m_pcEncLib->getRdCost()->getWPSNRLumaLevelWeight(pSrcLuma[(x << getComponentScaleX(compID, chfmt))]);
uiTotalDiffWPSNR += ((dW * (double)iTemp * (double)iTemp)) * (double)(1 >> rshift);
}
pSrc0 += pic0.stride;
pSrc1 += pic1.stride;
pSrcLuma += picLuma0.stride << getComponentScaleY(compID, chfmt);
}
}
else
{
uiTotalDiffWPSNR = 0;
for (int y = 0; y < pic0.height; y++)
{
for (int x = 0; x < pic0.width; x++)
{
Intermediate_Int iTemp = pSrc0[x] - pSrc1[x];
double dW = m_pcEncLib->getRdCost()->getWPSNRLumaLevelWeight(pSrcLuma[x << getComponentScaleX(compID, chfmt)]);
uiTotalDiffWPSNR += dW * (double)iTemp * (double)iTemp;
}
pSrc0 += pic0.stride;
pSrc1 += pic1.stride;
pSrcLuma += picLuma0.stride << getComponentScaleY(compID, chfmt);
}
}
return uiTotalDiffWPSNR;
}
#endif
void EncGOP::xCalculateAddPSNRs( const bool isField, const bool isFieldTopFieldFirst, const int iGOPid, Picture* pcPic, const AccessUnit&accessUnit, PicList &rcListPic, const int64_t dEncTime, const InputColourSpaceConversion snr_conversion, const bool printFrameMSE, double* PSNR_Y
, bool isEncodeLtRef
)
{
xCalculateAddPSNR(pcPic, pcPic->getRecoBuf(), accessUnit, (double)dEncTime, snr_conversion, printFrameMSE, PSNR_Y
, isEncodeLtRef
);
//In case of field coding, compute the interlaced PSNR for both fields
if(isField)
{
bool bothFieldsAreEncoded = false;
int correspondingFieldPOC = pcPic->getPOC();
int currentPicGOPPoc = m_pcCfg->getGOPEntry(iGOPid).m_POC;
if(pcPic->getPOC() == 0)
{
// particular case for POC 0 and 1.
// If they are not encoded first and separately from other pictures, we need to change this
// POC 0 is always encoded first then POC 1 is encoded
bothFieldsAreEncoded = false;
}
else if(pcPic->getPOC() == 1)
{
// if we are at POC 1, POC 0 has been encoded for sure
correspondingFieldPOC = 0;
bothFieldsAreEncoded = true;
}
else
{
if(pcPic->getPOC()%2 == 1)
{
correspondingFieldPOC -= 1; // all odd POC are associated with the preceding even POC (e.g poc 1 is associated to poc 0)
currentPicGOPPoc -= 1;
}
else
{
correspondingFieldPOC += 1; // all even POC are associated with the following odd POC (e.g poc 0 is associated to poc 1)
currentPicGOPPoc += 1;
}
for(int i = 0; i < m_iGopSize; i ++)
{
if(m_pcCfg->getGOPEntry(i).m_POC == currentPicGOPPoc)
{
bothFieldsAreEncoded = m_pcCfg->getGOPEntry(i).m_isEncoded;
break;
}
}
}
if(bothFieldsAreEncoded)
{
//get complementary top field
PicList::iterator iterPic = rcListPic.begin();
while ((*iterPic)->getPOC() != correspondingFieldPOC)
{
iterPic ++;
}
Picture* correspondingFieldPic = *(iterPic);
if ((pcPic->topField && isFieldTopFieldFirst) || (!pcPic->topField && !isFieldTopFieldFirst))
{
xCalculateInterlacedAddPSNR(pcPic, correspondingFieldPic, pcPic->getRecoBuf(), correspondingFieldPic->getRecoBuf(), snr_conversion, printFrameMSE, PSNR_Y
, isEncodeLtRef
);
}
else
{
xCalculateInterlacedAddPSNR(correspondingFieldPic, pcPic, correspondingFieldPic->getRecoBuf(), pcPic->getRecoBuf(), snr_conversion, printFrameMSE, PSNR_Y
, isEncodeLtRef
);
}
}
}
}
void EncGOP::xCalculateAddPSNR(Picture* pcPic, PelUnitBuf cPicD, const AccessUnit& accessUnit, double dEncTime, const InputColourSpaceConversion conversion, const bool printFrameMSE, double* PSNR_Y
, bool isEncodeLtRef
)
{
const SPS& sps = *pcPic->cs->sps;
const CPelUnitBuf& pic = cPicD;
CHECK(!(conversion == IPCOLOURSPACE_UNCHANGED), "Unspecified error");
// const CPelUnitBuf& org = (conversion != IPCOLOURSPACE_UNCHANGED) ? pcPic->getPicYuvTrueOrg()->getBuf() : pcPic->getPicYuvOrg()->getBuf();
const CPelUnitBuf& org = (sps.getUseLmcs() || m_pcCfg->getGopBasedTemporalFilterEnabled()) ? pcPic->getTrueOrigBuf() : pcPic->getOrigBuf();
#if ENABLE_QPA
const bool useWPSNR = m_pcEncLib->getUseWPSNR();
#endif
double dPSNR[MAX_NUM_COMPONENT];
#if WCG_WPSNR
const bool useLumaWPSNR = m_pcEncLib->getLumaLevelToDeltaQPMapping().isEnabled() || (m_pcCfg->getLmcs() && m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_PQ);
double dPSNRWeighted[MAX_NUM_COMPONENT];
double MSEyuvframeWeighted[MAX_NUM_COMPONENT];
#endif
double upscaledPSNR[MAX_NUM_COMPONENT];
for(int i=0; i<MAX_NUM_COMPONENT; i++)
{
dPSNR[i]=0.0;
#if WCG_WPSNR
dPSNRWeighted[i]=0.0;
MSEyuvframeWeighted[i] = 0.0;
#endif
upscaledPSNR[i] = 0.0;
}
#if JVET_O0756_CALCULATE_HDRMETRICS
double deltaE[hdrtoolslib::NB_REF_WHITE];
double psnrL[hdrtoolslib::NB_REF_WHITE];
for (int i=0; i<hdrtoolslib::NB_REF_WHITE; i++)
{
deltaE[i] = 0.0;
psnrL[i] = 0.0;
}
#endif
PelStorage interm;
if (conversion != IPCOLOURSPACE_UNCHANGED)
{
interm.create(pic.chromaFormat, Area(Position(), pic.Y()));
VideoIOYuv::ColourSpaceConvert(pic, interm, conversion, false);
}
const CPelUnitBuf& picC = (conversion == IPCOLOURSPACE_UNCHANGED) ? pic : interm;
//===== calculate PSNR =====
double MSEyuvframe[MAX_NUM_COMPONENT] = {0, 0, 0};
const ChromaFormat formatD = pic.chromaFormat;
const ChromaFormat format = sps.getChromaFormatIdc();
const bool bPicIsField = pcPic->fieldPic;
const Slice* pcSlice = pcPic->slices[0];
PelStorage upscaledRec;
if (m_pcEncLib->isResChangeInClvsEnabled())
{
const CPelBuf& upscaledOrg = sps.getUseLmcs() ? pcPic->M_BUFS( 0, PIC_TRUE_ORIGINAL_INPUT).get( COMPONENT_Y ) : pcPic->M_BUFS( 0, PIC_ORIGINAL_INPUT).get( COMPONENT_Y );
upscaledRec.create( pic.chromaFormat, Area( Position(), upscaledOrg ) );
int xScale, yScale;
// it is assumed that full resolution picture PPS has ppsId 0
const PPS* pps = m_pcEncLib->getPPS(0);
CU::getRprScaling( &sps, pps, pcPic, xScale, yScale );
std::pair<int, int> scalingRatio = std::pair<int, int>( xScale, yScale );
Picture::rescalePicture( scalingRatio, picC, pcPic->getScalingWindow(), upscaledRec, pps->getScalingWindow(), format, sps.getBitDepths(), false, false, sps.getHorCollocatedChromaFlag(), sps.getVerCollocatedChromaFlag() );
}
for (int comp = 0; comp < ::getNumberValidComponents(formatD); comp++)
{
const ComponentID compID = ComponentID(comp);
const CPelBuf& p = picC.get(compID);
const CPelBuf& o = org.get(compID);
CHECK(!( p.width == o.width), "Unspecified error");
CHECK(!( p.height == o.height), "Unspecified error");
int padX = m_pcEncLib->getPad( 0 );
int padY = m_pcEncLib->getPad( 1 );
// when RPR is enabled, picture padding is picture specific due to possible different picture resoluitons, however only full resolution padding is stored in EncLib
// get per picture padding from the conformance window, in this case if conformance window is set not equal to the padding then PSNR results may be inaccurate
if (m_pcEncLib->isResChangeInClvsEnabled())
{
Window& conf = pcPic->getConformanceWindow();
padX = conf.getWindowRightOffset() * SPS::getWinUnitX( format );
padY = conf.getWindowBottomOffset() * SPS::getWinUnitY( format );
}
const uint32_t width = p.width - ( padX >> ::getComponentScaleX( compID, format ) );
const uint32_t height = p.height - ( padY >> ( !!bPicIsField + ::getComponentScaleY( compID, format ) ) );
// create new buffers with correct dimensions
const CPelBuf recPB(p.bufAt(0, 0), p.stride, width, height);
const CPelBuf orgPB(o.bufAt(0, 0), o.stride, width, height);
const uint32_t bitDepth = sps.getBitDepth(toChannelType(compID));
#if ENABLE_QPA
const uint64_t uiSSDtemp = xFindDistortionPlane(recPB, orgPB, useWPSNR ? bitDepth : 0, ::getComponentScaleX(compID, format), ::getComponentScaleY(compID, format));
#else
const uint64_t uiSSDtemp = xFindDistortionPlane(recPB, orgPB, 0);
#endif
const uint32_t maxval = 255 << (bitDepth - 8);
const uint32_t size = width * height;
const double fRefValue = (double)maxval * maxval * size;
dPSNR[comp] = uiSSDtemp ? 10.0 * log10(fRefValue / (double)uiSSDtemp) : 999.99;
MSEyuvframe[comp] = (double)uiSSDtemp / size;
#if WCG_WPSNR
const double uiSSDtempWeighted = xFindDistortionPlaneWPSNR(recPB, orgPB, 0, org.get(COMPONENT_Y), compID, format);
if (useLumaWPSNR)
{
dPSNRWeighted[comp] = uiSSDtempWeighted ? 10.0 * log10(fRefValue / (double)uiSSDtempWeighted) : 999.99;
MSEyuvframeWeighted[comp] = (double)uiSSDtempWeighted / size;
}
#endif
if (m_pcEncLib->isResChangeInClvsEnabled())
{
const CPelBuf& upscaledOrg = sps.getUseLmcs() ? pcPic->M_BUFS( 0, PIC_TRUE_ORIGINAL_INPUT ).get( compID ) : pcPic->M_BUFS( 0, PIC_ORIGINAL_INPUT ).get( compID );
const uint32_t upscaledWidth = upscaledOrg.width - ( m_pcEncLib->getPad( 0 ) >> ::getComponentScaleX( compID, format ) );
const uint32_t upscaledHeight = upscaledOrg.height - ( m_pcEncLib->getPad( 1 ) >> ( !!bPicIsField + ::getComponentScaleY( compID, format ) ) );
// create new buffers with correct dimensions
const CPelBuf upscaledRecPB( upscaledRec.get( compID ).bufAt( 0, 0 ), upscaledRec.get( compID ).stride, upscaledWidth, upscaledHeight );
const CPelBuf upscaledOrgPB( upscaledOrg.bufAt( 0, 0 ), upscaledOrg.stride, upscaledWidth, upscaledHeight );
#if ENABLE_QPA
const uint64_t upscaledSSD = xFindDistortionPlane( upscaledRecPB, upscaledOrgPB, useWPSNR ? bitDepth : 0, ::getComponentScaleX( compID, format ) );
#else
const uint64_t scaledSSD = xFindDistortionPlane( upsacledRecPB, upsacledOrgPB, 0 );
#endif
upscaledPSNR[comp] = upscaledSSD ? 10.0 * log10( (double)maxval * maxval * upscaledWidth * upscaledHeight / (double)upscaledSSD ) : 999.99;
}
}
#if EXTENSION_360_VIDEO
m_ext360.calculatePSNRs(pcPic);
#endif
#if JVET_O0756_CALCULATE_HDRMETRICS
const bool calculateHdrMetrics = m_pcEncLib->getCalcluateHdrMetrics();
if (calculateHdrMetrics)
{
auto beforeTime = std::chrono::steady_clock::now();
xCalculateHDRMetrics(pcPic, deltaE, psnrL);
auto elapsed = std::chrono::steady_clock::now() - beforeTime;
m_metricTime += elapsed;
}
#endif
/* calculate the size of the access unit, excluding:
* - any AnnexB contributions (start_code_prefix, zero_byte, etc.,)
* - SEI NAL units
*/
uint32_t numRBSPBytes = 0;
for (AccessUnit::const_iterator it = accessUnit.begin(); it != accessUnit.end(); it++)
{
uint32_t numRBSPBytes_nal = uint32_t((*it)->m_nalUnitData.str().size());
if (m_pcCfg->getSummaryVerboseness() > 0)
{
msg( NOTICE, "*** %6s numBytesInNALunit: %u\n", nalUnitTypeToString((*it)->m_nalUnitType), numRBSPBytes_nal);
}
if( ( *it )->m_nalUnitType != NAL_UNIT_PREFIX_SEI && ( *it )->m_nalUnitType != NAL_UNIT_SUFFIX_SEI )
{
numRBSPBytes += numRBSPBytes_nal;
if (it == accessUnit.begin() || (*it)->m_nalUnitType == NAL_UNIT_VPS || (*it)->m_nalUnitType == NAL_UNIT_DCI || (*it)->m_nalUnitType == NAL_UNIT_SPS || (*it)->m_nalUnitType == NAL_UNIT_PPS)
{
numRBSPBytes += 4;
}
else
{
numRBSPBytes += 3;
}
}
}
uint32_t uibits = numRBSPBytes * 8;
m_vRVM_RP.push_back( uibits );
//===== add PSNR =====
m_gcAnalyzeAll.addResult(dPSNR, (double)uibits, MSEyuvframe
, upscaledPSNR
, isEncodeLtRef
);
#if EXTENSION_360_VIDEO
m_ext360.addResult(m_gcAnalyzeAll);
#endif
#if JVET_O0756_CALCULATE_HDRMETRICS
if (calculateHdrMetrics)
{
m_gcAnalyzeAll.addHDRMetricsResult(deltaE, psnrL);
}
#endif
if (pcSlice->isIntra())
{
m_gcAnalyzeI.addResult(dPSNR, (double)uibits, MSEyuvframe
, upscaledPSNR
, isEncodeLtRef
);
*PSNR_Y = dPSNR[COMPONENT_Y];
#if EXTENSION_360_VIDEO
m_ext360.addResult(m_gcAnalyzeI);
#endif
#if JVET_O0756_CALCULATE_HDRMETRICS
if (calculateHdrMetrics)
{
m_gcAnalyzeI.addHDRMetricsResult(deltaE, psnrL);
}
#endif
}
if (pcSlice->isInterP())
{
m_gcAnalyzeP.addResult(dPSNR, (double)uibits, MSEyuvframe
, upscaledPSNR
, isEncodeLtRef
);
*PSNR_Y = dPSNR[COMPONENT_Y];
#if EXTENSION_360_VIDEO
m_ext360.addResult(m_gcAnalyzeP);
#endif
#if JVET_O0756_CALCULATE_HDRMETRICS
if (calculateHdrMetrics)
{
m_gcAnalyzeP.addHDRMetricsResult(deltaE, psnrL);
}
#endif
}
if (pcSlice->isInterB())
{
m_gcAnalyzeB.addResult(dPSNR, (double)uibits, MSEyuvframe
, upscaledPSNR
, isEncodeLtRef
);
*PSNR_Y = dPSNR[COMPONENT_Y];
#if EXTENSION_360_VIDEO
m_ext360.addResult(m_gcAnalyzeB);
#endif
#if JVET_O0756_CALCULATE_HDRMETRICS
if (calculateHdrMetrics)
{
m_gcAnalyzeB.addHDRMetricsResult(deltaE, psnrL);
}
#endif
}
#if WCG_WPSNR
if (useLumaWPSNR)
{
m_gcAnalyzeWPSNR.addResult( dPSNRWeighted, (double)uibits, MSEyuvframeWeighted, upscaledPSNR, isEncodeLtRef );
}
#endif
char c = (pcSlice->isIntra() ? 'I' : pcSlice->isInterP() ? 'P' : 'B');
if (! pcPic->referenced)
{
c += 32;
}
if (m_pcCfg->getDependentRAPIndicationSEIEnabled() && pcSlice->isDRAP()) c = 'D';
if( g_verbosity >= NOTICE )
{
msg( NOTICE, "POC %4d LId: %2d TId: %1d ( %s, %c-SLICE, QP %d ) %10d bits",
pcSlice->getPOC(),
pcSlice->getPic()->layerId,
pcSlice->getTLayer(),
nalUnitTypeToString(pcSlice->getNalUnitType()),
c,
pcSlice->getSliceQp(),
uibits );
msg( NOTICE, " [Y %6.4lf dB U %6.4lf dB V %6.4lf dB]", dPSNR[COMPONENT_Y], dPSNR[COMPONENT_Cb], dPSNR[COMPONENT_Cr] );
#if EXTENSION_360_VIDEO
m_ext360.printPerPOCInfo(NOTICE);
#endif
if (m_pcEncLib->getPrintHexPsnr())
{
uint64_t xPsnr[MAX_NUM_COMPONENT];
for (int i = 0; i < MAX_NUM_COMPONENT; i++)
{
copy(reinterpret_cast<uint8_t *>(&dPSNR[i]),
reinterpret_cast<uint8_t *>(&dPSNR[i]) + sizeof(dPSNR[i]),
reinterpret_cast<uint8_t *>(&xPsnr[i]));
}
msg(NOTICE, " [xY %16" PRIx64 " xU %16" PRIx64 " xV %16" PRIx64 "]", xPsnr[COMPONENT_Y], xPsnr[COMPONENT_Cb], xPsnr[COMPONENT_Cr]);
#if EXTENSION_360_VIDEO
m_ext360.printPerPOCInfo(NOTICE, true);
#endif
}
if( printFrameMSE )
{
msg( NOTICE, " [Y MSE %6.4lf U MSE %6.4lf V MSE %6.4lf]", MSEyuvframe[COMPONENT_Y], MSEyuvframe[COMPONENT_Cb], MSEyuvframe[COMPONENT_Cr] );
}
#if WCG_WPSNR
if (useLumaWPSNR)
{
msg(NOTICE, " [WY %6.4lf dB WU %6.4lf dB WV %6.4lf dB]", dPSNRWeighted[COMPONENT_Y], dPSNRWeighted[COMPONENT_Cb], dPSNRWeighted[COMPONENT_Cr]);
if (m_pcEncLib->getPrintHexPsnr())
{
uint64_t xPsnrWeighted[MAX_NUM_COMPONENT];
for (int i = 0; i < MAX_NUM_COMPONENT; i++)
{
copy(reinterpret_cast<uint8_t *>(&dPSNRWeighted[i]),
reinterpret_cast<uint8_t *>(&dPSNRWeighted[i]) + sizeof(dPSNRWeighted[i]),
reinterpret_cast<uint8_t *>(&xPsnrWeighted[i]));
}
msg(NOTICE, " [xWY %16" PRIx64 " xWU %16" PRIx64 " xWV %16" PRIx64 "]", xPsnrWeighted[COMPONENT_Y], xPsnrWeighted[COMPONENT_Cb], xPsnrWeighted[COMPONENT_Cr]);
}
}
#endif
#if JVET_O0756_CALCULATE_HDRMETRICS
if(calculateHdrMetrics)
{
for (int i=0; i<1; i++)
{
msg(NOTICE, " [DeltaE%d %6.4lf dB]", (int)m_pcCfg->getWhitePointDeltaE(i), deltaE[i]);
if (m_pcEncLib->getPrintHexPsnr())
{
int64_t xdeltaE[MAX_NUM_COMPONENT];
for (int i = 0; i < 1; i++)
{
copy(reinterpret_cast<uint8_t *>(&deltaE[i]),
reinterpret_cast<uint8_t *>(&deltaE[i]) + sizeof(deltaE[i]),
reinterpret_cast<uint8_t *>(&xdeltaE[i]));
}
msg(NOTICE, " [xDeltaE%d %16" PRIx64 "]", (int)m_pcCfg->getWhitePointDeltaE(i), xdeltaE[0]);
}
}
for (int i=0; i<1; i++)
{
msg(NOTICE, " [PSNRL%d %6.4lf dB]", (int)m_pcCfg->getWhitePointDeltaE(i), psnrL[i]);
if (m_pcEncLib->getPrintHexPsnr())
{
int64_t xpsnrL[MAX_NUM_COMPONENT];
for (int i = 0; i < 1; i++)
{
copy(reinterpret_cast<uint8_t *>(&psnrL[i]),
reinterpret_cast<uint8_t *>(&psnrL[i]) + sizeof(psnrL[i]),
reinterpret_cast<uint8_t *>(&xpsnrL[i]));
}
msg(NOTICE, " [xPSNRL%d %16" PRIx64 "]", (int)m_pcCfg->getWhitePointDeltaE(i), xpsnrL[0]);
}
}
}
#endif
msg( NOTICE, " [ET %5.0f ]", dEncTime );
// msg( SOME, " [WP %d]", pcSlice->getUseWeightedPrediction());
for( int iRefList = 0; iRefList < 2; iRefList++ )
{
msg( NOTICE, " [L%d", iRefList );
for( int iRefIndex = 0; iRefIndex < pcSlice->getNumRefIdx( RefPicList( iRefList ) ); iRefIndex++ )
{
const std::pair<int, int>& scaleRatio = pcSlice->getScalingRatio( RefPicList( iRefList ), iRefIndex );
if( pcPic->cs->picHeader->getEnableTMVPFlag() && pcSlice->getColFromL0Flag() == bool(1 - iRefList) && pcSlice->getColRefIdx() == iRefIndex )
{
if( scaleRatio.first != 1 << SCALE_RATIO_BITS || scaleRatio.second != 1 << SCALE_RATIO_BITS )
{
msg( NOTICE, " %dc(%1.2lfx, %1.2lfx)", pcSlice->getRefPOC( RefPicList( iRefList ), iRefIndex ), double( scaleRatio.first ) / ( 1 << SCALE_RATIO_BITS ), double( scaleRatio.second ) / ( 1 << SCALE_RATIO_BITS ) );
}
else
{
msg( NOTICE, " %dc", pcSlice->getRefPOC( RefPicList( iRefList ), iRefIndex ) );
}
}
else
{
if( scaleRatio.first != 1 << SCALE_RATIO_BITS || scaleRatio.second != 1 << SCALE_RATIO_BITS )
{
msg( NOTICE, " %d(%1.2lfx, %1.2lfx)", pcSlice->getRefPOC( RefPicList( iRefList ), iRefIndex ), double( scaleRatio.first ) / ( 1 << SCALE_RATIO_BITS ), double( scaleRatio.second ) / ( 1 << SCALE_RATIO_BITS ) );
}
else
{
msg( NOTICE, " %d", pcSlice->getRefPOC( RefPicList( iRefList ), iRefIndex ) );
}
}
if( pcSlice->getRefPOC( RefPicList( iRefList ), iRefIndex ) == pcSlice->getPOC() )
{
msg( NOTICE, ".%d", pcSlice->getRefPic( RefPicList( iRefList ), iRefIndex )->layerId );
}
}
msg( NOTICE, "]" );
}
if (m_pcEncLib->isResChangeInClvsEnabled())
{
msg( NOTICE, "\nPSNR2: [Y %6.4lf dB U %6.4lf dB V %6.4lf dB]", upscaledPSNR[COMPONENT_Y], upscaledPSNR[COMPONENT_Cb], upscaledPSNR[COMPONENT_Cr] );
}
}
else if( g_verbosity >= INFO )
{
std::cout << "\r\t" << pcSlice->getPOC();
std::cout.flush();
}
}
#if JVET_O0756_CALCULATE_HDRMETRICS
void EncGOP::xCalculateHDRMetrics( Picture* pcPic, double deltaE[hdrtoolslib::NB_REF_WHITE], double psnrL[hdrtoolslib::NB_REF_WHITE])
{
copyBuftoFrame(pcPic);
ChromaFormat chFmt = pcPic->chromaFormat;
if (chFmt != CHROMA_444)
{
m_pcConvertFormat->process(m_ppcFrameOrg[1], m_ppcFrameOrg[0]);
m_pcConvertFormat->process(m_ppcFrameRec[1], m_ppcFrameRec[0]);
}
m_pcConvertIQuantize->process(m_ppcFrameOrg[2], m_ppcFrameOrg[1]);
m_pcConvertIQuantize->process(m_ppcFrameRec[2], m_ppcFrameRec[1]);
m_pcColorTransform->process(m_ppcFrameOrg[3], m_ppcFrameOrg[2]);
m_pcColorTransform->process(m_ppcFrameRec[3], m_ppcFrameRec[2]);
m_pcTransferFct->forward(m_ppcFrameOrg[4], m_ppcFrameOrg[3]);
m_pcTransferFct->forward(m_ppcFrameRec[4], m_ppcFrameRec[3]);
// Calculate the Metrics
m_pcDistortionDeltaE->computeMetric(m_ppcFrameOrg[4], m_ppcFrameRec[4]);
*deltaE = m_pcDistortionDeltaE->getDeltaE();
*psnrL = m_pcDistortionDeltaE->getPsnrL();
}
void EncGOP::copyBuftoFrame( Picture* pcPic )
{
int cropOffsetLeft = m_pcCfg->getCropOffsetLeft();
int cropOffsetTop = m_pcCfg->getCropOffsetTop();
int cropOffsetRight = m_pcCfg->getCropOffsetRight();
int cropOffsetBottom = m_pcCfg->getCropOffsetBottom();
int height = pcPic->getOrigBuf(COMPONENT_Y).height - cropOffsetLeft + cropOffsetRight;
int width = pcPic->getOrigBuf(COMPONENT_Y).width - cropOffsetTop + cropOffsetBottom;
ChromaFormat chFmt = pcPic->chromaFormat;
Pel* pOrg = pcPic->getOrigBuf(COMPONENT_Y).buf;
Pel* pRec = pcPic->getRecoBuf(COMPONENT_Y).buf;
uint16_t* yOrg = m_ppcFrameOrg[0]->m_ui16Comp[hdrtoolslib::Y_COMP];
uint16_t* yRec = m_ppcFrameRec[0]->m_ui16Comp[hdrtoolslib::Y_COMP];
uint16_t* uOrg = m_ppcFrameOrg[0]->m_ui16Comp[hdrtoolslib::Cb_COMP];
uint16_t* uRec = m_ppcFrameRec[0]->m_ui16Comp[hdrtoolslib::Cb_COMP];
uint16_t* vOrg = m_ppcFrameOrg[0]->m_ui16Comp[hdrtoolslib::Cr_COMP];
uint16_t* vRec = m_ppcFrameRec[0]->m_ui16Comp[hdrtoolslib::Cr_COMP];
if(chFmt == CHROMA_444){
yOrg = m_ppcFrameOrg[1]->m_ui16Comp[hdrtoolslib::Y_COMP];
yRec = m_ppcFrameRec[1]->m_ui16Comp[hdrtoolslib::Y_COMP];
uOrg = m_ppcFrameOrg[1]->m_ui16Comp[hdrtoolslib::Cb_COMP];
uRec = m_ppcFrameRec[1]->m_ui16Comp[hdrtoolslib::Cb_COMP];
vOrg = m_ppcFrameOrg[1]->m_ui16Comp[hdrtoolslib::Cr_COMP];
vRec = m_ppcFrameRec[1]->m_ui16Comp[hdrtoolslib::Cr_COMP];
}
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
yOrg[i*width + j] = static_cast<uint16_t>(pOrg[(i + cropOffsetTop) * pcPic->getOrigBuf(COMPONENT_Y).stride + j + cropOffsetLeft]);
yRec[i*width + j] = static_cast<uint16_t>(pRec[(i + cropOffsetTop) * pcPic->getRecoBuf(COMPONENT_Y).stride + j + cropOffsetLeft]);
}
}
if (chFmt != CHROMA_444) {
height >>= 1;
width >>= 1;
cropOffsetLeft >>= 1;
cropOffsetTop >>= 1;
}
pOrg = pcPic->getOrigBuf(COMPONENT_Cb).buf;
pRec = pcPic->getRecoBuf(COMPONENT_Cb).buf;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
uOrg[i*width + j] = static_cast<uint16_t>(pOrg[(i + cropOffsetTop) * pcPic->getOrigBuf(COMPONENT_Cb).stride + j + cropOffsetLeft]);
uRec[i*width + j] = static_cast<uint16_t>(pRec[(i + cropOffsetTop) * pcPic->getRecoBuf(COMPONENT_Cb).stride + j + cropOffsetLeft]);
}
}
pOrg = pcPic->getOrigBuf(COMPONENT_Cr).buf;
pRec = pcPic->getRecoBuf(COMPONENT_Cr).buf;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
vOrg[i*width + j] = static_cast<uint16_t>(pOrg[(i + cropOffsetTop) * pcPic->getOrigBuf(COMPONENT_Cr).stride + j + cropOffsetLeft]);
vRec[i*width + j] = static_cast<uint16_t>(pRec[(i + cropOffsetTop) * pcPic->getRecoBuf(COMPONENT_Cr).stride + j + cropOffsetLeft]);
}
}
}
#endif
void EncGOP::xCalculateInterlacedAddPSNR( Picture* pcPicOrgFirstField, Picture* pcPicOrgSecondField,
PelUnitBuf cPicRecFirstField, PelUnitBuf cPicRecSecondField,
const InputColourSpaceConversion conversion, const bool printFrameMSE, double* PSNR_Y
, bool isEncodeLtRef
)
{
const SPS &sps = *pcPicOrgFirstField->cs->sps;
const ChromaFormat format = sps.getChromaFormatIdc();
double dPSNR[MAX_NUM_COMPONENT];
Picture *apcPicOrgFields[2] = {pcPicOrgFirstField, pcPicOrgSecondField};
PelUnitBuf acPicRecFields[2] = {cPicRecFirstField, cPicRecSecondField};
#if ENABLE_QPA
const bool useWPSNR = m_pcEncLib->getUseWPSNR();
#endif
for(int i=0; i<MAX_NUM_COMPONENT; i++)
{
dPSNR[i]=0.0;
}
PelStorage cscd[2 /* first/second field */];
if (conversion!=IPCOLOURSPACE_UNCHANGED)
{
for(uint32_t fieldNum=0; fieldNum<2; fieldNum++)
{
PelUnitBuf& reconField= (acPicRecFields[fieldNum]);
cscd[fieldNum].create( reconField.chromaFormat, Area( Position(), reconField.Y()) );
VideoIOYuv::ColourSpaceConvert(reconField, cscd[fieldNum], conversion, false);
acPicRecFields[fieldNum]=cscd[fieldNum];
}
}
//===== calculate PSNR =====
double MSEyuvframe[MAX_NUM_COMPONENT] = {0, 0, 0};
CHECK(!(acPicRecFields[0].chromaFormat==acPicRecFields[1].chromaFormat), "Unspecified error");
const uint32_t numValidComponents = ::getNumberValidComponents( acPicRecFields[0].chromaFormat );
for (int chan = 0; chan < numValidComponents; chan++)
{
const ComponentID ch=ComponentID(chan);
CHECK(!(acPicRecFields[0].get(ch).width==acPicRecFields[1].get(ch).width), "Unspecified error");
CHECK(!(acPicRecFields[0].get(ch).height==acPicRecFields[0].get(ch).height), "Unspecified error");
uint64_t uiSSDtemp=0;
const uint32_t width = acPicRecFields[0].get(ch).width - (m_pcEncLib->getPad(0) >> ::getComponentScaleX(ch, format));
const uint32_t height = acPicRecFields[0].get(ch).height - ((m_pcEncLib->getPad(1) >> 1) >> ::getComponentScaleY(ch, format));
const uint32_t bitDepth = sps.getBitDepth(toChannelType(ch));
for(uint32_t fieldNum=0; fieldNum<2; fieldNum++)
{
CHECK(!(conversion == IPCOLOURSPACE_UNCHANGED), "Unspecified error");
#if ENABLE_QPA
uiSSDtemp += xFindDistortionPlane( acPicRecFields[fieldNum].get(ch), apcPicOrgFields[fieldNum]->getOrigBuf().get(ch), useWPSNR ? bitDepth : 0, ::getComponentScaleX(ch, format), ::getComponentScaleY(ch, format) );
#else
uiSSDtemp += xFindDistortionPlane( acPicRecFields[fieldNum].get(ch), apcPicOrgFields[fieldNum]->getOrigBuf().get(ch), 0 );
#endif
}
const uint32_t maxval = 255 << (bitDepth - 8);
const uint32_t size = width * height * 2;
const double fRefValue = (double)maxval * maxval * size;
dPSNR[ch] = uiSSDtemp ? 10.0 * log10(fRefValue / (double)uiSSDtemp) : 999.99;
MSEyuvframe[ch] = (double)uiSSDtemp / size;
}
uint32_t uibits = 0; // the number of bits for the pair is not calculated here - instead the overall total is used elsewhere.
//===== add PSNR =====
m_gcAnalyzeAll_in.addResult (dPSNR, (double)uibits, MSEyuvframe
, MSEyuvframe
, isEncodeLtRef
);
*PSNR_Y = dPSNR[COMPONENT_Y];
msg( INFO, "\n Interlaced frame %d: [Y %6.4lf dB U %6.4lf dB V %6.4lf dB]", pcPicOrgSecondField->getPOC()/2, dPSNR[COMPONENT_Y], dPSNR[COMPONENT_Cb], dPSNR[COMPONENT_Cr] );
if (printFrameMSE)
{
msg( DETAILS, " [Y MSE %6.4lf U MSE %6.4lf V MSE %6.4lf]", MSEyuvframe[COMPONENT_Y], MSEyuvframe[COMPONENT_Cb], MSEyuvframe[COMPONENT_Cr] );
}
for(uint32_t fieldNum=0; fieldNum<2; fieldNum++)
{
cscd[fieldNum].destroy();
}
}
/** Function for deciding the nal_unit_type.
* \param pocCurr POC of the current picture
* \param lastIDR POC of the last IDR picture
* \param isField true to indicate field coding
* \returns the NAL unit type of the picture
* This function checks the configuration and returns the appropriate nal_unit_type for the picture.
*/
NalUnitType EncGOP::getNalUnitType(int pocCurr, int lastIDR, bool isField)
{
if (pocCurr == 0)
{
return NAL_UNIT_CODED_SLICE_IDR_N_LP;
}
if (m_pcCfg->getEfficientFieldIRAPEnabled() && isField && pocCurr == (m_pcCfg->getUseCompositeRef() ? 2: 1))
{
// to avoid the picture becoming an IRAP
return NAL_UNIT_CODED_SLICE_TRAIL;
}
if (m_pcCfg->getDecodingRefreshType() != 3 && (pocCurr - isField) % (m_pcCfg->getIntraPeriod() * (m_pcCfg->getUseCompositeRef() ? 2 : 1)) == 0)
{
if (m_pcCfg->getDecodingRefreshType() == 1)
{
return NAL_UNIT_CODED_SLICE_CRA;
}
else if (m_pcCfg->getDecodingRefreshType() == 2)
{
return NAL_UNIT_CODED_SLICE_IDR_W_RADL;
}
}
if(m_pocCRA>0)
{
if(pocCurr<m_pocCRA)
{
// All leading pictures are being marked as TFD pictures here since current encoder uses all
// reference pictures while encoding leading pictures. An encoder can ensure that a leading
// picture can be still decodable when random accessing to a CRA/CRANT/BLA/BLANT picture by
// controlling the reference pictures used for encoding that leading picture. Such a leading
// picture need not be marked as a TFD picture.
return NAL_UNIT_CODED_SLICE_RASL;
}
}
if (lastIDR>0)
{
if (pocCurr < lastIDR)
{
return NAL_UNIT_CODED_SLICE_RADL;
}
}
return NAL_UNIT_CODED_SLICE_TRAIL;
}
void EncGOP::xUpdateRasInit(Slice* slice)
{
slice->setPendingRasInit( false );
if ( slice->getPOC() > m_lastRasPoc )
{
m_lastRasPoc = MAX_INT;
slice->setPendingRasInit( true );
}
if ( slice->isIRAP() )
{
m_lastRasPoc = slice->getPOC();
}
}
double EncGOP::xCalculateRVM()
{
double dRVM = 0;
if( m_pcCfg->getGOPSize() == 1 && m_pcCfg->getIntraPeriod() != 1 && m_pcCfg->getFramesToBeEncoded() > RVM_VCEGAM10_M * 2 )
{
// calculate RVM only for lowdelay configurations
std::vector<double> vRL , vB;
size_t N = m_vRVM_RP.size();
vRL.resize( N );
vB.resize( N );
int i;
double dRavg = 0 , dBavg = 0;
vB[RVM_VCEGAM10_M] = 0;
for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ )
{
vRL[i] = 0;
for( int j = i - RVM_VCEGAM10_M ; j <= i + RVM_VCEGAM10_M - 1 ; j++ )
{
vRL[i] += m_vRVM_RP[j];
}
vRL[i] /= ( 2 * RVM_VCEGAM10_M );
vB[i] = vB[i-1] + m_vRVM_RP[i] - vRL[i];
dRavg += m_vRVM_RP[i];
dBavg += vB[i];
}
dRavg /= ( N - 2 * RVM_VCEGAM10_M );
dBavg /= ( N - 2 * RVM_VCEGAM10_M );
double dSigamB = 0;
for( i = RVM_VCEGAM10_M + 1 ; i < N - RVM_VCEGAM10_M + 1 ; i++ )
{
double tmp = vB[i] - dBavg;
dSigamB += tmp * tmp;
}
dSigamB = sqrt( dSigamB / ( N - 2 * RVM_VCEGAM10_M ) );
double f = sqrt( 12.0 * ( RVM_VCEGAM10_M - 1 ) / ( RVM_VCEGAM10_M + 1 ) );
dRVM = dSigamB / dRavg * f;
}
return( dRVM );
}
/** Attaches the input bitstream to the stream in the output NAL unit
Updates rNalu to contain concatenated bitstream. rpcBitstreamRedirect is cleared at the end of this function call.
* \param codedSliceData contains the coded slice data (bitstream) to be concatenated to rNalu
* \param rNalu target NAL unit
*/
void EncGOP::xAttachSliceDataToNalUnit (OutputNALUnit& rNalu, OutputBitstream* codedSliceData)
{
// Byte-align
rNalu.m_Bitstream.writeByteAlignment(); // Slice header byte-alignment
// Perform bitstream concatenation
if (codedSliceData->getNumberOfWrittenBits() > 0)
{
rNalu.m_Bitstream.addSubstream(codedSliceData);
}
codedSliceData->clear();
}
void EncGOP::arrangeCompositeReference(Slice* pcSlice, PicList& rcListPic, int pocCurr)
{
Picture* curPic = NULL;
PicList::iterator iterPic = rcListPic.begin();
const PreCalcValues *pcv = pcSlice->getPPS()->pcv;
m_bgPOC = pocCurr + 1;
if (m_picBg->getSpliceFull())
{
return;
}
while (iterPic != rcListPic.end())
{
curPic = *(iterPic++);
if (curPic->getPOC() == pocCurr)
{
break;
}
}
if (pcSlice->isIRAP())
{
return;
}
int width = pcv->lumaWidth;
int height = pcv->lumaHeight;
int stride = curPic->getOrigBuf().get(COMPONENT_Y).stride;
int cStride = curPic->getOrigBuf().get(COMPONENT_Cb).stride;
Pel* curLumaAddr = curPic->getOrigBuf().get(COMPONENT_Y).buf;
Pel* curCbAddr = curPic->getOrigBuf().get(COMPONENT_Cb).buf;
Pel* curCrAddr = curPic->getOrigBuf().get(COMPONENT_Cr).buf;
Pel* bgOrgLumaAddr = m_picOrig->getOrigBuf().get(COMPONENT_Y).buf;
Pel* bgOrgCbAddr = m_picOrig->getOrigBuf().get(COMPONENT_Cb).buf;
Pel* bgOrgCrAddr = m_picOrig->getOrigBuf().get(COMPONENT_Cr).buf;
int cuMaxWidth = pcv->maxCUWidth;
int cuMaxHeight = pcv->maxCUHeight;
int maxReplace = (pcv->sizeInCtus) / 2;
maxReplace = maxReplace < 1 ? 1 : maxReplace;
typedef struct tagCostStr
{
double cost;
int ctuIdx;
}CostStr;
CostStr* minCtuCost = new CostStr[maxReplace];
for (int i = 0; i < maxReplace; i++)
{
minCtuCost[i].cost = 1e10;
minCtuCost[i].ctuIdx = -1;
}
int bitIncrementY = pcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 8;
int bitIncrementUV = pcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_CHROMA) - 8;
for (int y = 0; y < height; y += cuMaxHeight)
{
for (int x = 0; x < width; x += cuMaxWidth)
{
double lcuDist = 0.0;
double lcuDistCb = 0.0;
double lcuDistCr = 0.0;
int realPixelCnt = 0;
double lcuCost = 1e10;
int largeDist = 0;
for (int tmpy = 0; tmpy < cuMaxHeight; tmpy++)
{
if (y + tmpy >= height)
{
break;
}
for (int tmpx = 0; tmpx < cuMaxWidth; tmpx++)
{
if (x + tmpx >= width)
{
break;
}
realPixelCnt++;
lcuDist += abs(curLumaAddr[(y + tmpy)*stride + x + tmpx] - bgOrgLumaAddr[(y + tmpy)*stride + x + tmpx]);
if (abs(curLumaAddr[(y + tmpy)*stride + x + tmpx] - bgOrgLumaAddr[(y + tmpy)*stride + x + tmpx]) >(20 << bitIncrementY))
{
largeDist++;
}
if (tmpy % 2 == 0 && tmpx % 2 == 0)
{
lcuDistCb += abs(curCbAddr[(y + tmpy) / 2 * cStride + (x + tmpx) / 2] - bgOrgCbAddr[(y + tmpy) / 2 * cStride + (x + tmpx) / 2]);
lcuDistCr += abs(curCrAddr[(y + tmpy) / 2 * cStride + (x + tmpx) / 2] - bgOrgCrAddr[(y + tmpy) / 2 * cStride + (x + tmpx) / 2]);
}
}
}
//Test the vertical or horizontal edge for background patches candidates
int yInLCU = y / cuMaxHeight;
int xInLCU = x / cuMaxWidth;
int iLCUIdx = yInLCU * pcv->widthInCtus + xInLCU;
if ((largeDist / (double)realPixelCnt < 0.01 &&lcuDist / realPixelCnt < (3.5 * (1 << bitIncrementY)) && lcuDistCb / realPixelCnt < (0.5 * (1 << bitIncrementUV)) && lcuDistCr / realPixelCnt < (0.5 * (1 << bitIncrementUV)) && m_picBg->getSpliceIdx(iLCUIdx) == 0))
{
lcuCost = lcuDist / realPixelCnt + lcuDistCb / realPixelCnt + lcuDistCr / realPixelCnt;
//obtain the maxReplace smallest cost
//1) find the largest cost in the maxReplace candidates
for (int i = 0; i < maxReplace - 1; i++)
{
if (minCtuCost[i].cost > minCtuCost[i + 1].cost)
{
swap(minCtuCost[i].cost, minCtuCost[i + 1].cost);
swap(minCtuCost[i].ctuIdx, minCtuCost[i + 1].ctuIdx);
}
}
// 2) compare the current cost with the largest cost
if (lcuCost < minCtuCost[maxReplace - 1].cost)
{
minCtuCost[maxReplace - 1].cost = lcuCost;
minCtuCost[maxReplace - 1].ctuIdx = iLCUIdx;
}
}
}
}
// modify QP for background CTU
{
for (int i = 0; i < maxReplace; i++)
{
if (minCtuCost[i].ctuIdx != -1)
{
m_picBg->setSpliceIdx(minCtuCost[i].ctuIdx, pocCurr);
}
}
}
delete[]minCtuCost;
}
void EncGOP::updateCompositeReference(Slice* pcSlice, PicList& rcListPic, int pocCurr)
{
Picture* curPic = NULL;
const PreCalcValues *pcv = pcSlice->getPPS()->pcv;
PicList::iterator iterPic = rcListPic.begin();
iterPic = rcListPic.begin();
while (iterPic != rcListPic.end())
{
curPic = *(iterPic++);
if (curPic->getPOC() == pocCurr)
{
break;
}
}
assert(curPic->getPOC() == pocCurr);
int width = pcv->lumaWidth;
int height = pcv->lumaHeight;
int stride = curPic->getRecoBuf().get(COMPONENT_Y).stride;
int cStride = curPic->getRecoBuf().get(COMPONENT_Cb).stride;
Pel* bgLumaAddr = m_picBg->getRecoBuf().get(COMPONENT_Y).buf;
Pel* bgCbAddr = m_picBg->getRecoBuf().get(COMPONENT_Cb).buf;
Pel* bgCrAddr = m_picBg->getRecoBuf().get(COMPONENT_Cr).buf;
Pel* curLumaAddr = curPic->getRecoBuf().get(COMPONENT_Y).buf;
Pel* curCbAddr = curPic->getRecoBuf().get(COMPONENT_Cb).buf;
Pel* curCrAddr = curPic->getRecoBuf().get(COMPONENT_Cr).buf;
int maxCuWidth = pcv->maxCUWidth;
int maxCuHeight = pcv->maxCUHeight;
// Update background reference
if (pcSlice->isIRAP())//(pocCurr == 0)
{
curPic->extendPicBorder( pcSlice->getPPS() );
curPic->setBorderExtension(true);
m_picBg->getRecoBuf().copyFrom(curPic->getRecoBuf());
m_picOrig->getOrigBuf().copyFrom(curPic->getOrigBuf());
}
else
{
//cout << "update B" << pocCurr << endl;
for (int y = 0; y < height; y += maxCuHeight)
{
for (int x = 0; x < width; x += maxCuWidth)
{
if (m_picBg->getSpliceIdx((y / maxCuHeight)*pcv->widthInCtus + x / maxCuWidth) == pocCurr)
{
for (int tmpy = 0; tmpy < maxCuHeight; tmpy++)
{
if (y + tmpy >= height)
{
break;
}
for (int tmpx = 0; tmpx < maxCuWidth; tmpx++)
{
if (x + tmpx >= width)
{
break;
}
bgLumaAddr[(y + tmpy)*stride + x + tmpx] = curLumaAddr[(y + tmpy)*stride + x + tmpx];
if (tmpy % 2 == 0 && tmpx % 2 == 0)
{
bgCbAddr[(y + tmpy) / 2 * cStride + (x + tmpx) / 2] = curCbAddr[(y + tmpy) / 2 * cStride + (x + tmpx) / 2];
bgCrAddr[(y + tmpy) / 2 * cStride + (x + tmpx) / 2] = curCrAddr[(y + tmpy) / 2 * cStride + (x + tmpx) / 2];
}
}
}
}
}
}
m_picBg->setBorderExtension(false);
m_picBg->extendPicBorder( pcSlice->getPPS() );
m_picBg->setBorderExtension(true);
curPic->extendPicBorder( pcSlice->getPPS() );
curPic->setBorderExtension(true);
m_picOrig->getOrigBuf().copyFrom(curPic->getOrigBuf());
m_picBg->setBorderExtension(false);
m_picBg->extendPicBorder( pcSlice->getPPS() );
m_picBg->setBorderExtension(true);
}
}
void EncGOP::applyDeblockingFilterMetric( Picture* pcPic, uint32_t uiNumSlices )
{
PelBuf cPelBuf = pcPic->getRecoBuf().get( COMPONENT_Y );
Pel* Rec = cPelBuf.buf;
const int stride = cPelBuf.stride;
const uint32_t picWidth = cPelBuf.width;
const uint32_t picHeight = cPelBuf.height;
Pel* tempRec = Rec;
const Slice* pcSlice = pcPic->slices[0];
const uint32_t log2maxTB = pcSlice->getSPS()->getLog2MaxTbSize();
const uint32_t maxTBsize = (1<<log2maxTB);
const uint32_t minBlockArtSize = 8;
const uint32_t noCol = (picWidth>>log2maxTB);
const uint32_t noRows = (picHeight>>log2maxTB);
CHECK(!(noCol > 1), "Unspecified error");
CHECK(!(noRows > 1), "Unspecified error");
std::vector<uint64_t> colSAD(noCol, uint64_t(0));
std::vector<uint64_t> rowSAD(noRows, uint64_t(0));
uint32_t colIdx = 0;
uint32_t rowIdx = 0;
Pel p0, p1, p2, q0, q1, q2;
int qp = pcSlice->getSliceQp();
const int bitDepthLuma=pcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA);
int bitdepthScale = 1 << (bitDepthLuma-8);
int beta = LoopFilter::getBeta( qp ) * bitdepthScale;
const int thr2 = (beta>>2);
const int thr1 = 2*bitdepthScale;
uint32_t a = 0;
if (maxTBsize > minBlockArtSize)
{
// Analyze vertical artifact edges
for(int c = maxTBsize; c < picWidth; c += maxTBsize)
{
for(int r = 0; r < picHeight; r++)
{
p2 = Rec[c-3];
p1 = Rec[c-2];
p0 = Rec[c-1];
q0 = Rec[c];
q1 = Rec[c+1];
q2 = Rec[c+2];
a = ((abs(p2-(p1<<1)+p0)+abs(q0-(q1<<1)+q2))<<1);
if ( thr1 < a && a < thr2)
{
colSAD[colIdx] += abs(p0 - q0);
}
Rec += stride;
}
colIdx++;
Rec = tempRec;
}
// Analyze horizontal artifact edges
for(int r = maxTBsize; r < picHeight; r += maxTBsize)
{
for(int c = 0; c < picWidth; c++)
{
p2 = Rec[c + (r-3)*stride];
p1 = Rec[c + (r-2)*stride];
p0 = Rec[c + (r-1)*stride];
q0 = Rec[c + r*stride];
q1 = Rec[c + (r+1)*stride];
q2 = Rec[c + (r+2)*stride];
a = ((abs(p2-(p1<<1)+p0)+abs(q0-(q1<<1)+q2))<<1);
if (thr1 < a && a < thr2)
{
rowSAD[rowIdx] += abs(p0 - q0);
}
}
rowIdx++;
}
}
uint64_t colSADsum = 0;
uint64_t rowSADsum = 0;
for(int c = 0; c < noCol-1; c++)
{
colSADsum += colSAD[c];
}
for(int r = 0; r < noRows-1; r++)
{
rowSADsum += rowSAD[r];
}
colSADsum <<= 10;
rowSADsum <<= 10;
colSADsum /= (noCol-1);
colSADsum /= picHeight;
rowSADsum /= (noRows-1);
rowSADsum /= picWidth;
uint64_t avgSAD = ((colSADsum + rowSADsum)>>1);
avgSAD >>= (bitDepthLuma-8);
if ( avgSAD > 2048 )
{
avgSAD >>= 9;
int offset = Clip3(2,6,(int)avgSAD);
for (int i=0; i<uiNumSlices; i++)
{
Slice* pcLocalSlice = pcPic->slices[i];
pcLocalSlice->setDeblockingFilterOverrideFlag ( true);
pcLocalSlice->setDeblockingFilterDisable ( false);
pcLocalSlice->setDeblockingFilterBetaOffsetDiv2 ( offset );
pcLocalSlice->setDeblockingFilterTcOffsetDiv2 ( offset );
pcLocalSlice->setDeblockingFilterCbBetaOffsetDiv2 ( offset );
pcLocalSlice->setDeblockingFilterCbTcOffsetDiv2 ( offset );
pcLocalSlice->setDeblockingFilterCrBetaOffsetDiv2 ( offset );
pcLocalSlice->setDeblockingFilterCrTcOffsetDiv2 ( offset );
}
}
else
{
for (int i=0; i<uiNumSlices; i++)
{
Slice* pcLocalSlice = pcPic->slices[i];
const PPS* pcPPS = pcSlice->getPPS();
pcLocalSlice->setDeblockingFilterOverrideFlag ( false);
pcLocalSlice->setDeblockingFilterDisable ( pcPPS->getPPSDeblockingFilterDisabledFlag() );
pcLocalSlice->setDeblockingFilterBetaOffsetDiv2( pcPPS->getDeblockingFilterBetaOffsetDiv2() );
pcLocalSlice->setDeblockingFilterTcOffsetDiv2 ( pcPPS->getDeblockingFilterTcOffsetDiv2() );
pcLocalSlice->setDeblockingFilterCbBetaOffsetDiv2 ( pcPPS->getDeblockingFilterCbBetaOffsetDiv2() );
pcLocalSlice->setDeblockingFilterCbTcOffsetDiv2 ( pcPPS->getDeblockingFilterCbTcOffsetDiv2() );
pcLocalSlice->setDeblockingFilterCrBetaOffsetDiv2 ( pcPPS->getDeblockingFilterCrBetaOffsetDiv2() );
pcLocalSlice->setDeblockingFilterCrTcOffsetDiv2 ( pcPPS->getDeblockingFilterCrTcOffsetDiv2() );
}
}
}
#if W0038_DB_OPT
void EncGOP::applyDeblockingFilterParameterSelection( Picture* pcPic, const uint32_t numSlices, const int gopID )
{
enum DBFltParam
{
DBFLT_PARAM_AVAILABLE = 0,
DBFLT_DISABLE_FLAG,
DBFLT_BETA_OFFSETD2,
DBFLT_TC_OFFSETD2,
//NUM_DBFLT_PARAMS
};
const int MAX_BETA_OFFSET = 3;
const int MIN_BETA_OFFSET = -3;
const int MAX_TC_OFFSET = 3;
const int MIN_TC_OFFSET = -3;
PelUnitBuf reco = pcPic->getRecoBuf();
const int currQualityLayer = (!pcPic->slices[0]->isIRAP()) ? m_pcCfg->getGOPEntry(gopID).m_temporalId+1 : 0;
CHECK(!(currQualityLayer <MAX_ENCODER_DEBLOCKING_QUALITY_LAYERS), "Unspecified error");
CodingStructure& cs = *pcPic->cs;
if(!m_pcDeblockingTempPicYuv)
{
m_pcDeblockingTempPicYuv = new PelStorage;
m_pcDeblockingTempPicYuv->create( cs.area );
memset(m_DBParam, 0, sizeof(m_DBParam));
}
//preserve current reconstruction
m_pcDeblockingTempPicYuv->copyFrom ( reco );
const bool bNoFiltering = m_DBParam[currQualityLayer][DBFLT_PARAM_AVAILABLE] && m_DBParam[currQualityLayer][DBFLT_DISABLE_FLAG]==false /*&& pcPic->getTLayer()==0*/;
const int maxBetaOffsetDiv2 = bNoFiltering? Clip3(MIN_BETA_OFFSET, MAX_BETA_OFFSET, m_DBParam[currQualityLayer][DBFLT_BETA_OFFSETD2]+1) : MAX_BETA_OFFSET;
const int minBetaOffsetDiv2 = bNoFiltering? Clip3(MIN_BETA_OFFSET, MAX_BETA_OFFSET, m_DBParam[currQualityLayer][DBFLT_BETA_OFFSETD2]-1) : MIN_BETA_OFFSET;
const int maxTcOffsetDiv2 = bNoFiltering? Clip3(MIN_TC_OFFSET, MAX_TC_OFFSET, m_DBParam[currQualityLayer][DBFLT_TC_OFFSETD2]+2) : MAX_TC_OFFSET;
const int minTcOffsetDiv2 = bNoFiltering? Clip3(MIN_TC_OFFSET, MAX_TC_OFFSET, m_DBParam[currQualityLayer][DBFLT_TC_OFFSETD2]-2) : MIN_TC_OFFSET;
uint64_t distBetaPrevious = std::numeric_limits<uint64_t>::max();
uint64_t distMin = std::numeric_limits<uint64_t>::max();
bool bDBFilterDisabledBest = true;
int betaOffsetDiv2Best = 0;
int tcOffsetDiv2Best = 0;
for(int betaOffsetDiv2=maxBetaOffsetDiv2; betaOffsetDiv2>=minBetaOffsetDiv2; betaOffsetDiv2--)
{
uint64_t distTcMin = std::numeric_limits<uint64_t>::max();
for(int tcOffsetDiv2=maxTcOffsetDiv2; tcOffsetDiv2 >= minTcOffsetDiv2; tcOffsetDiv2--)
{
for (int i=0; i<numSlices; i++)
{
Slice* pcSlice = pcPic->slices[i];
pcSlice->setDeblockingFilterOverrideFlag ( true);
pcSlice->setDeblockingFilterDisable ( false);
pcSlice->setDeblockingFilterBetaOffsetDiv2( betaOffsetDiv2 );
pcSlice->setDeblockingFilterTcOffsetDiv2 ( tcOffsetDiv2 );
pcSlice->setDeblockingFilterCbBetaOffsetDiv2( betaOffsetDiv2 );
pcSlice->setDeblockingFilterCbTcOffsetDiv2 ( tcOffsetDiv2 );
pcSlice->setDeblockingFilterCrBetaOffsetDiv2( betaOffsetDiv2 );
pcSlice->setDeblockingFilterCrTcOffsetDiv2 ( tcOffsetDiv2 );
}
// restore reconstruction
reco.copyFrom( *m_pcDeblockingTempPicYuv );
const uint64_t dist = preLoopFilterPicAndCalcDist( pcPic );
if(dist < distMin)
{
distMin = dist;
bDBFilterDisabledBest = false;
betaOffsetDiv2Best = betaOffsetDiv2;
tcOffsetDiv2Best = tcOffsetDiv2;
}
if(dist < distTcMin)
{
distTcMin = dist;
}
else if(tcOffsetDiv2 <-2)
{
break;
}
}
if(betaOffsetDiv2<-1 && distTcMin >= distBetaPrevious)
{
break;
}
distBetaPrevious = distTcMin;
}
//update:
m_DBParam[currQualityLayer][DBFLT_PARAM_AVAILABLE] = 1;
m_DBParam[currQualityLayer][DBFLT_DISABLE_FLAG] = bDBFilterDisabledBest;
m_DBParam[currQualityLayer][DBFLT_BETA_OFFSETD2] = betaOffsetDiv2Best;
m_DBParam[currQualityLayer][DBFLT_TC_OFFSETD2] = tcOffsetDiv2Best;
// restore reconstruction
reco.copyFrom( *m_pcDeblockingTempPicYuv );
const PPS* pcPPS = pcPic->slices[0]->getPPS();
if(bDBFilterDisabledBest)
{
for (int i=0; i<numSlices; i++)
{
Slice* pcSlice = pcPic->slices[i];
pcSlice->setDeblockingFilterOverrideFlag( true);
pcSlice->setDeblockingFilterDisable ( true);
}
}
else if(betaOffsetDiv2Best == pcPPS->getDeblockingFilterBetaOffsetDiv2() && tcOffsetDiv2Best == pcPPS->getDeblockingFilterTcOffsetDiv2())
{
for (int i=0; i<numSlices; i++)
{
Slice* pcSlice = pcPic->slices[i];
pcSlice->setDeblockingFilterOverrideFlag ( false);
pcSlice->setDeblockingFilterDisable ( pcPPS->getPPSDeblockingFilterDisabledFlag() );
pcSlice->setDeblockingFilterBetaOffsetDiv2 ( pcPPS->getDeblockingFilterBetaOffsetDiv2() );
pcSlice->setDeblockingFilterTcOffsetDiv2 ( pcPPS->getDeblockingFilterTcOffsetDiv2() );
pcSlice->setDeblockingFilterCbBetaOffsetDiv2 ( pcPPS->getDeblockingFilterBetaOffsetDiv2() );
pcSlice->setDeblockingFilterCbTcOffsetDiv2 ( pcPPS->getDeblockingFilterTcOffsetDiv2() );
pcSlice->setDeblockingFilterCrBetaOffsetDiv2 ( pcPPS->getDeblockingFilterBetaOffsetDiv2() );
pcSlice->setDeblockingFilterCrTcOffsetDiv2 ( pcPPS->getDeblockingFilterTcOffsetDiv2() );
}
}
else
{
for (int i=0; i<numSlices; i++)
{
Slice* pcSlice = pcPic->slices[i];
pcSlice->setDeblockingFilterOverrideFlag ( true);
pcSlice->setDeblockingFilterDisable ( false );
pcSlice->setDeblockingFilterBetaOffsetDiv2 ( betaOffsetDiv2Best);
pcSlice->setDeblockingFilterTcOffsetDiv2 ( tcOffsetDiv2Best);
pcSlice->setDeblockingFilterCbBetaOffsetDiv2 ( betaOffsetDiv2Best);
pcSlice->setDeblockingFilterCbTcOffsetDiv2 ( tcOffsetDiv2Best);
pcSlice->setDeblockingFilterCrBetaOffsetDiv2 ( betaOffsetDiv2Best);
pcSlice->setDeblockingFilterCrTcOffsetDiv2 ( tcOffsetDiv2Best);
}
}
}
#endif
bool EncGOP::xCheckMaxTidILRefPics(Picture* refPic, bool currentPicIsIRAP)
{
const int maxTidILRefPicsPlus1 = m_pcCfg->getVPSParameters().m_maxTidILRefPicsPlus1;
// -1 means not set
if (maxTidILRefPicsPlus1 < 0)
{
return true;
}
// 0 allows only IRAP pictures to use inter-layer prediction
if (maxTidILRefPicsPlus1 == 0)
{
return currentPicIsIRAP;
}
// all other cases filter by temporalID
return ( refPic->temporalId < maxTidILRefPicsPlus1 );
}
void EncGOP::xCreateExplicitReferencePictureSetFromReference( Slice* slice, PicList& rcListPic, const ReferencePictureList *rpl0, const ReferencePictureList *rpl1 )
{
Picture* rpcPic;
int pocCycle = 0;
Picture* pic = slice->getPic();
const VPS* vps = slice->getPic()->cs->vps;
int layerIdx = vps == nullptr ? 0 : vps->getGeneralLayerIdx( pic->layerId );
bool isIntraLayerPredAllowed = vps->getIndependentLayerFlag(layerIdx) || (vps->getPredDirection(slice->getTLayer()) != 1);
bool isInterLayerPredAllowed = !vps->getIndependentLayerFlag(layerIdx) && (vps->getPredDirection(slice->getTLayer()) != 2);
ReferencePictureList* pLocalRPL0 = slice->getLocalRPL0();
*pLocalRPL0 = ReferencePictureList( slice->getSPS()->getInterLayerPresentFlag() );
uint32_t numOfSTRPL0 = 0;
uint32_t numOfLTRPL0 = 0;
uint32_t numOfILRPL0 = 0;
uint32_t numOfRefPic = rpl0->getNumberOfShorttermPictures() + rpl0->getNumberOfLongtermPictures();
uint32_t refPicIdxL0 = 0;
if (isIntraLayerPredAllowed)
{
for (int ii = 0; ii < numOfRefPic; ii++)
{
// loop through all pictures in the reference picture buffer
PicList::iterator iterPic = rcListPic.begin();
bool isAvailable = false;
pocCycle = 1 << (slice->getSPS()->getBitsForPOC());
while (iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if (rpcPic->layerId == pic->layerId)
{
if (!rpl0->isRefPicLongterm(ii) && rpcPic->referenced && rpcPic->getPOC() == slice->getPOC() - rpl0->getRefPicIdentifier(ii) && !slice->isPocRestrictedByDRAP(rpcPic->getPOC(), rpcPic->precedingDRAP))
{
isAvailable = true;
break;
}
else if (rpl0->isRefPicLongterm(ii) && rpcPic->referenced && (rpcPic->getPOC() & (pocCycle - 1)) == rpl0->getRefPicIdentifier(ii) && !slice->isPocRestrictedByDRAP(rpcPic->getPOC(), rpcPic->precedingDRAP))
{
isAvailable = true;
break;
}
}
}
if (isAvailable)
{
pLocalRPL0->setRefPicIdentifier(refPicIdxL0, rpl0->getRefPicIdentifier(ii), rpl0->isRefPicLongterm(ii), false, NOT_VALID);
refPicIdxL0++;
numOfSTRPL0 = numOfSTRPL0 + ((rpl0->isRefPicLongterm(ii)) ? 0 : 1);
numOfLTRPL0 += (rpl0->isRefPicLongterm(ii) && !rpl0->isInterLayerRefPic(ii)) ? 1 : 0;
isAvailable = false;
}
}
}
// inter-layer reference pictures are added to the end of the reference picture list
if (layerIdx && vps && !vps->getAllIndependentLayersFlag() && isInterLayerPredAllowed)
{
numOfRefPic = rpl0->getNumberOfInterLayerPictures() ? rpl0->getNumberOfInterLayerPictures() : m_pcEncLib->getNumRefLayers( layerIdx );
for( int ii = 0; ii < numOfRefPic; ii++ )
{
// loop through all pictures in the reference picture buffer
PicList::iterator iterPic = rcListPic.begin();
while( iterPic != rcListPic.end() && ii < numOfRefPic )
{
rpcPic = *( iterPic++ );
int refLayerIdx = vps->getGeneralLayerIdx( rpcPic->layerId );
if (rpcPic->referenced && rpcPic->getPOC() == pic->getPOC() && vps->getDirectRefLayerFlag(layerIdx, refLayerIdx)
&& xCheckMaxTidILRefPics(rpcPic, slice->isIRAP()) )
{
pLocalRPL0->setRefPicIdentifier( refPicIdxL0, 0, true, true, vps->getInterLayerRefIdc( layerIdx, refLayerIdx ) );
refPicIdxL0++;
numOfILRPL0++;
ii++;
}
}
}
}
if( slice->getEnableDRAPSEI() )
{
pLocalRPL0->setNumberOfShorttermPictures( numOfSTRPL0 );
pLocalRPL0->setNumberOfLongtermPictures( numOfLTRPL0 );
pLocalRPL0->setNumberOfInterLayerPictures( numOfILRPL0 );
if( !slice->isIRAP() && !slice->isPOCInRefPicList( pLocalRPL0, slice->getAssociatedIRAPPOC() ) )
{
if( slice->getUseLTforDRAP() && !slice->isPOCInRefPicList( rpl1, slice->getAssociatedIRAPPOC() ) )
{
// Adding associated IRAP as longterm picture
pLocalRPL0->setRefPicIdentifier( refPicIdxL0, slice->getAssociatedIRAPPOC(), true, false, 0 );
refPicIdxL0++;
numOfLTRPL0++;
}
else
{
// Adding associated IRAP as shortterm picture
pLocalRPL0->setRefPicIdentifier( refPicIdxL0, slice->getPOC() - slice->getAssociatedIRAPPOC(), false, false, 0 );
refPicIdxL0++;
numOfSTRPL0++;
}
}
}
ReferencePictureList* pLocalRPL1 = slice->getLocalRPL1();
*pLocalRPL1 = ReferencePictureList( slice->getSPS()->getInterLayerPresentFlag() );
uint32_t numOfSTRPL1 = 0;
uint32_t numOfLTRPL1 = 0;
uint32_t numOfILRPL1 = 0;
numOfRefPic = rpl1->getNumberOfShorttermPictures() + rpl1->getNumberOfLongtermPictures();
uint32_t refPicIdxL1 = 0;
if (isIntraLayerPredAllowed)
{
for (int ii = 0; ii < numOfRefPic; ii++)
{
// loop through all pictures in the reference picture buffer
PicList::iterator iterPic = rcListPic.begin();
bool isAvailable = false;
pocCycle = 1 << (slice->getSPS()->getBitsForPOC());
while (iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if (rpcPic->layerId == pic->layerId)
{
if (!rpl1->isRefPicLongterm(ii) && rpcPic->referenced && rpcPic->getPOC() == slice->getPOC() - rpl1->getRefPicIdentifier(ii) && !slice->isPocRestrictedByDRAP(rpcPic->getPOC(), rpcPic->precedingDRAP))
{
isAvailable = true;
break;
}
else if (rpl1->isRefPicLongterm(ii) && rpcPic->referenced && (rpcPic->getPOC() & (pocCycle - 1)) == rpl1->getRefPicIdentifier(ii) && !slice->isPocRestrictedByDRAP(rpcPic->getPOC(), rpcPic->precedingDRAP))
{
isAvailable = true;
break;
}
}
}
if (isAvailable)
{
pLocalRPL1->setRefPicIdentifier(refPicIdxL1, rpl1->getRefPicIdentifier(ii), rpl1->isRefPicLongterm(ii), false, NOT_VALID);
refPicIdxL1++;
numOfSTRPL1 = numOfSTRPL1 + ((rpl1->isRefPicLongterm(ii)) ? 0 : 1);
numOfLTRPL1 += (rpl1->isRefPicLongterm(ii) && !rpl1->isInterLayerRefPic(ii)) ? 1 : 0;
isAvailable = false;
}
}
}
// inter-layer reference pictures are added to the end of the reference picture list
if (layerIdx && vps && !vps->getAllIndependentLayersFlag() && isInterLayerPredAllowed)
{
numOfRefPic = rpl1->getNumberOfInterLayerPictures() ? rpl1->getNumberOfInterLayerPictures() : m_pcEncLib->getNumRefLayers( layerIdx );
for( int ii = 0; ii < numOfRefPic; ii++ )
{
// loop through all pictures in the reference picture buffer
PicList::iterator iterPic = rcListPic.begin();
while( iterPic != rcListPic.end() && ii < numOfRefPic )
{
rpcPic = *( iterPic++ );
int refLayerIdx = vps->getGeneralLayerIdx( rpcPic->layerId );
if (rpcPic->referenced && rpcPic->getPOC() == pic->getPOC() && vps->getDirectRefLayerFlag(layerIdx, refLayerIdx)
&& xCheckMaxTidILRefPics( rpcPic, slice->isIRAP() ) )
{
pLocalRPL1->setRefPicIdentifier( refPicIdxL1, 0, true, true, vps->getInterLayerRefIdc( layerIdx, refLayerIdx ) );
refPicIdxL1++;
numOfILRPL1++;
ii++;
}
}
}
}
//Copy from L1 if we have less than active ref pic
int numOfNeedToFill = rpl0->getNumberOfActivePictures() - (numOfLTRPL0 + numOfSTRPL0);
bool isDisallowMixedRefPic = ( slice->getSPS()->getAllActiveRplEntriesHasSameSignFlag() ) ? true : false;
int originalL0StrpNum = numOfSTRPL0;
int originalL0LtrpNum = numOfLTRPL0;
int originalL0IlrpNum = numOfILRPL0;
for( int ii = 0; numOfNeedToFill > 0 && ii < ( pLocalRPL1->getNumberOfLongtermPictures() + pLocalRPL1->getNumberOfShorttermPictures() + pLocalRPL1->getNumberOfInterLayerPictures() ); ii++ )
{
if( ii <= ( numOfLTRPL1 + numOfSTRPL1 + numOfILRPL1 - 1 ) )
{
//Make sure this copy is not already in L0
bool canIncludeThis = true;
for( int jj = 0; jj < refPicIdxL0; jj++ )
{
if( ( pLocalRPL1->getRefPicIdentifier( ii ) == pLocalRPL0->getRefPicIdentifier( jj ) ) && ( pLocalRPL1->isRefPicLongterm( ii ) == pLocalRPL0->isRefPicLongterm( jj ) ) && pLocalRPL1->getInterLayerRefPicIdx( ii ) == pLocalRPL0->getInterLayerRefPicIdx( jj ) )
{
canIncludeThis = false;
}
bool sameSign = ( pLocalRPL1->getRefPicIdentifier( ii ) > 0 ) == ( pLocalRPL0->getRefPicIdentifier( 0 ) > 0 );
if( isDisallowMixedRefPic && canIncludeThis && !pLocalRPL1->isRefPicLongterm( ii ) && !sameSign )
{
canIncludeThis = false;
}
}
if( canIncludeThis )
{
pLocalRPL0->setRefPicIdentifier( refPicIdxL0, pLocalRPL1->getRefPicIdentifier( ii ), pLocalRPL1->isRefPicLongterm( ii ), pLocalRPL1->isInterLayerRefPic( ii ), pLocalRPL1->getInterLayerRefPicIdx( ii ) );
refPicIdxL0++;
numOfSTRPL0 = numOfSTRPL0 + ( ( pLocalRPL1->isRefPicLongterm( ii ) ) ? 0 : 1 );
numOfLTRPL0 += ( pLocalRPL1->isRefPicLongterm( ii ) && !pLocalRPL1->isInterLayerRefPic( ii ) ) ? 1 : 0;
numOfILRPL0 += pLocalRPL1->isInterLayerRefPic( ii ) ? 1 : 0;
numOfNeedToFill--;
}
}
}
pLocalRPL0->setNumberOfLongtermPictures( numOfLTRPL0 );
pLocalRPL0->setNumberOfShorttermPictures( numOfSTRPL0 );
pLocalRPL0->setNumberOfInterLayerPictures( numOfILRPL0 );
int numPics = numOfLTRPL0 + numOfSTRPL0;
pLocalRPL0->setNumberOfActivePictures( ( numPics < rpl0->getNumberOfActivePictures() ? numPics : rpl0->getNumberOfActivePictures() ) + numOfILRPL0 );
pLocalRPL0->setLtrpInSliceHeaderFlag( 1 );
slice->setRPL0idx( -1 );
slice->setRPL0( pLocalRPL0 );
//Copy from L0 if we have less than active ref pic
numOfNeedToFill = pLocalRPL0->getNumberOfActivePictures() - ( numOfLTRPL1 + numOfSTRPL1 );
for( int ii = 0; numOfNeedToFill > 0 && ii < ( pLocalRPL0->getNumberOfLongtermPictures() + pLocalRPL0->getNumberOfShorttermPictures() + pLocalRPL0->getNumberOfInterLayerPictures() ); ii++ )
{
if( ii <= ( originalL0StrpNum + originalL0LtrpNum + originalL0IlrpNum - 1 ) )
{
//Make sure this copy is not already in L0
bool canIncludeThis = true;
for( int jj = 0; jj < refPicIdxL1; jj++ )
{
if( ( pLocalRPL0->getRefPicIdentifier( ii ) == pLocalRPL1->getRefPicIdentifier( jj ) ) && ( pLocalRPL0->isRefPicLongterm( ii ) == pLocalRPL1->isRefPicLongterm( jj ) ) && pLocalRPL0->getInterLayerRefPicIdx( ii ) == pLocalRPL1->getInterLayerRefPicIdx( jj ) )
{
canIncludeThis = false;
}
bool sameSign = ( pLocalRPL0->getRefPicIdentifier( ii ) > 0 ) == ( pLocalRPL1->getRefPicIdentifier( 0 ) > 0 );
if( isDisallowMixedRefPic && canIncludeThis && !pLocalRPL0->isRefPicLongterm( ii ) && !sameSign )
{
canIncludeThis = false;
}
}
if( canIncludeThis )
{
pLocalRPL1->setRefPicIdentifier( refPicIdxL1, pLocalRPL0->getRefPicIdentifier( ii ), pLocalRPL0->isRefPicLongterm( ii ), pLocalRPL0->isInterLayerRefPic( ii ), pLocalRPL0->getInterLayerRefPicIdx( ii ) );
refPicIdxL1++;
numOfSTRPL1 = numOfSTRPL1 + ( ( pLocalRPL0->isRefPicLongterm( ii ) ) ? 0 : 1 );
numOfLTRPL1 += ( pLocalRPL0->isRefPicLongterm( ii ) && !pLocalRPL0->isInterLayerRefPic( ii ) ) ? 1 : 0;
numOfLTRPL1 += pLocalRPL0->isInterLayerRefPic( ii ) ? 1 : 0;
numOfNeedToFill--;
}
}
}
pLocalRPL1->setNumberOfLongtermPictures( numOfLTRPL1 );
pLocalRPL1->setNumberOfShorttermPictures( numOfSTRPL1 );
pLocalRPL1->setNumberOfInterLayerPictures( numOfILRPL1 );
numPics = numOfLTRPL1 + numOfSTRPL1;
pLocalRPL1->setNumberOfActivePictures( ( isDisallowMixedRefPic ? numPics : ( numPics < rpl1->getNumberOfActivePictures() ? numPics : rpl1->getNumberOfActivePictures() ) ) + numOfILRPL1 );
pLocalRPL1->setLtrpInSliceHeaderFlag( 1 );
slice->setRPL1idx( -1 );
slice->setRPL1( pLocalRPL1 );
}
//! \}