IntraSearch.cpp 253.38 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2021, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file EncSearch.cpp
* \brief encoder intra search class
*/
#include "IntraSearch.h"
#include "EncModeCtrl.h"
#include "CommonLib/CommonDef.h"
#include "CommonLib/Rom.h"
#include "CommonLib/Picture.h"
#include "CommonLib/UnitTools.h"
#if JVET_V0094_BILATERAL_FILTER || JVET_X0071_CHROMA_BILATERAL_FILTER
#include "CommonLib/BilateralFilter.h"
#endif
#include "CommonLib/dtrace_next.h"
#include "CommonLib/dtrace_buffer.h"
#include <math.h>
#include <limits>
//! \ingroup EncoderLib
//! \{
#define PLTCtx(c) SubCtx( Ctx::Palette, c )
IntraSearch::IntraSearch()
: m_pSplitCS (nullptr)
, m_pFullCS (nullptr)
, m_pBestCS (nullptr)
, m_pcEncCfg (nullptr)
#if JVET_V0094_BILATERAL_FILTER || JVET_X0071_CHROMA_BILATERAL_FILTER
, m_bilateralFilter(nullptr)
#endif
, m_pcTrQuant (nullptr)
, m_pcRdCost (nullptr)
, m_pcReshape (nullptr)
, m_CABACEstimator(nullptr)
, m_CtxCache (nullptr)
, m_isInitialized (false)
{
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
m_pSharedPredTransformSkip[ch] = nullptr;
}
m_truncBinBits = nullptr;
m_escapeNumBins = nullptr;
m_minErrorIndexMap = nullptr;
for (unsigned i = 0; i < (MAXPLTSIZE + 1); i++)
{
m_indexError[i] = nullptr;
}
for (unsigned i = 0; i < NUM_TRELLIS_STATE; i++)
{
m_statePtRDOQ[i] = nullptr;
}
}
void IntraSearch::destroy()
{
CHECK( !m_isInitialized, "Not initialized" );
if( m_pcEncCfg )
{
const uint32_t uiNumLayersToAllocateSplit = 1;
const uint32_t uiNumLayersToAllocateFull = 1;
const int uiNumSaveLayersToAllocate = 2;
for( uint32_t layer = 0; layer < uiNumSaveLayersToAllocate; layer++ )
{
m_pSaveCS[layer]->destroy();
delete m_pSaveCS[layer];
}
uint32_t numWidths = gp_sizeIdxInfo->numWidths();
uint32_t numHeights = gp_sizeIdxInfo->numHeights();
for( uint32_t width = 0; width < numWidths; width++ )
{
for( uint32_t height = 0; height < numHeights; height++ )
{
if( gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( width ) ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( height ) ) )
{
for( uint32_t layer = 0; layer < uiNumLayersToAllocateSplit; layer++ )
{
m_pSplitCS[width][height][layer]->destroy();
delete m_pSplitCS[width][height][layer];
}
for( uint32_t layer = 0; layer < uiNumLayersToAllocateFull; layer++ )
{
m_pFullCS[width][height][layer]->destroy();
delete m_pFullCS[width][height][layer];
}
delete[] m_pSplitCS[width][height];
delete[] m_pFullCS [width][height];
m_pBestCS[width][height]->destroy();
m_pTempCS[width][height]->destroy();
delete m_pTempCS[width][height];
delete m_pBestCS[width][height];
}
}
delete[] m_pSplitCS[width];
delete[] m_pFullCS [width];
delete[] m_pTempCS[width];
delete[] m_pBestCS[width];
}
delete[] m_pSplitCS;
delete[] m_pFullCS;
delete[] m_pBestCS;
delete[] m_pTempCS;
delete[] m_pSaveCS;
}
m_pSplitCS = m_pFullCS = nullptr;
m_pBestCS = m_pTempCS = nullptr;
m_pSaveCS = nullptr;
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
delete[] m_pSharedPredTransformSkip[ch];
m_pSharedPredTransformSkip[ch] = nullptr;
}
m_tmpStorageLCU.destroy();
m_colorTransResiBuf.destroy();
m_isInitialized = false;
if (m_truncBinBits != nullptr)
{
for (unsigned i = 0; i < m_symbolSize; i++)
{
delete[] m_truncBinBits[i];
m_truncBinBits[i] = nullptr;
}
delete[] m_truncBinBits;
m_truncBinBits = nullptr;
}
if (m_escapeNumBins != nullptr)
{
delete[] m_escapeNumBins;
m_escapeNumBins = nullptr;
}
if (m_indexError[0] != nullptr)
{
for (unsigned i = 0; i < (MAXPLTSIZE + 1); i++)
{
delete[] m_indexError[i];
m_indexError[i] = nullptr;
}
}
if (m_minErrorIndexMap != nullptr)
{
delete[] m_minErrorIndexMap;
m_minErrorIndexMap = nullptr;
}
if (m_statePtRDOQ[0] != nullptr)
{
for (unsigned i = 0; i < NUM_TRELLIS_STATE; i++)
{
delete[] m_statePtRDOQ[i];
m_statePtRDOQ[i] = nullptr;
}
}
}
IntraSearch::~IntraSearch()
{
if( m_isInitialized )
{
destroy();
}
}
void IntraSearch::init( EncCfg* pcEncCfg,
#if JVET_V0094_BILATERAL_FILTER || JVET_X0071_CHROMA_BILATERAL_FILTER
BilateralFilter* bilateralFilter,
#endif
TrQuant* pcTrQuant,
RdCost* pcRdCost,
CABACWriter* CABACEstimator,
CtxCache* ctxCache,
const uint32_t maxCUWidth,
const uint32_t maxCUHeight,
const uint32_t maxTotalCUDepth
, EncReshape* pcReshape
, const unsigned bitDepthY
)
{
CHECK(m_isInitialized, "Already initialized");
m_pcEncCfg = pcEncCfg;
#if JVET_V0094_BILATERAL_FILTER || JVET_X0071_CHROMA_BILATERAL_FILTER
m_bilateralFilter = bilateralFilter;
#endif
m_pcTrQuant = pcTrQuant;
m_pcRdCost = pcRdCost;
m_CABACEstimator = CABACEstimator;
m_CtxCache = ctxCache;
m_pcReshape = pcReshape;
const ChromaFormat cform = pcEncCfg->getChromaFormatIdc();
IntraPrediction::init( cform, pcEncCfg->getBitDepth( CHANNEL_TYPE_LUMA ) );
m_tmpStorageLCU.create(UnitArea(cform, Area(0, 0, MAX_CU_SIZE, MAX_CU_SIZE)));
m_colorTransResiBuf.create(UnitArea(cform, Area(0, 0, MAX_CU_SIZE, MAX_CU_SIZE)));
for( uint32_t ch = 0; ch < MAX_NUM_TBLOCKS; ch++ )
{
m_pSharedPredTransformSkip[ch] = new Pel[MAX_CU_SIZE * MAX_CU_SIZE];
}
uint32_t numWidths = gp_sizeIdxInfo->numWidths();
uint32_t numHeights = gp_sizeIdxInfo->numHeights();
const uint32_t uiNumLayersToAllocateSplit = 1;
const uint32_t uiNumLayersToAllocateFull = 1;
m_pBestCS = new CodingStructure**[numWidths];
m_pTempCS = new CodingStructure**[numWidths];
m_pFullCS = new CodingStructure***[numWidths];
m_pSplitCS = new CodingStructure***[numWidths];
for( uint32_t width = 0; width < numWidths; width++ )
{
m_pBestCS[width] = new CodingStructure*[numHeights];
m_pTempCS[width] = new CodingStructure*[numHeights];
m_pFullCS [width] = new CodingStructure**[numHeights];
m_pSplitCS[width] = new CodingStructure**[numHeights];
for( uint32_t height = 0; height < numHeights; height++ )
{
if( gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( width ) ) && gp_sizeIdxInfo->isCuSize( gp_sizeIdxInfo->sizeFrom( height ) ) )
{
m_pBestCS[width][height] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pTempCS[width][height] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pBestCS[width][height]->create(m_pcEncCfg->getChromaFormatIdc(), Area(0, 0, gp_sizeIdxInfo->sizeFrom(width), gp_sizeIdxInfo->sizeFrom(height)), false, (bool)pcEncCfg->getPLTMode());
m_pTempCS[width][height]->create(m_pcEncCfg->getChromaFormatIdc(), Area(0, 0, gp_sizeIdxInfo->sizeFrom(width), gp_sizeIdxInfo->sizeFrom(height)), false, (bool)pcEncCfg->getPLTMode());
m_pFullCS [width][height] = new CodingStructure*[uiNumLayersToAllocateFull];
m_pSplitCS[width][height] = new CodingStructure*[uiNumLayersToAllocateSplit];
for( uint32_t layer = 0; layer < uiNumLayersToAllocateFull; layer++ )
{
m_pFullCS [width][height][layer] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pFullCS[width][height][layer]->create(m_pcEncCfg->getChromaFormatIdc(), Area(0, 0, gp_sizeIdxInfo->sizeFrom(width), gp_sizeIdxInfo->sizeFrom(height)), false, (bool)pcEncCfg->getPLTMode());
}
for( uint32_t layer = 0; layer < uiNumLayersToAllocateSplit; layer++ )
{
m_pSplitCS[width][height][layer] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pSplitCS[width][height][layer]->create(m_pcEncCfg->getChromaFormatIdc(), Area(0, 0, gp_sizeIdxInfo->sizeFrom(width), gp_sizeIdxInfo->sizeFrom(height)), false, (bool)pcEncCfg->getPLTMode());
}
}
else
{
m_pBestCS[width][height] = nullptr;
m_pTempCS[width][height] = nullptr;
m_pFullCS [width][height] = nullptr;
m_pSplitCS[width][height] = nullptr;
}
}
}
const int uiNumSaveLayersToAllocate = 2;
m_pSaveCS = new CodingStructure*[uiNumSaveLayersToAllocate];
for( uint32_t depth = 0; depth < uiNumSaveLayersToAllocate; depth++ )
{
m_pSaveCS[depth] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pSaveCS[depth]->create(UnitArea(cform, Area(0, 0, maxCUWidth, maxCUHeight)), false, (bool)pcEncCfg->getPLTMode());
}
m_isInitialized = true;
if (pcEncCfg->getPLTMode())
{
m_symbolSize = (1 << bitDepthY); // pixel values are within [0, SymbolSize-1] with size SymbolSize
if (m_truncBinBits == nullptr)
{
m_truncBinBits = new uint16_t*[m_symbolSize];
for (unsigned i = 0; i < m_symbolSize; i++)
{
m_truncBinBits[i] = new uint16_t[m_symbolSize + 1];
}
}
if (m_escapeNumBins == nullptr)
{
m_escapeNumBins = new uint16_t[m_symbolSize];
}
initTBCTable(bitDepthY);
if (m_indexError[0] == nullptr)
{
for (unsigned i = 0; i < (MAXPLTSIZE + 1); i++)
{
m_indexError[i] = new double[MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
}
}
if (m_minErrorIndexMap == nullptr)
{
m_minErrorIndexMap = new uint8_t[MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
}
if (m_statePtRDOQ[0] == nullptr)
{
for (unsigned i = 0; i < NUM_TRELLIS_STATE; i++)
{
m_statePtRDOQ[i] = new uint8_t[MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
}
}
}
}
//////////////////////////////////////////////////////////////////////////
// INTRA PREDICTION
//////////////////////////////////////////////////////////////////////////
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
static constexpr double COST_UNKNOWN = -65536.0;
double IntraSearch::findInterCUCost( CodingUnit &cu )
{
if( cu.isConsIntra() && !cu.slice->isIntra() )
{
//search corresponding inter CU cost
for( int i = 0; i < m_numCuInSCIPU; i++ )
{
if( cu.lumaPos() == m_cuAreaInSCIPU[i].pos() && cu.lumaSize() == m_cuAreaInSCIPU[i].size() )
{
return m_cuCostInSCIPU[i];
}
}
}
return COST_UNKNOWN;
}
#endif
#if JVET_W0103_INTRA_MTS
bool IntraSearch::testISPforCurrCU(const CodingUnit &cu)
{
CodingStructure &cs = *cu.cs;
auto &pu = *cu.firstPU;
const CompArea &area = pu.Y();
PelBuf piOrg = cs.getOrgBuf(area);
Pel* pOrg = piOrg.buf;
int uiWidth = area.width;
int uiHeight = area.height;
int iStride = piOrg.stride;
int Gsum = 0;
int nPix = (uiWidth - 2) * (uiHeight - 2);
for (int y = 1; y < (uiHeight - 1); y++)
{
for (int x = 1; x < (uiWidth - 1); x++)
{
const Pel *p = pOrg + y * iStride + x;
int iDy = p[-iStride - 1] + 2 * p[-1] + p[iStride - 1] - p[-iStride + 1] - 2 * p[+1] - p[iStride + 1];
int iDx = p[iStride - 1] + 2 * p[iStride] + p[iStride + 1] - p[-iStride - 1] - 2 * p[-iStride] - p[-iStride + 1];
if (iDy == 0 && iDx == 0)
continue;
int iAmp = (int)(abs(iDx) + abs(iDy));
Gsum += iAmp;
}
}
Gsum = (Gsum + (nPix >> 1)) / nPix;
bool testISP = true;
CHECK(m_numModesISPRDO != -1, "m_numModesISPRDO!=-1");
m_numModesISPRDO = (Gsum < 50 && uiWidth >= 16 && uiHeight >= 16) ? 1 : 2;
return testISP;
}
#endif
bool IntraSearch::estIntraPredLumaQT(CodingUnit &cu, Partitioner &partitioner, const double bestCostSoFar, bool mtsCheckRangeFlag, int mtsFirstCheckId, int mtsLastCheckId, bool moreProbMTSIdxFirst, CodingStructure* bestCS)
{
CodingStructure &cs = *cu.cs;
const SPS &sps = *cs.sps;
const uint32_t uiWidthBit = floorLog2(partitioner.currArea().lwidth() );
const uint32_t uiHeightBit = floorLog2(partitioner.currArea().lheight());
// Lambda calculation at equivalent Qp of 4 is recommended because at that Qp, the quantization divisor is 1.
const double sqrtLambdaForFirstPass = m_pcRdCost->getMotionLambda( ) * FRAC_BITS_SCALE;
//===== loop over partitions =====
const TempCtx ctxStart ( m_CtxCache, m_CABACEstimator->getCtx() );
const TempCtx ctxStartMipFlag ( m_CtxCache, SubCtx( Ctx::MipFlag, m_CABACEstimator->getCtx() ) );
#if JVET_V0130_INTRA_TMP
const TempCtx ctxStartTpmFlag(m_CtxCache, SubCtx(Ctx::TmpFlag, m_CABACEstimator->getCtx()));
#endif
#if JVET_W0123_TIMD_FUSION
const TempCtx ctxStartTimdFlag ( m_CtxCache, SubCtx( Ctx::TimdFlag, m_CABACEstimator->getCtx() ) );
#endif
const TempCtx ctxStartIspMode ( m_CtxCache, SubCtx( Ctx::ISPMode, m_CABACEstimator->getCtx() ) );
#if SECONDARY_MPM
const TempCtx ctxStartMPMIdxFlag(m_CtxCache, SubCtx(Ctx::IntraLumaMPMIdx, m_CABACEstimator->getCtx()));
#endif
const TempCtx ctxStartPlanarFlag ( m_CtxCache, SubCtx( Ctx::IntraLumaPlanarFlag, m_CABACEstimator->getCtx() ) );
const TempCtx ctxStartIntraMode(m_CtxCache, SubCtx(Ctx::IntraLumaMpmFlag, m_CABACEstimator->getCtx()));
#if SECONDARY_MPM
const TempCtx ctxStartIntraMode2(m_CtxCache, SubCtx(Ctx::IntraLumaSecondMpmFlag, m_CABACEstimator->getCtx()));
#endif
const TempCtx ctxStartMrlIdx ( m_CtxCache, SubCtx( Ctx::MultiRefLineIdx, m_CABACEstimator->getCtx() ) );
CHECK( !cu.firstPU, "CU has no PUs" );
// variables for saving fast intra modes scan results across multiple LFNST passes
bool LFNSTLoadFlag = sps.getUseLFNST() && cu.lfnstIdx != 0;
bool LFNSTSaveFlag = sps.getUseLFNST() && cu.lfnstIdx == 0;
LFNSTSaveFlag &= sps.getUseIntraMTS() ? cu.mtsFlag == 0 : true;
const uint32_t lfnstIdx = cu.lfnstIdx;
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
double costInterCU = findInterCUCost( cu );
#endif
const int width = partitioner.currArea().lwidth();
const int height = partitioner.currArea().lheight();
// Marking MTS usage for faster MTS
// 0: MTS is either not applicable for current CU (cuWidth > MTS_INTRA_MAX_CU_SIZE or cuHeight > MTS_INTRA_MAX_CU_SIZE), not active in the config file or the fast decision algorithm is not used in this case
// 1: MTS fast algorithm can be applied for the current CU, and the DCT2 is being checked
// 2: MTS is being checked for current CU. Stored results of DCT2 can be utilized for speedup
uint8_t mtsUsageFlag = 0;
const int maxSizeEMT = MTS_INTRA_MAX_CU_SIZE;
if( width <= maxSizeEMT && height <= maxSizeEMT && sps.getUseIntraMTS() )
{
mtsUsageFlag = ( sps.getUseLFNST() && cu.mtsFlag == 1 ) ? 2 : 1;
}
if( width * height < 64 && !m_pcEncCfg->getUseFastLFNST() )
{
mtsUsageFlag = 0;
}
#if JVET_W0103_INTRA_MTS
if (!cu.mtsFlag && !cu.lfnstIdx)
{
m_globalBestCostStore = MAX_DOUBLE;
m_globalBestCostValid = false;
if (bestCS->getCU(partitioner.chType) != NULL && bestCS->getCU(partitioner.chType)->predMode != MODE_INTRA && bestCostSoFar != MAX_DOUBLE)
{
m_globalBestCostStore = bestCostSoFar;
m_globalBestCostValid = true;
}
}
#endif
const bool colorTransformIsEnabled = sps.getUseColorTrans() && !CS::isDualITree(cs);
const bool isFirstColorSpace = colorTransformIsEnabled && ((m_pcEncCfg->getRGBFormatFlag() && cu.colorTransform) || (!m_pcEncCfg->getRGBFormatFlag() && !cu.colorTransform));
const bool isSecondColorSpace = colorTransformIsEnabled && ((m_pcEncCfg->getRGBFormatFlag() && !cu.colorTransform) || (!m_pcEncCfg->getRGBFormatFlag() && cu.colorTransform));
double bestCurrentCost = bestCostSoFar;
bool ispCanBeUsed = sps.getUseISP() && cu.mtsFlag == 0 && cu.lfnstIdx == 0 && CU::canUseISP(width, height, cu.cs->sps->getMaxTbSize());
bool saveDataForISP = ispCanBeUsed && (!colorTransformIsEnabled || isFirstColorSpace);
bool testISP = ispCanBeUsed && (!colorTransformIsEnabled || !cu.colorTransform);
#if JVET_W0103_INTRA_MTS
if (testISP && m_pcEncCfg->getUseFastISP())
{
m_numModesISPRDO = -1;
testISP &= testISPforCurrCU(cu);
}
#endif
if ( saveDataForISP )
{
//reset the intra modes lists variables
m_ispCandListHor.clear();
m_ispCandListVer.clear();
}
if( testISP )
{
//reset the variables used for the tests
m_regIntraRDListWithCosts.clear();
int numTotalPartsHor = (int)width >> floorLog2(CU::getISPSplitDim(width, height, TU_1D_VERT_SPLIT));
int numTotalPartsVer = (int)height >> floorLog2(CU::getISPSplitDim(width, height, TU_1D_HORZ_SPLIT));
m_ispTestedModes[0].init( numTotalPartsHor, numTotalPartsVer );
//the total number of subpartitions is modified to take into account the cases where LFNST cannot be combined with ISP due to size restrictions
numTotalPartsHor = sps.getUseLFNST() && CU::canUseLfnstWithISP(cu.Y(), HOR_INTRA_SUBPARTITIONS) ? numTotalPartsHor : 0;
numTotalPartsVer = sps.getUseLFNST() && CU::canUseLfnstWithISP(cu.Y(), VER_INTRA_SUBPARTITIONS) ? numTotalPartsVer : 0;
for (int j = 1; j < NUM_LFNST_NUM_PER_SET; j++)
{
m_ispTestedModes[j].init(numTotalPartsHor, numTotalPartsVer);
}
}
const bool testBDPCM = sps.getBDPCMEnabledFlag() && CU::bdpcmAllowed(cu, ComponentID(partitioner.chType)) && cu.mtsFlag == 0 && cu.lfnstIdx == 0;
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM> uiHadModeList;
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> CandCostList;
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> CandHadList;
auto &pu = *cu.firstPU;
bool validReturn = false;
{
CandHadList.clear();
CandCostList.clear();
uiHadModeList.clear();
CHECK(pu.cu != &cu, "PU is not contained in the CU");
#if SECONDARY_MPM
std::memcpy( pu.intraMPM, m_mpmList, sizeof( pu.intraMPM ) );
std::memcpy( pu.intraNonMPM, m_nonMPMList, sizeof( pu.intraNonMPM ) );
#endif
//===== determine set of modes to be tested (using prediction signal only) =====
int numModesAvailable = NUM_LUMA_MODE; // total number of Intra modes
const bool fastMip = sps.getUseMIP() && m_pcEncCfg->getUseFastMIP();
const bool mipAllowed = sps.getUseMIP() && isLuma(partitioner.chType) && ((cu.lfnstIdx == 0) || allowLfnstWithMip(cu.firstPU->lumaSize()));
const bool testMip = mipAllowed && !(cu.lwidth() > (8 * cu.lheight()) || cu.lheight() > (8 * cu.lwidth()));
const bool supportedMipBlkSize = pu.lwidth() <= MIP_MAX_WIDTH && pu.lheight() <= MIP_MAX_HEIGHT;
#if JVET_V0130_INTRA_TMP
const bool tpmAllowed = sps.getUseIntraTMP() && isLuma(partitioner.chType) && ((cu.lfnstIdx == 0) || allowLfnstWithTmp());
const bool testTpm = tpmAllowed && (cu.lwidth() <= sps.getIntraTMPMaxSize() && cu.lheight() <= sps.getIntraTMPMaxSize());
#endif
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM> uiRdModeList;
int numModesForFullRD = 3;
numModesForFullRD = g_aucIntraModeNumFast_UseMPM_2D[uiWidthBit - MIN_CU_LOG2][uiHeightBit - MIN_CU_LOG2];
#if INTRA_FULL_SEARCH
numModesForFullRD = numModesAvailable;
#endif
#if ENABLE_DIMD
bool bestDimdMode = false;
#endif
#if JVET_W0123_TIMD_FUSION
bool bestTimdMode = false;
#endif
if (isSecondColorSpace)
{
uiRdModeList.clear();
if (m_numSavedRdModeFirstColorSpace[m_savedRdModeIdx] > 0)
{
for (int i = 0; i < m_numSavedRdModeFirstColorSpace[m_savedRdModeIdx]; i++)
{
uiRdModeList.push_back(m_savedRdModeFirstColorSpace[m_savedRdModeIdx][i]);
}
}
else
{
return false;
}
}
else
{
if (mtsUsageFlag != 2)
{
// this should always be true
CHECK(!pu.Y().valid(), "PU is not valid");
bool isFirstLineOfCtu = (((pu.block(COMPONENT_Y).y) & ((pu.cs->sps)->getMaxCUWidth() - 1)) == 0);
#if JVET_Y0116_EXTENDED_MRL_LIST
int numOfPassesExtendRef = MRL_NUM_REF_LINES;
if (!sps.getUseMRL() || isFirstLineOfCtu)
{
numOfPassesExtendRef = 1;
}
else
{
bool checkLineOutsideCtu[MRL_NUM_REF_LINES - 1];
for (int mrlIdx = 1; mrlIdx < MRL_NUM_REF_LINES; mrlIdx++)
{
bool isLineOutsideCtu =
((cu.block(COMPONENT_Y).y) % ((cu.cs->sps)->getMaxCUWidth()) <= MULTI_REF_LINE_IDX[mrlIdx]) ? true
: false;
checkLineOutsideCtu[mrlIdx-1] = isLineOutsideCtu;
}
if (checkLineOutsideCtu[0])
{
numOfPassesExtendRef = 1;
}
else
{
for (int mrlIdx = MRL_NUM_REF_LINES - 2; mrlIdx > 0; mrlIdx--)
{
if (checkLineOutsideCtu[mrlIdx] && !checkLineOutsideCtu[mrlIdx - 1])
{
numOfPassesExtendRef = mrlIdx + 1;
break;
}
}
}
}
#else
int numOfPassesExtendRef = ((!sps.getUseMRL() || isFirstLineOfCtu) ? 1 : MRL_NUM_REF_LINES);
#endif
pu.multiRefIdx = 0;
if (numModesForFullRD != numModesAvailable)
{
CHECK(numModesForFullRD >= numModesAvailable, "Too many modes for full RD search");
const CompArea &area = pu.Y();
PelBuf piOrg = cs.getOrgBuf(area);
PelBuf piPred = cs.getPredBuf(area);
DistParam distParamSad;
DistParam distParamHad;
if (cu.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag())
{
CompArea tmpArea(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
PelBuf tmpOrg = m_tmpStorageLCU.getBuf(tmpArea);
tmpOrg.rspSignal( piOrg, m_pcReshape->getFwdLUT() );
m_pcRdCost->setDistParam(distParamSad, tmpOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y,
false); // Use SAD cost
m_pcRdCost->setDistParam(distParamHad, tmpOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y,
true); // Use HAD (SATD) cost
}
else
{
m_pcRdCost->setDistParam(distParamSad, piOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y,
false); // Use SAD cost
m_pcRdCost->setDistParam(distParamHad, piOrg, piPred, sps.getBitDepth(CHANNEL_TYPE_LUMA), COMPONENT_Y,
true); // Use HAD (SATD) cost
}
distParamSad.applyWeight = false;
distParamHad.applyWeight = false;
if (testMip && supportedMipBlkSize)
{
numModesForFullRD += fastMip
? std::max(numModesForFullRD, floorLog2(std::min(pu.lwidth(), pu.lheight())) - 1)
: numModesForFullRD;
}
#if JVET_V0130_INTRA_TMP
if( testTpm )
{
numModesForFullRD += 1; // testing tpm
}
const int numHadCand = (testMip ? 2 : 1) * 3 + testTpm;
cu.tmpFlag = false;
#else
const int numHadCand = (testMip ? 2 : 1) * 3;
#endif
//*** Derive (regular) candidates using Hadamard
cu.mipFlag = false;
//===== init pattern for luma prediction =====
initIntraPatternChType(cu, pu.Y(), true);
bool bSatdChecked[NUM_INTRA_MODE];
memset(bSatdChecked, 0, sizeof(bSatdChecked));
if (!LFNSTLoadFlag)
{
for (int modeIdx = 0; modeIdx < numModesAvailable; modeIdx++)
{
uint32_t uiMode = modeIdx;
Distortion minSadHad = 0;
// Skip checking extended Angular modes in the first round of SATD
if (uiMode > DC_IDX && (uiMode & 1))
{
continue;
}
bSatdChecked[uiMode] = true;
pu.intraDir[0] = modeIdx;
initPredIntraParams(pu, pu.Y(), sps);
predIntraAng(COMPONENT_Y, piPred, pu);
// Use the min between SAD and HAD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
minSadHad += std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
#endif
m_CABACEstimator->getCtx() = SubCtx( Ctx::MipFlag, ctxStartMipFlag );
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx( Ctx::TimdFlag, ctxStartTimdFlag );
#endif
m_CABACEstimator->getCtx() = SubCtx( Ctx::ISPMode, ctxStartIspMode );
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx( Ctx::MultiRefLineIdx, ctxStartMrlIdx );
uint64_t fracModeBits = xFracModeBitsIntra(pu, uiMode, CHANNEL_TYPE_LUMA);
double cost = (double) minSadHad + (double) fracModeBits * sqrtLambdaForFirstPass;
DTRACE(g_trace_ctx, D_INTRA_COST, "IntraHAD: %u, %llu, %f (%d)\n", minSadHad, fracModeBits, cost, uiMode);
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, uiMode), cost, uiRdModeList,
CandCostList, numModesForFullRD);
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, uiMode), double(minSadHad),
uiHadModeList, CandHadList, numHadCand);
}
if (!sps.getUseMIP() && LFNSTSaveFlag)
{
// save found best modes
m_uiSavedNumRdModesLFNST = numModesForFullRD;
m_uiSavedRdModeListLFNST = uiRdModeList;
m_dSavedModeCostLFNST = CandCostList;
// PBINTRA fast
m_uiSavedHadModeListLFNST = uiHadModeList;
m_dSavedHadListLFNST = CandHadList;
LFNSTSaveFlag = false;
}
} // NSSTFlag
if (!sps.getUseMIP() && LFNSTLoadFlag)
{
// restore saved modes
numModesForFullRD = m_uiSavedNumRdModesLFNST;
uiRdModeList = m_uiSavedRdModeListLFNST;
CandCostList = m_dSavedModeCostLFNST;
// PBINTRA fast
uiHadModeList = m_uiSavedHadModeListLFNST;
CandHadList = m_dSavedHadListLFNST;
} // !LFNSTFlag
if (!(sps.getUseMIP() && LFNSTLoadFlag))
{
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM> parentCandList = uiRdModeList;
// Second round of SATD for extended Angular modes
for (int modeIdx = 0; modeIdx < numModesForFullRD; modeIdx++)
{
unsigned parentMode = parentCandList[modeIdx].modeId;
if (parentMode > (DC_IDX + 1) && parentMode < (NUM_LUMA_MODE - 1))
{
for (int subModeIdx = -1; subModeIdx <= 1; subModeIdx += 2)
{
unsigned mode = parentMode + subModeIdx;
if (!bSatdChecked[mode])
{
pu.intraDir[0] = mode;
initPredIntraParams(pu, pu.Y(), sps);
predIntraAng(COMPONENT_Y, piPred, pu);
// Use the min between SAD and SATD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been
// pre-estimated.
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx( Ctx::TimdFlag, ctxStartTimdFlag );
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::ISPMode, ctxStartIspMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MultiRefLineIdx, ctxStartMrlIdx);
uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);
double cost = (double) minSadHad + (double) fracModeBits * sqrtLambdaForFirstPass;
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, mode), cost, uiRdModeList,
CandCostList, numModesForFullRD);
updateCandList(ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, mode), double(minSadHad),
uiHadModeList, CandHadList, numHadCand);
bSatdChecked[mode] = true;
}
}
}
}
if (saveDataForISP)
{
// we save the regular intra modes list
m_ispCandListHor = uiRdModeList;
}
pu.multiRefIdx = 1;
#if SECONDARY_MPM
const int numMPMs = NUM_PRIMARY_MOST_PROBABLE_MODES;
uint8_t* multiRefMPM = m_mpmList;
#else
const int numMPMs = NUM_MOST_PROBABLE_MODES;
unsigned multiRefMPM[numMPMs];
#endif
#if !SECONDARY_MPM
PU::getIntraMPMs(pu, multiRefMPM);
#endif
for (int mRefNum = 1; mRefNum < numOfPassesExtendRef; mRefNum++)
{
int multiRefIdx = MULTI_REF_LINE_IDX[mRefNum];
pu.multiRefIdx = multiRefIdx;
{
initIntraPatternChType(cu, pu.Y(), true);
}
for (int x = 1; x < numMPMs; x++)
{
uint32_t mode = multiRefMPM[x];
{
pu.intraDir[0] = mode;
initPredIntraParams(pu, pu.Y(), sps);
predIntraAng(COMPONENT_Y, piPred, pu);
// Use the min between SAD and SATD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
// NB xFracModeBitsIntra will not affect the mode for chroma that may have already been pre-estimated.
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx( Ctx::TimdFlag, ctxStartTimdFlag );
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::ISPMode, ctxStartIspMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MultiRefLineIdx, ctxStartMrlIdx);
uint64_t fracModeBits = xFracModeBitsIntra(pu, mode, CHANNEL_TYPE_LUMA);
double cost = (double) minSadHad + (double) fracModeBits * sqrtLambdaForFirstPass;
updateCandList(ModeInfo(false, false, multiRefIdx, NOT_INTRA_SUBPARTITIONS, mode), cost, uiRdModeList,
CandCostList, numModesForFullRD);
updateCandList(ModeInfo(false, false, multiRefIdx, NOT_INTRA_SUBPARTITIONS, mode), double(minSadHad),
uiHadModeList, CandHadList, numHadCand);
}
}
}
CHECKD(uiRdModeList.size() != numModesForFullRD, "Error: RD mode list size");
if (LFNSTSaveFlag && testMip
&& !allowLfnstWithMip(cu.firstPU->lumaSize())) // save a different set for the next run
{
// save found best modes
m_uiSavedRdModeListLFNST = uiRdModeList;
m_dSavedModeCostLFNST = CandCostList;
// PBINTRA fast
m_uiSavedHadModeListLFNST = uiHadModeList;
m_dSavedHadListLFNST = CandHadList;
m_uiSavedNumRdModesLFNST =
g_aucIntraModeNumFast_UseMPM_2D[uiWidthBit - MIN_CU_LOG2][uiHeightBit - MIN_CU_LOG2];
m_uiSavedRdModeListLFNST.resize(m_uiSavedNumRdModesLFNST);
m_dSavedModeCostLFNST.resize(m_uiSavedNumRdModesLFNST);
// PBINTRA fast
m_uiSavedHadModeListLFNST.resize(3);
m_dSavedHadListLFNST.resize(3);
LFNSTSaveFlag = false;
}
#if JVET_V0130_INTRA_TMP
// derive TPM candidate using hadamard
if( testTpm )
{
cu.tmpFlag = true;
cu.mipFlag = false;
pu.multiRefIdx = 0;
int foundCandiNum = 0;
bool bsuccessfull = 0;
CodingUnit cu_cpy = cu;
#if JVET_W0069_TMP_BOUNDARY
RefTemplateType templateType = getRefTemplateType( cu_cpy, cu_cpy.blocks[COMPONENT_Y] );
if( templateType != NO_TEMPLATE )
#else
if( isRefTemplateAvailable( cu_cpy, cu_cpy.blocks[COMPONENT_Y] ) )
#endif
{
#if JVET_W0069_TMP_BOUNDARY
getTargetTemplate( &cu_cpy, pu.lwidth(), pu.lheight(), templateType );
candidateSearchIntra( &cu_cpy, pu.lwidth(), pu.lheight(), templateType );
bsuccessfull = generateTMPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), foundCandiNum );
#else
getTargetTemplate( &cu_cpy, pu.lwidth(), pu.lheight() );
candidateSearchIntra( &cu_cpy, pu.lwidth(), pu.lheight() );
bsuccessfull = generateTMPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), foundCandiNum );
#endif
}
#if JVET_W0069_TMP_BOUNDARY
else
{
foundCandiNum = 1;
bsuccessfull = generateTmDcPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), 1 << (cu_cpy.cs->sps->getBitDepth( CHANNEL_TYPE_LUMA ) - 1) );
}
#endif
if( bsuccessfull && foundCandiNum >= 1 )
{
Distortion minSadHad =
std::min( distParamSad.distFunc( distParamSad ) * 2, distParamHad.distFunc( distParamHad ) );
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
uint64_t fracModeBits = xFracModeBitsIntra( pu, 0, CHANNEL_TYPE_LUMA );
double cost = double( minSadHad ) + double( fracModeBits ) * sqrtLambdaForFirstPass;
DTRACE( g_trace_ctx, D_INTRA_COST, "IntraTPM: %u, %llu, %f (%d)\n", minSadHad, fracModeBits, cost, 0 );
updateCandList( ModeInfo( 0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1 ), cost, uiRdModeList, CandCostList, numModesForFullRD );
updateCandList( ModeInfo( 0, 0, 0, NOT_INTRA_SUBPARTITIONS, 0, 1 ), 0.8 * double( minSadHad ), uiHadModeList, CandHadList, numHadCand );
}
}
#endif
//*** Derive MIP candidates using Hadamard
if (testMip && !supportedMipBlkSize)
{
// avoid estimation for unsupported blk sizes
const int transpOff = getNumModesMip(pu.Y());
const int numModesFull = (transpOff << 1);
for (uint32_t uiModeFull = 0; uiModeFull < numModesFull; uiModeFull++)
{
const bool isTransposed = (uiModeFull >= transpOff ? true : false);
const uint32_t uiMode = (isTransposed ? uiModeFull - transpOff : uiModeFull);
numModesForFullRD++;
uiRdModeList.push_back(ModeInfo(true, isTransposed, 0, NOT_INTRA_SUBPARTITIONS, uiMode));
CandCostList.push_back(0);
}
}
else if (testMip)
{
#if JVET_V0130_INTRA_TMP
cu.tmpFlag = 0;
#endif
cu.mipFlag = true;
pu.multiRefIdx = 0;
double mipHadCost[MAX_NUM_MIP_MODE] = { MAX_DOUBLE };
initIntraPatternChType(cu, pu.Y());
initIntraMip(pu, pu.Y());
const int transpOff = getNumModesMip(pu.Y());
const int numModesFull = (transpOff << 1);
for (uint32_t uiModeFull = 0; uiModeFull < numModesFull; uiModeFull++)
{
const bool isTransposed = (uiModeFull >= transpOff ? true : false);
const uint32_t uiMode = (isTransposed ? uiModeFull - transpOff : uiModeFull);
pu.mipTransposedFlag = isTransposed;
pu.intraDir[CHANNEL_TYPE_LUMA] = uiMode;
predIntraMip(COMPONENT_Y, piPred, pu);
// Use the min between SAD and HAD as the cost criterion
// SAD is scaled by 2 to align with the scaling of HAD
Distortion minSadHad =
std::min(distParamSad.distFunc(distParamSad) * 2, distParamHad.distFunc(distParamHad));
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
uint64_t fracModeBits = xFracModeBitsIntra(pu, uiMode, CHANNEL_TYPE_LUMA);
double cost = double(minSadHad) + double(fracModeBits) * sqrtLambdaForFirstPass;
mipHadCost[uiModeFull] = cost;
DTRACE(g_trace_ctx, D_INTRA_COST, "IntraMIP: %u, %llu, %f (%d)\n", minSadHad, fracModeBits, cost,
uiModeFull);
updateCandList(ModeInfo(true, isTransposed, 0, NOT_INTRA_SUBPARTITIONS, uiMode), cost, uiRdModeList,
CandCostList, numModesForFullRD + 1);
updateCandList(ModeInfo(true, isTransposed, 0, NOT_INTRA_SUBPARTITIONS, uiMode),
0.8 * double(minSadHad), uiHadModeList, CandHadList, numHadCand);
}
const double thresholdHadCost = 1.0 + 1.4 / sqrt((double) (pu.lwidth() * pu.lheight()));
reduceHadCandList(uiRdModeList, CandCostList, numModesForFullRD, thresholdHadCost, mipHadCost, pu,
fastMip);
}
if (sps.getUseMIP() && LFNSTSaveFlag)
{
// save found best modes
m_uiSavedNumRdModesLFNST = numModesForFullRD;
m_uiSavedRdModeListLFNST = uiRdModeList;
m_dSavedModeCostLFNST = CandCostList;
// PBINTRA fast
m_uiSavedHadModeListLFNST = uiHadModeList;
m_dSavedHadListLFNST = CandHadList;
LFNSTSaveFlag = false;
}
}
else // if( sps.getUseMIP() && LFNSTLoadFlag)
{
// restore saved modes
numModesForFullRD = m_uiSavedNumRdModesLFNST;
uiRdModeList = m_uiSavedRdModeListLFNST;
CandCostList = m_dSavedModeCostLFNST;
// PBINTRA fast
uiHadModeList = m_uiSavedHadModeListLFNST;
CandHadList = m_dSavedHadListLFNST;
}
if (m_pcEncCfg->getFastUDIUseMPMEnabled())
{
#if SECONDARY_MPM
auto uiPreds = m_mpmList;
#else
const int numMPMs = NUM_MOST_PROBABLE_MODES;
unsigned uiPreds[numMPMs];
#endif
pu.multiRefIdx = 0;
#if SECONDARY_MPM
int numCand = m_mpmListSize;
numCand = (numCand > 2) ? 2 : numCand;
#else
const int numCand = PU::getIntraMPMs(pu, uiPreds);
#endif
for (int j = 0; j < numCand; j++)
{
bool mostProbableModeIncluded = false;
ModeInfo mostProbableMode( false, false, 0, NOT_INTRA_SUBPARTITIONS, uiPreds[j] );
for (int i = 0; i < numModesForFullRD; i++)
{
mostProbableModeIncluded |= (mostProbableMode == uiRdModeList[i]);
}
if (!mostProbableModeIncluded)
{
numModesForFullRD++;
uiRdModeList.push_back(mostProbableMode);
CandCostList.push_back(0);
}
}
if (saveDataForISP)
{
// we add the MPMs to the list that contains only regular intra modes
for (int j = 0; j < numCand; j++)
{
bool mostProbableModeIncluded = false;
ModeInfo mostProbableMode(false, false, 0, NOT_INTRA_SUBPARTITIONS, uiPreds[j]);
for (int i = 0; i < m_ispCandListHor.size(); i++)
{
mostProbableModeIncluded |= (mostProbableMode == m_ispCandListHor[i]);
}
if (!mostProbableModeIncluded)
{
m_ispCandListHor.push_back(mostProbableMode);
}
}
}
}
}
else
{
THROW("Full search not supported for MIP");
}
if (sps.getUseLFNST() && mtsUsageFlag == 1)
{
// Store the modes to be checked with RD
m_savedNumRdModes[lfnstIdx] = numModesForFullRD;
std::copy_n(uiRdModeList.begin(), numModesForFullRD, m_savedRdModeList[lfnstIdx]);
}
}
else // mtsUsage = 2 (here we potentially reduce the number of modes that will be full-RD checked)
{
if ((m_pcEncCfg->getUseFastLFNST() || !cu.slice->isIntra()) && m_bestModeCostValid[lfnstIdx])
{
numModesForFullRD = 0;
#if JVET_W0103_INTRA_MTS
double thresholdSkipMode = 1.0 + ((cu.lfnstIdx > 0) ? 0.1 : 0.8) * (1.4 / sqrt((double)(width * height)));
std::vector<std::pair<ModeInfo, double>> ModeInfoWithDCT2Cost(m_savedNumRdModes[0]);
for (int i = 0; i < m_savedNumRdModes[0]; i++)
{
ModeInfoWithDCT2Cost[i] = { m_savedRdModeList[0][i], m_modeCostStore[0][i] };
}
std::stable_sort(ModeInfoWithDCT2Cost.begin(), ModeInfoWithDCT2Cost.end(), [](const std::pair<ModeInfo, double> & l, const std::pair<ModeInfo, double> & r) {return l.second < r.second; });
// **Reorder the modes** and Skip checking the modes with much larger R-D cost than the best mode
for (int i = 0; i < m_savedNumRdModes[0]; i++)
{
if (ModeInfoWithDCT2Cost[i].second <= thresholdSkipMode * ModeInfoWithDCT2Cost[0].second)
{
uiRdModeList.push_back(ModeInfoWithDCT2Cost[i].first);
numModesForFullRD++;
}
}
#else
double thresholdSkipMode = 1.0 + ((cu.lfnstIdx > 0) ? 0.1 : 1.0) * (1.4 / sqrt((double) (width * height)));
// Skip checking the modes with much larger R-D cost than the best mode
for (int i = 0; i < m_savedNumRdModes[lfnstIdx]; i++)
{
if (m_modeCostStore[lfnstIdx][i] <= thresholdSkipMode * m_bestModeCostStore[lfnstIdx])
{
uiRdModeList.push_back(m_savedRdModeList[lfnstIdx][i]);
numModesForFullRD++;
}
}
#endif
}
else // this is necessary because we skip the candidates list calculation, since it was already obtained for
// the DCT-II. Now we load it
{
// Restore the modes to be checked with RD
numModesForFullRD = m_savedNumRdModes[lfnstIdx];
uiRdModeList.resize(numModesForFullRD);
std::copy_n(m_savedRdModeList[lfnstIdx], m_savedNumRdModes[lfnstIdx], uiRdModeList.begin());
CandCostList.resize(numModesForFullRD);
}
}
#if ENABLE_DIMD
bool isDimdValid = cu.slice->getSPS()->getUseDimd();
if (isDimdValid)
{
cu.dimd = false;
ModeInfo m = ModeInfo( false, false, 0, NOT_INTRA_SUBPARTITIONS, DIMD_IDX );
uiRdModeList.push_back(m);
#if !JVET_V0087_DIMD_NO_ISP
if (testISP)
{
m.ispMod = HOR_INTRA_SUBPARTITIONS;
m_ispCandListHor.push_back(m);
m.ispMod = VER_INTRA_SUBPARTITIONS;
m_ispCandListVer.push_back(m);
}
#endif
}
#else
CHECK(numModesForFullRD != uiRdModeList.size(), "Inconsistent state!");
#endif
// after this point, don't use numModesForFullRD
// PBINTRA fast
if (m_pcEncCfg->getUsePbIntraFast() && !cs.slice->isIntra() && uiRdModeList.size() < numModesAvailable
&& !cs.slice->getDisableSATDForRD() && (mtsUsageFlag != 2 || lfnstIdx > 0))
{
double pbintraRatio = (lfnstIdx > 0) ? 1.25 : PBINTRA_RATIO;
int maxSize = -1;
ModeInfo bestMipMode;
int bestMipIdx = -1;
for (int idx = 0; idx < uiRdModeList.size(); idx++)
{
if (uiRdModeList[idx].mipFlg)
{
bestMipMode = uiRdModeList[idx];
bestMipIdx = idx;
break;
}
}
const int numHadCand = 3;
for (int k = numHadCand - 1; k >= 0; k--)
{
if (CandHadList.size() < (k + 1) || CandHadList[k] > cs.interHad * pbintraRatio)
{
maxSize = k;
}
}
if (maxSize > 0)
{
uiRdModeList.resize(std::min<size_t>(uiRdModeList.size(), maxSize));
if (bestMipIdx >= 0)
{
if (uiRdModeList.size() <= bestMipIdx)
{
uiRdModeList.push_back(bestMipMode);
}
}
if (saveDataForISP)
{
m_ispCandListHor.resize(std::min<size_t>(m_ispCandListHor.size(), maxSize));
}
}
if (maxSize == 0)
{
cs.dist = std::numeric_limits<Distortion>::max();
cs.interHad = 0;
//===== reset context models =====
#if JVET_V0130_INTRA_TMP
m_CABACEstimator->getCtx() = SubCtx( Ctx::TmpFlag, ctxStartTpmFlag );
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MipFlag, ctxStartMipFlag);
#if JVET_W0123_TIMD_FUSION
m_CABACEstimator->getCtx() = SubCtx( Ctx::TimdFlag, ctxStartTimdFlag );
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::ISPMode, ctxStartIspMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMPMIdx, ctxStartMPMIdxFlag);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaPlanarFlag, ctxStartPlanarFlag);
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaMpmFlag, ctxStartIntraMode);
#if SECONDARY_MPM
m_CABACEstimator->getCtx() = SubCtx(Ctx::IntraLumaSecondMpmFlag, ctxStartIntraMode2);
#endif
m_CABACEstimator->getCtx() = SubCtx(Ctx::MultiRefLineIdx, ctxStartMrlIdx);
return false;
}
}
}
int numNonISPModes = (int)uiRdModeList.size();
#if JVET_W0123_TIMD_FUSION
bool isTimdValid = cu.slice->getSPS()->getUseTimd();
if (cu.lwidth() * cu.lheight() > 1024 && cu.slice->getSliceType() == I_SLICE)
{
isTimdValid = false;
}
if (isTimdValid)
{
cu.timd = false;
uiRdModeList.push_back( ModeInfo( false, false, 0, NOT_INTRA_SUBPARTITIONS, TIMD_IDX ) );
numNonISPModes++;
if (lfnstIdx == 0 && !cu.mtsFlag)
{
bool isFirstLineOfCtu = (((pu.block(COMPONENT_Y).y) & ((pu.cs->sps)->getMaxCUWidth() - 1)) == 0);
#if JVET_Y0116_EXTENDED_MRL_LIST
int numOfPassesExtendRef = 3;
if (!sps.getUseMRL() || isFirstLineOfCtu)
{
numOfPassesExtendRef = 1;
}
else
{
bool checkLineOutsideCtu[2];
for (int mrlIdx = 1; mrlIdx < 3; mrlIdx++)
{
bool isLineOutsideCtu =
((cu.block(COMPONENT_Y).y) % ((cu.cs->sps)->getMaxCUWidth()) <= MULTI_REF_LINE_IDX[mrlIdx]) ? true
: false;
checkLineOutsideCtu[mrlIdx-1] = isLineOutsideCtu;
}
if (checkLineOutsideCtu[0])
{
numOfPassesExtendRef = 1;
}
else
{
if (checkLineOutsideCtu[1] && !checkLineOutsideCtu[0])
{
numOfPassesExtendRef = 2;
}
}
}
#else
int numOfPassesExtendRef = ((!sps.getUseMRL() || isFirstLineOfCtu) ? 1 : MRL_NUM_REF_LINES);
#endif
for (int mRefNum = 1; mRefNum < numOfPassesExtendRef; mRefNum++)
{
int multiRefIdx = MULTI_REF_LINE_IDX[mRefNum];
uiRdModeList.push_back( ModeInfo( false, false, multiRefIdx, NOT_INTRA_SUBPARTITIONS, TIMD_IDX ) );
numNonISPModes++;
}
}
}
#endif
if ( testISP )
{
// we reserve positions for ISP in the common full RD list
const int maxNumRDModesISP = sps.getUseLFNST() ? 16 * NUM_LFNST_NUM_PER_SET : 16;
m_curIspLfnstIdx = 0;
for (int i = 0; i < maxNumRDModesISP; i++)
{
uiRdModeList.push_back( ModeInfo( false, false, 0, INTRA_SUBPARTITIONS_RESERVED, 0 ) );
}
}
#if JVET_W0123_TIMD_FUSION
if (isTimdValid && sps.getUseISP() && CU::canUseISP(width, height, cu.cs->sps->getMaxTbSize()) && lfnstIdx == 0 && !cu.mtsFlag)
{
uiRdModeList.push_back( ModeInfo( false, false, 0, HOR_INTRA_SUBPARTITIONS, TIMD_IDX ) );
uiRdModeList.push_back( ModeInfo( false, false, 0, VER_INTRA_SUBPARTITIONS, TIMD_IDX ) );
}
#endif
//===== check modes (using r-d costs) =====
ModeInfo uiBestPUMode;
int bestBDPCMMode = 0;
double bestCostNonBDPCM = MAX_DOUBLE;
CodingStructure *csTemp = m_pTempCS[gp_sizeIdxInfo->idxFrom( cu.lwidth() )][gp_sizeIdxInfo->idxFrom( cu.lheight() )];
CodingStructure *csBest = m_pBestCS[gp_sizeIdxInfo->idxFrom( cu.lwidth() )][gp_sizeIdxInfo->idxFrom( cu.lheight() )];
csTemp->slice = cs.slice;
csBest->slice = cs.slice;
csTemp->initStructData();
csBest->initStructData();
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
csTemp->picture = cs.picture;
csBest->picture = cs.picture;
#endif
// just to be sure
numModesForFullRD = ( int ) uiRdModeList.size();
TUIntraSubPartitioner subTuPartitioner( partitioner );
if ( testISP )
{
m_modeCtrl->setIspCost( MAX_DOUBLE );
m_modeCtrl->setMtsFirstPassNoIspCost( MAX_DOUBLE );
}
int bestLfnstIdx = cu.lfnstIdx;
for (int mode = isSecondColorSpace ? 0 : -2 * int(testBDPCM); mode < (int)uiRdModeList.size(); mode++)
{
// set CU/PU to luma prediction mode
ModeInfo uiOrgMode;
if (sps.getUseColorTrans() && !m_pcEncCfg->getRGBFormatFlag() && isSecondColorSpace && mode)
{
continue;
}
if (mode < 0 || (isSecondColorSpace && m_savedBDPCMModeFirstColorSpace[m_savedRdModeIdx][mode]))
{
cu.bdpcmMode = mode < 0 ? -mode : m_savedBDPCMModeFirstColorSpace[m_savedRdModeIdx][mode];
uiOrgMode = ModeInfo( false, false, 0, NOT_INTRA_SUBPARTITIONS, cu.bdpcmMode == 2 ? VER_IDX : HOR_IDX );
}
else
{
cu.bdpcmMode = 0;
uiOrgMode = uiRdModeList[mode];
}
if (!cu.bdpcmMode && uiRdModeList[mode].ispMod == INTRA_SUBPARTITIONS_RESERVED)
{
if (mode == numNonISPModes) // the list needs to be sorted only once
{
if (m_pcEncCfg->getUseFastISP())
{
#if JVET_W0123_TIMD_FUSION
if (bestTimdMode)
{
m_modeCtrl->setBestPredModeDCT2(MAP131TO67(uiBestPUMode.modeId));
}
else
{
m_modeCtrl->setBestPredModeDCT2(uiBestPUMode.modeId);
}
#else
m_modeCtrl->setBestPredModeDCT2(uiBestPUMode.modeId);
#endif
}
#if JVET_W0123_TIMD_FUSION
ModeInfo tempBestPUMode = uiBestPUMode;
if (bestTimdMode)
{
tempBestPUMode.modeId = MAP131TO67(tempBestPUMode.modeId);
}
if (!xSortISPCandList(bestCurrentCost, csBest->cost, tempBestPUMode))
#else
if (!xSortISPCandList(bestCurrentCost, csBest->cost, uiBestPUMode))
#endif
{
break;
}
}
xGetNextISPMode(uiRdModeList[mode], (mode > 0 ? &uiRdModeList[mode - 1] : nullptr), Size(width, height));
if (uiRdModeList[mode].ispMod == INTRA_SUBPARTITIONS_RESERVED)
{
continue;
}
cu.lfnstIdx = m_curIspLfnstIdx;
uiOrgMode = uiRdModeList[mode];
}
#if ENABLE_DIMD
cu.dimd = false;
if( mode >= 0 && uiOrgMode.modeId == DIMD_IDX ) /*to check*/
{
uiOrgMode.modeId = cu.dimdMode;
cu.dimd = true;
}
#endif
#if JVET_V0130_INTRA_TMP
cu.tmpFlag = uiOrgMode.tmpFlag;
#if JVET_W0103_INTRA_MTS
if (cu.tmpFlag && cu.mtsFlag) continue;
#endif
#endif
cu.mipFlag = uiOrgMode.mipFlg;
pu.mipTransposedFlag = uiOrgMode.mipTrFlg;
cu.ispMode = uiOrgMode.ispMod;
pu.multiRefIdx = uiOrgMode.mRefId;
pu.intraDir[CHANNEL_TYPE_LUMA] = uiOrgMode.modeId;
#if JVET_W0123_TIMD_FUSION
cu.timd = false;
if (mode >= 0 && uiOrgMode.modeId == TIMD_IDX)
{
if (cu.ispMode)
{
cu.lfnstIdx = lfnstIdx;
if (cu.ispMode == VER_INTRA_SUBPARTITIONS && uiBestPUMode.ispMod == 0 && !bestTimdMode)
{
continue;
}
}
uiOrgMode.modeId = cu.timdMode;
pu.intraDir[CHANNEL_TYPE_LUMA] = uiOrgMode.modeId;
cu.timd = true;
}
#endif
CHECK(cu.mipFlag && pu.multiRefIdx, "Error: combination of MIP and MRL not supported");
#if JVET_W0123_TIMD_FUSION
if (!cu.timd)
{
#endif
CHECK(pu.multiRefIdx && (pu.intraDir[0] == PLANAR_IDX),
"Error: combination of MRL and Planar mode not supported");
#if JVET_W0123_TIMD_FUSION
}
#endif
CHECK(cu.ispMode && cu.mipFlag, "Error: combination of ISP and MIP not supported");
CHECK(cu.ispMode && pu.multiRefIdx, "Error: combination of ISP and MRL not supported");
CHECK(cu.ispMode&& cu.colorTransform, "Error: combination of ISP and ACT not supported");
#if JVET_V0130_INTRA_TMP
CHECK( cu.mipFlag && cu.tmpFlag, "Error: combination of MIP and TPM not supported" );
CHECK( cu.tmpFlag && cu.ispMode, "Error: combination of TPM and ISP not supported" );
CHECK( cu.tmpFlag && pu.multiRefIdx, "Error: combination of TPM and MRL not supported" );
#endif
#if ENABLE_DIMD && JVET_V0087_DIMD_NO_ISP
CHECK(cu.ispMode && cu.dimd, "Error: combination of ISP and DIMD not supported");
#endif
pu.intraDir[CHANNEL_TYPE_CHROMA] = cu.colorTransform ? DM_CHROMA_IDX : pu.intraDir[CHANNEL_TYPE_CHROMA];
// set context models
m_CABACEstimator->getCtx() = ctxStart;
// determine residual for partition
cs.initSubStructure( *csTemp, partitioner.chType, cs.area, true );
bool tmpValidReturn = false;
if( cu.ispMode )
{
if ( m_pcEncCfg->getUseFastISP() )
{
m_modeCtrl->setISPWasTested(true);
}
tmpValidReturn = xIntraCodingLumaISP(*csTemp, subTuPartitioner, bestCurrentCost);
if (csTemp->tus.size() == 0)
{
// no TUs were coded
csTemp->cost = MAX_DOUBLE;
continue;
}
// we save the data for future tests
#if JVET_W0123_TIMD_FUSION
if (!cu.timd)
{
#endif
m_ispTestedModes[m_curIspLfnstIdx].setModeResults((ISPType)cu.ispMode, (int)uiOrgMode.modeId, (int)csTemp->tus.size(), csTemp->cus[0]->firstTU->cbf[COMPONENT_Y] ? csTemp->cost : MAX_DOUBLE, csBest->cost);
#if JVET_W0123_TIMD_FUSION
}
#endif
csTemp->cost = !tmpValidReturn ? MAX_DOUBLE : csTemp->cost;
}
else
{
if (cu.colorTransform)
{
tmpValidReturn = xRecurIntraCodingACTQT(*csTemp, partitioner, mtsCheckRangeFlag, mtsFirstCheckId, mtsLastCheckId, moreProbMTSIdxFirst);
}
else
{
tmpValidReturn = xRecurIntraCodingLumaQT(
*csTemp, partitioner, uiBestPUMode.ispMod ? bestCurrentCost : MAX_DOUBLE, -1, TU_NO_ISP,
uiBestPUMode.ispMod, mtsCheckRangeFlag, mtsFirstCheckId, mtsLastCheckId, moreProbMTSIdxFirst);
}
}
#if JVET_V0130_INTRA_TMP
#if JVET_W0123_TIMD_FUSION
if (!cu.ispMode && !cu.mtsFlag && !cu.lfnstIdx && !cu.bdpcmMode && !pu.multiRefIdx && !cu.mipFlag && !cu.tmpFlag && testISP && !cu.timd)
#else
if( !cu.ispMode && !cu.mtsFlag && !cu.lfnstIdx && !cu.bdpcmMode && !pu.multiRefIdx && !cu.mipFlag && !cu.tmpFlag && testISP )
#endif
#else
#if JVET_W0123_TIMD_FUSION
if (!cu.ispMode && !cu.mtsFlag && !cu.lfnstIdx && !cu.bdpcmMode && !pu.multiRefIdx && !cu.mipFlag && testISP && !cu.timd)
#else
if (!cu.ispMode && !cu.mtsFlag && !cu.lfnstIdx && !cu.bdpcmMode && !pu.multiRefIdx && !cu.mipFlag && testISP)
#endif
#endif
{
#if JVET_V0130_INTRA_TMP
m_regIntraRDListWithCosts.push_back( ModeInfoWithCost( cu.mipFlag, pu.mipTransposedFlag, pu.multiRefIdx, cu.ispMode, uiOrgMode.modeId, cu.tmpFlag, csTemp->cost ) );
#else
m_regIntraRDListWithCosts.push_back( ModeInfoWithCost( cu.mipFlag, pu.mipTransposedFlag, pu.multiRefIdx, cu.ispMode, uiOrgMode.modeId, csTemp->cost ) );
#endif
}
if( cu.ispMode && !csTemp->cus[0]->firstTU->cbf[COMPONENT_Y] )
{
csTemp->cost = MAX_DOUBLE;
csTemp->costDbOffset = 0;
tmpValidReturn = false;
}
validReturn |= tmpValidReturn;
#if JVET_W0123_TIMD_FUSION
if( sps.getUseLFNST() && mtsUsageFlag == 1 && !cu.ispMode && mode >= 0 && !cu.timd )
#else
if( sps.getUseLFNST() && mtsUsageFlag == 1 && !cu.ispMode && mode >= 0 )
#endif
{
m_modeCostStore[lfnstIdx][mode] = tmpValidReturn ? csTemp->cost : (MAX_DOUBLE / 2.0); //(MAX_DOUBLE / 2.0) ??
}
#if JVET_V0130_INTRA_TMP
DTRACE( g_trace_ctx, D_INTRA_COST, "IntraCost T [x=%d,y=%d,w=%d,h=%d] %f (%d,%d,%d,%d,%d,%d,%d) \n", cu.blocks[0].x,
cu.blocks[0].y, ( int ) width, ( int ) height, csTemp->cost, uiOrgMode.modeId, uiOrgMode.ispMod,
pu.multiRefIdx, cu.tmpFlag, cu.mipFlag, cu.lfnstIdx, cu.mtsFlag );
#else
DTRACE(g_trace_ctx, D_INTRA_COST, "IntraCost T [x=%d,y=%d,w=%d,h=%d] %f (%d,%d,%d,%d,%d,%d) \n", cu.blocks[0].x,
cu.blocks[0].y, (int) width, (int) height, csTemp->cost, uiOrgMode.modeId, uiOrgMode.ispMod,
pu.multiRefIdx, cu.mipFlag, cu.lfnstIdx, cu.mtsFlag);
#endif
if( tmpValidReturn )
{
if (isFirstColorSpace)
{
if (m_pcEncCfg->getRGBFormatFlag() || !cu.ispMode)
{
sortRdModeListFirstColorSpace(uiOrgMode, csTemp->cost, cu.bdpcmMode, m_savedRdModeFirstColorSpace[m_savedRdModeIdx], m_savedRdCostFirstColorSpace[m_savedRdModeIdx], m_savedBDPCMModeFirstColorSpace[m_savedRdModeIdx], m_numSavedRdModeFirstColorSpace[m_savedRdModeIdx]);
}
}
// check r-d cost
if( csTemp->cost < csBest->cost )
{
std::swap( csTemp, csBest );
uiBestPUMode = uiOrgMode;
bestBDPCMMode = cu.bdpcmMode;
#if ENABLE_DIMD
bestDimdMode = cu.dimd;
#endif
#if JVET_W0123_TIMD_FUSION
bestTimdMode = cu.timd;
#endif
if( sps.getUseLFNST() && mtsUsageFlag == 1 && !cu.ispMode )
{
m_bestModeCostStore[ lfnstIdx ] = csBest->cost; //cs.cost;
m_bestModeCostValid[ lfnstIdx ] = true;
}
#if JVET_W0103_INTRA_MTS
if (sps.getUseLFNST() && m_globalBestCostStore > csBest->cost)
{
m_globalBestCostStore = csBest->cost;
m_globalBestCostValid = true;
}
#endif
if( csBest->cost < bestCurrentCost )
{
bestCurrentCost = csBest->cost;
}
if ( cu.ispMode )
{
m_modeCtrl->setIspCost(csBest->cost);
bestLfnstIdx = cu.lfnstIdx;
}
else if ( testISP )
{
m_modeCtrl->setMtsFirstPassNoIspCost(csBest->cost);
}
}
if( !cu.ispMode && !cu.bdpcmMode && csBest->cost < bestCostNonBDPCM )
{
bestCostNonBDPCM = csBest->cost;
}
}
csTemp->releaseIntermediateData();
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
if( m_pcEncCfg->getFastLocalDualTreeMode() )
{
if( cu.isConsIntra() && !cu.slice->isIntra() && csBest->cost != MAX_DOUBLE && costInterCU != COST_UNKNOWN && mode >= 0 )
{
if( m_pcEncCfg->getFastLocalDualTreeMode() == 2 )
{
//Note: only try one intra mode, which is especially useful to reduce EncT for LDB case (around 4%)
break;
}
else
{
if( csBest->cost > costInterCU * 1.5 )
{
break;
}
}
}
}
if (sps.getUseColorTrans() && !CS::isDualITree(cs))
{
if ((m_pcEncCfg->getRGBFormatFlag() && !cu.colorTransform) && csBest->cost != MAX_DOUBLE && bestCS->cost != MAX_DOUBLE && mode >= 0)
{
if (csBest->cost > bestCS->cost)
{
break;
}
}
}
#endif
} // Mode loop
cu.ispMode = uiBestPUMode.ispMod;
cu.lfnstIdx = bestLfnstIdx;
if( validReturn )
{
if (cu.colorTransform)
{
cs.useSubStructure(*csBest, partitioner.chType, pu, true, true, KEEP_PRED_AND_RESI_SIGNALS, KEEP_PRED_AND_RESI_SIGNALS, true);
}
else
{
cs.useSubStructure(*csBest, partitioner.chType, pu.singleChan(CHANNEL_TYPE_LUMA), true, true, KEEP_PRED_AND_RESI_SIGNALS,
KEEP_PRED_AND_RESI_SIGNALS, true);
}
}
csBest->releaseIntermediateData();
if( validReturn )
{
//=== update PU data ====
#if JVET_V0130_INTRA_TMP
cu.tmpFlag = uiBestPUMode.tmpFlag;
#endif
cu.mipFlag = uiBestPUMode.mipFlg;
pu.mipTransposedFlag = uiBestPUMode.mipTrFlg;
pu.multiRefIdx = uiBestPUMode.mRefId;
pu.intraDir[ CHANNEL_TYPE_LUMA ] = uiBestPUMode.modeId;
#if ENABLE_DIMD
cu.dimd = bestDimdMode;
if (cu.dimd)
{
CHECK(pu.multiRefIdx > 0, "use of DIMD");
}
#endif
cu.bdpcmMode = bestBDPCMMode;
#if JVET_W0123_TIMD_FUSION
cu.timd = bestTimdMode;
if (cu.timd)
{
pu.intraDir[ CHANNEL_TYPE_LUMA ] = cu.timdMode;
}
#endif
if (cu.colorTransform)
{
CHECK(pu.intraDir[CHANNEL_TYPE_CHROMA] != DM_CHROMA_IDX, "chroma should use DM mode for adaptive color transform");
}
}
}
//===== reset context models =====
m_CABACEstimator->getCtx() = ctxStart;
return validReturn;
}
void IntraSearch::estIntraPredChromaQT( CodingUnit &cu, Partitioner &partitioner, const double maxCostAllowed )
{
const ChromaFormat format = cu.chromaFormat;
const uint32_t numberValidComponents = getNumberValidComponents(format);
CodingStructure &cs = *cu.cs;
const TempCtx ctxStart ( m_CtxCache, m_CABACEstimator->getCtx() );
cs.setDecomp( cs.area.Cb(), false );
double bestCostSoFar = maxCostAllowed;
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
bool lumaUsesISP = !cu.isSepTree() && cu.ispMode;
#else
bool lumaUsesISP = !CS::isDualITree(*cu.cs) && cu.ispMode;
#endif
PartSplit ispType = lumaUsesISP ? CU::getISPType( cu, COMPONENT_Y ) : TU_NO_ISP;
CHECK( cu.ispMode && bestCostSoFar < 0, "bestCostSoFar must be positive!" );
auto &pu = *cu.firstPU;
{
uint32_t uiBestMode = 0;
Distortion uiBestDist = 0;
double dBestCost = MAX_DOUBLE;
int32_t bestBDPCMMode = 0;
//----- init mode list ----
{
int32_t uiMinMode = 0;
int32_t uiMaxMode = NUM_CHROMA_MODE;
//----- check chroma modes -----
uint32_t chromaCandModes[ NUM_CHROMA_MODE ];
PU::getIntraChromaCandModes( pu, chromaCandModes );
// create a temporary CS
CodingStructure &saveCS = *m_pSaveCS[0];
saveCS.pcv = cs.pcv;
saveCS.picture = cs.picture;
saveCS.area.repositionTo( cs.area );
saveCS.clearTUs();
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
if( !cu.isSepTree() && cu.ispMode )
#else
if (!CS::isDualITree(cs) && cu.ispMode)
#endif
{
saveCS.clearCUs();
saveCS.clearPUs();
}
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
if( cu.isSepTree() )
#else
if (CS::isDualITree(cs))
#endif
{
if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
{
partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
do
{
cs.addTU( CS::getArea( cs, partitioner.currArea(), partitioner.chType ), partitioner.chType ).depth = partitioner.currTrDepth;
} while( partitioner.nextPart( cs ) );
partitioner.exitCurrSplit();
}
else
cs.addTU( CS::getArea( cs, partitioner.currArea(), partitioner.chType ), partitioner.chType );
}
std::vector<TransformUnit*> orgTUs;
if( lumaUsesISP )
{
CodingUnit& auxCU = saveCS.addCU( cu, partitioner.chType );
auxCU.ispMode = cu.ispMode;
saveCS.sps = cu.cs->sps;
saveCS.addPU( *cu.firstPU, partitioner.chType );
}
// create a store for the TUs
for( const auto &ptu : cs.tus )
{
// for split TUs in HEVC, add the TUs without Chroma parts for correct setting of Cbfs
if( lumaUsesISP || pu.contains( *ptu, CHANNEL_TYPE_CHROMA ) )
{
saveCS.addTU( *ptu, partitioner.chType );
orgTUs.push_back( ptu );
}
}
if( lumaUsesISP )
{
saveCS.clearCUs();
}
// SATD pre-selecting.
int satdModeList[NUM_CHROMA_MODE];
int64_t satdSortedCost[NUM_CHROMA_MODE];
for (int i = 0; i < NUM_CHROMA_MODE; i++)
{
satdSortedCost[i] = 0; // for the mode not pre-select by SATD, do RDO by default, so set the initial value 0.
satdModeList[i] = 0;
}
bool modeIsEnable[NUM_INTRA_MODE + 1]; // use intra mode idx to check whether enable
for (int i = 0; i < NUM_INTRA_MODE + 1; i++)
{
modeIsEnable[i] = 1;
}
DistParam distParamSad;
DistParam distParamSatd;
pu.intraDir[1] = MDLM_L_IDX; // temporary assigned, just to indicate this is a MDLM mode. for luma down-sampling operation.
initIntraPatternChType(cu, pu.Cb());
initIntraPatternChType(cu, pu.Cr());
xGetLumaRecPixels(pu, pu.Cb());
#if MMLM
m_encPreRDRun = true;
#endif
for (int idx = uiMinMode; idx <= uiMaxMode - 1; idx++)
{
int mode = chromaCandModes[idx];
satdModeList[idx] = mode;
if (PU::isLMCMode(mode) && !PU::isLMCModeEnabled(pu, mode))
{
continue;
}
if ((mode == LM_CHROMA_IDX) || (mode == PLANAR_IDX) || (mode == DM_CHROMA_IDX)) // only pre-check regular modes and MDLM modes, not including DM ,Planar, and LM
{
continue;
}
pu.intraDir[1] = mode; // temporary assigned, for SATD checking.
int64_t sad = 0;
int64_t sadCb = 0;
int64_t satdCb = 0;
int64_t sadCr = 0;
int64_t satdCr = 0;
CodingStructure& cs = *(pu.cs);
CompArea areaCb = pu.Cb();
PelBuf orgCb = cs.getOrgBuf(areaCb);
PelBuf predCb = cs.getPredBuf(areaCb);
m_pcRdCost->setDistParam(distParamSad, orgCb, predCb, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cb, false);
m_pcRdCost->setDistParam(distParamSatd, orgCb, predCb, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cb, true);
distParamSad.applyWeight = false;
distParamSatd.applyWeight = false;
if (PU::isLMCMode(mode))
{
predIntraChromaLM(COMPONENT_Cb, predCb, pu, areaCb, mode);
}
else
{
initPredIntraParams(pu, pu.Cb(), *pu.cs->sps);
predIntraAng(COMPONENT_Cb, predCb, pu);
}
sadCb = distParamSad.distFunc(distParamSad) * 2;
satdCb = distParamSatd.distFunc(distParamSatd);
sad += std::min(sadCb, satdCb);
CompArea areaCr = pu.Cr();
PelBuf orgCr = cs.getOrgBuf(areaCr);
PelBuf predCr = cs.getPredBuf(areaCr);
m_pcRdCost->setDistParam(distParamSad, orgCr, predCr, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cr, false);
m_pcRdCost->setDistParam(distParamSatd, orgCr, predCr, pu.cs->sps->getBitDepth(CHANNEL_TYPE_CHROMA), COMPONENT_Cr, true);
distParamSad.applyWeight = false;
distParamSatd.applyWeight = false;
if (PU::isLMCMode(mode))
{
predIntraChromaLM(COMPONENT_Cr, predCr, pu, areaCr, mode);
}
else
{
initPredIntraParams(pu, pu.Cr(), *pu.cs->sps);
predIntraAng(COMPONENT_Cr, predCr, pu);
}
sadCr = distParamSad.distFunc(distParamSad) * 2;
satdCr = distParamSatd.distFunc(distParamSatd);
sad += std::min(sadCr, satdCr);
satdSortedCost[idx] = sad;
}
#if MMLM
m_encPreRDRun = false;
#endif
// sort the mode based on the cost from small to large.
int tempIdx = 0;
int64_t tempCost = 0;
for (int i = uiMinMode; i <= uiMaxMode - 1; i++)
{
for (int j = i + 1; j <= uiMaxMode - 1; j++)
{
if (satdSortedCost[j] < satdSortedCost[i])
{
tempIdx = satdModeList[i];
satdModeList[i] = satdModeList[j];
satdModeList[j] = tempIdx;
tempCost = satdSortedCost[i];
satdSortedCost[i] = satdSortedCost[j];
satdSortedCost[j] = tempCost;
}
}
}
int reducedModeNumber = 2; // reduce the number of chroma modes
#if MMLM
reducedModeNumber += 3; // Match number of RDs with the anchor
#endif
for (int i = 0; i < reducedModeNumber; i++)
{
modeIsEnable[satdModeList[uiMaxMode - 1 - i]] = 0; // disable the last reducedModeNumber modes
}
// save the dist
Distortion baseDist = cs.dist;
bool testBDPCM = true;
testBDPCM = testBDPCM && CU::bdpcmAllowed(cu, COMPONENT_Cb) && cu.ispMode == 0 && cu.mtsFlag == 0 && cu.lfnstIdx == 0;
for (int32_t uiMode = uiMinMode - (2 * int(testBDPCM)); uiMode < uiMaxMode; uiMode++)
{
int chromaIntraMode;
if (uiMode < 0)
{
cu.bdpcmModeChroma = -uiMode;
chromaIntraMode = cu.bdpcmModeChroma == 2 ? chromaCandModes[1] : chromaCandModes[2];
}
else
{
chromaIntraMode = chromaCandModes[uiMode];
cu.bdpcmModeChroma = 0;
if( PU::isLMCMode( chromaIntraMode ) && ! PU::isLMCModeEnabled( pu, chromaIntraMode ) )
{
continue;
}
if (!modeIsEnable[chromaIntraMode] && PU::isLMCModeEnabled(pu, chromaIntraMode)) // when CCLM is disable, then MDLM is disable. not use satd checking
{
continue;
}
}
cs.setDecomp( pu.Cb(), false );
cs.dist = baseDist;
//----- restore context models -----
m_CABACEstimator->getCtx() = ctxStart;
//----- chroma coding -----
pu.intraDir[1] = chromaIntraMode;
xRecurIntraChromaCodingQT( cs, partitioner, bestCostSoFar, ispType );
if( lumaUsesISP && cs.dist == MAX_UINT )
{
continue;
}
if (cs.sps->getTransformSkipEnabledFlag())
{
m_CABACEstimator->getCtx() = ctxStart;
}
uint64_t fracBits = xGetIntraFracBitsQT( cs, partitioner, false, true, -1, ispType );
Distortion uiDist = cs.dist;
double dCost = m_pcRdCost->calcRdCost( fracBits, uiDist - baseDist );
//----- compare -----
if( dCost < dBestCost )
{
if( lumaUsesISP && dCost < bestCostSoFar )
{
bestCostSoFar = dCost;
}
for( uint32_t i = getFirstComponentOfChannel( CHANNEL_TYPE_CHROMA ); i < numberValidComponents; i++ )
{
const CompArea &area = pu.blocks[i];
saveCS.getRecoBuf ( area ).copyFrom( cs.getRecoBuf ( area ) );
#if KEEP_PRED_AND_RESI_SIGNALS
saveCS.getPredBuf ( area ).copyFrom( cs.getPredBuf ( area ) );
saveCS.getResiBuf ( area ).copyFrom( cs.getResiBuf ( area ) );
#endif
saveCS.getPredBuf ( area ).copyFrom( cs.getPredBuf (area ) );
cs.picture->getPredBuf( area ).copyFrom( cs.getPredBuf (area ) );
cs.picture->getRecoBuf( area ).copyFrom( cs.getRecoBuf( area ) );
for( uint32_t j = 0; j < saveCS.tus.size(); j++ )
{
saveCS.tus[j]->copyComponentFrom( *orgTUs[j], area.compID );
}
}
dBestCost = dCost;
uiBestDist = uiDist;
uiBestMode = chromaIntraMode;
bestBDPCMMode = cu.bdpcmModeChroma;
}
}
for( uint32_t i = getFirstComponentOfChannel( CHANNEL_TYPE_CHROMA ); i < numberValidComponents; i++ )
{
const CompArea &area = pu.blocks[i];
cs.getRecoBuf ( area ).copyFrom( saveCS.getRecoBuf( area ) );
#if KEEP_PRED_AND_RESI_SIGNALS
cs.getPredBuf ( area ).copyFrom( saveCS.getPredBuf( area ) );
cs.getResiBuf ( area ).copyFrom( saveCS.getResiBuf( area ) );
#endif
cs.getPredBuf ( area ).copyFrom( saveCS.getPredBuf( area ) );
cs.picture->getPredBuf( area ).copyFrom( cs.getPredBuf ( area ) );
cs.picture->getRecoBuf( area ).copyFrom( cs. getRecoBuf( area ) );
for( uint32_t j = 0; j < saveCS.tus.size(); j++ )
{
orgTUs[ j ]->copyComponentFrom( *saveCS.tus[ j ], area.compID );
}
}
}
pu.intraDir[1] = uiBestMode;
cs.dist = uiBestDist;
cu.bdpcmModeChroma = bestBDPCMMode;
}
//----- restore context models -----
m_CABACEstimator->getCtx() = ctxStart;
if( lumaUsesISP && bestCostSoFar >= maxCostAllowed )
{
cu.ispMode = 0;
}
}
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
void IntraSearch::saveCuAreaCostInSCIPU( Area area, double cost )
{
if( m_numCuInSCIPU < NUM_INTER_CU_INFO_SAVE )
{
m_cuAreaInSCIPU[m_numCuInSCIPU] = area;
m_cuCostInSCIPU[m_numCuInSCIPU] = cost;
m_numCuInSCIPU++;
}
}
void IntraSearch::initCuAreaCostInSCIPU()
{
for( int i = 0; i < NUM_INTER_CU_INFO_SAVE; i++ )
{
m_cuAreaInSCIPU[i] = Area();
m_cuCostInSCIPU[i] = 0;
}
m_numCuInSCIPU = 0;
}
#endif
void IntraSearch::PLTSearch(CodingStructure &cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
TransformUnit &tu = *cs.getTU(partitioner.chType);
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
if (m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag()))
{
cs.getPredBuf().copyFrom(cs.getOrgBuf());
cs.getPredBuf().Y().rspSignal(m_pcReshape->getFwdLUT());
}
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
if( cu.isLocalSepTree() )
{
cs.prevPLT.curPLTSize[compBegin] = cs.prevPLT.curPLTSize[COMPONENT_Y];
}
#endif
cu.lastPLTSize[compBegin] = cs.prevPLT.curPLTSize[compBegin];
//derive palette
derivePLTLossy(cs, partitioner, compBegin, numComp);
reorderPLT(cs, partitioner, compBegin, numComp);
bool idxExist[MAXPLTSIZE + 1] = { false };
preCalcPLTIndexRD(cs, partitioner, compBegin, numComp); // Pre-calculate distortions for each pixel
double rdCost = MAX_DOUBLE;
deriveIndexMap(cs, partitioner, compBegin, numComp, PLT_SCAN_HORTRAV, rdCost, idxExist); // Optimize palette index map (horizontal scan)
if ((cu.curPLTSize[compBegin] + cu.useEscape[compBegin]) > 1)
{
deriveIndexMap(cs, partitioner, compBegin, numComp, PLT_SCAN_VERTRAV, rdCost, idxExist); // Optimize palette index map (vertical scan)
}
// Remove unused palette entries
uint8_t newPLTSize = 0;
int idxMapping[MAXPLTSIZE + 1];
memset(idxMapping, -1, sizeof(int) * (MAXPLTSIZE + 1));
for (int i = 0; i < cu.curPLTSize[compBegin]; i++)
{
if (idxExist[i])
{
idxMapping[i] = newPLTSize;
newPLTSize++;
}
}
idxMapping[cu.curPLTSize[compBegin]] = cu.useEscape[compBegin]? newPLTSize: -1;
if (newPLTSize != cu.curPLTSize[compBegin]) // there exist unused palette entries
{ // update palette table and reuseflag
Pel curPLTtmp[MAX_NUM_COMPONENT][MAXPLTSIZE];
int reuseFlagIdx = 0, curPLTtmpIdx = 0, reuseEntrySize = 0;
memset(cu.reuseflag[compBegin], false, sizeof(bool) * MAXPLTPREDSIZE);
int compBeginTmp = compBegin;
int numCompTmp = numComp;
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
if( cu.isLocalSepTree() )
{
memset(cu.reuseflag[COMPONENT_Y], false, sizeof(bool) * MAXPLTPREDSIZE);
compBeginTmp = COMPONENT_Y;
numCompTmp = (cu.chromaFormat != CHROMA_400) ? 3 : 1;
}
#endif
for (int curIdx = 0; curIdx < cu.curPLTSize[compBegin]; curIdx++)
{
if (idxExist[curIdx])
{
for (int comp = compBeginTmp; comp < (compBeginTmp + numCompTmp); comp++)
curPLTtmp[comp][curPLTtmpIdx] = cu.curPLT[comp][curIdx];
// Update reuse flags
if (curIdx < cu.reusePLTSize[compBegin])
{
bool match = false;
for (; reuseFlagIdx < cs.prevPLT.curPLTSize[compBegin]; reuseFlagIdx++)
{
bool matchTmp = true;
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
matchTmp = matchTmp && (curPLTtmp[comp][curPLTtmpIdx] == cs.prevPLT.curPLT[comp][reuseFlagIdx]);
}
if (matchTmp)
{
match = true;
break;
}
}
if (match)
{
cu.reuseflag[compBegin][reuseFlagIdx] = true;
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
if( cu.isLocalSepTree() )
{
cu.reuseflag[COMPONENT_Y][reuseFlagIdx] = true;
}
#endif
reuseEntrySize++;
}
}
curPLTtmpIdx++;
}
}
cu.reusePLTSize[compBegin] = reuseEntrySize;
// update palette table
cu.curPLTSize[compBegin] = newPLTSize;
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
if( cu.isLocalSepTree() )
{
cu.curPLTSize[COMPONENT_Y] = newPLTSize;
}
#endif
for (int comp = compBeginTmp; comp < (compBeginTmp + numCompTmp); comp++)
{
memcpy( cu.curPLT[comp], curPLTtmp[comp], sizeof(Pel)*cu.curPLTSize[compBegin]);
}
}
cu.useRotation[compBegin] = m_bestScanRotationMode;
int indexMaxSize = cu.useEscape[compBegin] ? (cu.curPLTSize[compBegin] + 1) : cu.curPLTSize[compBegin];
if (indexMaxSize <= 1)
{
cu.useRotation[compBegin] = false;
}
//reconstruct pixel
PelBuf curPLTIdx = tu.getcurPLTIdx(compBegin);
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
curPLTIdx.at(x, y) = idxMapping[curPLTIdx.at(x, y)];
if (curPLTIdx.at(x, y) == cu.curPLTSize[compBegin])
{
calcPixelPred(cs, partitioner, y, x, compBegin, numComp);
}
else
{
for (uint32_t compID = compBegin; compID < (compBegin + numComp); compID++)
{
CompArea area = cu.blocks[compID];
PelBuf recBuf = cs.getRecoBuf(area);
uint32_t scaleX = getComponentScaleX((ComponentID)COMPONENT_Cb, cs.sps->getChromaFormatIdc());
uint32_t scaleY = getComponentScaleY((ComponentID)COMPONENT_Cb, cs.sps->getChromaFormatIdc());
if (compBegin != COMPONENT_Y || compID == COMPONENT_Y)
{
recBuf.at(x, y) = cu.curPLT[compID][curPLTIdx.at(x, y)];
}
else if (compBegin == COMPONENT_Y && compID != COMPONENT_Y && y % (1 << scaleY) == 0 && x % (1 << scaleX) == 0)
{
recBuf.at(x >> scaleX, y >> scaleY) = cu.curPLT[compID][curPLTIdx.at(x, y)];
}
}
}
}
}
cs.getPredBuf().fill(0);
cs.getResiBuf().fill(0);
cs.getOrgResiBuf().fill(0);
cs.fracBits = MAX_UINT;
cs.cost = MAX_DOUBLE;
Distortion distortion = 0;
for (uint32_t comp = compBegin; comp < (compBegin + numComp); comp++)
{
const ComponentID compID = ComponentID(comp);
CPelBuf reco = cs.getRecoBuf(compID);
CPelBuf org = cs.getOrgBuf(compID);
#if WCG_EXT
if (m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled() || (
m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag())))
{
const CPelBuf orgLuma = cs.getOrgBuf(cs.area.blocks[COMPONENT_Y]);
if (compID == COMPONENT_Y && !(m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled()))
{
const CompArea &areaY = cu.Y();
CompArea tmpArea1(COMPONENT_Y, areaY.chromaFormat, Position(0, 0), areaY.size());
PelBuf tmpRecLuma = m_tmpStorageLCU.getBuf(tmpArea1);
tmpRecLuma.rspSignal( reco, m_pcReshape->getInvLUT() );
distortion += m_pcRdCost->getDistPart(org, tmpRecLuma, cs.sps->getBitDepth(toChannelType(compID)), compID, DF_SSE_WTD, &orgLuma);
}
else
{
distortion += m_pcRdCost->getDistPart(org, reco, cs.sps->getBitDepth(toChannelType(compID)), compID, DF_SSE_WTD, &orgLuma);
}
}
else
#endif
{
distortion += m_pcRdCost->getDistPart(org, reco, cs.sps->getBitDepth(toChannelType(compID)), compID, DF_SSE);
}
}
cs.dist += distortion;
const CompArea &area = cu.blocks[compBegin];
cs.setDecomp(area);
cs.picture->getRecoBuf(area).copyFrom(cs.getRecoBuf(area));
}
void IntraSearch::calcPixelPredRD(CodingStructure& cs, Partitioner& partitioner, Pel* orgBuf, Pel* paPixelValue, Pel* paRecoValue, ComponentID compBegin, uint32_t numComp)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
TransformUnit &tu = *cs.getTU(partitioner.chType);
int qp[3];
int qpRem[3];
int qpPer[3];
int quantiserScale[3];
int quantiserRightShift[3];
int rightShiftOffset[3];
int invquantiserRightShift[3];
int add[3];
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
QpParam cQP(tu, ComponentID(ch));
qp[ch] = cQP.Qp(true);
qpRem[ch] = qp[ch] % 6;
qpPer[ch] = qp[ch] / 6;
quantiserScale[ch] = g_quantScales[0][qpRem[ch]];
quantiserRightShift[ch] = QUANT_SHIFT + qpPer[ch];
rightShiftOffset[ch] = 1 << (quantiserRightShift[ch] - 1);
invquantiserRightShift[ch] = IQUANT_SHIFT;
add[ch] = 1 << (invquantiserRightShift[ch] - 1);
}
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
const int channelBitDepth = cu.cs->sps->getBitDepth(toChannelType((ComponentID)ch));
paPixelValue[ch] = Pel(std::max<int>(0, ((orgBuf[ch] * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch])));
assert(paPixelValue[ch] < (1 << (channelBitDepth + 1)));
paRecoValue[ch] = (((paPixelValue[ch] * g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch]) >> invquantiserRightShift[ch];
paRecoValue[ch] = Pel(ClipBD<int>(paRecoValue[ch], channelBitDepth));//to be checked
}
}
void IntraSearch::preCalcPLTIndexRD(CodingStructure& cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
bool lossless = (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && cs.slice->isLossless());
CPelBuf orgBuf[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
CompArea area = cu.blocks[comp];
if (m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag()))
{
orgBuf[comp] = cs.getPredBuf(area);
}
else
{
orgBuf[comp] = cs.getOrgBuf(area);
}
}
int rasPos;
uint32_t scaleX = getComponentScaleX(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
uint32_t scaleY = getComponentScaleY(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
rasPos = y * width + x;;
// chroma discard
bool discardChroma = (compBegin == COMPONENT_Y) && (y&scaleY || x&scaleX);
Pel curPel[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
uint32_t pX1 = (comp > 0 && compBegin == COMPONENT_Y) ? (x >> scaleX) : x;
uint32_t pY1 = (comp > 0 && compBegin == COMPONENT_Y) ? (y >> scaleY) : y;
curPel[comp] = orgBuf[comp].at(pX1, pY1);
}
uint8_t pltIdx = 0;
double minError = MAX_DOUBLE;
uint8_t bestIdx = 0;
for (uint8_t z = 0; z < cu.curPLTSize[compBegin]; z++)
{
m_indexError[z][rasPos] = minError;
}
while (pltIdx < cu.curPLTSize[compBegin])
{
uint64_t sqrtError = 0;
if (lossless)
{
for (int comp = compBegin; comp < (discardChroma ? 1 : (compBegin + numComp)); comp++)
{
sqrtError += int64_t(abs(curPel[comp] - cu.curPLT[comp][pltIdx]));
}
if (sqrtError == 0)
{
m_indexError[pltIdx][rasPos] = (double) sqrtError;
minError = (double) sqrtError;
bestIdx = pltIdx;
break;
}
}
else
{
for (int comp = compBegin; comp < (discardChroma ? 1 : (compBegin + numComp)); comp++)
{
int64_t tmpErr = int64_t(curPel[comp] - cu.curPLT[comp][pltIdx]);
if (isChroma((ComponentID) comp))
{
sqrtError += uint64_t(tmpErr * tmpErr * ENC_CHROMA_WEIGHTING);
}
else
{
sqrtError += tmpErr * tmpErr;
}
}
m_indexError[pltIdx][rasPos] = (double) sqrtError;
if (sqrtError < minError)
{
minError = (double) sqrtError;
bestIdx = pltIdx;
}
}
pltIdx++;
}
Pel paPixelValue[3], paRecoValue[3];
if (!lossless)
{
calcPixelPredRD(cs, partitioner, curPel, paPixelValue, paRecoValue, compBegin, numComp);
}
uint64_t error = 0, rate = 0;
for (int comp = compBegin; comp < (discardChroma ? 1 : (compBegin + numComp)); comp++)
{
if (lossless)
{
rate += m_escapeNumBins[curPel[comp]];
}
else
{
int64_t tmpErr = int64_t(curPel[comp] - paRecoValue[comp]);
if (isChroma((ComponentID) comp))
{
error += uint64_t(tmpErr * tmpErr * ENC_CHROMA_WEIGHTING);
}
else
{
error += tmpErr * tmpErr;
}
rate += m_escapeNumBins[paPixelValue[comp]]; // encode quantized escape color
}
}
double rdCost = (double)error + m_pcRdCost->getLambda()*(double)rate;
m_indexError[cu.curPLTSize[compBegin]][rasPos] = rdCost;
if (rdCost < minError)
{
minError = rdCost;
bestIdx = (uint8_t)cu.curPLTSize[compBegin];
}
m_minErrorIndexMap[rasPos] = bestIdx; // save the optimal index of the current pixel
}
}
}
void IntraSearch::deriveIndexMap(CodingStructure& cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp, PLTScanMode pltScanMode, double& dMinCost, bool* idxExist)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
TransformUnit &tu = *cs.getTU(partitioner.chType);
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
int total = height*width;
Pel *runIndex = tu.getPLTIndex(compBegin);
bool *runType = tu.getRunTypes(compBegin);
m_scanOrder = g_scanOrder[SCAN_UNGROUPED][pltScanMode ? SCAN_TRAV_VER : SCAN_TRAV_HOR][gp_sizeIdxInfo->idxFrom(width)][gp_sizeIdxInfo->idxFrom(height)];
// Trellis initialization
for (int i = 0; i < 2; i++)
{
memset(m_prevRunTypeRDOQ[i], 0, sizeof(Pel)*NUM_TRELLIS_STATE);
memset(m_prevRunPosRDOQ[i], 0, sizeof(int)*NUM_TRELLIS_STATE);
memset(m_stateCostRDOQ[i], 0, sizeof (double)*NUM_TRELLIS_STATE);
}
for (int state = 0; state < NUM_TRELLIS_STATE; state++)
{
m_statePtRDOQ[state][0] = 0;
}
// Context modeling
const FracBitsAccess& fracBits = m_CABACEstimator->getCtx().getFracBitsAcess();
BinFracBits fracBitsPltCopyFlagIndex[RUN_IDX_THRE + 1];
for (int dist = 0; dist <= RUN_IDX_THRE; dist++)
{
const unsigned ctxId = DeriveCtx::CtxPltCopyFlag(PLT_RUN_INDEX, dist);
fracBitsPltCopyFlagIndex[dist] = fracBits.getFracBitsArray(Ctx::IdxRunModel( ctxId ) );
}
BinFracBits fracBitsPltCopyFlagAbove[RUN_IDX_THRE + 1];
for (int dist = 0; dist <= RUN_IDX_THRE; dist++)
{
const unsigned ctxId = DeriveCtx::CtxPltCopyFlag(PLT_RUN_COPY, dist);
fracBitsPltCopyFlagAbove[dist] = fracBits.getFracBitsArray(Ctx::CopyRunModel( ctxId ) );
}
const BinFracBits fracBitsPltRunType = fracBits.getFracBitsArray( Ctx::RunTypeFlag() );
// Trellis RDO per CG
bool contTrellisRD = true;
for (int subSetId = 0; ( subSetId <= (total - 1) >> LOG2_PALETTE_CG_SIZE ) && contTrellisRD; subSetId++)
{
int minSubPos = subSetId << LOG2_PALETTE_CG_SIZE;
int maxSubPos = minSubPos + (1 << LOG2_PALETTE_CG_SIZE);
maxSubPos = (maxSubPos > total) ? total : maxSubPos; // if last position is out of the current CU size
contTrellisRD = deriveSubblockIndexMap(cs, partitioner, compBegin, pltScanMode, minSubPos, maxSubPos, fracBitsPltRunType, fracBitsPltCopyFlagIndex, fracBitsPltCopyFlagAbove, dMinCost, (bool)pltScanMode);
}
if (!contTrellisRD)
{
return;
}
// best state at the last scan position
double sumRdCost = MAX_DOUBLE;
uint8_t bestState = 0;
for (uint8_t state = 0; state < NUM_TRELLIS_STATE; state++)
{
if (m_stateCostRDOQ[0][state] < sumRdCost)
{
sumRdCost = m_stateCostRDOQ[0][state];
bestState = state;
}
}
bool checkRunTable [MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
uint8_t checkIndexTable[MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
uint8_t bestStateTable [MAX_CU_BLKSIZE_PLT*MAX_CU_BLKSIZE_PLT];
uint8_t nextState = bestState;
// best trellis path
for (int i = (width*height - 1); i >= 0; i--)
{
bestStateTable[i] = nextState;
int rasterPos = m_scanOrder[i].idx;
nextState = m_statePtRDOQ[nextState][rasterPos];
}
// reconstruct index and runs based on the state pointers
for (int i = 0; i < (width*height); i++)
{
int rasterPos = m_scanOrder[i].idx;
int abovePos = (pltScanMode == PLT_SCAN_HORTRAV) ? m_scanOrder[i].idx - width : m_scanOrder[i].idx - 1;
nextState = bestStateTable[i];
if ( nextState == 0 ) // same as the previous
{
checkRunTable[rasterPos] = checkRunTable[ m_scanOrder[i - 1].idx ];
if ( checkRunTable[rasterPos] == PLT_RUN_INDEX )
{
checkIndexTable[rasterPos] = checkIndexTable[m_scanOrder[i - 1].idx];
}
else
{
checkIndexTable[rasterPos] = checkIndexTable[ abovePos ];
}
}
else if (nextState == 1) // CopyAbove mode
{
checkRunTable[rasterPos] = PLT_RUN_COPY;
checkIndexTable[rasterPos] = checkIndexTable[abovePos];
}
else if (nextState == 2) // Index mode
{
checkRunTable[rasterPos] = PLT_RUN_INDEX;
checkIndexTable[rasterPos] = m_minErrorIndexMap[rasterPos];
}
}
// Escape flag
m_bestEscape = false;
for (int pos = 0; pos < (width*height); pos++)
{
uint8_t index = checkIndexTable[pos];
if (index == cu.curPLTSize[compBegin])
{
m_bestEscape = true;
break;
}
}
// Horizontal scan v.s vertical scan
if (sumRdCost < dMinCost)
{
cu.useEscape[compBegin] = m_bestEscape;
m_bestScanRotationMode = pltScanMode;
memset(idxExist, false, sizeof(bool) * (MAXPLTSIZE + 1));
for (int pos = 0; pos < (width*height); pos++)
{
runIndex[pos] = checkIndexTable[pos];
runType[pos] = checkRunTable[pos];
idxExist[checkIndexTable[pos]] = true;
}
dMinCost = sumRdCost;
}
}
bool IntraSearch::deriveSubblockIndexMap(
CodingStructure& cs,
Partitioner& partitioner,
ComponentID compBegin,
PLTScanMode pltScanMode,
int minSubPos,
int maxSubPos,
const BinFracBits& fracBitsPltRunType,
const BinFracBits* fracBitsPltIndexINDEX,
const BinFracBits* fracBitsPltIndexCOPY,
const double minCost,
bool useRotate
)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
int indexMaxValue = cu.curPLTSize[compBegin];
int refId = 0;
int currRasterPos, currScanPos, prevScanPos, aboveScanPos, roffset;
int log2Width = (pltScanMode == PLT_SCAN_HORTRAV) ? floorLog2(width): floorLog2(height);
int buffersize = (pltScanMode == PLT_SCAN_HORTRAV) ? 2*width: 2*height;
for (int curPos = minSubPos; curPos < maxSubPos; curPos++)
{
currRasterPos = m_scanOrder[curPos].idx;
prevScanPos = (curPos == 0) ? 0 : (curPos - 1) % buffersize;
roffset = (curPos >> log2Width) << log2Width;
aboveScanPos = roffset - (curPos - roffset + 1);
aboveScanPos %= buffersize;
currScanPos = curPos % buffersize;
if ((pltScanMode == PLT_SCAN_HORTRAV && curPos < width) || (pltScanMode == PLT_SCAN_VERTRAV && curPos < height))
{
aboveScanPos = -1; // first column/row: above row is not valid
}
// Trellis stats:
// 1st state: same as previous scanned sample
// 2nd state: Copy_Above mode
// 3rd state: Index mode
// Loop of current state
for ( int curState = 0; curState < NUM_TRELLIS_STATE; curState++ )
{
double minRdCost = MAX_DOUBLE;
int minState = 0; // best prevState
uint8_t bestRunIndex = 0;
bool bestRunType = 0;
bool bestPrevCodedType = 0;
int bestPrevCodedPos = 0;
if ( ( curState == 0 && curPos == 0 ) || ( curState == 1 && aboveScanPos < 0 ) ) // state not available
{
m_stateCostRDOQ[1 - refId][curState] = MAX_DOUBLE;
continue;
}
bool runType = 0;
uint8_t runIndex = 0;
if ( curState == 1 ) // 2nd state: Copy_Above mode
{
runType = PLT_RUN_COPY;
}
else if ( curState == 2 ) // 3rd state: Index mode
{
runType = PLT_RUN_INDEX;
runIndex = m_minErrorIndexMap[currRasterPos];
}
// Loop of previous state
for ( int stateID = 0; stateID < NUM_TRELLIS_STATE; stateID++ )
{
if ( m_stateCostRDOQ[refId][stateID] == MAX_DOUBLE )
{
continue;
}
if ( curState == 0 ) // 1st state: same as previous scanned sample
{
runType = m_runMapRDOQ[refId][stateID][prevScanPos];
runIndex = ( runType == PLT_RUN_INDEX ) ? m_indexMapRDOQ[refId][stateID][ prevScanPos ] : m_indexMapRDOQ[refId][stateID][ aboveScanPos ];
}
else if ( curState == 1 ) // 2nd state: Copy_Above mode
{
runIndex = m_indexMapRDOQ[refId][stateID][aboveScanPos];
}
bool prevRunType = m_runMapRDOQ[refId][stateID][prevScanPos];
uint8_t prevRunIndex = m_indexMapRDOQ[refId][stateID][prevScanPos];
uint8_t aboveRunIndex = (aboveScanPos >= 0) ? m_indexMapRDOQ[refId][stateID][aboveScanPos] : 0;
int dist = curPos - m_prevRunPosRDOQ[refId][stateID] - 1;
double rdCost = m_stateCostRDOQ[refId][stateID];
if ( rdCost >= minRdCost ) continue;
// Calculate Rd cost
bool prevCodedRunType = m_prevRunTypeRDOQ[refId][stateID];
int prevCodedPos = m_prevRunPosRDOQ [refId][stateID];
const BinFracBits* fracBitsPt = (m_prevRunTypeRDOQ[refId][stateID] == PLT_RUN_INDEX) ? fracBitsPltIndexINDEX : fracBitsPltIndexCOPY;
rdCost += rateDistOptPLT(runType, runIndex, prevRunType, prevRunIndex, aboveRunIndex, prevCodedRunType, prevCodedPos, curPos, (pltScanMode == PLT_SCAN_HORTRAV) ? width : height, dist, indexMaxValue, fracBitsPt, fracBitsPltRunType);
if (rdCost < minRdCost) // update minState ( minRdCost )
{
minRdCost = rdCost;
minState = stateID;
bestRunType = runType;
bestRunIndex = runIndex;
bestPrevCodedType = prevCodedRunType;
bestPrevCodedPos = prevCodedPos;
}
}
// Update trellis info of current state
m_stateCostRDOQ [1 - refId][curState] = minRdCost;
m_prevRunTypeRDOQ[1 - refId][curState] = bestPrevCodedType;
m_prevRunPosRDOQ [1 - refId][curState] = bestPrevCodedPos;
m_statePtRDOQ[curState][currRasterPos] = minState;
int buffer2update = std::min(buffersize, curPos);
memcpy(m_indexMapRDOQ[1 - refId][curState], m_indexMapRDOQ[refId][minState], sizeof(uint8_t)*buffer2update);
memcpy(m_runMapRDOQ[1 - refId][curState], m_runMapRDOQ[refId][minState], sizeof(bool)*buffer2update);
m_indexMapRDOQ[1 - refId][curState][currScanPos] = bestRunIndex;
m_runMapRDOQ [1 - refId][curState][currScanPos] = bestRunType;
}
if (useRotate) // early terminate: Rd cost >= min cost in horizontal scan
{
if ((m_stateCostRDOQ[1 - refId][0] >= minCost) &&
(m_stateCostRDOQ[1 - refId][1] >= minCost) &&
(m_stateCostRDOQ[1 - refId][2] >= minCost) )
{
return 0;
}
}
refId = 1 - refId;
}
return 1;
}
double IntraSearch::rateDistOptPLT(
bool runType,
uint8_t runIndex,
bool prevRunType,
uint8_t prevRunIndex,
uint8_t aboveRunIndex,
bool& prevCodedRunType,
int& prevCodedPos,
int scanPos,
uint32_t width,
int dist,
int indexMaxValue,
const BinFracBits* IndexfracBits,
const BinFracBits& TypefracBits)
{
double rdCost = 0.0;
bool identityFlag = !( (runType != prevRunType) || ( (runType == PLT_RUN_INDEX) && (runIndex != prevRunIndex) ) );
if ( ( !identityFlag && runType == PLT_RUN_INDEX ) || scanPos == 0 ) // encode index value
{
uint8_t refIndex = (prevRunType == PLT_RUN_INDEX) ? prevRunIndex : aboveRunIndex;
refIndex = (scanPos == 0) ? ( indexMaxValue + 1) : refIndex;
if ( runIndex == refIndex )
{
rdCost = MAX_DOUBLE;
return rdCost;
}
rdCost += m_pcRdCost->getLambda()*(m_truncBinBits[(runIndex > refIndex) ? runIndex - 1 : runIndex][(scanPos == 0) ? (indexMaxValue + 1) : indexMaxValue] << SCALE_BITS);
}
rdCost += m_indexError[runIndex][m_scanOrder[scanPos].idx] * (1 << SCALE_BITS);
if (scanPos > 0)
{
rdCost += m_pcRdCost->getLambda()*( identityFlag ? (IndexfracBits[(dist < RUN_IDX_THRE) ? dist : RUN_IDX_THRE].intBits[1]) : (IndexfracBits[(dist < RUN_IDX_THRE) ? dist : RUN_IDX_THRE].intBits[0] ) );
}
if ( !identityFlag && scanPos >= width && prevRunType != PLT_RUN_COPY )
{
rdCost += m_pcRdCost->getLambda()*TypefracBits.intBits[runType];
}
if (!identityFlag || scanPos == 0)
{
prevCodedRunType = runType;
prevCodedPos = scanPos;
}
return rdCost;
}
uint32_t IntraSearch::getEpExGolombNumBins(uint32_t symbol, uint32_t count)
{
uint32_t numBins = 0;
while (symbol >= (uint32_t)(1 << count))
{
numBins++;
symbol -= 1 << count;
count++;
}
numBins++;
numBins += count;
assert(numBins <= 32);
return numBins;
}
uint32_t IntraSearch::getTruncBinBits(uint32_t symbol, uint32_t maxSymbol)
{
uint32_t idxCodeBit = 0;
uint32_t thresh;
if (maxSymbol > 256)
{
uint32_t threshVal = 1 << 8;
thresh = 8;
while (threshVal <= maxSymbol)
{
thresh++;
threshVal <<= 1;
}
thresh--;
}
else
{
thresh = g_tbMax[maxSymbol];
}
uint32_t uiVal = 1 << thresh;
assert(uiVal <= maxSymbol);
assert((uiVal << 1) > maxSymbol);
assert(symbol < maxSymbol);
uint32_t b = maxSymbol - uiVal;
assert(b < uiVal);
if (symbol < uiVal - b)
{
idxCodeBit = thresh;
}
else
{
idxCodeBit = thresh + 1;
}
return idxCodeBit;
}
void IntraSearch::initTBCTable(int bitDepth)
{
for (uint32_t i = 0; i < m_symbolSize; i++)
{
memset(m_truncBinBits[i], 0, sizeof(uint16_t)*(m_symbolSize + 1));
}
for (uint32_t i = 0; i < (m_symbolSize + 1); i++)
{
for (uint32_t j = 0; j < i; j++)
{
m_truncBinBits[j][i] = getTruncBinBits(j, i);
}
}
memset(m_escapeNumBins, 0, sizeof(uint16_t)*m_symbolSize);
for (uint32_t i = 0; i < m_symbolSize; i++)
{
m_escapeNumBins[i] = getEpExGolombNumBins(i, 5);
}
}
void IntraSearch::calcPixelPred(CodingStructure& cs, Partitioner& partitioner, uint32_t yPos, uint32_t xPos, ComponentID compBegin, uint32_t numComp)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
TransformUnit &tu = *cs.getTU(partitioner.chType);
bool lossless = (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && cs.slice->isLossless());
CPelBuf orgBuf[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
CompArea area = cu.blocks[comp];
if (m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag()))
{
orgBuf[comp] = cs.getPredBuf(area);
}
else
{
orgBuf[comp] = cs.getOrgBuf(area);
}
}
int qp[3];
int qpRem[3];
int qpPer[3];
int quantiserScale[3];
int quantiserRightShift[3];
int rightShiftOffset[3];
int invquantiserRightShift[3];
int add[3];
if (!lossless)
{
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
QpParam cQP(tu, ComponentID(ch));
qp[ch] = cQP.Qp(true);
qpRem[ch] = qp[ch] % 6;
qpPer[ch] = qp[ch] / 6;
quantiserScale[ch] = g_quantScales[0][qpRem[ch]];
quantiserRightShift[ch] = QUANT_SHIFT + qpPer[ch];
rightShiftOffset[ch] = 1 << (quantiserRightShift[ch] - 1);
invquantiserRightShift[ch] = IQUANT_SHIFT;
add[ch] = 1 << (invquantiserRightShift[ch] - 1);
}
}
uint32_t scaleX = getComponentScaleX(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
uint32_t scaleY = getComponentScaleY(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
for (uint32_t ch = compBegin; ch < (compBegin + numComp); ch++)
{
const int channelBitDepth = cu.cs->sps->getBitDepth(toChannelType((ComponentID)ch));
CompArea area = cu.blocks[ch];
PelBuf recBuf = cs.getRecoBuf(area);
PLTescapeBuf escapeValue = tu.getescapeValue((ComponentID)ch);
if (compBegin != COMPONENT_Y || ch == 0)
{
if (lossless)
{
escapeValue.at(xPos, yPos) = orgBuf[ch].at(xPos, yPos);
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
recBuf.at(xPos, yPos) = orgBuf[ch].at(xPos, yPos);
#else
recBuf.at(xPos, yPos) = escapeValue.at(xPos, yPos);
#endif
}
else
{
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
escapeValue.at(xPos, yPos) = std::max<TCoeff>(0, ((orgBuf[ch].at(xPos, yPos) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch]));
assert(escapeValue.at(xPos, yPos) < (TCoeff(1) << (channelBitDepth + 1)));
TCoeff value = (((escapeValue.at(xPos, yPos)*g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch]) >> invquantiserRightShift[ch];
recBuf.at(xPos, yPos) = Pel(ClipBD<TCoeff>(value, channelBitDepth));//to be checked
#else
escapeValue.at(xPos, yPos) = TCoeff(std::max<int>(0, ((orgBuf[ch].at(xPos, yPos) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch])));
assert(escapeValue.at(xPos, yPos) < (1 << (channelBitDepth + 1)));
recBuf.at(xPos, yPos) = (((escapeValue.at(xPos, yPos)*g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch]) >> invquantiserRightShift[ch];
recBuf.at(xPos, yPos) = Pel(ClipBD<int>(recBuf.at(xPos, yPos), channelBitDepth));//to be checked
#endif
}
}
else if (compBegin == COMPONENT_Y && ch > 0 && yPos % (1 << scaleY) == 0 && xPos % (1 << scaleX) == 0)
{
uint32_t yPosC = yPos >> scaleY;
uint32_t xPosC = xPos >> scaleX;
if (lossless)
{
escapeValue.at(xPosC, yPosC) = orgBuf[ch].at(xPosC, yPosC);
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
recBuf.at(xPosC, yPosC) = orgBuf[ch].at(xPosC, yPosC);
#else
recBuf.at(xPosC, yPosC) = escapeValue.at(xPosC, yPosC);
#endif
}
else
{
#if JVET_R0351_HIGH_BIT_DEPTH_SUPPORT_VS
escapeValue.at(xPosC, yPosC) = std::max<TCoeff>(
0, ((orgBuf[ch].at(xPosC, yPosC) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch]));
assert(escapeValue.at(xPosC, yPosC) < (TCoeff(1) << (channelBitDepth + 1)));
TCoeff value = (((escapeValue.at(xPosC, yPosC) * g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch])
>> invquantiserRightShift[ch];
recBuf.at(xPosC, yPosC) = Pel(ClipBD<TCoeff>(value, channelBitDepth)); // to be checked
#else
escapeValue.at(xPosC, yPosC) = TCoeff(std::max<int>(
0, ((orgBuf[ch].at(xPosC, yPosC) * quantiserScale[ch] + rightShiftOffset[ch]) >> quantiserRightShift[ch])));
assert(escapeValue.at(xPosC, yPosC) < (1 << (channelBitDepth + 1)));
recBuf.at(xPosC, yPosC) =
(((escapeValue.at(xPosC, yPosC) * g_invQuantScales[0][qpRem[ch]]) << qpPer[ch]) + add[ch])
>> invquantiserRightShift[ch];
recBuf.at(xPosC, yPosC) = Pel(ClipBD<int>(recBuf.at(xPosC, yPosC), channelBitDepth)); // to be checked
#endif
}
}
}
}
void IntraSearch::derivePLTLossy(CodingStructure& cs, Partitioner& partitioner, ComponentID compBegin, uint32_t numComp)
{
CodingUnit &cu = *cs.getCU(partitioner.chType);
const int channelBitDepth_L = cs.sps->getBitDepth(CHANNEL_TYPE_LUMA);
const int channelBitDepth_C = cs.sps->getBitDepth(CHANNEL_TYPE_CHROMA);
bool lossless = (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && cs.slice->isLossless());
int pcmShiftRight_L = (channelBitDepth_L - PLT_ENCBITDEPTH);
int pcmShiftRight_C = (channelBitDepth_C - PLT_ENCBITDEPTH);
if (lossless)
{
pcmShiftRight_L = 0;
pcmShiftRight_C = 0;
}
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
int maxPltSize = cu.isSepTree() ? MAXPLTSIZE_DUALTREE : MAXPLTSIZE;
#else
int maxPltSize = CS::isDualITree(cs) ? MAXPLTSIZE_DUALTREE : MAXPLTSIZE;
#endif
uint32_t height = cu.block(compBegin).height;
uint32_t width = cu.block(compBegin).width;
CPelBuf orgBuf[3];
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
CompArea area = cu.blocks[comp];
if (m_pcEncCfg->getLmcs() && (cs.slice->getLmcsEnabledFlag() && m_pcReshape->getCTUFlag()))
{
orgBuf[comp] = cs.getPredBuf(area);
}
else
{
orgBuf[comp] = cs.getOrgBuf(area);
}
}
TransformUnit &tu = *cs.getTU(partitioner.chType);
QpParam cQP(tu, compBegin);
int qp = cQP.Qp(true) - 12;
qp = (qp < 0) ? 0 : ((qp > 56) ? 56 : qp);
int errorLimit = g_paletteQuant[qp];
if (lossless)
{
errorLimit = 0;
}
uint32_t totalSize = height*width;
SortingElement *pelList = new SortingElement[totalSize];
SortingElement element;
SortingElement *pelListSort = new SortingElement[MAXPLTSIZE + 1];
uint32_t dictMaxSize = maxPltSize;
uint32_t idx = 0;
int last = -1;
uint32_t scaleX = getComponentScaleX(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
uint32_t scaleY = getComponentScaleY(COMPONENT_Cb, cs.sps->getChromaFormatIdc());
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
uint32_t org[3], pX, pY;
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
pX = (comp > 0 && compBegin == COMPONENT_Y) ? (x >> scaleX) : x;
pY = (comp > 0 && compBegin == COMPONENT_Y) ? (y >> scaleY) : y;
org[comp] = orgBuf[comp].at(pX, pY);
}
element.setAll(org, compBegin, numComp);
ComponentID tmpCompBegin = compBegin;
int tmpNumComp = numComp;
if( cs.sps->getChromaFormatIdc() != CHROMA_444 &&
numComp == 3 &&
(x != ((x >> scaleX) << scaleX) || (y != ((y >> scaleY) << scaleY))) )
{
tmpCompBegin = COMPONENT_Y;
tmpNumComp = 1;
}
int besti = last, bestSAD = (last == -1) ? MAX_UINT : pelList[last].getSAD(element, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless);
if (lossless)
{
if (bestSAD)
{
for (int i = idx - 1; i >= 0; i--)
{
uint32_t sad = pelList[i].getSAD(element, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless);
if (sad == 0)
{
bestSAD = sad;
besti = i;
break;
}
}
}
}
else
{
if (bestSAD)
{
for (int i = idx - 1; i >= 0; i--)
{
uint32_t sad = pelList[i].getSAD(element, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless);
if (sad < bestSAD)
{
bestSAD = sad;
besti = i;
if (!sad)
{
break;
}
}
}
}
}
if (besti >= 0 && pelList[besti].almostEqualData(element, errorLimit, cs.sps->getBitDepths(), tmpCompBegin, tmpNumComp, lossless))
{
pelList[besti].addElement(element, tmpCompBegin, tmpNumComp);
last = besti;
}
else
{
pelList[idx].copyDataFrom(element, tmpCompBegin, tmpNumComp);
for (int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++)
{
pelList[idx].setCnt(1, comp);
}
last = idx;
idx++;
}
}
}
if( cs.sps->getChromaFormatIdc() != CHROMA_444 && numComp == 3 )
{
for( int i = 0; i < idx; i++ )
{
pelList[i].setCnt( pelList[i].getCnt(COMPONENT_Y) + (pelList[i].getCnt(COMPONENT_Cb) >> 2), MAX_NUM_COMPONENT);
}
}
else
{
if( compBegin == 0 )
{
for( int i = 0; i < idx; i++ )
{
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Y), COMPONENT_Cb);
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Y), COMPONENT_Cr);
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Y), MAX_NUM_COMPONENT);
}
}
else
{
for( int i = 0; i < idx; i++ )
{
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Cb), COMPONENT_Y);
pelList[i].setCnt(pelList[i].getCnt(COMPONENT_Cb), MAX_NUM_COMPONENT);
}
}
}
for (int i = 0; i < dictMaxSize; i++)
{
pelListSort[i].setCnt(0, COMPONENT_Y);
pelListSort[i].setCnt(0, COMPONENT_Cb);
pelListSort[i].setCnt(0, COMPONENT_Cr);
pelListSort[i].setCnt(0, MAX_NUM_COMPONENT);
pelListSort[i].resetAll(compBegin, numComp);
}
//bubble sorting
dictMaxSize = 1;
for (int i = 0; i < idx; i++)
{
if( pelList[i].getCnt(MAX_NUM_COMPONENT) > pelListSort[dictMaxSize - 1].getCnt(MAX_NUM_COMPONENT) )
{
int j;
for (j = dictMaxSize; j > 0; j--)
{
if (pelList[i].getCnt(MAX_NUM_COMPONENT) > pelListSort[j - 1].getCnt(MAX_NUM_COMPONENT))
{
pelListSort[j].copyAllFrom(pelListSort[j - 1], compBegin, numComp);
dictMaxSize = std::min(dictMaxSize + 1, (uint32_t)maxPltSize);
}
else
{
break;
}
}
pelListSort[j].copyAllFrom(pelList[i], compBegin, numComp);
}
}
uint32_t paletteSize = 0;
uint64_t numColorBits = 0;
for (int comp = compBegin; comp < (compBegin + numComp); comp++)
{
numColorBits += (comp > 0) ? channelBitDepth_C : channelBitDepth_L;
}
const int plt_lambda_shift = (compBegin > 0) ? pcmShiftRight_C : pcmShiftRight_L;
double bitCost = m_pcRdCost->getLambda() / (double) (1 << (2 * plt_lambda_shift)) * numColorBits;
bool reuseflag[MAXPLTPREDSIZE] = { false };
int run;
double reuseflagCost;
for (int i = 0; i < maxPltSize; i++)
{
if( pelListSort[i].getCnt(MAX_NUM_COMPONENT) )
{
ComponentID tmpCompBegin = compBegin;
int tmpNumComp = numComp;
if( cs.sps->getChromaFormatIdc() != CHROMA_444 && numComp == 3 && pelListSort[i].getCnt(COMPONENT_Cb) == 0 )
{
tmpCompBegin = COMPONENT_Y;
tmpNumComp = 1;
}
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
int half = pelListSort[i].getCnt(comp) >> 1;
cu.curPLT[comp][paletteSize] = (pelListSort[i].getSumData(comp) + half) / pelListSort[i].getCnt(comp);
}
int best = -1;
if( errorLimit )
{
double pal[MAX_NUM_COMPONENT], err = 0.0, bestCost = 0.0;
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
pal[comp] = pelListSort[i].getSumData(comp) / (double)pelListSort[i].getCnt(comp);
err = pal[comp] - cu.curPLT[comp][paletteSize];
if( isChroma((ComponentID) comp) )
{
bestCost += (err * err * PLT_CHROMA_WEIGHTING) / (1 << (2 * pcmShiftRight_C)) * pelListSort[i].getCnt(comp);
}
else
{
bestCost += (err * err) / (1 << (2 * pcmShiftRight_L)) * pelListSort[i].getCnt(comp);
}
}
bestCost += bitCost;
for( int t = 0; t < cs.prevPLT.curPLTSize[compBegin]; t++ )
{
double cost = 0.0;
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
err = pal[comp] - cs.prevPLT.curPLT[comp][t];
if( isChroma((ComponentID) comp) )
{
cost += (err * err * PLT_CHROMA_WEIGHTING) / (1 << (2 * pcmShiftRight_C)) * pelListSort[i].getCnt(comp);
}
else
{
cost += (err * err) / (1 << (2 * pcmShiftRight_L)) * pelListSort[i].getCnt(comp);
}
}
run = 0;
for (int t2 = t; t2 >= 0; t2--)
{
if (!reuseflag[t2])
{
run++;
}
else
{
break;
}
}
reuseflagCost = m_pcRdCost->getLambda() / (double)(1 << (2 * plt_lambda_shift)) * getEpExGolombNumBins(run ? run + 1 : run, 0);
cost += reuseflagCost;
if( cost < bestCost )
{
best = t;
bestCost = cost;
}
}
if( best != -1 )
{
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
cu.curPLT[comp][paletteSize] = cs.prevPLT.curPLT[comp][best];
}
reuseflag[best] = true;
}
}
bool duplicate = false;
if( pelListSort[i].getCnt(MAX_NUM_COMPONENT) == 1 && best == -1 )
{
duplicate = true;
}
else
{
for( int t = 0; t < paletteSize; t++ )
{
bool duplicateTmp = true;
for( int comp = tmpCompBegin; comp < (tmpCompBegin + tmpNumComp); comp++ )
{
duplicateTmp = duplicateTmp && (cu.curPLT[comp][paletteSize] == cu.curPLT[comp][t]);
}
if( duplicateTmp )
{
duplicate = true;
break;
}
}
}
if( !duplicate )
{
if( cs.sps->getChromaFormatIdc() != CHROMA_444 && numComp == 3 && pelListSort[i].getCnt(COMPONENT_Cb) == 0 )
{
if( best != -1 )
{
cu.curPLT[COMPONENT_Cb][paletteSize] = cs.prevPLT.curPLT[COMPONENT_Cb][best];
cu.curPLT[COMPONENT_Cr][paletteSize] = cs.prevPLT.curPLT[COMPONENT_Cr][best];
}
else
{
cu.curPLT[COMPONENT_Cb][paletteSize] = 1 << (channelBitDepth_C - 1);
cu.curPLT[COMPONENT_Cr][paletteSize] = 1 << (channelBitDepth_C - 1);
}
}
paletteSize++;
}
}
else
{
break;
}
}
cu.curPLTSize[compBegin] = paletteSize;
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
if( cu.isLocalSepTree() )
{
cu.curPLTSize[COMPONENT_Y] = paletteSize;
}
#endif
delete[] pelList;
delete[] pelListSort;
}
// -------------------------------------------------------------------------------------------------------------------
// Intra search
// -------------------------------------------------------------------------------------------------------------------
void IntraSearch::xEncIntraHeader( CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma, const int subTuIdx )
{
CodingUnit &cu = *cs.getCU( partitioner.chType );
if (bLuma)
{
bool isFirst = cu.ispMode ? subTuIdx == 0 : partitioner.currArea().lumaPos() == cs.area.lumaPos();
// CU header
if( isFirst )
{
if ((!cs.slice->isIntra() || cs.slice->getSPS()->getIBCFlag() || cs.slice->getSPS()->getPLTMode())
&& cu.Y().valid())
{
m_CABACEstimator->cu_skip_flag( cu );
m_CABACEstimator->pred_mode ( cu );
}
#if ENABLE_DIMD
m_CABACEstimator->cu_dimd_flag(cu);
#endif
if (CU::isPLT(cu))
{
return;
}
}
PredictionUnit &pu = *cs.getPU(partitioner.currArea().lumaPos(), partitioner.chType);
// luma prediction mode
if (isFirst)
{
if ( !cu.Y().valid())
{
m_CABACEstimator->pred_mode( cu );
}
m_CABACEstimator->bdpcm_mode( cu, COMPONENT_Y );
m_CABACEstimator->intra_luma_pred_mode( pu );
}
}
if (bChroma)
{
bool isFirst = partitioner.currArea().Cb().valid() && partitioner.currArea().chromaPos() == cs.area.chromaPos();
PredictionUnit &pu = *cs.getPU( partitioner.currArea().chromaPos(), CHANNEL_TYPE_CHROMA );
if( isFirst )
{
m_CABACEstimator->bdpcm_mode( cu, ComponentID(CHANNEL_TYPE_CHROMA) );
m_CABACEstimator->intra_chroma_pred_mode( pu );
}
}
}
void IntraSearch::xEncSubdivCbfQT( CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma, const int subTuIdx, const PartSplit ispType )
{
const UnitArea &currArea = partitioner.currArea();
int subTuCounter = subTuIdx;
TransformUnit &currTU = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType, subTuCounter );
CodingUnit &currCU = *currTU.cu;
uint32_t currDepth = partitioner.currTrDepth;
const bool subdiv = currTU.depth > currDepth;
ComponentID compID = partitioner.chType == CHANNEL_TYPE_LUMA ? COMPONENT_Y : COMPONENT_Cb;
if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
{
CHECK( !subdiv, "TU split implied" );
}
else
{
CHECK( subdiv && !currCU.ispMode && isLuma( compID ), "No TU subdivision is allowed with QTBT" );
}
if (bChroma)
{
const bool chromaCbfISP = currArea.blocks[COMPONENT_Cb].valid() && currCU.ispMode && !subdiv;
if ( !currCU.ispMode || chromaCbfISP )
{
const uint32_t numberValidComponents = getNumberValidComponents(currArea.chromaFormat);
const uint32_t cbfDepth = (chromaCbfISP ? currDepth - 1 : currDepth);
for (uint32_t ch = COMPONENT_Cb; ch < numberValidComponents; ch++)
{
const ComponentID compID = ComponentID(ch);
if (currDepth == 0 || TU::getCbfAtDepth(currTU, compID, currDepth - 1) || chromaCbfISP)
{
const bool prevCbf = (compID == COMPONENT_Cr ? TU::getCbfAtDepth(currTU, COMPONENT_Cb, currDepth) : false);
m_CABACEstimator->cbf_comp(cs, TU::getCbfAtDepth(currTU, compID, currDepth), currArea.blocks[compID],
cbfDepth, prevCbf);
}
}
}
}
if (subdiv)
{
if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
{
partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
}
else if( currCU.ispMode && isLuma( compID ) )
{
partitioner.splitCurrArea( ispType, cs );
}
else
{
THROW("Cannot perform an implicit split!");
}
do
{
xEncSubdivCbfQT( cs, partitioner, bLuma, bChroma, subTuCounter, ispType );
subTuCounter += subTuCounter != -1 ? 1 : 0;
} while( partitioner.nextPart( cs ) );
partitioner.exitCurrSplit();
}
else
{
//===== Cbfs =====
if (bLuma)
{
bool previousCbf = false;
bool lastCbfIsInferred = false;
if( ispType != TU_NO_ISP )
{
bool rootCbfSoFar = false;
uint32_t nTus = currCU.ispMode == HOR_INTRA_SUBPARTITIONS ? currCU.lheight() >> floorLog2(currTU.lheight()) : currCU.lwidth() >> floorLog2(currTU.lwidth());
if( subTuCounter == nTus - 1 )
{
TransformUnit* tuPointer = currCU.firstTU;
for( int tuIdx = 0; tuIdx < nTus - 1; tuIdx++ )
{
rootCbfSoFar |= TU::getCbfAtDepth( *tuPointer, COMPONENT_Y, currDepth );
tuPointer = tuPointer->next;
}
if( !rootCbfSoFar )
{
lastCbfIsInferred = true;
}
}
if( !lastCbfIsInferred )
{
previousCbf = TU::getPrevTuCbfAtDepth( currTU, COMPONENT_Y, partitioner.currTrDepth );
}
}
if( !lastCbfIsInferred )
{
m_CABACEstimator->cbf_comp( cs, TU::getCbfAtDepth( currTU, COMPONENT_Y, currDepth ), currTU.Y(), currTU.depth, previousCbf, currCU.ispMode );
}
}
}
}
void IntraSearch::xEncCoeffQT( CodingStructure &cs, Partitioner &partitioner, const ComponentID compID, const int subTuIdx, const PartSplit ispType, CUCtx* cuCtx )
{
const UnitArea &currArea = partitioner.currArea();
int subTuCounter = subTuIdx;
TransformUnit &currTU = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType, subTuIdx );
uint32_t currDepth = partitioner.currTrDepth;
const bool subdiv = currTU.depth > currDepth;
if (subdiv)
{
if (partitioner.canSplit(TU_MAX_TR_SPLIT, cs))
{
partitioner.splitCurrArea(TU_MAX_TR_SPLIT, cs);
}
else if( currTU.cu->ispMode )
{
partitioner.splitCurrArea( ispType, cs );
}
else
{
THROW("Implicit TU split not available!");
}
do
{
xEncCoeffQT( cs, partitioner, compID, subTuCounter, ispType, cuCtx );
subTuCounter += subTuCounter != -1 ? 1 : 0;
} while( partitioner.nextPart( cs ) );
partitioner.exitCurrSplit();
}
else
{
if (currArea.blocks[compID].valid())
{
if (compID == COMPONENT_Cr)
{
const int cbfMask = (TU::getCbf(currTU, COMPONENT_Cb) ? 2 : 0) + (TU::getCbf(currTU, COMPONENT_Cr) ? 1 : 0);
m_CABACEstimator->joint_cb_cr(currTU, cbfMask);
}
if (TU::getCbf(currTU, compID))
{
if (isLuma(compID))
{
m_CABACEstimator->residual_coding(currTU, compID, cuCtx);
m_CABACEstimator->mts_idx(*currTU.cu, cuCtx);
}
else
{
m_CABACEstimator->residual_coding(currTU, compID);
}
}
}
}
}
uint64_t IntraSearch::xGetIntraFracBitsQT( CodingStructure &cs, Partitioner &partitioner, const bool &bLuma, const bool &bChroma, const int subTuIdx, const PartSplit ispType, CUCtx* cuCtx )
{
m_CABACEstimator->resetBits();
xEncIntraHeader( cs, partitioner, bLuma, bChroma, subTuIdx );
xEncSubdivCbfQT( cs, partitioner, bLuma, bChroma, subTuIdx, ispType );
if( bLuma )
{
xEncCoeffQT( cs, partitioner, COMPONENT_Y, subTuIdx, ispType, cuCtx );
}
if( bChroma )
{
xEncCoeffQT( cs, partitioner, COMPONENT_Cb, subTuIdx, ispType );
xEncCoeffQT( cs, partitioner, COMPONENT_Cr, subTuIdx, ispType );
}
CodingUnit& cu = *cs.getCU(partitioner.chType);
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
if ( cuCtx && bLuma && cu.isSepTree() && ( !cu.ispMode || ( cu.lfnstIdx && subTuIdx == 0 ) || ( !cu.lfnstIdx && subTuIdx == m_ispTestedModes[cu.lfnstIdx].numTotalParts[cu.ispMode - 1] - 1 ) ) )
#else
if (cuCtx && bLuma && CS::isDualITree(cs) && (!cu.ispMode || (cu.lfnstIdx && subTuIdx == 0) || (!cu.lfnstIdx && subTuIdx == m_ispTestedModes[cu.lfnstIdx].numTotalParts[cu.ispMode - 1] - 1)))
#endif
{
m_CABACEstimator->residual_lfnst_mode(cu, *cuCtx);
}
uint64_t fracBits = m_CABACEstimator->getEstFracBits();
return fracBits;
}
uint64_t IntraSearch::xGetIntraFracBitsQTSingleChromaComponent( CodingStructure &cs, Partitioner &partitioner, const ComponentID compID )
{
m_CABACEstimator->resetBits();
if( compID == COMPONENT_Cb )
{
//intra mode coding
PredictionUnit &pu = *cs.getPU( partitioner.currArea().lumaPos(), partitioner.chType );
m_CABACEstimator->intra_chroma_pred_mode( pu );
//xEncIntraHeader(cs, partitioner, false, true);
}
CHECK( partitioner.currTrDepth != 1, "error in the depth!" );
const UnitArea &currArea = partitioner.currArea();
TransformUnit &currTU = *cs.getTU( currArea.blocks[partitioner.chType], partitioner.chType );
//cbf coding
const bool prevCbf = ( compID == COMPONENT_Cr ? TU::getCbfAtDepth( currTU, COMPONENT_Cb, partitioner.currTrDepth ) : false );
m_CABACEstimator->cbf_comp( cs, TU::getCbfAtDepth( currTU, compID, partitioner.currTrDepth ), currArea.blocks[compID], partitioner.currTrDepth - 1, prevCbf );
//coeffs coding and cross comp coding
if( TU::getCbf( currTU, compID ) )
{
m_CABACEstimator->residual_coding( currTU, compID );
}
uint64_t fracBits = m_CABACEstimator->getEstFracBits();
return fracBits;
}
uint64_t IntraSearch::xGetIntraFracBitsQTChroma(TransformUnit& currTU, const ComponentID &compID)
{
m_CABACEstimator->resetBits();
// Include Cbf and jointCbCr flags here as we make decisions across components
CodingStructure &cs = *currTU.cs;
if ( currTU.jointCbCr )
{
const int cbfMask = ( TU::getCbf( currTU, COMPONENT_Cb ) ? 2 : 0 ) + ( TU::getCbf( currTU, COMPONENT_Cr ) ? 1 : 0 );
m_CABACEstimator->cbf_comp( cs, cbfMask>>1, currTU.blocks[ COMPONENT_Cb ], currTU.depth, false );
m_CABACEstimator->cbf_comp( cs, cbfMask &1, currTU.blocks[ COMPONENT_Cr ], currTU.depth, cbfMask>>1 );
if( cbfMask )
{
m_CABACEstimator->joint_cb_cr( currTU, cbfMask );
}
if( cbfMask >> 1 )
{
m_CABACEstimator->residual_coding( currTU, COMPONENT_Cb );
}
if( cbfMask & 1 )
{
m_CABACEstimator->residual_coding( currTU, COMPONENT_Cr );
}
}
else
{
if ( compID == COMPONENT_Cb )
{
m_CABACEstimator->cbf_comp( cs, TU::getCbf( currTU, compID ), currTU.blocks[ compID ], currTU.depth, false );
}
else
{
const bool cbCbf = TU::getCbf( currTU, COMPONENT_Cb );
const bool crCbf = TU::getCbf( currTU, compID );
const int cbfMask = ( cbCbf ? 2 : 0 ) + ( crCbf ? 1 : 0 );
m_CABACEstimator->cbf_comp( cs, crCbf, currTU.blocks[ compID ], currTU.depth, cbCbf );
m_CABACEstimator->joint_cb_cr( currTU, cbfMask );
}
}
if( !currTU.jointCbCr && TU::getCbf( currTU, compID ) )
{
m_CABACEstimator->residual_coding( currTU, compID );
}
uint64_t fracBits = m_CABACEstimator->getEstFracBits();
return fracBits;
}
#if JVET_W0103_INTRA_MTS
void IntraSearch::xSelectAMTForFullRD(TransformUnit &tu)
{
if (!tu.blocks[COMPONENT_Y].valid())
{
return;
}
if (!tu.cu->mtsFlag)
{
return;
}
CodingStructure &cs = *tu.cs;
m_pcRdCost->setChromaFormat(cs.sps->getChromaFormatIdc());
const CompArea &area = tu.blocks[COMPONENT_Y];
const ChannelType chType = toChannelType(COMPONENT_Y);
PelBuf piOrg = cs.getOrgBuf(area);
PelBuf piPred = cs.getPredBuf(area);
PelBuf piResi = cs.getResiBuf(area);
const PredictionUnit &pu = *cs.getPU(area.pos(), chType);
//===== init availability pattern =====
PelBuf sharedPredTS(m_pSharedPredTransformSkip[COMPONENT_Y], area);
initIntraPatternChType(*tu.cu, area);
//===== get prediction signal =====
if (PU::isMIP(pu, chType))
{
initIntraMip(pu, area);
predIntraMip(COMPONENT_Y, piPred, pu);
}
else
{
predIntraAng(COMPONENT_Y, piPred, pu);
}
// save prediction
sharedPredTS.copyFrom(piPred);
const Slice &slice = *cs.slice;
//===== get residual signal =====
piResi.copyFrom(piOrg);
if (slice.getLmcsEnabledFlag() && m_pcReshape->getCTUFlag())
{
piResi.rspSignal(m_pcReshape->getFwdLUT());
piResi.subtract(piPred);
}
else
{
piResi.subtract(piPred);
}
// do transform and calculate Coeff AbsSum for all MTS candidates
std::vector<std::pair<int, uint64_t>> CoeffAbsSum(4);
for (int i = 0; i < 4; i++)
{
tu.mtsIdx[0] = i + MTS_DST7_DST7;
uint64_t AbsSum = m_pcTrQuant->transformNxN(tu);
CoeffAbsSum[i] = { i, AbsSum };
}
std::stable_sort(CoeffAbsSum.begin(), CoeffAbsSum.end(), [](const std::pair<int, uint64_t> & l, const std::pair<int, uint64_t> & r) {return l.second < r.second; });
for (int i = 0; i < 4; i++)
{
m_TestAMTForFullRD[i] = CoeffAbsSum[i].first;
}
m_numCandAMTForFullRD = 4;
if (m_pcEncCfg->getUseFastLFNST())
{
double skipThreshold = 1.0 + 1.0 / sqrt((double)(area.width*area.height));
skipThreshold = std::max(skipThreshold, 1.03);
for (int i = 1; i < m_numCandAMTForFullRD; i++)
{
if (CoeffAbsSum[i].second > skipThreshold * CoeffAbsSum[0].second)
{
m_numCandAMTForFullRD = i;
break;
}
}
}
}
#endif
void IntraSearch::xIntraCodingTUBlock(TransformUnit &tu, const ComponentID &compID, Distortion& ruiDist, const int &default0Save1Load2, uint32_t* numSig, std::vector<TrMode>* trModes, const bool loadTr)
{
if (!tu.blocks[compID].valid())
{
return;
}
CodingStructure &cs = *tu.cs;
m_pcRdCost->setChromaFormat(cs.sps->getChromaFormatIdc());
const CompArea &area = tu.blocks[compID];
const SPS &sps = *cs.sps;
#if JVET_V0094_BILATERAL_FILTER || JVET_X0071_CHROMA_BILATERAL_FILTER
const PPS &pps = *cs.pps;
#endif
const ChannelType chType = toChannelType(compID);
const int bitDepth = sps.getBitDepth(chType);
PelBuf piOrg = cs.getOrgBuf (area);
PelBuf piPred = cs.getPredBuf (area);
PelBuf piResi = cs.getResiBuf (area);
PelBuf piReco = cs.getRecoBuf (area);
const PredictionUnit &pu = *cs.getPU(area.pos(), chType);
const uint32_t uiChFinalMode = PU::getFinalIntraMode(pu, chType);
//===== init availability pattern =====
CHECK( tu.jointCbCr && compID == COMPONENT_Cr, "wrong combination of compID and jointCbCr" );
bool jointCbCr = tu.jointCbCr && compID == COMPONENT_Cb;
if (compID == COMPONENT_Y)
{
PelBuf sharedPredTS( m_pSharedPredTransformSkip[compID], area );
if( default0Save1Load2 != 2 )
{
bool predRegDiffFromTB = CU::isPredRegDiffFromTB(*tu.cu, compID);
bool firstTBInPredReg = CU::isFirstTBInPredReg(*tu.cu, compID, area);
CompArea areaPredReg(COMPONENT_Y, tu.chromaFormat, area);
if (tu.cu->ispMode && isLuma(compID))
{
if (predRegDiffFromTB)
{
if (firstTBInPredReg)
{
CU::adjustPredArea(areaPredReg);
initIntraPatternChTypeISP(*tu.cu, areaPredReg, piReco);
}
}
else
{
initIntraPatternChTypeISP(*tu.cu, area, piReco);
}
}
else
{
initIntraPatternChType(*tu.cu, area);
}
//===== get prediction signal =====
if(compID != COMPONENT_Y && !tu.cu->bdpcmModeChroma && PU::isLMCMode(uiChFinalMode))
{
xGetLumaRecPixels( pu, area );
predIntraChromaLM( compID, piPred, pu, area, uiChFinalMode );
}
else
{
#if JVET_V0130_INTRA_TMP
if( PU::isTmp( pu, chType ) )
{
int foundCandiNum;
#if JVET_W0069_TMP_BOUNDARY
RefTemplateType tempType = getRefTemplateType( *(tu.cu), tu.cu->blocks[COMPONENT_Y] );
if( tempType != NO_TEMPLATE )
{
getTargetTemplate( tu.cu, pu.lwidth(), pu.lheight(), tempType );
candidateSearchIntra( tu.cu, pu.lwidth(), pu.lheight(), tempType );
generateTMPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), foundCandiNum );
}
else
{
foundCandiNum = 1;
generateTmDcPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), 1 << (tu.cu->cs->sps->getBitDepth( CHANNEL_TYPE_LUMA ) - 1) );
}
#else
getTargetTemplate( tu.cu, pu.lwidth(), pu.lheight() );
candidateSearchIntra( tu.cu, pu.lwidth(), pu.lheight() );
generateTMPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), foundCandiNum );
#endif
CHECK( foundCandiNum < 1, "" );
}
else if( PU::isMIP( pu, chType ) )
#else
if( PU::isMIP( pu, chType ) )
#endif
{
initIntraMip( pu, area );
predIntraMip( compID, piPred, pu );
}
else
{
if (predRegDiffFromTB)
{
if (firstTBInPredReg)
{
PelBuf piPredReg = cs.getPredBuf(areaPredReg);
predIntraAng(compID, piPredReg, pu);
}
}
else
{
predIntraAng(compID, piPred, pu);
}
}
}
// save prediction
if( default0Save1Load2 == 1 )
{
sharedPredTS.copyFrom( piPred );
}
}
else
{
// load prediction
piPred.copyFrom( sharedPredTS );
}
}
DTRACE( g_trace_ctx, D_PRED, "@(%4d,%4d) [%2dx%2d] IMode=%d\n", tu.lx(), tu.ly(), tu.lwidth(), tu.lheight(), uiChFinalMode );
//DTRACE_PEL_BUF( D_PRED, piPred, tu, tu.cu->predMode, COMPONENT_Y );
const Slice &slice = *cs.slice;
bool flag = slice.getLmcsEnabledFlag() && (slice.isIntra() || (!slice.isIntra() && m_pcReshape->getCTUFlag()));
#if JVET_W0103_INTRA_MTS
if (!tu.cu->mtsFlag && isLuma(compID))
#else
if (isLuma(compID))
#endif
{
//===== get residual signal =====
piResi.copyFrom( piOrg );
if (slice.getLmcsEnabledFlag() && m_pcReshape->getCTUFlag() && compID == COMPONENT_Y)
{
piResi.rspSignal( m_pcReshape->getFwdLUT() );
piResi.subtract( piPred );
}
else
{
piResi.subtract( piPred );
}
}
//===== transform and quantization =====
//--- init rate estimation arrays for RDOQ ---
//--- transform and quantization ---
TCoeff uiAbsSum = 0;
const QpParam cQP(tu, compID);
#if RDOQ_CHROMA_LAMBDA
m_pcTrQuant->selectLambda(compID);
#endif
flag =flag && (tu.blocks[compID].width*tu.blocks[compID].height > 4);
if (flag && isChroma(compID) && slice.getPicHeader()->getLmcsChromaResidualScaleFlag() )
{
int cResScaleInv = tu.getChromaAdj();
double cResScale = (double)(1 << CSCALE_FP_PREC) / (double)cResScaleInv;
m_pcTrQuant->setLambda(m_pcTrQuant->getLambda() / (cResScale*cResScale));
}
PelBuf crOrg;
PelBuf crPred;
PelBuf crResi;
PelBuf crReco;
if (isChroma(compID))
{
const CompArea &crArea = tu.blocks[ COMPONENT_Cr ];
crOrg = cs.getOrgBuf ( crArea );
crPred = cs.getPredBuf ( crArea );
crResi = cs.getResiBuf ( crArea );
crReco = cs.getRecoBuf ( crArea );
}
if ( jointCbCr )
{
// Lambda is loosened for the joint mode with respect to single modes as the same residual is used for both chroma blocks
const int absIct = abs( TU::getICTMode(tu) );
const double lfact = ( absIct == 1 || absIct == 3 ? 0.8 : 0.5 );
m_pcTrQuant->setLambda( lfact * m_pcTrQuant->getLambda() );
}
if ( sps.getJointCbCrEnabledFlag() && isChroma(compID) && (tu.cu->cs->slice->getSliceQp() > 18) )
{
m_pcTrQuant->setLambda( 1.3 * m_pcTrQuant->getLambda() );
}
if( isLuma(compID) )
{
if (trModes)
{
m_pcTrQuant->transformNxN(tu, compID, cQP, trModes, m_pcEncCfg->getMTSIntraMaxCand());
tu.mtsIdx[compID] = trModes->at(0).first;
}
if (!(m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless() && tu.mtsIdx[compID] == 0) || tu.cu->bdpcmMode != 0)
{
m_pcTrQuant->transformNxN(tu, compID, cQP, uiAbsSum, m_CABACEstimator->getCtx(), loadTr);
}
DTRACE(g_trace_ctx, D_TU_ABS_SUM, "%d: comp=%d, abssum=%d\n", DTRACE_GET_COUNTER(g_trace_ctx, D_TU_ABS_SUM), compID,
uiAbsSum);
if (tu.cu->ispMode && isLuma(compID) && CU::isISPLast(*tu.cu, area, area.compID) && CU::allLumaCBFsAreZero(*tu.cu))
{
// ISP has to have at least one non-zero CBF
ruiDist = MAX_INT;
return;
}
if ((m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless() && tu.mtsIdx[compID] == 0)
&& 0 == tu.cu->bdpcmMode)
{
uiAbsSum = 0;
tu.getCoeffs(compID).fill(0);
TU::setCbfAtDepth(tu, compID, tu.depth, 0);
}
//--- inverse transform ---
if (uiAbsSum > 0)
{
m_pcTrQuant->invTransformNxN(tu, compID, piResi, cQP);
}
else
{
piResi.fill(0);
}
}
else // chroma
{
int codedCbfMask = 0;
ComponentID codeCompId = (tu.jointCbCr ? (tu.jointCbCr >> 1 ? COMPONENT_Cb : COMPONENT_Cr) : compID);
const QpParam qpCbCr(tu, codeCompId);
if( tu.jointCbCr )
{
ComponentID otherCompId = ( codeCompId==COMPONENT_Cr ? COMPONENT_Cb : COMPONENT_Cr );
tu.getCoeffs( otherCompId ).fill(0); // do we need that?
TU::setCbfAtDepth (tu, otherCompId, tu.depth, false );
}
PelBuf& codeResi = ( codeCompId == COMPONENT_Cr ? crResi : piResi );
uiAbsSum = 0;
if (trModes)
{
m_pcTrQuant->transformNxN(tu, codeCompId, qpCbCr, trModes, m_pcEncCfg->getMTSIntraMaxCand());
tu.mtsIdx[codeCompId] = trModes->at(0).first;
if (tu.jointCbCr)
{
tu.mtsIdx[(codeCompId == COMPONENT_Cr) ? COMPONENT_Cb : COMPONENT_Cr] = MTS_DCT2_DCT2;
}
}
// encoder bugfix: Set loadTr to aovid redundant transform process
if (!(m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless() && tu.mtsIdx[compID] == 0) || tu.cu->bdpcmModeChroma != 0)
{
m_pcTrQuant->transformNxN(tu, codeCompId, qpCbCr, uiAbsSum, m_CABACEstimator->getCtx(), loadTr);
}
if ((m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless() && tu.mtsIdx[compID] == 0) && 0 == tu.cu->bdpcmModeChroma)
{
uiAbsSum = 0;
tu.getCoeffs(compID).fill(0);
TU::setCbfAtDepth(tu, compID, tu.depth, 0);
}
DTRACE( g_trace_ctx, D_TU_ABS_SUM, "%d: comp=%d, abssum=%d\n", DTRACE_GET_COUNTER( g_trace_ctx, D_TU_ABS_SUM ), codeCompId, uiAbsSum );
if( uiAbsSum > 0 )
{
m_pcTrQuant->invTransformNxN(tu, codeCompId, codeResi, qpCbCr);
codedCbfMask += ( codeCompId == COMPONENT_Cb ? 2 : 1 );
}
else
{
codeResi.fill(0);
}
if( tu.jointCbCr )
{
if( tu.jointCbCr == 3 && codedCbfMask == 2 )
{
codedCbfMask = 3;
TU::setCbfAtDepth (tu, COMPONENT_Cr, tu.depth, true );
}
if( tu.jointCbCr != codedCbfMask )
{
ruiDist = std::numeric_limits<Distortion>::max();
return;
}
m_pcTrQuant->invTransformICT( tu, piResi, crResi );
uiAbsSum = codedCbfMask;
}
}
//===== reconstruction =====
if ( flag && uiAbsSum > 0 && isChroma(compID) && slice.getPicHeader()->getLmcsChromaResidualScaleFlag() )
{
piResi.scaleSignal(tu.getChromaAdj(), 0, tu.cu->cs->slice->clpRng(compID));
if( jointCbCr )
{
crResi.scaleSignal(tu.getChromaAdj(), 0, tu.cu->cs->slice->clpRng(COMPONENT_Cr));
}
}
if (slice.getLmcsEnabledFlag() && m_pcReshape->getCTUFlag() && compID == COMPONENT_Y)
{
CompArea tmpArea(COMPONENT_Y, area.chromaFormat, Position(0,0), area.size());
PelBuf tmpPred = m_tmpStorageLCU.getBuf(tmpArea);
tmpPred.copyFrom(piPred);
piReco.reconstruct(tmpPred, piResi, cs.slice->clpRng(compID));
}
else
{
piReco.reconstruct(piPred, piResi, cs.slice->clpRng( compID ));
if( jointCbCr )
{
crReco.reconstruct(crPred, crResi, cs.slice->clpRng( COMPONENT_Cr ));
}
}
#if SIGN_PREDICTION
if ( sps.getNumPredSigns() > 0)
{
bool bJccrWithCr = tu.jointCbCr && !(tu.jointCbCr >> 1);
bool bIsJccr = tu.jointCbCr && isChroma(compID);
ComponentID signPredCompID = bIsJccr ? (bJccrWithCr ? COMPONENT_Cr : COMPONENT_Cb): compID;
bool reshapeChroma = flag && (TU::getCbf(tu, signPredCompID) || tu.jointCbCr) && isChroma(signPredCompID) && slice.getPicHeader()->getLmcsChromaResidualScaleFlag();
m_pcTrQuant->predCoeffSigns(tu, compID, reshapeChroma);
}
#endif
#if JVET_V0094_BILATERAL_FILTER
CompArea tmpArea1(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
PelBuf tmpRecLuma;
if(isLuma(compID))
{
tmpRecLuma = m_tmpStorageLCU.getBuf(tmpArea1);
tmpRecLuma.copyFrom(piReco);
}
#if JVET_X0071_CHROMA_BILATERAL_FILTER
CompArea tmpArea2(compID, area.chromaFormat, Position(0, 0), area.size());
PelBuf tmpRecChroma;
if(isChroma(compID))
{
tmpRecChroma = m_tmpStorageLCU.getBuf(tmpArea2);
tmpRecChroma.copyFrom(piReco);
}
#endif
//===== update distortion =====
#if WCG_EXT
if (m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled() || (m_pcEncCfg->getLmcs()
&& slice.getLmcsEnabledFlag() && (m_pcReshape->getCTUFlag() || (isChroma(compID) && m_pcEncCfg->getReshapeIntraCMD()))))
{
const CPelBuf orgLuma = cs.getOrgBuf( cs.area.blocks[COMPONENT_Y] );
if (compID == COMPONENT_Y)
{
if(!(m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled()))
{
tmpRecLuma.rspSignal(m_pcReshape->getInvLUT());
}
if (pps.getUseBIF() /*&& (uiAbsSum > 0)*/ && isLuma(compID) && (tu.cu->qp > 17) && (128 > std::max(tu.lumaSize().width, tu.lumaSize().height)))
{
CompArea compArea = tu.blocks[compID];
PelBuf recIPredBuf = cs.slice->getPic()->getRecoBuf(compArea);
if(!(m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled()))
{
m_bilateralFilter->bilateralFilterRDOdiamond5x5(tmpRecLuma, tmpRecLuma, tmpRecLuma, tu.cu->qp, recIPredBuf, cs.slice->clpRng(compID), tu, true, true, m_pcReshape->getInvLUT());
}
else
{
std::vector<Pel> dummy_invLUT;
m_bilateralFilter->bilateralFilterRDOdiamond5x5(tmpRecLuma, tmpRecLuma, tmpRecLuma, tu.cu->qp, recIPredBuf, cs.slice->clpRng(compID), tu, true, false, dummy_invLUT);
}
}
ruiDist += m_pcRdCost->getDistPart(piOrg, tmpRecLuma, sps.getBitDepth(toChannelType(compID)), compID, DF_SSE_WTD, &orgLuma);
}
else
{
#if JVET_X0071_CHROMA_BILATERAL_FILTER
if(pps.getUseChromaBIF() && isChroma(compID) && (tu.cu->qp > 17))
{
CompArea compArea = tu.blocks[compID];
PelBuf recIPredBuf = cs.slice->getPic()->getRecoBuf(compArea);
bool isCb = compID == COMPONENT_Cb ? true : false;
m_bilateralFilter->bilateralFilterRDOdiamond5x5Chroma(tmpRecChroma, tmpRecChroma, tmpRecChroma, tu.cu->qp, recIPredBuf, cs.slice->clpRng(compID), tu, true, isCb);
}
ruiDist += m_pcRdCost->getDistPart(piOrg, tmpRecChroma, bitDepth, compID, DF_SSE_WTD, &orgLuma);
#else
ruiDist += m_pcRdCost->getDistPart(piOrg, piReco, bitDepth, compID, DF_SSE_WTD, &orgLuma);
#endif
if( jointCbCr )
{
#if JVET_X0071_CHROMA_BILATERAL_FILTER
if(compID == COMPONENT_Cr)
{
ruiDist += m_pcRdCost->getDistPart(crOrg, tmpRecChroma, bitDepth, COMPONENT_Cr, DF_SSE_WTD, &orgLuma);
}
else
{
ruiDist += m_pcRdCost->getDistPart(crOrg, crReco, bitDepth, COMPONENT_Cr, DF_SSE_WTD, &orgLuma);
}
#else
ruiDist += m_pcRdCost->getDistPart(crOrg, crReco, bitDepth, COMPONENT_Cr, DF_SSE_WTD, &orgLuma);
#endif
}
}
}
else
#endif
{
if(isLuma(compID))
{
if (pps.getUseBIF() /*&& (uiAbsSum > 0)*/ && isLuma(compID) && (tu.cu->qp > 17) && (128 > std::max(tu.lumaSize().width, tu.lumaSize().height)))
{
CompArea compArea = tu.blocks[compID];
PelBuf recIPredBuf = cs.slice->getPic()->getRecoBuf(compArea);
std::vector<Pel> my_invLUT;
m_bilateralFilter->bilateralFilterRDOdiamond5x5(tmpRecLuma, tmpRecLuma, tmpRecLuma, tu.cu->qp, recIPredBuf, cs.slice->clpRng(compID), tu, true, false, my_invLUT);
}
ruiDist += m_pcRdCost->getDistPart( piOrg, tmpRecLuma, bitDepth, compID, DF_SSE );
}
else
{
#if JVET_X0071_CHROMA_BILATERAL_FILTER
if (pps.getUseChromaBIF() && isChroma(compID) && (tu.cu->qp > 17))
{
CompArea compArea = tu.blocks[compID];
PelBuf recIPredBuf = cs.slice->getPic()->getRecoBuf(compArea);
bool isCb = compID == COMPONENT_Cb ? true : false;
m_bilateralFilter->bilateralFilterRDOdiamond5x5Chroma(tmpRecChroma, tmpRecChroma, tmpRecChroma, tu.cu->qp, recIPredBuf, cs.slice->clpRng(compID), tu, true, isCb);
}
ruiDist += m_pcRdCost->getDistPart( piOrg, tmpRecChroma, bitDepth, compID, DF_SSE );
#else
ruiDist += m_pcRdCost->getDistPart( piOrg, piReco, bitDepth, compID, DF_SSE );
#endif
if( jointCbCr )
{
#if JVET_X0071_CHROMA_BILATERAL_FILTER
if(compID == COMPONENT_Cr)
{
ruiDist += m_pcRdCost->getDistPart( crOrg, tmpRecChroma, bitDepth, COMPONENT_Cr, DF_SSE );
}
else
{
ruiDist += m_pcRdCost->getDistPart( crOrg, crReco, bitDepth, COMPONENT_Cr, DF_SSE );
}
#else
ruiDist += m_pcRdCost->getDistPart( crOrg, crReco, bitDepth, COMPONENT_Cr, DF_SSE );
#endif
}
}
}
#else
//===== update distortion =====
#if JVET_X0071_CHROMA_BILATERAL_FILTER
CompArea tmpArea2(compID, area.chromaFormat, Position(0, 0), area.size());
PelBuf tmpRecChroma;
if(isChroma(compID))
{
tmpRecChroma = m_tmpStorageLCU.getBuf(tmpArea2);
tmpRecChroma.copyFrom(piReco);
}
#if WCG_EXT
if (m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled() || (m_pcEncCfg->getLmcs() && slice.getLmcsEnabledFlag() && (m_pcReshape->getCTUFlag() || (isChroma(compID) && m_pcEncCfg->getReshapeIntraCMD()))))
{
const CPelBuf orgLuma = cs.getOrgBuf( cs.area.blocks[COMPONENT_Y] );
if(isLuma(compID))
{
if (compID == COMPONENT_Y && !(m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled()))
{
CompArea tmpArea1(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
PelBuf tmpRecLuma = m_tmpStorageLCU.getBuf(tmpArea1);
tmpRecLuma.rspSignal( piReco, m_pcReshape->getInvLUT() );
ruiDist += m_pcRdCost->getDistPart(piOrg, tmpRecLuma, sps.getBitDepth(toChannelType(compID)), compID, DF_SSE_WTD, &orgLuma);
}
else
{
ruiDist += m_pcRdCost->getDistPart(piOrg, piReco, bitDepth, compID, DF_SSE_WTD, &orgLuma);
if( jointCbCr )
{
ruiDist += m_pcRdCost->getDistPart(crOrg, crReco, bitDepth, COMPONENT_Cr, DF_SSE_WTD, &orgLuma);
}
}
}
else
{
if(pps.getUseChromaBIF() && isChroma(compID) && (tu.cu->qp > 17))
{
CompArea compArea = tu.blocks[compID];
PelBuf recIPredBuf = cs.slice->getPic()->getRecoBuf(compArea);
bool isCb = compID == COMPONENT_Cb ? true : false;
m_bilateralFilter->bilateralFilterRDOdiamond5x5Chroma(tmpRecChroma, tmpRecChroma, tmpRecChroma, tu.cu->qp, recIPredBuf, cs.slice->clpRng(compID), tu, true, isCb);
}
ruiDist += m_pcRdCost->getDistPart(piOrg, tmpRecChroma, bitDepth, compID, DF_SSE_WTD, &orgLuma);
if( jointCbCr )
{
if(compID == COMPONENT_Cr)
{
ruiDist += m_pcRdCost->getDistPart(crOrg, tmpRecChroma, bitDepth, COMPONENT_Cr, DF_SSE_WTD, &orgLuma);
}
else
{
ruiDist += m_pcRdCost->getDistPart(crOrg, crReco, bitDepth, COMPONENT_Cr, DF_SSE_WTD, &orgLuma);
}
}
}
}
else
#endif
{
if(isLuma(compID))
{
ruiDist += m_pcRdCost->getDistPart( piOrg, piReco, bitDepth, compID, DF_SSE );
}
else
{
if (pps.getUseChromaBIF() && isChroma(compID) && (tu.cu->qp > 17))
{
CompArea compArea = tu.blocks[compID];
PelBuf recIPredBuf = cs.slice->getPic()->getRecoBuf(compArea);
bool isCb = compID == COMPONENT_Cb ? true : false;
m_bilateralFilter->bilateralFilterRDOdiamond5x5Chroma(tmpRecChroma, tmpRecChroma, tmpRecChroma, tu.cu->qp, recIPredBuf, cs.slice->clpRng(compID), tu, true, isCb);
}
ruiDist += m_pcRdCost->getDistPart( piOrg, tmpRecChroma, bitDepth, compID, DF_SSE );
}
if( jointCbCr )
{
if(compID == COMPONENT_Cr)
{
ruiDist += m_pcRdCost->getDistPart( crOrg, tmpRecChroma, bitDepth, COMPONENT_Cr, DF_SSE );
}
else
{
ruiDist += m_pcRdCost->getDistPart( crOrg, crReco, bitDepth, COMPONENT_Cr, DF_SSE );
}
}
}
#else
#if WCG_EXT
if (m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled() || (m_pcEncCfg->getLmcs()
&& slice.getLmcsEnabledFlag() && (m_pcReshape->getCTUFlag() || (isChroma(compID) && m_pcEncCfg->getReshapeIntraCMD()))))
{
const CPelBuf orgLuma = cs.getOrgBuf( cs.area.blocks[COMPONENT_Y] );
if (compID == COMPONENT_Y && !(m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled()))
{
CompArea tmpArea1(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
PelBuf tmpRecLuma = m_tmpStorageLCU.getBuf(tmpArea1);
tmpRecLuma.rspSignal( piReco, m_pcReshape->getInvLUT() );
ruiDist += m_pcRdCost->getDistPart(piOrg, tmpRecLuma, sps.getBitDepth(toChannelType(compID)), compID, DF_SSE_WTD, &orgLuma);
}
else
{
ruiDist += m_pcRdCost->getDistPart(piOrg, piReco, bitDepth, compID, DF_SSE_WTD, &orgLuma);
if( jointCbCr )
{
ruiDist += m_pcRdCost->getDistPart(crOrg, crReco, bitDepth, COMPONENT_Cr, DF_SSE_WTD, &orgLuma);
}
}
}
else
#endif
{
ruiDist += m_pcRdCost->getDistPart( piOrg, piReco, bitDepth, compID, DF_SSE );
if( jointCbCr )
{
ruiDist += m_pcRdCost->getDistPart( crOrg, crReco, bitDepth, COMPONENT_Cr, DF_SSE );
}
}
#endif
#endif
}
void IntraSearch::xIntraCodingACTTUBlock(TransformUnit &tu, const ComponentID &compID, Distortion& ruiDist, std::vector<TrMode>* trModes, const bool loadTr)
{
if (!tu.blocks[compID].valid())
{
CHECK(1, "tu does not exist");
}
CodingStructure &cs = *tu.cs;
const SPS &sps = *cs.sps;
const Slice &slice = *cs.slice;
const CompArea &area = tu.blocks[compID];
const CompArea &crArea = tu.blocks[COMPONENT_Cr];
PelBuf piOrgResi = cs.getOrgResiBuf(area);
PelBuf piResi = cs.getResiBuf(area);
PelBuf crOrgResi = cs.getOrgResiBuf(crArea);
PelBuf crResi = cs.getResiBuf(crArea);
TCoeff uiAbsSum = 0;
CHECK(tu.jointCbCr && compID == COMPONENT_Cr, "wrong combination of compID and jointCbCr");
bool jointCbCr = tu.jointCbCr && compID == COMPONENT_Cb;
m_pcRdCost->setChromaFormat(cs.sps->getChromaFormatIdc());
if (m_pcEncCfg->getCostMode() != COST_LOSSLESS_CODING || !slice.isLossless())
m_pcTrQuant->lambdaAdjustColorTrans(true);
if (jointCbCr)
{
ComponentID compIdCode = (tu.jointCbCr >> 1 ? COMPONENT_Cb : COMPONENT_Cr);
m_pcTrQuant->selectLambda(compIdCode);
}
else
{
m_pcTrQuant->selectLambda(compID);
}
bool flag = slice.getLmcsEnabledFlag() && (slice.isIntra() || (!slice.isIntra() && m_pcReshape->getCTUFlag())) && (tu.blocks[compID].width*tu.blocks[compID].height > 4);
if (flag && isChroma(compID) && slice.getPicHeader()->getLmcsChromaResidualScaleFlag())
{
int cResScaleInv = tu.getChromaAdj();
double cResScale = (double)(1 << CSCALE_FP_PREC) / (double)cResScaleInv;
m_pcTrQuant->setLambda(m_pcTrQuant->getLambda() / (cResScale*cResScale));
}
if (jointCbCr)
{
// Lambda is loosened for the joint mode with respect to single modes as the same residual is used for both chroma blocks
const int absIct = abs(TU::getICTMode(tu));
const double lfact = (absIct == 1 || absIct == 3 ? 0.8 : 0.5);
m_pcTrQuant->setLambda(lfact * m_pcTrQuant->getLambda());
}
if (sps.getJointCbCrEnabledFlag() && isChroma(compID) && (slice.getSliceQp() > 18))
{
m_pcTrQuant->setLambda(1.3 * m_pcTrQuant->getLambda());
}
if (isLuma(compID))
{
QpParam cQP(tu, compID);
if (trModes)
{
m_pcTrQuant->transformNxN(tu, compID, cQP, trModes, m_pcEncCfg->getMTSIntraMaxCand());
tu.mtsIdx[compID] = trModes->at(0).first;
}
if (!(m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless() && tu.mtsIdx[compID] == 0) || tu.cu->bdpcmMode != 0)
{
m_pcTrQuant->transformNxN(tu, compID, cQP, uiAbsSum, m_CABACEstimator->getCtx(), loadTr);
}
if ((m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless() && tu.mtsIdx[compID] == 0) && tu.cu->bdpcmMode == 0)
{
uiAbsSum = 0;
tu.getCoeffs(compID).fill(0);
TU::setCbfAtDepth(tu, compID, tu.depth, 0);
}
if (uiAbsSum > 0)
{
m_pcTrQuant->invTransformNxN(tu, compID, piResi, cQP);
}
else
{
piResi.fill(0);
}
}
else
{
int codedCbfMask = 0;
ComponentID codeCompId = (tu.jointCbCr ? (tu.jointCbCr >> 1 ? COMPONENT_Cb : COMPONENT_Cr) : compID);
QpParam qpCbCr(tu, codeCompId);
if (tu.jointCbCr)
{
ComponentID otherCompId = (codeCompId == COMPONENT_Cr ? COMPONENT_Cb : COMPONENT_Cr);
tu.getCoeffs(otherCompId).fill(0);
TU::setCbfAtDepth(tu, otherCompId, tu.depth, false);
}
PelBuf& codeResi = (codeCompId == COMPONENT_Cr ? crResi : piResi);
uiAbsSum = 0;
if (trModes)
{
m_pcTrQuant->transformNxN(tu, codeCompId, qpCbCr, trModes, m_pcEncCfg->getMTSIntraMaxCand());
tu.mtsIdx[codeCompId] = trModes->at(0).first;
if (tu.jointCbCr)
{
tu.mtsIdx[(codeCompId == COMPONENT_Cr) ? COMPONENT_Cb : COMPONENT_Cr] = MTS_DCT2_DCT2;
}
}
if (!(m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless() && tu.mtsIdx[codeCompId] == 0) || tu.cu->bdpcmModeChroma != 0)
{
m_pcTrQuant->transformNxN(tu, codeCompId, qpCbCr, uiAbsSum, m_CABACEstimator->getCtx(), loadTr);
}
if (uiAbsSum > 0)
{
m_pcTrQuant->invTransformNxN(tu, codeCompId, codeResi, qpCbCr);
codedCbfMask += (codeCompId == COMPONENT_Cb ? 2 : 1);
}
else
{
codeResi.fill(0);
}
if (tu.jointCbCr)
{
if (tu.jointCbCr == 3 && codedCbfMask == 2)
{
codedCbfMask = 3;
TU::setCbfAtDepth(tu, COMPONENT_Cr, tu.depth, true);
}
if (tu.jointCbCr != codedCbfMask)
{
ruiDist = std::numeric_limits<Distortion>::max();
if (m_pcEncCfg->getCostMode() != COST_LOSSLESS_CODING || !slice.isLossless())
m_pcTrQuant->lambdaAdjustColorTrans(false);
return;
}
m_pcTrQuant->invTransformICT(tu, piResi, crResi);
uiAbsSum = codedCbfMask;
}
}
#if !JVET_S0234_ACT_CRS_FIX
if (flag && uiAbsSum > 0 && isChroma(compID) && slice.getPicHeader()->getLmcsChromaResidualScaleFlag())
{
piResi.scaleSignal(tu.getChromaAdj(), 0, slice.clpRng(compID));
if (jointCbCr)
{
crResi.scaleSignal(tu.getChromaAdj(), 0, slice.clpRng(COMPONENT_Cr));
}
}
#endif
if (m_pcEncCfg->getCostMode() != COST_LOSSLESS_CODING || !slice.isLossless())
m_pcTrQuant->lambdaAdjustColorTrans(false);
ruiDist += m_pcRdCost->getDistPart(piOrgResi, piResi, sps.getBitDepth(toChannelType(compID)), compID, DF_SSE);
if (jointCbCr)
{
ruiDist += m_pcRdCost->getDistPart(crOrgResi, crResi, sps.getBitDepth(toChannelType(COMPONENT_Cr)), COMPONENT_Cr, DF_SSE);
}
}
bool IntraSearch::xIntraCodingLumaISP(CodingStructure& cs, Partitioner& partitioner, const double bestCostSoFar)
{
int subTuCounter = 0;
const CodingUnit& cu = *cs.getCU(partitioner.currArea().lumaPos(), partitioner.chType);
bool earlySkipISP = false;
bool splitCbfLuma = false;
const PartSplit ispType = CU::getISPType(cu, COMPONENT_Y);
cs.cost = 0;
partitioner.splitCurrArea(ispType, cs);
CUCtx cuCtx;
cuCtx.isDQPCoded = true;
cuCtx.isChromaQpAdjCoded = true;
do // subpartitions loop
{
uint32_t numSig = 0;
Distortion singleDistTmpLuma = 0;
uint64_t singleTmpFracBits = 0;
double singleCostTmp = 0;
TransformUnit& tu = cs.addTU(CS::getArea(cs, partitioner.currArea(), partitioner.chType), partitioner.chType);
tu.depth = partitioner.currTrDepth;
// Encode TU
xIntraCodingTUBlock(tu, COMPONENT_Y, singleDistTmpLuma, 0, &numSig);
#if SIGN_PREDICTION
cs.picture->getRecoBuf( partitioner.currArea() ).copyFrom( cs.getRecoBuf( partitioner.currArea() ) );
#endif
if (singleDistTmpLuma == MAX_INT) // all zero CBF skip
{
earlySkipISP = true;
partitioner.exitCurrSplit();
cs.cost = MAX_DOUBLE;
return false;
}
if (m_pcRdCost->calcRdCost(cs.fracBits, cs.dist + singleDistTmpLuma) > bestCostSoFar)
{
// The accumulated cost + distortion is already larger than the best cost so far, so it is not necessary to
// calculate the rate
earlySkipISP = true;
}
else
{
singleTmpFracBits = xGetIntraFracBitsQT(cs, partitioner, true, false, subTuCounter, ispType, &cuCtx);
}
singleCostTmp = m_pcRdCost->calcRdCost(singleTmpFracBits, singleDistTmpLuma);
cs.cost += singleCostTmp;
cs.dist += singleDistTmpLuma;
cs.fracBits += singleTmpFracBits;
subTuCounter++;
splitCbfLuma |= TU::getCbfAtDepth(*cs.getTU(partitioner.currArea().lumaPos(), partitioner.chType, subTuCounter - 1), COMPONENT_Y, partitioner.currTrDepth);
int nSubPartitions = m_ispTestedModes[cu.lfnstIdx].numTotalParts[cu.ispMode - 1];
if (subTuCounter < nSubPartitions)
{
// exit condition if the accumulated cost is already larger than the best cost so far (no impact in RD performance)
if (cs.cost > bestCostSoFar)
{
earlySkipISP = true;
break;
}
else if (subTuCounter < nSubPartitions)
{
// more restrictive exit condition
double threshold = nSubPartitions == 2 ? 0.95 : subTuCounter == 1 ? 0.83 : 0.91;
if (subTuCounter < nSubPartitions && cs.cost > bestCostSoFar * threshold)
{
earlySkipISP = true;
break;
}
}
}
} while (partitioner.nextPart(cs)); // subpartitions loop
partitioner.exitCurrSplit();
const UnitArea& currArea = partitioner.currArea();
const uint32_t currDepth = partitioner.currTrDepth;
if (earlySkipISP)
{
cs.cost = MAX_DOUBLE;
}
else
{
cs.cost = m_pcRdCost->calcRdCost(cs.fracBits, cs.dist);
// The cost check is necessary here again to avoid superfluous operations if the maximum number of coded subpartitions was reached and yet ISP did not win
if (cs.cost < bestCostSoFar)
{
cs.setDecomp(cu.Y());
cs.picture->getRecoBuf(currArea.Y()).copyFrom(cs.getRecoBuf(currArea.Y()));
for (auto& ptu : cs.tus)
{
if (currArea.Y().contains(ptu->Y()))
{
TU::setCbfAtDepth(*ptu, COMPONENT_Y, currDepth, splitCbfLuma ? 1 : 0);
}
}
}
else
{
earlySkipISP = true;
}
}
return !earlySkipISP;
}
bool IntraSearch::xRecurIntraCodingLumaQT( CodingStructure &cs, Partitioner &partitioner, const double bestCostSoFar, const int subTuIdx, const PartSplit ispType, const bool ispIsCurrentWinner, bool mtsCheckRangeFlag, int mtsFirstCheckId, int mtsLastCheckId, bool moreProbMTSIdxFirst )
{
int subTuCounter = subTuIdx;
const UnitArea &currArea = partitioner.currArea();
const CodingUnit &cu = *cs.getCU( currArea.lumaPos(), partitioner.chType );
bool earlySkipISP = false;
uint32_t currDepth = partitioner.currTrDepth;
const SPS &sps = *cs.sps;
bool bCheckFull = true;
bool bCheckSplit = false;
bCheckFull = !partitioner.canSplit( TU_MAX_TR_SPLIT, cs );
bCheckSplit = partitioner.canSplit( TU_MAX_TR_SPLIT, cs );
const Slice &slice = *cs.slice;
if( cu.ispMode )
{
bCheckSplit = partitioner.canSplit( ispType, cs );
bCheckFull = !bCheckSplit;
}
uint32_t numSig = 0;
double dSingleCost = MAX_DOUBLE;
Distortion uiSingleDistLuma = 0;
uint64_t singleFracBits = 0;
bool checkTransformSkip = sps.getTransformSkipEnabledFlag();
int bestModeId[ MAX_NUM_COMPONENT ] = { 0, 0, 0 };
uint8_t nNumTransformCands = cu.mtsFlag ? 4 : 1;
uint8_t numTransformIndexCands = nNumTransformCands;
const TempCtx ctxStart ( m_CtxCache, m_CABACEstimator->getCtx() );
TempCtx ctxBest ( m_CtxCache );
CodingStructure *csSplit = nullptr;
CodingStructure *csFull = nullptr;
CUCtx cuCtx;
cuCtx.isDQPCoded = true;
cuCtx.isChromaQpAdjCoded = true;
if( bCheckSplit )
{
csSplit = &cs;
}
else if( bCheckFull )
{
csFull = &cs;
}
bool validReturnFull = false;
if( bCheckFull )
{
csFull->cost = 0.0;
TransformUnit &tu = csFull->addTU( CS::getArea( *csFull, currArea, partitioner.chType ), partitioner.chType );
tu.depth = currDepth;
const bool tsAllowed = TU::isTSAllowed( tu, COMPONENT_Y );
const bool mtsAllowed = CU::isMTSAllowed( cu, COMPONENT_Y );
std::vector<TrMode> trModes;
if( sps.getUseLFNST() )
{
checkTransformSkip &= tsAllowed;
checkTransformSkip &= !cu.mtsFlag;
checkTransformSkip &= !cu.lfnstIdx;
if( !cu.mtsFlag && checkTransformSkip )
{
trModes.push_back( TrMode( 0, true ) ); //DCT2
trModes.push_back( TrMode( 1, true ) ); //TS
}
}
else
{
nNumTransformCands = 1 + ( tsAllowed ? 1 : 0 ) + ( mtsAllowed ? 4 : 0 ); // DCT + TS + 4 MTS = 6 tests
if (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless())
{
nNumTransformCands = 1;
CHECK(!tsAllowed && !cu.bdpcmMode, "transform skip should be enabled for LS");
if (cu.bdpcmMode)
{
trModes.push_back(TrMode(0, true));
}
else
{
trModes.push_back(TrMode(1, true));
}
}
else
{
trModes.push_back(TrMode(0, true)); // DCT2
if (tsAllowed)
{
trModes.push_back(TrMode(1, true));
}
if (mtsAllowed)
{
for (int i = 2; i < 6; i++)
{
trModes.push_back(TrMode(i, true));
}
}
}
}
CHECK( !tu.Y().valid(), "Invalid TU" );
CodingStructure &saveCS = *m_pSaveCS[0];
TransformUnit *tmpTU = nullptr;
Distortion singleDistTmpLuma = 0;
uint64_t singleTmpFracBits = 0;
double singleCostTmp = 0;
int firstCheckId = ( sps.getUseLFNST() && mtsCheckRangeFlag && cu.mtsFlag ) ? mtsFirstCheckId : 0;
//we add the MTS candidates to the loop. TransformSkip will still be the last one to be checked (when modeId == lastCheckId) as long as checkTransformSkip is true
int lastCheckId = sps.getUseLFNST() ? ( ( mtsCheckRangeFlag && cu.mtsFlag ) ? ( mtsLastCheckId + ( int ) checkTransformSkip ) : ( numTransformIndexCands - ( firstCheckId + 1 ) + ( int ) checkTransformSkip ) ) :
trModes[ nNumTransformCands - 1 ].first;
bool isNotOnlyOneMode = sps.getUseLFNST() ? lastCheckId != firstCheckId : nNumTransformCands != 1;
if( isNotOnlyOneMode )
{
saveCS.pcv = cs.pcv;
saveCS.picture = cs.picture;
saveCS.area.repositionTo(cs.area);
saveCS.clearTUs();
tmpTU = &saveCS.addTU(currArea, partitioner.chType);
}
bool cbfBestMode = false;
bool cbfBestModeValid = false;
bool cbfDCT2 = true;
#if JVET_W0103_INTRA_MTS
if (sps.getUseLFNST() && cu.mtsFlag) xSelectAMTForFullRD(tu);
#endif
double bestDCT2cost = MAX_DOUBLE;
double threshold = m_pcEncCfg->getUseFastISP() && !cu.ispMode && ispIsCurrentWinner && nNumTransformCands > 1 ? 1 + 1.4 / sqrt( cu.lwidth() * cu.lheight() ) : 1;
for( int modeId = firstCheckId; modeId <= ( sps.getUseLFNST() ? lastCheckId : ( nNumTransformCands - 1 ) ); modeId++ )
{
uint8_t transformIndex = modeId;
#if JVET_W0103_INTRA_MTS
if (sps.getUseLFNST() && cu.mtsFlag)
{
if (modeId >= m_numCandAMTForFullRD) continue;
transformIndex = m_TestAMTForFullRD[modeId];
}
#endif
if( sps.getUseLFNST() )
{
if( ( transformIndex < lastCheckId ) || ( ( transformIndex == lastCheckId ) && !checkTransformSkip ) ) //we avoid this if the mode is transformSkip
{
// Skip checking other transform candidates if zero CBF is encountered and it is the best transform so far
if( m_pcEncCfg->getUseFastLFNST() && transformIndex && !cbfBestMode && cbfBestModeValid )
{
continue;
}
}
}
else
{
if (!(m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless()))
{
if (!cbfDCT2 || (m_pcEncCfg->getUseTransformSkipFast() && bestModeId[COMPONENT_Y] == MTS_SKIP))
{
break;
}
if (!trModes[modeId].second)
{
continue;
}
// we compare the DCT-II cost against the best ISP cost so far (except for TS)
if (m_pcEncCfg->getUseFastISP() && !cu.ispMode && ispIsCurrentWinner && trModes[modeId].first != MTS_DCT2_DCT2
&& (trModes[modeId].first != MTS_SKIP || !tsAllowed) && bestDCT2cost > bestCostSoFar * threshold)
{
continue;
}
}
tu.mtsIdx[COMPONENT_Y] = trModes[modeId].first;
}
if ((modeId != firstCheckId) && isNotOnlyOneMode)
{
m_CABACEstimator->getCtx() = ctxStart;
}
int default0Save1Load2 = 0;
singleDistTmpLuma = 0;
if( modeId == firstCheckId && ( sps.getUseLFNST() ? ( modeId != lastCheckId ) : ( nNumTransformCands > 1 ) ) )
{
default0Save1Load2 = 1;
}
else if (modeId != firstCheckId)
{
if( sps.getUseLFNST() && !cbfBestModeValid )
{
default0Save1Load2 = 1;
}
else
{
default0Save1Load2 = 2;
}
}
if( cu.ispMode )
{
default0Save1Load2 = 0;
}
if( sps.getUseLFNST() )
{
if( cu.mtsFlag )
{
if( moreProbMTSIdxFirst )
{
const ChannelType chType = toChannelType( COMPONENT_Y );
const CompArea& area = tu.blocks[ COMPONENT_Y ];
const PredictionUnit& pu = *cs.getPU( area.pos(), chType );
uint32_t uiIntraMode = pu.intraDir[ chType ];
if( transformIndex == 1 )
{
tu.mtsIdx[COMPONENT_Y] = (uiIntraMode < 34) ? MTS_DST7_DCT8 : MTS_DCT8_DST7;
}
else if( transformIndex == 2 )
{
tu.mtsIdx[COMPONENT_Y] = (uiIntraMode < 34) ? MTS_DCT8_DST7 : MTS_DST7_DCT8;
}
else
{
tu.mtsIdx[COMPONENT_Y] = MTS_DST7_DST7 + transformIndex;
}
}
else
{
tu.mtsIdx[COMPONENT_Y] = MTS_DST7_DST7 + transformIndex;
}
}
else
{
tu.mtsIdx[COMPONENT_Y] = transformIndex;
}
if( !cu.mtsFlag && checkTransformSkip )
{
xIntraCodingTUBlock( tu, COMPONENT_Y, singleDistTmpLuma, default0Save1Load2, &numSig, modeId == 0 ? &trModes : nullptr, true );
if( modeId == 0 )
{
for( int i = 0; i < 2; i++ )
{
if( trModes[ i ].second )
{
lastCheckId = trModes[ i ].first;
}
}
}
}
#if JVET_W0103_INTRA_MTS
else if (cu.mtsFlag)
{
xIntraCodingTUBlock(tu, COMPONENT_Y, singleDistTmpLuma, 2, &numSig, nullptr, true);
}
#endif
else
{
xIntraCodingTUBlock( tu, COMPONENT_Y, singleDistTmpLuma, default0Save1Load2, &numSig );
}
}
else
{
if( nNumTransformCands > 1 )
{
xIntraCodingTUBlock( tu, COMPONENT_Y, singleDistTmpLuma, default0Save1Load2, &numSig, modeId == 0 ? &trModes : nullptr, true );
if( modeId == 0 )
{
for( int i = 0; i < nNumTransformCands; i++ )
{
if( trModes[ i ].second )
{
lastCheckId = trModes[ i ].first;
}
}
}
}
else
{
xIntraCodingTUBlock( tu, COMPONENT_Y, singleDistTmpLuma, default0Save1Load2, &numSig );
}
}
cuCtx.mtsLastScanPos = false;
//----- determine rate and r-d cost -----
if( ( sps.getUseLFNST() ? ( modeId == lastCheckId && modeId != 0 && checkTransformSkip ) : ( trModes[ modeId ].first != 0 ) ) && !TU::getCbfAtDepth( tu, COMPONENT_Y, currDepth ) )
{
//In order not to code TS flag when cbf is zero, the case for TS with cbf being zero is forbidden.
if (m_pcEncCfg->getCostMode() != COST_LOSSLESS_CODING || !slice.isLossless())
{
singleCostTmp = MAX_DOUBLE;
}
else
{
singleTmpFracBits = xGetIntraFracBitsQT(*csFull, partitioner, true, false, subTuCounter, ispType, &cuCtx);
singleCostTmp = m_pcRdCost->calcRdCost(singleTmpFracBits, singleDistTmpLuma);
}
}
else
{
if( cu.ispMode && m_pcRdCost->calcRdCost( csFull->fracBits, csFull->dist + singleDistTmpLuma ) > bestCostSoFar )
{
earlySkipISP = true;
}
else
{
singleTmpFracBits = xGetIntraFracBitsQT( *csFull, partitioner, true, false, subTuCounter, ispType, &cuCtx );
}
if (tu.mtsIdx[COMPONENT_Y] > MTS_SKIP)
{
if (!cuCtx.mtsLastScanPos)
{
singleCostTmp = MAX_DOUBLE;
}
else
{
singleCostTmp = m_pcRdCost->calcRdCost(singleTmpFracBits, singleDistTmpLuma);
}
}
else
{
singleCostTmp = m_pcRdCost->calcRdCost(singleTmpFracBits, singleDistTmpLuma);
}
}
if ( !cu.ispMode && nNumTransformCands > 1 && modeId == firstCheckId )
{
bestDCT2cost = singleCostTmp;
}
#if JVET_W0103_INTRA_MTS
if (sps.getUseLFNST() && cu.mtsFlag)
{
if (singleCostTmp != MAX_DOUBLE)
{
const CompArea& area = tu.blocks[COMPONENT_Y];
double skipThreshold = 1.0 + 1.0 / sqrt((double)(area.width*area.height));
skipThreshold = std::max(skipThreshold, !m_pcEncCfg->getUseFastLFNST()? 1.06: 1.03);
if (singleCostTmp > skipThreshold * m_globalBestCostStore)
{
m_numCandAMTForFullRD = modeId + 1;
}
}
}
#endif
if (singleCostTmp < dSingleCost)
{
dSingleCost = singleCostTmp;
uiSingleDistLuma = singleDistTmpLuma;
singleFracBits = singleTmpFracBits;
if( sps.getUseLFNST() )
{
bestModeId[ COMPONENT_Y ] = modeId;
cbfBestMode = TU::getCbfAtDepth( tu, COMPONENT_Y, currDepth );
cbfBestModeValid = true;
validReturnFull = true;
}
else
{
bestModeId[ COMPONENT_Y ] = trModes[ modeId ].first;
if( trModes[ modeId ].first == 0 )
{
cbfDCT2 = TU::getCbfAtDepth( tu, COMPONENT_Y, currDepth );
}
}
if( bestModeId[COMPONENT_Y] != lastCheckId )
{
saveCS.getPredBuf( tu.Y() ).copyFrom( csFull->getPredBuf( tu.Y() ) );
saveCS.getRecoBuf( tu.Y() ).copyFrom( csFull->getRecoBuf( tu.Y() ) );
if( KEEP_PRED_AND_RESI_SIGNALS )
{
saveCS.getResiBuf ( tu.Y() ).copyFrom( csFull->getResiBuf ( tu.Y() ) );
saveCS.getOrgResiBuf( tu.Y() ).copyFrom( csFull->getOrgResiBuf( tu.Y() ) );
}
tmpTU->copyComponentFrom( tu, COMPONENT_Y );
ctxBest = m_CABACEstimator->getCtx();
}
}
}
if( sps.getUseLFNST() && !validReturnFull )
{
csFull->cost = MAX_DOUBLE;
if( bCheckSplit )
{
ctxBest = m_CABACEstimator->getCtx();
}
}
else
{
if( bestModeId[COMPONENT_Y] != lastCheckId )
{
csFull->getPredBuf( tu.Y() ).copyFrom( saveCS.getPredBuf( tu.Y() ) );
csFull->getRecoBuf( tu.Y() ).copyFrom( saveCS.getRecoBuf( tu.Y() ) );
if( KEEP_PRED_AND_RESI_SIGNALS )
{
csFull->getResiBuf ( tu.Y() ).copyFrom( saveCS.getResiBuf ( tu.Y() ) );
csFull->getOrgResiBuf( tu.Y() ).copyFrom( saveCS.getOrgResiBuf( tu.Y() ) );
}
tu.copyComponentFrom( *tmpTU, COMPONENT_Y );
if( !bCheckSplit )
{
m_CABACEstimator->getCtx() = ctxBest;
}
}
else if( bCheckSplit )
{
ctxBest = m_CABACEstimator->getCtx();
}
csFull->cost += dSingleCost;
csFull->dist += uiSingleDistLuma;
csFull->fracBits += singleFracBits;
}
}
bool validReturnSplit = false;
if( bCheckSplit )
{
//----- store full entropy coding status, load original entropy coding status -----
if( bCheckFull )
{
m_CABACEstimator->getCtx() = ctxStart;
}
//----- code splitted block -----
csSplit->cost = 0;
bool uiSplitCbfLuma = false;
bool splitIsSelected = true;
if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
{
partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
}
if( cu.ispMode )
{
partitioner.splitCurrArea( ispType, *csSplit );
}
do
{
bool tmpValidReturnSplit = xRecurIntraCodingLumaQT( *csSplit, partitioner, bestCostSoFar, subTuCounter, ispType, false, mtsCheckRangeFlag, mtsFirstCheckId, mtsLastCheckId );
#if SIGN_PREDICTION
cs.picture->getRecoBuf( partitioner.currArea() ).copyFrom( cs.getRecoBuf( partitioner.currArea() ) );
#endif
subTuCounter += subTuCounter != -1 ? 1 : 0;
if( sps.getUseLFNST() && !tmpValidReturnSplit )
{
splitIsSelected = false;
break;
}
if( !cu.ispMode )
{
csSplit->setDecomp( partitioner.currArea().Y() );
}
else if( CU::isISPFirst( cu, partitioner.currArea().Y(), COMPONENT_Y ) )
{
csSplit->setDecomp( cu.Y() );
}
uiSplitCbfLuma |= TU::getCbfAtDepth( *csSplit->getTU( partitioner.currArea().lumaPos(), partitioner.chType, subTuCounter - 1 ), COMPONENT_Y, partitioner.currTrDepth );
if( cu.ispMode )
{
//exit condition if the accumulated cost is already larger than the best cost so far (no impact in RD performance)
if( csSplit->cost > bestCostSoFar )
{
earlySkipISP = true;
splitIsSelected = false;
break;
}
else
{
//more restrictive exit condition
bool tuIsDividedInRows = CU::divideTuInRows( cu );
int nSubPartitions = tuIsDividedInRows ? cu.lheight() >> floorLog2(cu.firstTU->lheight()) : cu.lwidth() >> floorLog2(cu.firstTU->lwidth());
double threshold = nSubPartitions == 2 ? 0.95 : subTuCounter == 1 ? 0.83 : 0.91;
if( subTuCounter < nSubPartitions && csSplit->cost > bestCostSoFar*threshold )
{
earlySkipISP = true;
splitIsSelected = false;
break;
}
}
}
} while( partitioner.nextPart( *csSplit ) );
partitioner.exitCurrSplit();
if( splitIsSelected )
{
for( auto &ptu : csSplit->tus )
{
if( currArea.Y().contains( ptu->Y() ) )
{
TU::setCbfAtDepth( *ptu, COMPONENT_Y, currDepth, uiSplitCbfLuma ? 1 : 0 );
}
}
//----- restore context states -----
m_CABACEstimator->getCtx() = ctxStart;
cuCtx.violatesLfnstConstrained[CHANNEL_TYPE_LUMA] = false;
cuCtx.violatesLfnstConstrained[CHANNEL_TYPE_CHROMA] = false;
cuCtx.lfnstLastScanPos = false;
cuCtx.violatesMtsCoeffConstraint = false;
cuCtx.mtsLastScanPos = false;
//----- determine rate and r-d cost -----
csSplit->fracBits = xGetIntraFracBitsQT( *csSplit, partitioner, true, false, cu.ispMode ? 0 : -1, ispType, &cuCtx );
//--- update cost ---
csSplit->cost = m_pcRdCost->calcRdCost(csSplit->fracBits, csSplit->dist);
validReturnSplit = true;
}
}
bool retVal = false;
if( csFull || csSplit )
{
if( !sps.getUseLFNST() || validReturnFull || validReturnSplit )
{
// otherwise this would've happened in useSubStructure
cs.picture->getRecoBuf(currArea.Y()).copyFrom(cs.getRecoBuf(currArea.Y()));
cs.picture->getPredBuf(currArea.Y()).copyFrom(cs.getPredBuf(currArea.Y()));
if( cu.ispMode && earlySkipISP )
{
cs.cost = MAX_DOUBLE;
}
else
{
cs.cost = m_pcRdCost->calcRdCost( cs.fracBits, cs.dist );
retVal = true;
}
}
}
return retVal;
}
bool IntraSearch::xRecurIntraCodingACTQT(CodingStructure &cs, Partitioner &partitioner, bool mtsCheckRangeFlag, int mtsFirstCheckId, int mtsLastCheckId, bool moreProbMTSIdxFirst)
{
const UnitArea &currArea = partitioner.currArea();
uint32_t currDepth = partitioner.currTrDepth;
const Slice &slice = *cs.slice;
const SPS &sps = *cs.sps;
bool bCheckFull = !partitioner.canSplit(TU_MAX_TR_SPLIT, cs);
bool bCheckSplit = !bCheckFull;
TempCtx ctxStart(m_CtxCache, m_CABACEstimator->getCtx());
TempCtx ctxBest(m_CtxCache);
CodingStructure *csSplit = nullptr;
CodingStructure *csFull = nullptr;
if (bCheckSplit)
{
csSplit = &cs;
}
else if (bCheckFull)
{
csFull = &cs;
}
bool validReturnFull = false;
if (bCheckFull)
{
TransformUnit &tu = csFull->addTU(CS::getArea(*csFull, currArea, partitioner.chType), partitioner.chType);
tu.depth = currDepth;
const CodingUnit &cu = *csFull->getCU(tu.Y().pos(), CHANNEL_TYPE_LUMA);
const PredictionUnit &pu = *csFull->getPU(tu.Y().pos(), CHANNEL_TYPE_LUMA);
CHECK(!tu.Y().valid() || !tu.Cb().valid() || !tu.Cr().valid(), "Invalid TU");
CHECK(tu.cu != &cu, "wrong CU fetch");
CHECK(cu.ispMode, "adaptive color transform cannot be applied to ISP");
CHECK(pu.intraDir[CHANNEL_TYPE_CHROMA] != DM_CHROMA_IDX, "chroma should use DM mode for adaptive color transform");
// 1. intra prediction and forward color transform
PelUnitBuf orgBuf = csFull->getOrgBuf(tu);
PelUnitBuf predBuf = csFull->getPredBuf(tu);
PelUnitBuf resiBuf = csFull->getResiBuf(tu);
PelUnitBuf orgResiBuf = csFull->getOrgResiBuf(tu);
#if JVET_S0234_ACT_CRS_FIX
bool doReshaping = (slice.getLmcsEnabledFlag() && slice.getPicHeader()->getLmcsChromaResidualScaleFlag() && (slice.isIntra() || m_pcReshape->getCTUFlag()) && (tu.blocks[COMPONENT_Cb].width * tu.blocks[COMPONENT_Cb].height > 4));
if (doReshaping)
{
const Area area = tu.Y().valid() ? tu.Y() : Area(recalcPosition(tu.chromaFormat, tu.chType, CHANNEL_TYPE_LUMA, tu.blocks[tu.chType].pos()), recalcSize(tu.chromaFormat, tu.chType, CHANNEL_TYPE_LUMA, tu.blocks[tu.chType].size()));
const CompArea &areaY = CompArea(COMPONENT_Y, tu.chromaFormat, area);
int adj = m_pcReshape->calculateChromaAdjVpduNei(tu, areaY);
tu.setChromaAdj(adj);
}
#endif
for (int i = 0; i < getNumberValidComponents(tu.chromaFormat); i++)
{
ComponentID compID = (ComponentID)i;
const CompArea &area = tu.blocks[compID];
const ChannelType chType = toChannelType(compID);
PelBuf piOrg = orgBuf.bufs[compID];
PelBuf piPred = predBuf.bufs[compID];
PelBuf piResi = resiBuf.bufs[compID];
initIntraPatternChType(*tu.cu, area);
#if JVET_V0130_INTRA_TMP && !JVET_W0069_TMP_BOUNDARY
if( PU::isTmp( pu, chType ) )
{
int foundCandiNum;
getTargetTemplate( pu.cu, pu.lwidth(), pu.lheight() );
candidateSearchIntra( pu.cu, pu.lwidth(), pu.lheight() );
generateTMPrediction( piPred.buf, piPred.stride, pu.lwidth(), pu.lheight(), foundCandiNum );
CHECK( foundCandiNum < 1, "" );
}
else if( PU::isMIP( pu, chType ) )
#else
if (PU::isMIP(pu, chType))
#endif
{
initIntraMip(pu, area);
predIntraMip(compID, piPred, pu);
}
else
{
predIntraAng(compID, piPred, pu);
}
piResi.copyFrom(piOrg);
if (slice.getLmcsEnabledFlag() && m_pcReshape->getCTUFlag() && compID == COMPONENT_Y)
{
CompArea tmpArea(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
PelBuf tmpPred = m_tmpStorageLCU.getBuf(tmpArea);
piResi.rspSignal( piPred, m_pcReshape->getFwdLUT() );
piResi.subtract(tmpPred);
}
#if JVET_S0234_ACT_CRS_FIX
else if (doReshaping && (compID != COMPONENT_Y))
{
piResi.subtract(piPred);
int cResScaleInv = tu.getChromaAdj();
piResi.scaleSignal(cResScaleInv, 1, slice.clpRng(compID));
}
#endif
else
{
piResi.subtract(piPred);
}
}
resiBuf.colorSpaceConvert(orgResiBuf, true, cs.slice->clpRng(COMPONENT_Y));
// 2. luma residual optimization
double dSingleCostLuma = MAX_DOUBLE;
bool checkTransformSkip = sps.getTransformSkipEnabledFlag();
int bestLumaModeId = 0;
uint8_t nNumTransformCands = cu.mtsFlag ? 4 : 1;
uint8_t numTransformIndexCands = nNumTransformCands;
const bool tsAllowed = TU::isTSAllowed(tu, COMPONENT_Y);
const bool mtsAllowed = CU::isMTSAllowed(cu, COMPONENT_Y);
std::vector<TrMode> trModes;
if (sps.getUseLFNST())
{
checkTransformSkip &= tsAllowed;
checkTransformSkip &= !cu.mtsFlag;
checkTransformSkip &= !cu.lfnstIdx;
if (!cu.mtsFlag && checkTransformSkip)
{
trModes.push_back(TrMode(0, true)); //DCT2
trModes.push_back(TrMode(1, true)); //TS
}
}
else
{
if (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless())
{
nNumTransformCands = 1;
CHECK(!tsAllowed && !cu.bdpcmMode, "transform skip should be enabled for LS");
if (cu.bdpcmMode)
{
trModes.push_back(TrMode(0, true));
}
else
{
trModes.push_back(TrMode(1, true));
}
}
else
{
nNumTransformCands = 1 + (tsAllowed ? 1 : 0) + (mtsAllowed ? 4 : 0); // DCT + TS + 4 MTS = 6 tests
trModes.push_back(TrMode(0, true)); // DCT2
if (tsAllowed)
{
trModes.push_back(TrMode(1, true));
}
if (mtsAllowed)
{
for (int i = 2; i < 6; i++)
{
trModes.push_back(TrMode(i, true));
}
}
}
}
CodingStructure &saveLumaCS = *m_pSaveCS[0];
TransformUnit *tmpTU = nullptr;
Distortion singleDistTmpLuma = 0;
uint64_t singleTmpFracBits = 0;
double singleCostTmp = 0;
int firstCheckId = (sps.getUseLFNST() && mtsCheckRangeFlag && cu.mtsFlag) ? mtsFirstCheckId : 0;
int lastCheckId = sps.getUseLFNST() ? ((mtsCheckRangeFlag && cu.mtsFlag) ? (mtsLastCheckId + (int)checkTransformSkip) : (numTransformIndexCands - (firstCheckId + 1) + (int)checkTransformSkip)) : trModes[nNumTransformCands - 1].first;
bool isNotOnlyOneMode = sps.getUseLFNST() ? lastCheckId != firstCheckId : nNumTransformCands != 1;
if (isNotOnlyOneMode)
{
saveLumaCS.pcv = csFull->pcv;
saveLumaCS.picture = csFull->picture;
saveLumaCS.area.repositionTo(csFull->area);
saveLumaCS.clearTUs();
tmpTU = &saveLumaCS.addTU(currArea, partitioner.chType);
}
bool cbfBestMode = false;
bool cbfBestModeValid = false;
bool cbfDCT2 = true;
if (m_pcEncCfg->getCostMode() != COST_LOSSLESS_CODING || !slice.isLossless())
m_pcRdCost->lambdaAdjustColorTrans(true, COMPONENT_Y);
for (int modeId = firstCheckId; modeId <= ((m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless()) ? (nNumTransformCands - 1) : lastCheckId); modeId++)
{
uint8_t transformIndex = modeId;
csFull->getResiBuf(tu.Y()).copyFrom(csFull->getOrgResiBuf(tu.Y()));
m_CABACEstimator->getCtx() = ctxStart;
m_CABACEstimator->resetBits();
if (sps.getUseLFNST())
{
if ((transformIndex < lastCheckId) || ((transformIndex == lastCheckId) && !checkTransformSkip)) //we avoid this if the mode is transformSkip
{
// Skip checking other transform candidates if zero CBF is encountered and it is the best transform so far
if (m_pcEncCfg->getUseFastLFNST() && transformIndex && !cbfBestMode && cbfBestModeValid)
{
continue;
}
}
}
else
{
if (!(m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless()))
{
if (!cbfDCT2 || (m_pcEncCfg->getUseTransformSkipFast() && bestLumaModeId == 1))
{
break;
}
if (!trModes[modeId].second)
{
continue;
}
}
tu.mtsIdx[COMPONENT_Y] = trModes[modeId].first;
}
singleDistTmpLuma = 0;
if (sps.getUseLFNST())
{
if (cu.mtsFlag)
{
if (moreProbMTSIdxFirst)
{
uint32_t uiIntraMode = pu.intraDir[CHANNEL_TYPE_LUMA];
if (transformIndex == 1)
{
tu.mtsIdx[COMPONENT_Y] = (uiIntraMode < 34) ? MTS_DST7_DCT8 : MTS_DCT8_DST7;
}
else if (transformIndex == 2)
{
tu.mtsIdx[COMPONENT_Y] = (uiIntraMode < 34) ? MTS_DCT8_DST7 : MTS_DST7_DCT8;
}
else
{
tu.mtsIdx[COMPONENT_Y] = MTS_DST7_DST7 + transformIndex;
}
}
else
{
tu.mtsIdx[COMPONENT_Y] = MTS_DST7_DST7 + transformIndex;
}
}
else
{
tu.mtsIdx[COMPONENT_Y] = transformIndex;
}
if (!cu.mtsFlag && checkTransformSkip)
{
xIntraCodingACTTUBlock(tu, COMPONENT_Y, singleDistTmpLuma, modeId == 0 ? &trModes : nullptr, true);
if (modeId == 0)
{
for (int i = 0; i < 2; i++)
{
if (trModes[i].second)
{
lastCheckId = trModes[i].first;
}
}
}
}
else
{
xIntraCodingACTTUBlock(tu, COMPONENT_Y, singleDistTmpLuma);
}
}
else
{
if (nNumTransformCands > 1)
{
xIntraCodingACTTUBlock(tu, COMPONENT_Y, singleDistTmpLuma, modeId == 0 ? &trModes : nullptr, true);
if (modeId == 0)
{
for (int i = 0; i < nNumTransformCands; i++)
{
if (trModes[i].second)
{
lastCheckId = trModes[i].first;
}
}
}
}
else
{
xIntraCodingACTTUBlock(tu, COMPONENT_Y, singleDistTmpLuma);
}
}
CUCtx cuCtx;
cuCtx.isDQPCoded = true;
cuCtx.isChromaQpAdjCoded = true;
//----- determine rate and r-d cost -----
if ((sps.getUseLFNST() ? (modeId == lastCheckId && modeId != 0 && checkTransformSkip) : (trModes[modeId].first != 0)) && !TU::getCbfAtDepth(tu, COMPONENT_Y, currDepth))
{
//In order not to code TS flag when cbf is zero, the case for TS with cbf being zero is forbidden.
if (m_pcEncCfg->getCostMode() != COST_LOSSLESS_CODING || !slice.isLossless())
singleCostTmp = MAX_DOUBLE;
else
{
singleTmpFracBits = xGetIntraFracBitsQT(*csFull, partitioner, true, false, -1, TU_NO_ISP);
singleCostTmp = m_pcRdCost->calcRdCost(singleTmpFracBits, singleDistTmpLuma, false);
}
}
else
{
singleTmpFracBits = xGetIntraFracBitsQT(*csFull, partitioner, true, false, -1, TU_NO_ISP, &cuCtx);
if (tu.mtsIdx[COMPONENT_Y] > MTS_SKIP)
{
if (!cuCtx.mtsLastScanPos)
{
singleCostTmp = MAX_DOUBLE;
}
else
{
singleCostTmp = m_pcRdCost->calcRdCost(singleTmpFracBits, singleDistTmpLuma, false);
}
}
else
{
singleCostTmp = m_pcRdCost->calcRdCost(singleTmpFracBits, singleDistTmpLuma, false);
}
}
if (singleCostTmp < dSingleCostLuma)
{
dSingleCostLuma = singleCostTmp;
validReturnFull = true;
if (sps.getUseLFNST())
{
bestLumaModeId = modeId;
cbfBestMode = TU::getCbfAtDepth(tu, COMPONENT_Y, currDepth);
cbfBestModeValid = true;
}
else
{
bestLumaModeId = trModes[modeId].first;
if (trModes[modeId].first == 0)
{
cbfDCT2 = TU::getCbfAtDepth(tu, COMPONENT_Y, currDepth);
}
}
if (bestLumaModeId != lastCheckId)
{
saveLumaCS.getResiBuf(tu.Y()).copyFrom(csFull->getResiBuf(tu.Y()));
tmpTU->copyComponentFrom(tu, COMPONENT_Y);
ctxBest = m_CABACEstimator->getCtx();
}
}
}
if (m_pcEncCfg->getCostMode() != COST_LOSSLESS_CODING || !slice.isLossless())
m_pcRdCost->lambdaAdjustColorTrans(false, COMPONENT_Y);
if (sps.getUseLFNST())
{
if (!validReturnFull)
{
csFull->cost = MAX_DOUBLE;
return false;
}
}
else
{
CHECK(!validReturnFull, "no transform mode was tested for luma");
}
csFull->setDecomp(currArea.Y(), true);
csFull->setDecomp(currArea.Cb(), true);
if (bestLumaModeId != lastCheckId)
{
csFull->getResiBuf(tu.Y()).copyFrom(saveLumaCS.getResiBuf(tu.Y()));
tu.copyComponentFrom(*tmpTU, COMPONENT_Y);
m_CABACEstimator->getCtx() = ctxBest;
}
// 3 chroma residual optimization
CodingStructure &saveChromaCS = *m_pSaveCS[1];
saveChromaCS.pcv = csFull->pcv;
saveChromaCS.picture = csFull->picture;
saveChromaCS.area.repositionTo(csFull->area);
saveChromaCS.initStructData(MAX_INT, true);
tmpTU = &saveChromaCS.addTU(currArea, partitioner.chType);
CompArea& cbArea = tu.blocks[COMPONENT_Cb];
CompArea& crArea = tu.blocks[COMPONENT_Cr];
tu.jointCbCr = 0;
#if !JVET_S0234_ACT_CRS_FIX
bool doReshaping = (slice.getLmcsEnabledFlag() && slice.getPicHeader()->getLmcsChromaResidualScaleFlag() && (slice.isIntra() || m_pcReshape->getCTUFlag()) && (cbArea.width * cbArea.height > 4));
if (doReshaping)
{
#if LMCS_CHROMA_CALC_CU
const Area area = tu.cu->Y().valid() ? tu.cu->Y() : Area(recalcPosition(tu.chromaFormat, tu.chType, CHANNEL_TYPE_LUMA, tu.cu->blocks[tu.chType].pos()), recalcSize(tu.chromaFormat, tu.chType, CHANNEL_TYPE_LUMA, tu.cu->blocks[tu.chType].size()));
#else
const Area area = tu.Y().valid() ? tu.Y() : Area(recalcPosition(tu.chromaFormat, tu.chType, CHANNEL_TYPE_LUMA, tu.blocks[tu.chType].pos()), recalcSize(tu.chromaFormat, tu.chType, CHANNEL_TYPE_LUMA, tu.blocks[tu.chType].size()));
#endif
const CompArea &areaY = CompArea(COMPONENT_Y, tu.chromaFormat, area);
int adj = m_pcReshape->calculateChromaAdjVpduNei(tu, areaY);
tu.setChromaAdj(adj);
}
#endif
CompStorage orgResiCb[5], orgResiCr[5]; // 0:std, 1-3:jointCbCr (placeholder at this stage), 4:crossComp
orgResiCb[0].create(cbArea);
orgResiCr[0].create(crArea);
orgResiCb[0].copyFrom(csFull->getOrgResiBuf(cbArea));
orgResiCr[0].copyFrom(csFull->getOrgResiBuf(crArea));
#if !JVET_S0234_ACT_CRS_FIX
if (doReshaping)
{
int cResScaleInv = tu.getChromaAdj();
orgResiCb[0].scaleSignal(cResScaleInv, 1, slice.clpRng(COMPONENT_Cb));
orgResiCr[0].scaleSignal(cResScaleInv, 1, slice.clpRng(COMPONENT_Cr));
}
#endif
// 3.1 regular chroma residual coding
csFull->getResiBuf(cbArea).copyFrom(orgResiCb[0]);
csFull->getResiBuf(crArea).copyFrom(orgResiCr[0]);
for (uint32_t c = COMPONENT_Cb; c < ::getNumberValidTBlocks(*csFull->pcv); c++)
{
const ComponentID compID = ComponentID(c);
double dSingleBestCostChroma = MAX_DOUBLE;
int bestModeId = -1;
bool tsAllowed = TU::isTSAllowed(tu, compID) && (m_pcEncCfg->getUseChromaTS()) && !cu.lfnstIdx;
uint8_t numTransformCands = 1 + (tsAllowed ? 1 : 0); // DCT + TS = 2 tests
bool cbfDCT2 = true;
trModes.clear();
if (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless())
{
numTransformCands = 1;
CHECK(!tsAllowed && !cu.bdpcmModeChroma, "transform skip should be enabled for LS");
if (cu.bdpcmModeChroma)
{
trModes.push_back(TrMode(0, true));
}
else
{
trModes.push_back(TrMode(1, true));
}
}
else
{
trModes.push_back(TrMode(0, true)); // DCT
if (tsAllowed)
{
trModes.push_back(TrMode(1, true)); // TS
}
}
if (m_pcEncCfg->getCostMode() != COST_LOSSLESS_CODING || !slice.isLossless())
#if JVET_S0234_ACT_CRS_FIX
{
if (doReshaping)
{
int cResScaleInv = tu.getChromaAdj();
m_pcRdCost->lambdaAdjustColorTrans(true, compID, true, &cResScaleInv);
}
else
{
m_pcRdCost->lambdaAdjustColorTrans(true, compID);
}
}
#else
{
m_pcRdCost->lambdaAdjustColorTrans(true, compID);
}
#endif
TempCtx ctxBegin(m_CtxCache);
ctxBegin = m_CABACEstimator->getCtx();
for (int modeId = 0; modeId < numTransformCands; modeId++)
{
if (m_pcEncCfg->getCostMode() != COST_LOSSLESS_CODING || !slice.isLossless())
{
if (modeId && !cbfDCT2)
{
continue;
}
if (!trModes[modeId].second)
{
continue;
}
}
if (modeId > 0)
{
m_CABACEstimator->getCtx() = ctxBegin;
}
tu.mtsIdx[compID] = trModes[modeId].first;
Distortion singleDistChroma = 0;
if (numTransformCands > 1)
{
xIntraCodingACTTUBlock(tu, compID, singleDistChroma, modeId == 0 ? &trModes : nullptr, true);
}
else
{
xIntraCodingACTTUBlock(tu, compID, singleDistChroma);
}
if (!tu.mtsIdx[compID])
{
cbfDCT2 = TU::getCbfAtDepth(tu, compID, currDepth);
}
uint64_t fracBitChroma = xGetIntraFracBitsQTChroma(tu, compID);
double dSingleCostChroma = m_pcRdCost->calcRdCost(fracBitChroma, singleDistChroma, false);
if (dSingleCostChroma < dSingleBestCostChroma)
{
dSingleBestCostChroma = dSingleCostChroma;
bestModeId = modeId;
if (bestModeId != (numTransformCands - 1))
{
saveChromaCS.getResiBuf(tu.blocks[compID]).copyFrom(csFull->getResiBuf(tu.blocks[compID]));
tmpTU->copyComponentFrom(tu, compID);
ctxBest = m_CABACEstimator->getCtx();
}
}
}
if (bestModeId != (numTransformCands - 1))
{
csFull->getResiBuf(tu.blocks[compID]).copyFrom(saveChromaCS.getResiBuf(tu.blocks[compID]));
tu.copyComponentFrom(*tmpTU, compID);
m_CABACEstimator->getCtx() = ctxBest;
}
if (m_pcEncCfg->getCostMode() != COST_LOSSLESS_CODING || !slice.isLossless())
{
m_pcRdCost->lambdaAdjustColorTrans(false, compID);
}
}
Position tuPos = tu.Y();
tuPos.relativeTo(cu.Y());
const UnitArea relativeUnitArea(tu.chromaFormat, Area(tuPos, tu.Y().size()));
PelUnitBuf invColorTransResidual = m_colorTransResiBuf.getBuf(relativeUnitArea);
csFull->getResiBuf(tu).colorSpaceConvert(invColorTransResidual, false, cs.slice->clpRng(COMPONENT_Y));
Distortion totalDist = 0;
for (uint32_t c = COMPONENT_Y; c < ::getNumberValidTBlocks(*csFull->pcv); c++)
{
const ComponentID compID = ComponentID(c);
const CompArea& area = tu.blocks[compID];
PelBuf piOrg = csFull->getOrgBuf(area);
PelBuf piReco = csFull->getRecoBuf(area);
PelBuf piPred = csFull->getPredBuf(area);
PelBuf piResi = invColorTransResidual.bufs[compID];
#if JVET_S0234_ACT_CRS_FIX
if (doReshaping && (compID != COMPONENT_Y))
{
piResi.scaleSignal(tu.getChromaAdj(), 0, slice.clpRng(compID));
}
#endif
piReco.reconstruct(piPred, piResi, cs.slice->clpRng(compID));
if (m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled() || (m_pcEncCfg->getLmcs()
& slice.getLmcsEnabledFlag() && (m_pcReshape->getCTUFlag() || (isChroma(compID) && m_pcEncCfg->getReshapeIntraCMD()))))
{
const CPelBuf orgLuma = csFull->getOrgBuf(csFull->area.blocks[COMPONENT_Y]);
if (compID == COMPONENT_Y && !(m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled()))
{
CompArea tmpArea1(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
PelBuf tmpRecLuma = m_tmpStorageLCU.getBuf(tmpArea1);
tmpRecLuma.rspSignal( piReco, m_pcReshape->getInvLUT() );
totalDist += m_pcRdCost->getDistPart(piOrg, tmpRecLuma, sps.getBitDepth(toChannelType(compID)), compID, DF_SSE_WTD, &orgLuma);
}
else
{
totalDist += m_pcRdCost->getDistPart(piOrg, piReco, sps.getBitDepth(toChannelType(compID)), compID, DF_SSE_WTD, &orgLuma);
}
}
else
{
totalDist += m_pcRdCost->getDistPart(piOrg, piReco, sps.getBitDepth(toChannelType(compID)), compID, DF_SSE);
}
}
m_CABACEstimator->getCtx() = ctxStart;
uint64_t totalBits = xGetIntraFracBitsQT(*csFull, partitioner, true, true, -1, TU_NO_ISP);
double totalCost = m_pcRdCost->calcRdCost(totalBits, totalDist);
saveChromaCS.getResiBuf(cbArea).copyFrom(csFull->getResiBuf(cbArea));
saveChromaCS.getResiBuf(crArea).copyFrom(csFull->getResiBuf(crArea));
saveChromaCS.getRecoBuf(tu).copyFrom(csFull->getRecoBuf(tu));
tmpTU->copyComponentFrom(tu, COMPONENT_Cb);
tmpTU->copyComponentFrom(tu, COMPONENT_Cr);
ctxBest = m_CABACEstimator->getCtx();
// 3.2 jointCbCr
double bestCostJointCbCr = totalCost;
Distortion bestDistJointCbCr = totalDist;
uint64_t bestBitsJointCbCr = totalBits;
int bestJointCbCr = tu.jointCbCr; assert(!bestJointCbCr);
bool lastIsBest = false;
std::vector<int> jointCbfMasksToTest;
if (sps.getJointCbCrEnabledFlag() && (TU::getCbf(tu, COMPONENT_Cb) || TU::getCbf(tu, COMPONENT_Cr)))
{
jointCbfMasksToTest = m_pcTrQuant->selectICTCandidates(tu, orgResiCb, orgResiCr);
}
for (int cbfMask : jointCbfMasksToTest)
{
tu.jointCbCr = (uint8_t)cbfMask;
ComponentID codeCompId = ((cbfMask >> 1) ? COMPONENT_Cb : COMPONENT_Cr);
ComponentID otherCompId = ((codeCompId == COMPONENT_Cb) ? COMPONENT_Cr : COMPONENT_Cb);
bool tsAllowed = TU::isTSAllowed(tu, codeCompId) && (m_pcEncCfg->getUseChromaTS()) && !cu.lfnstIdx;
uint8_t numTransformCands = 1 + (tsAllowed ? 1 : 0); // DCT + TS = 2 tests
bool cbfDCT2 = true;
trModes.clear();
trModes.push_back(TrMode(0, true)); // DCT2
if (tsAllowed)
{
trModes.push_back(TrMode(1, true));//TS
}
for (int modeId = 0; modeId < numTransformCands; modeId++)
{
if (modeId && !cbfDCT2)
{
continue;
}
if (!trModes[modeId].second)
{
continue;
}
Distortion distTmp = 0;
tu.mtsIdx[codeCompId] = trModes[modeId].first;
tu.mtsIdx[otherCompId] = MTS_DCT2_DCT2;
m_CABACEstimator->getCtx() = ctxStart;
csFull->getResiBuf(cbArea).copyFrom(orgResiCb[cbfMask]);
csFull->getResiBuf(crArea).copyFrom(orgResiCr[cbfMask]);
if (nNumTransformCands > 1)
{
xIntraCodingACTTUBlock(tu, COMPONENT_Cb, distTmp, modeId == 0 ? &trModes : nullptr, true);
}
else
{
xIntraCodingACTTUBlock(tu, COMPONENT_Cb, distTmp);
}
double costTmp = std::numeric_limits<double>::max();
uint64_t bitsTmp = 0;
if (distTmp < std::numeric_limits<Distortion>::max())
{
if (!tu.mtsIdx[codeCompId])
{
cbfDCT2 = true;
}
csFull->getResiBuf(tu).colorSpaceConvert(invColorTransResidual, false, csFull->slice->clpRng(COMPONENT_Y));
distTmp = 0;
for (uint32_t c = COMPONENT_Y; c < ::getNumberValidTBlocks(*csFull->pcv); c++)
{
const ComponentID compID = ComponentID(c);
const CompArea & area = tu.blocks[compID];
PelBuf piOrg = csFull->getOrgBuf(area);
PelBuf piReco = csFull->getRecoBuf(area);
PelBuf piPred = csFull->getPredBuf(area);
PelBuf piResi = invColorTransResidual.bufs[compID];
#if JVET_S0234_ACT_CRS_FIX
if (doReshaping && (compID != COMPONENT_Y))
{
piResi.scaleSignal(tu.getChromaAdj(), 0, slice.clpRng(compID));
}
#endif
piReco.reconstruct(piPred, piResi, cs.slice->clpRng(compID));
if (m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled()
|| (m_pcEncCfg->getLmcs() & slice.getLmcsEnabledFlag()
&& (m_pcReshape->getCTUFlag() || (isChroma(compID) && m_pcEncCfg->getReshapeIntraCMD()))))
{
const CPelBuf orgLuma = csFull->getOrgBuf(csFull->area.blocks[COMPONENT_Y]);
if (compID == COMPONENT_Y && !(m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled()))
{
CompArea tmpArea1(COMPONENT_Y, area.chromaFormat, Position(0, 0), area.size());
PelBuf tmpRecLuma = m_tmpStorageLCU.getBuf(tmpArea1);
tmpRecLuma.rspSignal(piReco, m_pcReshape->getInvLUT());
distTmp += m_pcRdCost->getDistPart(piOrg, tmpRecLuma, sps.getBitDepth(toChannelType(compID)), compID,
DF_SSE_WTD, &orgLuma);
}
else
{
distTmp += m_pcRdCost->getDistPart(piOrg, piReco, sps.getBitDepth(toChannelType(compID)), compID,
DF_SSE_WTD, &orgLuma);
}
}
else
{
distTmp += m_pcRdCost->getDistPart(piOrg, piReco, sps.getBitDepth(toChannelType(compID)), compID, DF_SSE);
}
}
bitsTmp = xGetIntraFracBitsQT(*csFull, partitioner, true, true, -1, TU_NO_ISP);
costTmp = m_pcRdCost->calcRdCost(bitsTmp, distTmp);
}
else if (!tu.mtsIdx[codeCompId])
{
cbfDCT2 = false;
}
if (costTmp < bestCostJointCbCr)
{
bestCostJointCbCr = costTmp;
bestDistJointCbCr = distTmp;
bestBitsJointCbCr = bitsTmp;
bestJointCbCr = tu.jointCbCr;
lastIsBest = (cbfMask == jointCbfMasksToTest.back() && modeId == (numTransformCands - 1));
// store data
if (!lastIsBest)
{
saveChromaCS.getResiBuf(cbArea).copyFrom(csFull->getResiBuf(cbArea));
saveChromaCS.getResiBuf(crArea).copyFrom(csFull->getResiBuf(crArea));
saveChromaCS.getRecoBuf(tu).copyFrom(csFull->getRecoBuf(tu));
tmpTU->copyComponentFrom(tu, COMPONENT_Cb);
tmpTU->copyComponentFrom(tu, COMPONENT_Cr);
ctxBest = m_CABACEstimator->getCtx();
}
}
}
}
if (!lastIsBest)
{
csFull->getResiBuf(cbArea).copyFrom(saveChromaCS.getResiBuf(cbArea));
csFull->getResiBuf(crArea).copyFrom(saveChromaCS.getResiBuf(crArea));
csFull->getRecoBuf(tu).copyFrom(saveChromaCS.getRecoBuf(tu));
tu.copyComponentFrom(*tmpTU, COMPONENT_Cb);
tu.copyComponentFrom(*tmpTU, COMPONENT_Cr);
m_CABACEstimator->getCtx() = ctxBest;
}
tu.jointCbCr = bestJointCbCr;
csFull->picture->getRecoBuf(tu).copyFrom(csFull->getRecoBuf(tu));
csFull->dist += bestDistJointCbCr;
csFull->fracBits += bestBitsJointCbCr;
csFull->cost = m_pcRdCost->calcRdCost(csFull->fracBits, csFull->dist);
}
bool validReturnSplit = false;
if (bCheckSplit)
{
if (partitioner.canSplit(TU_MAX_TR_SPLIT, *csSplit))
{
partitioner.splitCurrArea(TU_MAX_TR_SPLIT, *csSplit);
}
bool splitIsSelected = true;
do
{
bool tmpValidReturnSplit = xRecurIntraCodingACTQT(*csSplit, partitioner, mtsCheckRangeFlag, mtsFirstCheckId, mtsLastCheckId, moreProbMTSIdxFirst);
if (sps.getUseLFNST())
{
if (!tmpValidReturnSplit)
{
splitIsSelected = false;
break;
}
}
else
{
CHECK(!tmpValidReturnSplit, "invalid RD of sub-TU partitions for ACT");
}
} while (partitioner.nextPart(*csSplit));
partitioner.exitCurrSplit();
if (splitIsSelected)
{
unsigned compCbf[3] = { 0, 0, 0 };
for (auto &currTU : csSplit->traverseTUs(currArea, partitioner.chType))
{
for (unsigned ch = 0; ch < getNumberValidTBlocks(*csSplit->pcv); ch++)
{
compCbf[ch] |= (TU::getCbfAtDepth(currTU, ComponentID(ch), currDepth + 1) ? 1 : 0);
}
}
for (auto &currTU : csSplit->traverseTUs(currArea, partitioner.chType))
{
TU::setCbfAtDepth(currTU, COMPONENT_Y, currDepth, compCbf[COMPONENT_Y]);
TU::setCbfAtDepth(currTU, COMPONENT_Cb, currDepth, compCbf[COMPONENT_Cb]);
TU::setCbfAtDepth(currTU, COMPONENT_Cr, currDepth, compCbf[COMPONENT_Cr]);
}
m_CABACEstimator->getCtx() = ctxStart;
csSplit->fracBits = xGetIntraFracBitsQT(*csSplit, partitioner, true, true, -1, TU_NO_ISP);
csSplit->cost = m_pcRdCost->calcRdCost(csSplit->fracBits, csSplit->dist);
validReturnSplit = true;
}
}
bool retVal = false;
if (csFull || csSplit)
{
if (sps.getUseLFNST())
{
if (validReturnFull || validReturnSplit)
{
retVal = true;
}
}
else
{
CHECK(!validReturnFull && !validReturnSplit, "illegal TU optimization");
retVal = true;
}
}
return retVal;
}
ChromaCbfs IntraSearch::xRecurIntraChromaCodingQT( CodingStructure &cs, Partitioner& partitioner, const double bestCostSoFar, const PartSplit ispType )
{
UnitArea currArea = partitioner.currArea();
const bool keepResi = cs.sps->getUseLMChroma() || KEEP_PRED_AND_RESI_SIGNALS;
if( !currArea.Cb().valid() ) return ChromaCbfs( false );
const Slice &slice = *cs.slice;
TransformUnit &currTU = *cs.getTU( currArea.chromaPos(), CHANNEL_TYPE_CHROMA );
const PredictionUnit &pu = *cs.getPU( currArea.chromaPos(), CHANNEL_TYPE_CHROMA );
bool lumaUsesISP = false;
uint32_t currDepth = partitioner.currTrDepth;
ChromaCbfs cbfs ( false );
if (currDepth == currTU.depth)
{
if (!currArea.Cb().valid() || !currArea.Cr().valid())
{
return cbfs;
}
CodingStructure &saveCS = *m_pSaveCS[1];
saveCS.pcv = cs.pcv;
saveCS.picture = cs.picture;
saveCS.area.repositionTo( cs.area );
saveCS.initStructData( MAX_INT, true );
#if !INTRA_RM_SMALL_BLOCK_SIZE_CONSTRAINTS
if( !currTU.cu->isSepTree() && currTU.cu->ispMode )
#else
if (!CS::isDualITree(cs) && currTU.cu->ispMode)
#endif
{
saveCS.clearCUs();
CodingUnit& auxCU = saveCS.addCU( *currTU.cu, partitioner.chType );
auxCU.ispMode = currTU.cu->ispMode;
saveCS.sps = currTU.cs->sps;
saveCS.clearPUs();
saveCS.addPU( *currTU.cu->firstPU, partitioner.chType );
}
TransformUnit &tmpTU = saveCS.addTU(currArea, partitioner.chType);
cs.setDecomp(currArea.Cb(), true); // set in advance (required for Cb2/Cr2 in 4:2:2 video)
const unsigned numTBlocks = ::getNumberValidTBlocks( *cs.pcv );
CompArea& cbArea = currTU.blocks[COMPONENT_Cb];
CompArea& crArea = currTU.blocks[COMPONENT_Cr];
double bestCostCb = MAX_DOUBLE;
double bestCostCr = MAX_DOUBLE;
Distortion bestDistCb = 0;
Distortion bestDistCr = 0;
int maxModesTested = 0;
bool earlyExitISP = false;
TempCtx ctxStartTU( m_CtxCache );
TempCtx ctxStart ( m_CtxCache );
TempCtx ctxBest ( m_CtxCache );
ctxStartTU = m_CABACEstimator->getCtx();
currTU.jointCbCr = 0;
// Do predictions here to avoid repeating the "default0Save1Load2" stuff
int predMode = pu.cu->bdpcmModeChroma ? BDPCM_IDX : PU::getFinalIntraMode(pu, CHANNEL_TYPE_CHROMA);
PelBuf piPredCb = cs.getPredBuf(cbArea);
PelBuf piPredCr = cs.getPredBuf(crArea);
initIntraPatternChType( *currTU.cu, cbArea);
initIntraPatternChType( *currTU.cu, crArea);
if( PU::isLMCMode( predMode ) )
{
xGetLumaRecPixels( pu, cbArea );
predIntraChromaLM( COMPONENT_Cb, piPredCb, pu, cbArea, predMode );
predIntraChromaLM( COMPONENT_Cr, piPredCr, pu, crArea, predMode );
}
else if (PU::isMIP(pu, CHANNEL_TYPE_CHROMA))
{
initIntraMip(pu, cbArea);
predIntraMip(COMPONENT_Cb, piPredCb, pu);
initIntraMip(pu, crArea);
predIntraMip(COMPONENT_Cr, piPredCr, pu);
}
else
{
predIntraAng( COMPONENT_Cb, piPredCb, pu);
predIntraAng( COMPONENT_Cr, piPredCr, pu);
}
// determination of chroma residuals including reshaping and cross-component prediction
//----- get chroma residuals -----
PelBuf resiCb = cs.getResiBuf(cbArea);
PelBuf resiCr = cs.getResiBuf(crArea);
resiCb.copyFrom( cs.getOrgBuf (cbArea) );
resiCr.copyFrom( cs.getOrgBuf (crArea) );
resiCb.subtract( piPredCb );
resiCr.subtract( piPredCr );
//----- get reshape parameter ----
bool doReshaping = ( cs.slice->getLmcsEnabledFlag() && cs.picHeader->getLmcsChromaResidualScaleFlag()
&& (cs.slice->isIntra() || m_pcReshape->getCTUFlag()) && (cbArea.width * cbArea.height > 4) );
if( doReshaping )
{
#if LMCS_CHROMA_CALC_CU
const Area area = currTU.cu->Y().valid() ? currTU.cu->Y() : Area(recalcPosition(currTU.chromaFormat, currTU.chType, CHANNEL_TYPE_LUMA, currTU.cu->blocks[currTU.chType].pos()), recalcSize(currTU.chromaFormat, currTU.chType, CHANNEL_TYPE_LUMA, currTU.cu->blocks[currTU.chType].size()));
#else
const Area area = currTU.Y().valid() ? currTU.Y() : Area(recalcPosition(currTU.chromaFormat, currTU.chType, CHANNEL_TYPE_LUMA, currTU.blocks[currTU.chType].pos()), recalcSize(currTU.chromaFormat, currTU.chType, CHANNEL_TYPE_LUMA, currTU.blocks[currTU.chType].size()));
#endif
const CompArea &areaY = CompArea(COMPONENT_Y, currTU.chromaFormat, area);
int adj = m_pcReshape->calculateChromaAdjVpduNei(currTU, areaY);
currTU.setChromaAdj(adj);
}
//----- get cross component prediction parameters -----
//===== store original residual signals =====
CompStorage orgResiCb[4], orgResiCr[4]; // 0:std, 1-3:jointCbCr (placeholder at this stage)
orgResiCb[0].create( cbArea );
orgResiCr[0].create( crArea );
orgResiCb[0].copyFrom( resiCb );
orgResiCr[0].copyFrom( resiCr );
if( doReshaping )
{
int cResScaleInv = currTU.getChromaAdj();
orgResiCb[0].scaleSignal( cResScaleInv, 1, currTU.cu->cs->slice->clpRng(COMPONENT_Cb) );
orgResiCr[0].scaleSignal( cResScaleInv, 1, currTU.cu->cs->slice->clpRng(COMPONENT_Cr) );
}
for( uint32_t c = COMPONENT_Cb; c < numTBlocks; c++)
{
const ComponentID compID = ComponentID(c);
const CompArea& area = currTU.blocks[compID];
double dSingleCost = MAX_DOUBLE;
int bestModeId = 0;
Distortion singleDistCTmp = 0;
double singleCostTmp = 0;
const bool tsAllowed = TU::isTSAllowed(currTU, compID) && m_pcEncCfg->getUseChromaTS() && !currTU.cu->lfnstIdx;
uint8_t nNumTransformCands = 1 + (tsAllowed ? 1 : 0); // DCT + TS = 2 tests
std::vector<TrMode> trModes;
if (m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless())
{
nNumTransformCands = 1;
CHECK(!tsAllowed && !currTU.cu->bdpcmModeChroma, "transform skip should be enabled for LS");
if (currTU.cu->bdpcmModeChroma)
{
trModes.push_back(TrMode(0, true));
}
else
{
trModes.push_back(TrMode(1, true));
}
}
else
{
trModes.push_back(TrMode(0, true)); // DCT2
if (tsAllowed)
{
trModes.push_back(TrMode(1, true)); // TS
}
}
CHECK(!currTU.Cb().valid(), "Invalid TU");
const int totalModesToTest = nNumTransformCands;
bool cbfDCT2 = true;
const bool isOneMode = false;
maxModesTested = totalModesToTest > maxModesTested ? totalModesToTest : maxModesTested;
int currModeId = 0;
int default0Save1Load2 = 0;
if (!isOneMode)
{
ctxStart = m_CABACEstimator->getCtx();
}
for (int modeId = 0; modeId < nNumTransformCands; modeId++)
{
resiCb.copyFrom(orgResiCb[0]);
resiCr.copyFrom(orgResiCr[0]);
currTU.mtsIdx[compID] = currTU.cu->bdpcmModeChroma ? MTS_SKIP : trModes[modeId].first;
currModeId++;
const bool isFirstMode = (currModeId == 1);
const bool isLastMode = false; // Always store output to saveCS and tmpTU
if (!(m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless()))
{
// if DCT2's cbf==0, skip ts search
if (!cbfDCT2 && trModes[modeId].first == MTS_SKIP)
{
break;
}
if (!trModes[modeId].second)
{
continue;
}
}
if (!isFirstMode) // if not first mode to be tested
{
m_CABACEstimator->getCtx() = ctxStart;
}
singleDistCTmp = 0;
if (nNumTransformCands > 1)
{
xIntraCodingTUBlock(currTU, compID, singleDistCTmp, default0Save1Load2, nullptr,
modeId == 0 ? &trModes : nullptr, true);
}
else
{
xIntraCodingTUBlock(currTU, compID, singleDistCTmp, default0Save1Load2);
}
if (((currTU.mtsIdx[compID] == MTS_SKIP && !currTU.cu->bdpcmModeChroma)
&& !TU::getCbf(currTU, compID))) // In order not to code TS flag when cbf is zero, the case for TS with
// cbf being zero is forbidden.
{
if (m_pcEncCfg->getCostMode() != COST_LOSSLESS_CODING || !slice.isLossless())
{
singleCostTmp = MAX_DOUBLE;
}
else
{
uint64_t fracBitsTmp = xGetIntraFracBitsQTChroma(currTU, compID);
singleCostTmp = m_pcRdCost->calcRdCost(fracBitsTmp, singleDistCTmp);
}
}
else if (lumaUsesISP && bestCostSoFar != MAX_DOUBLE && c == COMPONENT_Cb)
{
uint64_t fracBitsTmp = xGetIntraFracBitsQTSingleChromaComponent(cs, partitioner, ComponentID(c));
singleCostTmp = m_pcRdCost->calcRdCost(fracBitsTmp, singleDistCTmp);
if (isOneMode || (!isOneMode && !isLastMode))
{
m_CABACEstimator->getCtx() = ctxStart;
}
}
else if (!isOneMode)
{
uint64_t fracBitsTmp = xGetIntraFracBitsQTChroma(currTU, compID);
singleCostTmp = m_pcRdCost->calcRdCost(fracBitsTmp, singleDistCTmp);
}
if (singleCostTmp < dSingleCost)
{
dSingleCost = singleCostTmp;
bestModeId = currModeId;
if (c == COMPONENT_Cb)
{
bestCostCb = singleCostTmp;
bestDistCb = singleDistCTmp;
}
else
{
bestCostCr = singleCostTmp;
bestDistCr = singleDistCTmp;
}
if (currTU.mtsIdx[compID] == MTS_DCT2_DCT2)
{
cbfDCT2 = TU::getCbfAtDepth(currTU, compID, currDepth);
}
if (!isLastMode)
{
#if KEEP_PRED_AND_RESI_SIGNALS
saveCS.getPredBuf(area).copyFrom(cs.getPredBuf(area));
saveCS.getOrgResiBuf(area).copyFrom(cs.getOrgResiBuf(area));
#endif
saveCS.getPredBuf(area).copyFrom(cs.getPredBuf(area));
if (keepResi)
{
saveCS.getResiBuf(area).copyFrom(cs.getResiBuf(area));
}
saveCS.getRecoBuf(area).copyFrom(cs.getRecoBuf(area));
tmpTU.copyComponentFrom(currTU, compID);
ctxBest = m_CABACEstimator->getCtx();
}
}
}
if( lumaUsesISP && dSingleCost > bestCostSoFar && c == COMPONENT_Cb )
{
//Luma + Cb cost is already larger than the best cost, so we don't need to test Cr
cs.dist = MAX_UINT;
m_CABACEstimator->getCtx() = ctxStart;
earlyExitISP = true;
break;
//return cbfs;
}
// Done with one component of separate coding of Cr and Cb, just switch to the best Cb contexts if Cr coding is still to be done
if ((c == COMPONENT_Cb && bestModeId < totalModesToTest) || (c == COMPONENT_Cb && m_pcEncCfg->getCostMode() == COST_LOSSLESS_CODING && slice.isLossless()))
{
m_CABACEstimator->getCtx() = ctxBest;
currTU.copyComponentFrom(tmpTU, COMPONENT_Cb); // Cbf of Cb is needed to estimate cost for Cr Cbf
}
}
if ( !earlyExitISP )
{
// Test using joint chroma residual coding
double bestCostCbCr = bestCostCb + bestCostCr;
Distortion bestDistCbCr = bestDistCb + bestDistCr;
int bestJointCbCr = 0;
std::vector<int> jointCbfMasksToTest;
if ( cs.sps->getJointCbCrEnabledFlag() && (TU::getCbf(tmpTU, COMPONENT_Cb) || TU::getCbf(tmpTU, COMPONENT_Cr)))
{
jointCbfMasksToTest = m_pcTrQuant->selectICTCandidates(currTU, orgResiCb, orgResiCr);
}
bool checkDCTOnly = (TU::getCbf(tmpTU, COMPONENT_Cb) && tmpTU.mtsIdx[COMPONENT_Cb] == MTS_DCT2_DCT2 && !TU::getCbf(tmpTU, COMPONENT_Cr)) ||
(TU::getCbf(tmpTU, COMPONENT_Cr) && tmpTU.mtsIdx[COMPONENT_Cr] == MTS_DCT2_DCT2 && !TU::getCbf(tmpTU, COMPONENT_Cb)) ||
(TU::getCbf(tmpTU, COMPONENT_Cb) && tmpTU.mtsIdx[COMPONENT_Cb] == MTS_DCT2_DCT2 && TU::getCbf(tmpTU, COMPONENT_Cr) && tmpTU.mtsIdx[COMPONENT_Cr] == MTS_DCT2_DCT2);
bool checkTSOnly = (TU::getCbf(tmpTU, COMPONENT_Cb) && tmpTU.mtsIdx[COMPONENT_Cb] == MTS_SKIP && !TU::getCbf(tmpTU, COMPONENT_Cr)) ||
(TU::getCbf(tmpTU, COMPONENT_Cr) && tmpTU.mtsIdx[COMPONENT_Cr] == MTS_SKIP && !TU::getCbf(tmpTU, COMPONENT_Cb)) ||
(TU::getCbf(tmpTU, COMPONENT_Cb) && tmpTU.mtsIdx[COMPONENT_Cb] == MTS_SKIP && TU::getCbf(tmpTU, COMPONENT_Cr) && tmpTU.mtsIdx[COMPONENT_Cr] == MTS_SKIP);
if (jointCbfMasksToTest.size() && currTU.cu->bdpcmModeChroma)
{
CHECK(!checkTSOnly || checkDCTOnly, "bdpcm only allows transform skip");
}
for( int cbfMask : jointCbfMasksToTest )
{
currTU.jointCbCr = (uint8_t)cbfMask;
ComponentID codeCompId = ((currTU.jointCbCr >> 1) ? COMPONENT_Cb : COMPONENT_Cr);
ComponentID otherCompId = ((codeCompId == COMPONENT_Cb) ? COMPONENT_Cr : COMPONENT_Cb);
bool tsAllowed = TU::isTSAllowed(currTU, codeCompId) && (m_pcEncCfg->getUseChromaTS()) && !currTU.cu->lfnstIdx;
uint8_t numTransformCands = 1 + (tsAllowed ? 1 : 0); // DCT + TS = 2 tests
bool cbfDCT2 = true;
std::vector<TrMode> trModes;
if (checkDCTOnly || checkTSOnly)
{
numTransformCands = 1;
}
if (!checkTSOnly || currTU.cu->bdpcmModeChroma)
{
trModes.push_back(TrMode(0, true)); // DCT2
}
if (tsAllowed && !checkDCTOnly)
{
trModes.push_back(TrMode(1, true));//TS
}
for (int modeId = 0; modeId < numTransformCands; modeId++)
{
if (modeId && !cbfDCT2)
{
continue;
}
if (!trModes[modeId].second)
{
continue;
}
Distortion distTmp = 0;
currTU.mtsIdx[codeCompId] = currTU.cu->bdpcmModeChroma ? MTS_SKIP : trModes[modeId].first;
currTU.mtsIdx[otherCompId] = MTS_DCT2_DCT2;
m_CABACEstimator->getCtx() = ctxStartTU;
resiCb.copyFrom(orgResiCb[cbfMask]);
resiCr.copyFrom(orgResiCr[cbfMask]);
if (numTransformCands > 1)
{
xIntraCodingTUBlock(currTU, COMPONENT_Cb, distTmp, 0, nullptr, modeId == 0 ? &trModes : nullptr, true);
}
else
{
xIntraCodingTUBlock(currTU, COMPONENT_Cb, distTmp, 0);
}
double costTmp = std::numeric_limits<double>::max();
if (distTmp < std::numeric_limits<Distortion>::max())
{
uint64_t bits = xGetIntraFracBitsQTChroma(currTU, COMPONENT_Cb);
costTmp = m_pcRdCost->calcRdCost(bits, distTmp);
if (!currTU.mtsIdx[codeCompId])
{
cbfDCT2 = true;
}
}
else if (!currTU.mtsIdx[codeCompId])
{
cbfDCT2 = false;
}
if (costTmp < bestCostCbCr)
{
bestCostCbCr = costTmp;
bestDistCbCr = distTmp;
bestJointCbCr = currTU.jointCbCr;
// store data
{
#if KEEP_PRED_AND_RESI_SIGNALS
saveCS.getOrgResiBuf(cbArea).copyFrom(cs.getOrgResiBuf(cbArea));
saveCS.getOrgResiBuf(crArea).copyFrom(cs.getOrgResiBuf(crArea));
#endif
saveCS.getPredBuf(cbArea).copyFrom(cs.getPredBuf(cbArea));
saveCS.getPredBuf(crArea).copyFrom(cs.getPredBuf(crArea));
if (keepResi)
{
saveCS.getResiBuf(cbArea).copyFrom(cs.getResiBuf(cbArea));
saveCS.getResiBuf(crArea).copyFrom(cs.getResiBuf(crArea));
}
saveCS.getRecoBuf(cbArea).copyFrom(cs.getRecoBuf(cbArea));
saveCS.getRecoBuf(crArea).copyFrom(cs.getRecoBuf(crArea));
tmpTU.copyComponentFrom(currTU, COMPONENT_Cb);
tmpTU.copyComponentFrom(currTU, COMPONENT_Cr);
ctxBest = m_CABACEstimator->getCtx();
}
}
}
}
// Retrieve the best CU data (unless it was the very last one tested)
{
#if KEEP_PRED_AND_RESI_SIGNALS
cs.getPredBuf (cbArea).copyFrom(saveCS.getPredBuf (cbArea));
cs.getOrgResiBuf(cbArea).copyFrom(saveCS.getOrgResiBuf(cbArea));
cs.getPredBuf (crArea).copyFrom(saveCS.getPredBuf (crArea));
cs.getOrgResiBuf(crArea).copyFrom(saveCS.getOrgResiBuf(crArea));
#endif
cs.getPredBuf (cbArea).copyFrom(saveCS.getPredBuf (cbArea));
cs.getPredBuf (crArea).copyFrom(saveCS.getPredBuf (crArea));
if( keepResi )
{
cs.getResiBuf (cbArea).copyFrom(saveCS.getResiBuf (cbArea));
cs.getResiBuf (crArea).copyFrom(saveCS.getResiBuf (crArea));
}
cs.getRecoBuf (cbArea).copyFrom(saveCS.getRecoBuf (cbArea));
cs.getRecoBuf (crArea).copyFrom(saveCS.getRecoBuf (crArea));
currTU.copyComponentFrom(tmpTU, COMPONENT_Cb);
currTU.copyComponentFrom(tmpTU, COMPONENT_Cr);
m_CABACEstimator->getCtx() = ctxBest;
}
// Copy results to the picture structures
cs.picture->getRecoBuf(cbArea).copyFrom(cs.getRecoBuf(cbArea));
cs.picture->getRecoBuf(crArea).copyFrom(cs.getRecoBuf(crArea));
cs.picture->getPredBuf(cbArea).copyFrom(cs.getPredBuf(cbArea));
cs.picture->getPredBuf(crArea).copyFrom(cs.getPredBuf(crArea));
cbfs.cbf(COMPONENT_Cb) = TU::getCbf(currTU, COMPONENT_Cb);
cbfs.cbf(COMPONENT_Cr) = TU::getCbf(currTU, COMPONENT_Cr);
currTU.jointCbCr = ( (cbfs.cbf(COMPONENT_Cb) + cbfs.cbf(COMPONENT_Cr)) ? bestJointCbCr : 0 );
cs.dist += bestDistCbCr;
}
}
else
{
unsigned numValidTBlocks = ::getNumberValidTBlocks( *cs.pcv );
ChromaCbfs SplitCbfs ( false );
if( partitioner.canSplit( TU_MAX_TR_SPLIT, cs ) )
{
partitioner.splitCurrArea( TU_MAX_TR_SPLIT, cs );
}
else if( currTU.cu->ispMode )
{
partitioner.splitCurrArea( ispType, cs );
}
else
{
THROW( "Implicit TU split not available" );
}
do
{
ChromaCbfs subCbfs = xRecurIntraChromaCodingQT( cs, partitioner, bestCostSoFar, ispType );
for( uint32_t ch = COMPONENT_Cb; ch < numValidTBlocks; ch++ )
{
const ComponentID compID = ComponentID( ch );
SplitCbfs.cbf( compID ) |= subCbfs.cbf( compID );
}
} while( partitioner.nextPart( cs ) );
partitioner.exitCurrSplit();
if( lumaUsesISP && cs.dist == MAX_UINT )
{
return cbfs;
}
cbfs.Cb |= SplitCbfs.Cb;
cbfs.Cr |= SplitCbfs.Cr;
if (!lumaUsesISP)
{
for (auto &ptu: cs.tus)
{
if (currArea.Cb().contains(ptu->Cb()) || (!ptu->Cb().valid() && currArea.Y().contains(ptu->Y())))
{
TU::setCbfAtDepth(*ptu, COMPONENT_Cb, currDepth, SplitCbfs.Cb);
TU::setCbfAtDepth(*ptu, COMPONENT_Cr, currDepth, SplitCbfs.Cr);
}
}
}
}
return cbfs;
}
uint64_t IntraSearch::xFracModeBitsIntra(PredictionUnit &pu, const uint32_t &uiMode, const ChannelType &chType)
{
uint8_t orgMode = uiMode;
if (!pu.ciipFlag)
std::swap(orgMode, pu.intraDir[chType]);
m_CABACEstimator->resetBits();
if( isLuma( chType ) )
{
if (!pu.ciipFlag)
{
m_CABACEstimator->intra_luma_pred_mode(pu);
}
}
else
{
m_CABACEstimator->intra_chroma_pred_mode( pu );
}
if ( !pu.ciipFlag )
std::swap(orgMode, pu.intraDir[chType]);
return m_CABACEstimator->getEstFracBits();
}
void IntraSearch::sortRdModeListFirstColorSpace(ModeInfo mode, double cost, char bdpcmMode, ModeInfo* rdModeList, double* rdCostList, char* bdpcmModeList, int& candNum)
{
if (candNum == 0)
{
rdModeList[0] = mode;
rdCostList[0] = cost;
bdpcmModeList[0] = bdpcmMode;
candNum++;
return;
}
int insertPos = -1;
for (int pos = candNum - 1; pos >= 0; pos--)
{
if (cost < rdCostList[pos])
{
insertPos = pos;
}
}
if (insertPos >= 0)
{
for (int i = candNum - 1; i >= insertPos; i--)
{
rdModeList[i + 1] = rdModeList[i];
rdCostList[i + 1] = rdCostList[i];
bdpcmModeList[i + 1] = bdpcmModeList[i];
}
rdModeList[insertPos] = mode;
rdCostList[insertPos] = cost;
bdpcmModeList[insertPos] = bdpcmMode;
candNum++;
}
else
{
rdModeList[candNum] = mode;
rdCostList[candNum] = cost;
bdpcmModeList[candNum] = bdpcmMode;
candNum++;
}
CHECK(candNum > FAST_UDI_MAX_RDMODE_NUM, "exceed intra mode candidate list capacity");
return;
}
void IntraSearch::invalidateBestRdModeFirstColorSpace()
{
int numSaveRdClass = 4 * NUM_LFNST_NUM_PER_SET * 2;
int savedRdModeListSize = FAST_UDI_MAX_RDMODE_NUM;
for (int i = 0; i < numSaveRdClass; i++)
{
m_numSavedRdModeFirstColorSpace[i] = 0;
for (int j = 0; j < savedRdModeListSize; j++)
{
m_savedRdModeFirstColorSpace[i][j] = ModeInfo(false, false, 0, NOT_INTRA_SUBPARTITIONS, 0);
m_savedBDPCMModeFirstColorSpace[i][j] = 0;
m_savedRdCostFirstColorSpace[i][j] = MAX_DOUBLE;
}
}
}
template<typename T, size_t N>
void IntraSearch::reduceHadCandList(static_vector<T, N>& candModeList, static_vector<double, N>& candCostList, int& numModesForFullRD, const double thresholdHadCost, const double* mipHadCost, const PredictionUnit &pu, const bool fastMip)
{
const int maxCandPerType = numModesForFullRD >> 1;
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM> tempRdModeList;
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> tempCandCostList;
const double minCost = candCostList[0];
bool keepOneMip = candModeList.size() > numModesForFullRD;
int numConv = 0;
int numMip = 0;
for (int idx = 0; idx < candModeList.size() - (keepOneMip?0:1); idx++)
{
bool addMode = false;
const ModeInfo& orgMode = candModeList[idx];
if (!orgMode.mipFlg)
{
addMode = (numConv < 3);
numConv += addMode ? 1:0;
}
else
{
addMode = ( numMip < maxCandPerType || (candCostList[idx] < thresholdHadCost * minCost) || keepOneMip );
keepOneMip = false;
numMip += addMode ? 1:0;
}
if( addMode )
{
tempRdModeList.push_back(orgMode);
tempCandCostList.push_back(candCostList[idx]);
}
}
if ((pu.lwidth() > 8 && pu.lheight() > 8))
{
// Sort MIP candidates by Hadamard cost
const int transpOff = getNumModesMip( pu.Y() );
static_vector<uint8_t, FAST_UDI_MAX_RDMODE_NUM> sortedMipModes(0);
static_vector<double, FAST_UDI_MAX_RDMODE_NUM> sortedMipCost(0);
for( uint8_t mode : { 0, 1, 2 } )
{
uint8_t candMode = mode + uint8_t((mipHadCost[mode + transpOff] < mipHadCost[mode]) ? transpOff : 0);
updateCandList(candMode, mipHadCost[candMode], sortedMipModes, sortedMipCost, 3);
}
// Append MIP mode to RD mode list
const int modeListSize = int(tempRdModeList.size());
for (int idx = 0; idx < 3; idx++)
{
const bool isTransposed = (sortedMipModes[idx] >= transpOff ? true : false);
const uint32_t mipIdx = (isTransposed ? sortedMipModes[idx] - transpOff : sortedMipModes[idx]);
const ModeInfo mipMode( true, isTransposed, 0, NOT_INTRA_SUBPARTITIONS, mipIdx );
bool alreadyIncluded = false;
for (int modeListIdx = 0; modeListIdx < modeListSize; modeListIdx++)
{
if (tempRdModeList[modeListIdx] == mipMode)
{
alreadyIncluded = true;
break;
}
}
if (!alreadyIncluded)
{
tempRdModeList.push_back(mipMode);
tempCandCostList.push_back(0);
if( fastMip ) break;
}
}
}
candModeList = tempRdModeList;
candCostList = tempCandCostList;
numModesForFullRD = int(candModeList.size());
}
// It decides which modes from the ISP lists can be full RD tested
void IntraSearch::xGetNextISPMode(ModeInfo& modeInfo, const ModeInfo* lastMode, const Size cuSize)
{
static_vector<ModeInfo, FAST_UDI_MAX_RDMODE_NUM>* rdModeLists[2] = { &m_ispCandListHor, &m_ispCandListVer };
const int curIspLfnstIdx = m_curIspLfnstIdx;
if (curIspLfnstIdx >= NUM_LFNST_NUM_PER_SET)
{
//All lfnst indices have been checked
return;
}
ISPType nextISPcandSplitType;
auto& ispTestedModes = m_ispTestedModes[curIspLfnstIdx];
const bool horSplitIsTerminated = ispTestedModes.splitIsFinished[HOR_INTRA_SUBPARTITIONS - 1];
const bool verSplitIsTerminated = ispTestedModes.splitIsFinished[VER_INTRA_SUBPARTITIONS - 1];
if (!horSplitIsTerminated && !verSplitIsTerminated)
{
nextISPcandSplitType = !lastMode ? HOR_INTRA_SUBPARTITIONS : lastMode->ispMod == HOR_INTRA_SUBPARTITIONS ? VER_INTRA_SUBPARTITIONS : HOR_INTRA_SUBPARTITIONS;
}
else if (!horSplitIsTerminated && verSplitIsTerminated)
{
nextISPcandSplitType = HOR_INTRA_SUBPARTITIONS;
}
else if (horSplitIsTerminated && !verSplitIsTerminated)
{
nextISPcandSplitType = VER_INTRA_SUBPARTITIONS;
}
else
{
xFinishISPModes();
return; // no more modes will be tested
}
int maxNumSubPartitions = ispTestedModes.numTotalParts[nextISPcandSplitType - 1];
// We try to break the split here for lfnst > 0 according to the first mode
if (curIspLfnstIdx > 0 && ispTestedModes.numTestedModes[nextISPcandSplitType - 1] == 1)
{
int firstModeThisSplit = ispTestedModes.getTestedIntraMode(nextISPcandSplitType, 0);
int numSubPartsFirstModeThisSplit = ispTestedModes.getNumCompletedSubParts(nextISPcandSplitType, firstModeThisSplit);
CHECK(numSubPartsFirstModeThisSplit < 0, "wrong number of subpartitions!");
bool stopThisSplit = false;
bool stopThisSplitAllLfnsts = false;
if (numSubPartsFirstModeThisSplit < maxNumSubPartitions)
{
stopThisSplit = true;
if (m_pcEncCfg->getUseFastISP() && curIspLfnstIdx == 1 && numSubPartsFirstModeThisSplit < maxNumSubPartitions - 1)
{
stopThisSplitAllLfnsts = true;
}
}
if (stopThisSplit)
{
ispTestedModes.splitIsFinished[nextISPcandSplitType - 1] = true;
if (curIspLfnstIdx == 1 && stopThisSplitAllLfnsts)
{
m_ispTestedModes[2].splitIsFinished[nextISPcandSplitType - 1] = true;
}
return;
}
}
// We try to break the split here for lfnst = 0 or all lfnst indices according to the first two modes
if (curIspLfnstIdx == 0 && ispTestedModes.numTestedModes[nextISPcandSplitType - 1] == 2)
{
// Split stop criteria after checking the performance of previously tested intra modes
const int thresholdSplit1 = maxNumSubPartitions;
bool stopThisSplit = false;
bool stopThisSplitForAllLFNSTs = false;
const int thresholdSplit1ForAllLFNSTs = maxNumSubPartitions - 1;
int mode1 = ispTestedModes.getTestedIntraMode((ISPType)nextISPcandSplitType, 0);
#if ENABLE_DIMD && !JVET_V0087_DIMD_NO_ISP
mode1 = ( mode1 == DC_IDX || mode1 == DIMD_IDX ) ? -1 : mode1;
#else
mode1 = mode1 == DC_IDX ? -1 : mode1;
#endif
int numSubPartsBestMode1 = mode1 != -1 ? ispTestedModes.getNumCompletedSubParts((ISPType)nextISPcandSplitType, mode1) : -1;
int mode2 = ispTestedModes.getTestedIntraMode((ISPType)nextISPcandSplitType, 1);
#if ENABLE_DIMD && !JVET_V0087_DIMD_NO_ISP
mode2 = ( mode2 == DC_IDX || mode2 == DIMD_IDX ) ? -1 : mode2;
#else
mode2 = mode2 == DC_IDX ? -1 : mode2;
#endif
int numSubPartsBestMode2 = mode2 != -1 ? ispTestedModes.getNumCompletedSubParts((ISPType)nextISPcandSplitType, mode2) : -1;
// 1) The 2 most promising modes do not reach a certain number of sub-partitions
if (numSubPartsBestMode1 != -1 && numSubPartsBestMode2 != -1)
{
if (numSubPartsBestMode1 < thresholdSplit1 && numSubPartsBestMode2 < thresholdSplit1)
{
stopThisSplit = true;
if (curIspLfnstIdx == 0 && numSubPartsBestMode1 < thresholdSplit1ForAllLFNSTs && numSubPartsBestMode2 < thresholdSplit1ForAllLFNSTs)
{
stopThisSplitForAllLFNSTs = true;
}
}
else
{
//we stop also if the cost is MAX_DOUBLE for both modes
double mode1Cost = ispTestedModes.getRDCost(nextISPcandSplitType, mode1);
double mode2Cost = ispTestedModes.getRDCost(nextISPcandSplitType, mode2);
if (!(mode1Cost < MAX_DOUBLE || mode2Cost < MAX_DOUBLE))
{
stopThisSplit = true;
}
}
}
if (!stopThisSplit)
{
// 2) One split type may be discarded by comparing the number of sub-partitions of the best angle modes of both splits
ISPType otherSplit = nextISPcandSplitType == HOR_INTRA_SUBPARTITIONS ? VER_INTRA_SUBPARTITIONS : HOR_INTRA_SUBPARTITIONS;
int numSubPartsBestMode2OtherSplit = mode2 != -1 ? ispTestedModes.getNumCompletedSubParts(otherSplit, mode2) : -1;
if (numSubPartsBestMode2OtherSplit != -1 && numSubPartsBestMode2 != -1 && ispTestedModes.bestSplitSoFar != nextISPcandSplitType)
{
if (numSubPartsBestMode2OtherSplit > numSubPartsBestMode2)
{
stopThisSplit = true;
}
// both have the same number of subpartitions
else if (numSubPartsBestMode2OtherSplit == numSubPartsBestMode2)
{
// both have the maximum number of subpartitions, so it compares RD costs to decide
if (numSubPartsBestMode2OtherSplit == maxNumSubPartitions)
{
double rdCostBestMode2ThisSplit = ispTestedModes.getRDCost(nextISPcandSplitType, mode2);
double rdCostBestMode2OtherSplit = ispTestedModes.getRDCost(otherSplit, mode2);
double threshold = 1.3;
if (rdCostBestMode2ThisSplit == MAX_DOUBLE || rdCostBestMode2OtherSplit < rdCostBestMode2ThisSplit * threshold)
{
stopThisSplit = true;
}
}
else // none of them reached the maximum number of subpartitions with the best angle modes, so it compares the results with the the planar mode
{
int numSubPartsBestMode1OtherSplit = mode1 != -1 ? ispTestedModes.getNumCompletedSubParts(otherSplit, mode1) : -1;
if (numSubPartsBestMode1OtherSplit != -1 && numSubPartsBestMode1 != -1 && numSubPartsBestMode1OtherSplit > numSubPartsBestMode1)
{
stopThisSplit = true;
}
}
}
}
}
if (stopThisSplit)
{
ispTestedModes.splitIsFinished[nextISPcandSplitType - 1] = true;
if (stopThisSplitForAllLFNSTs)
{
for (int lfnstIdx = 1; lfnstIdx < NUM_LFNST_NUM_PER_SET; lfnstIdx++)
{
m_ispTestedModes[lfnstIdx].splitIsFinished[nextISPcandSplitType - 1] = true;
}
}
return;
}
}
// Now a new mode is retrieved from the list and it has to be decided whether it should be tested or not
if (ispTestedModes.candIndexInList[nextISPcandSplitType - 1] < rdModeLists[nextISPcandSplitType - 1]->size())
{
ModeInfo candidate = rdModeLists[nextISPcandSplitType - 1]->at(ispTestedModes.candIndexInList[nextISPcandSplitType - 1]);
ispTestedModes.candIndexInList[nextISPcandSplitType - 1]++;
// extra modes are only tested if ISP has won so far
if (ispTestedModes.candIndexInList[nextISPcandSplitType - 1] > ispTestedModes.numOrigModesToTest)
{
if (ispTestedModes.bestSplitSoFar != candidate.ispMod || ispTestedModes.bestModeSoFar == PLANAR_IDX)
{
ispTestedModes.splitIsFinished[nextISPcandSplitType - 1] = true;
return;
}
}
bool testCandidate = true;
// we look for a reference mode that has already been tested within the window and decide to test the new one according to the reference mode costs
if (
#if ENABLE_DIMD && !JVET_V0087_DIMD_NO_ISP
candidate.modeId != DIMD_IDX &&
#endif
#if JVET_W0123_TIMD_FUSION
candidate.modeId != TIMD_IDX &&
#endif
maxNumSubPartitions > 2 && (curIspLfnstIdx > 0 || (candidate.modeId >= DC_IDX && ispTestedModes.numTestedModes[nextISPcandSplitType - 1] >= 2)))
{
int refLfnstIdx = -1;
const int angWindowSize = 5;
int numSubPartsLeftMode, numSubPartsRightMode, numSubPartsRefMode, leftIntraMode = -1, rightIntraMode = -1;
int windowSize = candidate.modeId > DC_IDX ? angWindowSize : 1;
int numSamples = cuSize.width << floorLog2(cuSize.height);
int numSubPartsLimit = numSamples >= 256 ? maxNumSubPartitions - 1 : 2;
xFindAlreadyTestedNearbyIntraModes(curIspLfnstIdx, (int)candidate.modeId, &refLfnstIdx, &leftIntraMode, &rightIntraMode, (ISPType)candidate.ispMod, windowSize);
if (refLfnstIdx != -1 && refLfnstIdx != curIspLfnstIdx)
{
CHECK(leftIntraMode != candidate.modeId || rightIntraMode != candidate.modeId, "wrong intra mode and lfnstIdx values!");
numSubPartsRefMode = m_ispTestedModes[refLfnstIdx].getNumCompletedSubParts((ISPType)candidate.ispMod, candidate.modeId);
CHECK(numSubPartsRefMode <= 0, "Wrong value of the number of subpartitions completed!");
}
else
{
numSubPartsLeftMode = leftIntraMode != -1 ? ispTestedModes.getNumCompletedSubParts((ISPType)candidate.ispMod, leftIntraMode) : -1;
numSubPartsRightMode = rightIntraMode != -1 ? ispTestedModes.getNumCompletedSubParts((ISPType)candidate.ispMod, rightIntraMode) : -1;
numSubPartsRefMode = std::max(numSubPartsLeftMode, numSubPartsRightMode);
}
if (numSubPartsRefMode > 0)
{
// The mode was found. Now we check the condition
testCandidate = numSubPartsRefMode > numSubPartsLimit;
}
}
if (testCandidate)
{
modeInfo = candidate;
}
}
else
{
//the end of the list was reached, so the split is invalidated
ispTestedModes.splitIsFinished[nextISPcandSplitType - 1] = true;
}
}
void IntraSearch::xFindAlreadyTestedNearbyIntraModes(int lfnstIdx, int currentIntraMode, int* refLfnstIdx, int* leftIntraMode, int* rightIntraMode, ISPType ispOption, int windowSize)
{
bool leftModeFound = false, rightModeFound = false;
*leftIntraMode = -1;
*rightIntraMode = -1;
*refLfnstIdx = -1;
const unsigned st = ispOption - 1;
//first we check if the exact intra mode was already tested for another lfnstIdx value
if (lfnstIdx > 0)
{
bool sameIntraModeFound = false;
if (lfnstIdx == 2 && m_ispTestedModes[1].modeHasBeenTested[currentIntraMode][st])
{
sameIntraModeFound = true;
*refLfnstIdx = 1;
}
else if (m_ispTestedModes[0].modeHasBeenTested[currentIntraMode][st])
{
sameIntraModeFound = true;
*refLfnstIdx = 0;
}
if (sameIntraModeFound)
{
*leftIntraMode = currentIntraMode;
*rightIntraMode = currentIntraMode;
return;
}
}
//The mode has not been checked for another lfnstIdx value, so now we look for a similar mode within a window using the same lfnstIdx
for (int k = 1; k <= windowSize; k++)
{
int off = currentIntraMode - 2 - k;
int leftMode = (off < 0) ? NUM_LUMA_MODE + off : currentIntraMode - k;
int rightMode = currentIntraMode > DC_IDX ? (((int)currentIntraMode - 2 + k) % 65) + 2 : PLANAR_IDX;
leftModeFound = leftMode != (int)currentIntraMode ? m_ispTestedModes[lfnstIdx].modeHasBeenTested[leftMode][st] : false;
rightModeFound = rightMode != (int)currentIntraMode ? m_ispTestedModes[lfnstIdx].modeHasBeenTested[rightMode][st] : false;
if (leftModeFound || rightModeFound)
{
*leftIntraMode = leftModeFound ? leftMode : -1;
*rightIntraMode = rightModeFound ? rightMode : -1;
*refLfnstIdx = lfnstIdx;
break;
}
}
}
//It prepares the list of potential intra modes candidates that will be tested using RD costs
bool IntraSearch::xSortISPCandList(double bestCostSoFar, double bestNonISPCost, ModeInfo bestNonISPMode)
{
int bestISPModeInRelCU = -1;
m_modeCtrl->setStopNonDCT2Transforms(false);
if (m_pcEncCfg->getUseFastISP())
{
//we check if the ISP tests can be cancelled
double thSkipISP = 1.4;
if (bestNonISPCost > bestCostSoFar * thSkipISP)
{
for (int splitIdx = 0; splitIdx < NUM_INTRA_SUBPARTITIONS_MODES - 1; splitIdx++)
{
for (int j = 0; j < NUM_LFNST_NUM_PER_SET; j++)
{
m_ispTestedModes[j].splitIsFinished[splitIdx] = true;
}
}
return false;
}
if (!updateISPStatusFromRelCU(bestNonISPCost, bestNonISPMode, bestISPModeInRelCU))
{
return false;
}
}
for (int k = 0; k < m_ispCandListHor.size(); k++)
{
m_ispCandListHor.at(k).ispMod = HOR_INTRA_SUBPARTITIONS; //we set the correct ISP split type value
}
auto origHadList = m_ispCandListHor; // save the original hadamard list of regular intra
bool modeIsInList[NUM_LUMA_MODE] = { false };
m_ispCandListHor.clear();
m_ispCandListVer.clear();
// we sort the normal intra modes according to their full RD costs
std::stable_sort(m_regIntraRDListWithCosts.begin(), m_regIntraRDListWithCosts.end(), ModeInfoWithCost::compareModeInfoWithCost);
// we get the best angle from the regular intra list
int bestNormalIntraAngle = -1;
for (int modeIdx = 0; modeIdx < m_regIntraRDListWithCosts.size(); modeIdx++)
{
if (bestNormalIntraAngle == -1 && m_regIntraRDListWithCosts.at(modeIdx).modeId > DC_IDX)
{
bestNormalIntraAngle = m_regIntraRDListWithCosts.at(modeIdx).modeId;
break;
}
}
int mode1 = PLANAR_IDX;
int mode2 = bestNormalIntraAngle;
ModeInfo refMode = origHadList.at(0);
auto* destListPtr = &m_ispCandListHor;
//List creation
if (m_pcEncCfg->getUseFastISP() && bestISPModeInRelCU != -1) //RelCU intra mode
{
destListPtr->push_back(
ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, bestISPModeInRelCU));
modeIsInList[bestISPModeInRelCU] = true;
}
// Planar
#if JVET_W0103_INTRA_MTS
// push planar later when FastISP is on.
if (!m_pcEncCfg->getUseFastISP() && !modeIsInList[mode1])
#else
if (!modeIsInList[mode1])
#endif
{
destListPtr->push_back(ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, mode1));
modeIsInList[mode1] = true;
}
// Best angle in regular intra
if (mode2 != -1 && !modeIsInList[mode2])
{
destListPtr->push_back(ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, mode2));
modeIsInList[mode2] = true;
}
// Remaining regular intra modes that were full RD tested (except DC, which is added after the angles from regular intra)
int dcModeIndex = -1;
for (int remModeIdx = 0; remModeIdx < m_regIntraRDListWithCosts.size(); remModeIdx++)
{
int currentMode = m_regIntraRDListWithCosts.at(remModeIdx).modeId;
if (currentMode != mode1 && currentMode != mode2 && !modeIsInList[currentMode])
{
if (currentMode > DC_IDX)
{
destListPtr->push_back(ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, currentMode));
modeIsInList[currentMode] = true;
}
else if (currentMode == DC_IDX)
{
dcModeIndex = remModeIdx;
}
}
}
#if JVET_W0103_INTRA_MTS
// Planar (after angular modes when FastISP is on)
if (!modeIsInList[mode1])
{
destListPtr->push_back(ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, mode1));
modeIsInList[mode1] = true;
}
#endif
// DC is added after the angles from regular intra
if (dcModeIndex != -1 && !modeIsInList[DC_IDX])
{
destListPtr->push_back(ModeInfo(refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, DC_IDX));
modeIsInList[DC_IDX] = true;
}
// We add extra candidates to the list that will only be tested if ISP is likely to win
for (int j = 0; j < NUM_LFNST_NUM_PER_SET; j++)
{
m_ispTestedModes[j].numOrigModesToTest = (int)destListPtr->size();
#if JVET_W0103_INTRA_MTS
if (m_pcEncCfg->getUseFastISP() && m_numModesISPRDO != -1 && destListPtr->size() > m_numModesISPRDO)
{
m_ispTestedModes[j].numOrigModesToTest = m_numModesISPRDO;
}
#endif
}
const int addedModesFromHadList = 3;
int newModesAdded = 0;
for (int k = 0; k < origHadList.size(); k++)
{
if (newModesAdded == addedModesFromHadList)
{
break;
}
if (
#if ENABLE_DIMD && !JVET_V0087_DIMD_NO_ISP
origHadList.at(k).modeId == DIMD_IDX ||
#endif
#if JVET_W0123_TIMD_FUSION
origHadList.at(k).modeId == TIMD_IDX ||
#endif
!modeIsInList[origHadList.at(k).modeId])
{
destListPtr->push_back( ModeInfo( refMode.mipFlg, refMode.mipTrFlg, refMode.mRefId, refMode.ispMod, origHadList.at(k).modeId ) );
newModesAdded++;
}
}
if (m_pcEncCfg->getUseFastISP() && bestISPModeInRelCU != -1)
{
destListPtr->resize(1);
}
// Copy modes to other split-type list
m_ispCandListVer = m_ispCandListHor;
for (int i = 0; i < m_ispCandListVer.size(); i++)
{
m_ispCandListVer[i].ispMod = VER_INTRA_SUBPARTITIONS;
}
// Reset the tested modes information to 0
for (int j = 0; j < NUM_LFNST_NUM_PER_SET; j++)
{
for (int i = 0; i < m_ispCandListHor.size(); i++)
{
m_ispTestedModes[j].clearISPModeInfo(m_ispCandListHor[i].modeId);
}
}
return true;
}
void IntraSearch::xSortISPCandListLFNST()
{
//It resorts the list of intra mode candidates for lfnstIdx > 0 by checking the RD costs for lfnstIdx = 0
ISPTestedModesInfo& ispTestedModesRef = m_ispTestedModes[0];
for (int splitIdx = 0; splitIdx < NUM_INTRA_SUBPARTITIONS_MODES - 1; splitIdx++)
{
ISPType ispMode = splitIdx ? VER_INTRA_SUBPARTITIONS : HOR_INTRA_SUBPARTITIONS;
if (!m_ispTestedModes[m_curIspLfnstIdx].splitIsFinished[splitIdx] && ispTestedModesRef.testedModes[splitIdx].size() > 1)
{
auto& candList = ispMode == HOR_INTRA_SUBPARTITIONS ? m_ispCandListHor : m_ispCandListVer;
int bestModeId = candList[1].modeId > DC_IDX ? candList[1].modeId : -1;
int bestSubParts = candList[1].modeId > DC_IDX ? ispTestedModesRef.getNumCompletedSubParts(ispMode, bestModeId) : -1;
double bestCost = candList[1].modeId > DC_IDX ? ispTestedModesRef.getRDCost(ispMode, bestModeId) : MAX_DOUBLE;
for (int i = 0; i < candList.size(); i++)
{
#if ENABLE_DIMD && !JVET_V0087_DIMD_NO_ISP
if( candList[i].modeId == DIMD_IDX )
{
continue;
}
#endif
#if JVET_W0123_TIMD_FUSION
if( candList[i].modeId == TIMD_IDX )
{
continue;
}
#endif
const int candSubParts = ispTestedModesRef.getNumCompletedSubParts(ispMode, candList[i].modeId);
const double candCost = ispTestedModesRef.getRDCost(ispMode, candList[i].modeId);
if (candSubParts > bestSubParts || candCost < bestCost)
{
bestModeId = candList[i].modeId;
bestCost = candCost;
bestSubParts = candSubParts;
}
}
if (bestModeId != -1)
{
if (bestModeId != candList[0].modeId)
{
auto prevMode = candList[0];
candList[0].modeId = bestModeId;
for (int i = 1; i < candList.size(); i++)
{
auto nextMode = candList[i];
candList[i] = prevMode;
if (nextMode.modeId == bestModeId)
{
break;
}
prevMode = nextMode;
}
}
}
}
}
}
bool IntraSearch::updateISPStatusFromRelCU( double bestNonISPCostCurrCu, ModeInfo bestNonISPModeCurrCu, int& bestISPModeInRelCU )
{
//It compares the data of a related CU with the current CU to cancel or reduce the ISP tests
bestISPModeInRelCU = -1;
if (m_modeCtrl->getRelatedCuIsValid())
{
double bestNonISPCostRelCU = m_modeCtrl->getBestDCT2NonISPCostRelCU();
double costRatio = bestNonISPCostCurrCu / bestNonISPCostRelCU;
bool bestModeRelCuIsMip = (m_modeCtrl->getIspPredModeValRelCU() >> 5) & 0x1;
bool bestModeCurrCuIsMip = bestNonISPModeCurrCu.mipFlg;
int relatedCuIntraMode = m_modeCtrl->getIspPredModeValRelCU() >> 9;
bool isSameTypeOfMode = (bestModeRelCuIsMip && bestModeCurrCuIsMip) || (!bestModeRelCuIsMip && !bestModeCurrCuIsMip);
bool bothModesAreAngular = bestNonISPModeCurrCu.modeId > DC_IDX && relatedCuIntraMode > DC_IDX;
bool modesAreComparable = isSameTypeOfMode && (bestModeCurrCuIsMip || bestNonISPModeCurrCu.modeId == relatedCuIntraMode || (bothModesAreAngular && abs(relatedCuIntraMode - (int)bestNonISPModeCurrCu.modeId) <= 5));
int status = m_modeCtrl->getIspPredModeValRelCU();
if ((status & 0x3) == 0x3) //ISP was not selected in the relCU
{
double bestNonDCT2Cost = m_modeCtrl->getBestNonDCT2Cost();
double ratioWithNonDCT2 = bestNonDCT2Cost / bestNonISPCostRelCU;
double margin = ratioWithNonDCT2 < 0.95 ? 0.2 : 0.1;
if (costRatio > 1 - margin && costRatio < 1 + margin && modesAreComparable)
{
for (int lfnstVal = 0; lfnstVal < NUM_LFNST_NUM_PER_SET; lfnstVal++)
{
m_ispTestedModes[lfnstVal].splitIsFinished[HOR_INTRA_SUBPARTITIONS - 1] = true;
m_ispTestedModes[lfnstVal].splitIsFinished[VER_INTRA_SUBPARTITIONS - 1] = true;
}
return false;
}
}
else if ((status & 0x3) == 0x1) //ISP was selected in the relCU
{
double margin = 0.05;
if (costRatio > 1 - margin && costRatio < 1 + margin && modesAreComparable)
{
int ispSplitIdx = (m_modeCtrl->getIspPredModeValRelCU() >> 2) & 0x1;
bool lfnstIdxIsNot0 = (bool)((m_modeCtrl->getIspPredModeValRelCU() >> 3) & 0x1);
bool lfnstIdxIs2 = (bool)((m_modeCtrl->getIspPredModeValRelCU() >> 4) & 0x1);
int lfnstIdx = !lfnstIdxIsNot0 ? 0 : lfnstIdxIs2 ? 2 : 1;
bestISPModeInRelCU = (int)m_modeCtrl->getBestISPIntraModeRelCU();
for (int splitIdx = 0; splitIdx < NUM_INTRA_SUBPARTITIONS_MODES - 1; splitIdx++)
{
for (int lfnstVal = 0; lfnstVal < NUM_LFNST_NUM_PER_SET; lfnstVal++)
{
if (lfnstVal == lfnstIdx && splitIdx == ispSplitIdx)
{
continue;
}
m_ispTestedModes[lfnstVal].splitIsFinished[splitIdx] = true;
}
}
bool stopNonDCT2Transforms = (bool)((m_modeCtrl->getIspPredModeValRelCU() >> 6) & 0x1);
m_modeCtrl->setStopNonDCT2Transforms(stopNonDCT2Transforms);
}
}
else
{
THROW("Wrong ISP relCU status");
}
}
return true;
}
void IntraSearch::xFinishISPModes()
{
//Continue to the next lfnst index
m_curIspLfnstIdx++;
if (m_curIspLfnstIdx < NUM_LFNST_NUM_PER_SET)
{
//Check if LFNST is applicable
if (m_curIspLfnstIdx == 1)
{
bool canTestLFNST = false;
for (int lfnstIdx = 1; lfnstIdx < NUM_LFNST_NUM_PER_SET; lfnstIdx++)
{
canTestLFNST |= !m_ispTestedModes[lfnstIdx].splitIsFinished[HOR_INTRA_SUBPARTITIONS - 1] || !m_ispTestedModes[lfnstIdx].splitIsFinished[VER_INTRA_SUBPARTITIONS - 1];
}
if (canTestLFNST)
{
//Construct the intra modes candidates list for the lfnst > 0 cases
xSortISPCandListLFNST();
}
}
}
}