-
Frank Bossen authoredFrank Bossen authored
ContextModelling.cpp 19.61 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file ContextModelling.cpp
\brief Classes providing probability descriptions and contexts
*/
#include "ContextModelling.h"
#include "UnitTools.h"
#include "CodingStructure.h"
#include "Picture.h"
CoeffCodingContext::CoeffCodingContext( const TransformUnit& tu, ComponentID component, bool signHide, bool bdpcm )
: m_compID (component)
, m_chType (toChannelType(m_compID))
, m_width (tu.block(m_compID).width)
, m_height (tu.block(m_compID).height)
, m_log2CGWidth ( g_log2SbbSize[ floorLog2(m_width) ][ floorLog2(m_height) ][0] )
, m_log2CGHeight ( g_log2SbbSize[ floorLog2(m_width) ][ floorLog2(m_height) ][1] )
, m_log2CGSize (m_log2CGWidth + m_log2CGHeight)
, m_widthInGroups(std::min<unsigned>(JVET_C0024_ZERO_OUT_TH, m_width) >> m_log2CGWidth)
, m_heightInGroups(std::min<unsigned>(JVET_C0024_ZERO_OUT_TH, m_height) >> m_log2CGHeight)
, m_log2BlockWidth ((unsigned)floorLog2(m_width))
, m_log2BlockHeight ((unsigned)floorLog2(m_height))
, m_maxNumCoeff (m_width * m_height)
, m_signHiding (signHide)
, m_extendedPrecision (tu.cs->sps->getSpsRangeExtension().getExtendedPrecisionProcessingFlag())
, m_maxLog2TrDynamicRange (tu.cs->sps->getMaxLog2TrDynamicRange(m_chType))
, m_scanType (SCAN_DIAG)
, m_scan (g_scanOrder [SCAN_GROUPED_4x4][m_scanType][gp_sizeIdxInfo->idxFrom(m_width )][gp_sizeIdxInfo->idxFrom(m_height )])
, m_scanCG (g_scanOrder [SCAN_UNGROUPED ][m_scanType][gp_sizeIdxInfo->idxFrom(m_widthInGroups)][gp_sizeIdxInfo->idxFrom(m_heightInGroups)])
, m_CtxSetLastX (Ctx::LastX[m_chType])
, m_CtxSetLastY (Ctx::LastY[m_chType])
, m_maxLastPosX(g_uiGroupIdx[std::min<unsigned>(JVET_C0024_ZERO_OUT_TH, m_width) - 1])
, m_maxLastPosY(g_uiGroupIdx[std::min<unsigned>(JVET_C0024_ZERO_OUT_TH, m_height) - 1])
, m_lastOffsetX (0)
, m_lastOffsetY (0)
, m_lastShiftX (0)
, m_lastShiftY (0)
, m_TrafoBypass (tu.cs->sps->getSpsRangeExtension().getTransformSkipContextEnabledFlag() && (tu.cu->transQuantBypass || tu.mtsIdx==MTS_SKIP))
, m_scanPosLast (-1)
, m_subSetId (-1)
, m_subSetPos (-1)
, m_subSetPosX (-1)
, m_subSetPosY (-1)
, m_minSubPos (-1)
, m_maxSubPos (-1)
, m_sigGroupCtxId (-1)
, m_tmplCpSum1 (-1)
, m_tmplCpDiag (-1)
, m_sigFlagCtxSet { Ctx::SigFlag[m_chType], Ctx::SigFlag[m_chType+2], Ctx::SigFlag[m_chType+4] }
, m_parFlagCtxSet ( Ctx::ParFlag[m_chType] )
, m_gtxFlagCtxSet { Ctx::GtxFlag[m_chType], Ctx::GtxFlag[m_chType+2] }
, m_sigGroupCtxIdTS (-1)
, m_tsSigFlagCtxSet ( Ctx::TsSigFlag )
, m_tsParFlagCtxSet ( Ctx::TsParFlag )
, m_tsGtxFlagCtxSet ( Ctx::TsGtxFlag )
, m_tsLrg1FlagCtxSet (Ctx::TsLrg1Flag)
, m_tsSignFlagCtxSet (Ctx::TsResidualSign)
, m_sigCoeffGroupFlag ()
, m_bdpcm (bdpcm)
{
// LOGTODO
unsigned log2sizeX = m_log2BlockWidth;
unsigned log2sizeY = m_log2BlockHeight;
if (m_chType == CHANNEL_TYPE_CHROMA)
{
const_cast<int&>(m_lastShiftX) = Clip3( 0, 2, int( m_width >> 3) );
const_cast<int&>(m_lastShiftY) = Clip3( 0, 2, int( m_height >> 3) );
}
else
{
static const int prefix_ctx[8] = { 0, 0, 0, 3, 6, 10, 15, 21 };
const_cast<int&>(m_lastOffsetX) = prefix_ctx[ log2sizeX ];
const_cast<int&>(m_lastOffsetY) = prefix_ctx[ log2sizeY ];;
const_cast<int&>(m_lastShiftX) = (log2sizeX + 1) >> 2;
const_cast<int&>(m_lastShiftY) = (log2sizeY + 1) >> 2;
}
}
void CoeffCodingContext::initSubblock( int SubsetId, bool sigGroupFlag )
{
m_subSetId = SubsetId;
m_subSetPos = m_scanCG[m_subSetId].idx;
m_subSetPosY = m_subSetPos / m_widthInGroups;
m_subSetPosX = m_subSetPos - ( m_subSetPosY * m_widthInGroups );
m_minSubPos = m_subSetId << m_log2CGSize;
m_maxSubPos = m_minSubPos + ( 1 << m_log2CGSize ) - 1;
if( sigGroupFlag )
{
m_sigCoeffGroupFlag.set ( m_subSetPos );
}
unsigned CGPosY = m_subSetPosY;
unsigned CGPosX = m_subSetPosX;
unsigned sigRight = unsigned( ( CGPosX + 1 ) < m_widthInGroups ? m_sigCoeffGroupFlag[ m_subSetPos + 1 ] : false );
unsigned sigLower = unsigned( ( CGPosY + 1 ) < m_heightInGroups ? m_sigCoeffGroupFlag[ m_subSetPos + m_widthInGroups ] : false );
m_sigGroupCtxId = Ctx::SigCoeffGroup[m_chType]( sigRight | sigLower );
unsigned sigLeft = unsigned( CGPosX > 0 ? m_sigCoeffGroupFlag[m_subSetPos - 1 ] : false );
unsigned sigAbove = unsigned( CGPosY > 0 ? m_sigCoeffGroupFlag[m_subSetPos - m_widthInGroups] : false );
m_sigGroupCtxIdTS = Ctx::TsSigCoeffGroup( sigLeft + sigAbove );
}
unsigned DeriveCtx::CtxModeConsFlag( const CodingStructure& cs, Partitioner& partitioner )
{
assert( partitioner.chType == CHANNEL_TYPE_LUMA );
const Position pos = partitioner.currArea().blocks[partitioner.chType];
const unsigned curSliceIdx = cs.slice->getIndependentSliceIdx();
const unsigned curTileIdx = cs.picture->brickMap->getBrickIdxRsMap( partitioner.currArea().lumaPos() );
const CodingUnit* cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), pos, curSliceIdx, curTileIdx, partitioner.chType );
const CodingUnit* cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), pos, curSliceIdx, curTileIdx, partitioner.chType );
unsigned ctxId = ((cuAbove && cuAbove->predMode == MODE_INTRA) || (cuLeft && cuLeft->predMode == MODE_INTRA)) ? 1 : 0;
return ctxId;
}
void DeriveCtx::CtxSplit( const CodingStructure& cs, Partitioner& partitioner, unsigned& ctxSpl, unsigned& ctxQt, unsigned& ctxHv, unsigned& ctxHorBt, unsigned& ctxVerBt, bool* _canSplit /*= nullptr */ )
{
const Position pos = partitioner.currArea().blocks[partitioner.chType];
const unsigned curSliceIdx = cs.slice->getIndependentSliceIdx();
const unsigned curTileIdx = cs.picture->brickMap->getBrickIdxRsMap( partitioner.currArea().lumaPos() );
// get left depth
const CodingUnit* cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), pos, curSliceIdx, curTileIdx, partitioner.chType );
// get above depth
const CodingUnit* cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), pos, curSliceIdx, curTileIdx, partitioner.chType );
bool canSplit[6];
if( _canSplit == nullptr )
{
partitioner.canSplit( cs, canSplit[0], canSplit[1], canSplit[2], canSplit[3], canSplit[4], canSplit[5] );
}
else
{
memcpy( canSplit, _canSplit, 6 * sizeof( bool ) );
}
///////////////////////
// CTX do split (0-8)
///////////////////////
const unsigned widthCurr = partitioner.currArea().blocks[partitioner.chType].width;
const unsigned heightCurr = partitioner.currArea().blocks[partitioner.chType].height;
ctxSpl = 0;
if( cuLeft )
{
const unsigned heightLeft = cuLeft->blocks[partitioner.chType].height;
ctxSpl += ( heightLeft < heightCurr ? 1 : 0 );
}
if( cuAbove )
{
const unsigned widthAbove = cuAbove->blocks[partitioner.chType].width;
ctxSpl += ( widthAbove < widthCurr ? 1 : 0 );
}
unsigned numSplit = 0;
if( canSplit[1] ) numSplit += 2;
if( canSplit[2] ) numSplit += 1;
if( canSplit[3] ) numSplit += 1;
if( canSplit[4] ) numSplit += 1;
if( canSplit[5] ) numSplit += 1;
if( numSplit > 0 ) numSplit--;
ctxSpl += 3 * ( numSplit >> 1 );
//////////////////////////
// CTX is qt split (0-5)
//////////////////////////
ctxQt = ( cuLeft && cuLeft->qtDepth > partitioner.currQtDepth ) ? 1 : 0;
ctxQt += ( cuAbove && cuAbove->qtDepth > partitioner.currQtDepth ) ? 1 : 0;
ctxQt += partitioner.currQtDepth < 2 ? 0 : 3;
////////////////////////////
// CTX is ver split (0-4)
////////////////////////////
ctxHv = 0;
const unsigned numHor = ( canSplit[2] ? 1 : 0 ) + ( canSplit[4] ? 1 : 0 );
const unsigned numVer = ( canSplit[3] ? 1 : 0 ) + ( canSplit[5] ? 1 : 0 );
if( numVer == numHor )
{
const Area& area = partitioner.currArea().blocks[partitioner.chType];
const unsigned wAbove = cuAbove ? cuAbove->blocks[partitioner.chType].width : 1;
const unsigned hLeft = cuLeft ? cuLeft ->blocks[partitioner.chType].height : 1;
const unsigned depAbove = area.width / wAbove;
const unsigned depLeft = area.height / hLeft;
if( depAbove == depLeft || !cuLeft || !cuAbove ) ctxHv = 0;
else if( depAbove < depLeft ) ctxHv = 1;
else ctxHv = 2;
}
else if( numVer < numHor )
{
ctxHv = 3;
}
else
{
ctxHv = 4;
}
//////////////////////////
// CTX is h/v bt (0-3)
//////////////////////////
ctxHorBt = ( partitioner.currMtDepth <= 1 ? 1 : 0 );
ctxVerBt = ( partitioner.currMtDepth <= 1 ? 3 : 2 );
}
unsigned DeriveCtx::CtxQtCbf( const ComponentID compID, const bool prevCbf, const int ispIdx )
{
if( ispIdx && isLuma( compID ) )
{
return 2 + (int)prevCbf;
}
if( compID == COMPONENT_Cr )
{
return ( prevCbf ? 1 : 0 );
}
return 0;
}
unsigned DeriveCtx::CtxInterDir( const PredictionUnit& pu )
{
return ( 7 - ((floorLog2(pu.lumaSize().width) + floorLog2(pu.lumaSize().height) + 1) >> 1) );
}
unsigned DeriveCtx::CtxAffineFlag( const CodingUnit& cu )
{
const CodingStructure *cs = cu.cs;
unsigned ctxId = 0;
const CodingUnit *cuLeft = cs->getCURestricted( cu.lumaPos().offset( -1, 0 ), cu, CH_L );
ctxId = ( cuLeft && cuLeft->affine ) ? 1 : 0;
const CodingUnit *cuAbove = cs->getCURestricted( cu.lumaPos().offset( 0, -1 ), cu, CH_L );
ctxId += ( cuAbove && cuAbove->affine ) ? 1 : 0;
return ctxId;
}
unsigned DeriveCtx::CtxSkipFlag( const CodingUnit& cu )
{
const CodingStructure *cs = cu.cs;
unsigned ctxId = 0;
// Get BCBP of left PU
const CodingUnit *cuLeft = cs->getCURestricted( cu.lumaPos().offset( -1, 0 ), cu, CH_L );
ctxId = ( cuLeft && cuLeft->skip ) ? 1 : 0;
// Get BCBP of above PU
const CodingUnit *cuAbove = cs->getCURestricted( cu.lumaPos().offset( 0, -1 ), cu, CH_L );
ctxId += ( cuAbove && cuAbove->skip ) ? 1 : 0;
return ctxId;
}
unsigned DeriveCtx::CtxPredModeFlag( const CodingUnit& cu )
{
const CodingUnit *cuLeft = cu.cs->getCURestricted(cu.lumaPos().offset(-1, 0), cu, CH_L);
const CodingUnit *cuAbove = cu.cs->getCURestricted(cu.lumaPos().offset(0, -1), cu, CH_L);
unsigned ctxId = ((cuAbove && cuAbove->predMode == MODE_INTRA) || (cuLeft && cuLeft->predMode == MODE_INTRA)) ? 1 : 0;
return ctxId;
}
unsigned DeriveCtx::CtxIBCFlag(const CodingUnit& cu)
{
const CodingStructure *cs = cu.cs;
unsigned ctxId = 0;
const Position pos = cu.chType == CHANNEL_TYPE_CHROMA ? cu.chromaPos() : cu.lumaPos();
const CodingUnit *cuLeft = cs->getCURestricted(pos.offset(-1, 0), cu, cu.chType);
ctxId += (cuLeft && CU::isIBC(*cuLeft)) ? 1 : 0;
const CodingUnit *cuAbove = cs->getCURestricted(pos.offset(0, -1), cu, cu.chType);
ctxId += (cuAbove && CU::isIBC(*cuAbove)) ? 1 : 0;
return ctxId;
}
void MergeCtx::setMergeInfo( PredictionUnit& pu, int candIdx )
{
CHECK( candIdx >= numValidMergeCand, "Merge candidate does not exist" );
pu.regularMergeFlag = !(pu.mhIntraFlag || pu.cu->triangle);
pu.mergeFlag = true;
pu.mmvdMergeFlag = false;
pu.interDir = interDirNeighbours[candIdx];
pu.cu->imv = (!pu.cu->triangle && useAltHpelIf[candIdx]) ? IMV_HPEL : 0;
pu.mergeIdx = candIdx;
pu.mergeType = mrgTypeNeighbours[candIdx];
pu.mv [REF_PIC_LIST_0] = mvFieldNeighbours[(candIdx << 1) + 0].mv;
pu.mv [REF_PIC_LIST_1] = mvFieldNeighbours[(candIdx << 1) + 1].mv;
pu.mvd [REF_PIC_LIST_0] = Mv();
pu.mvd [REF_PIC_LIST_1] = Mv();
pu.refIdx [REF_PIC_LIST_0] = mvFieldNeighbours[( candIdx << 1 ) + 0].refIdx;
pu.refIdx [REF_PIC_LIST_1] = mvFieldNeighbours[( candIdx << 1 ) + 1].refIdx;
pu.mvpIdx [REF_PIC_LIST_0] = NOT_VALID;
pu.mvpIdx [REF_PIC_LIST_1] = NOT_VALID;
pu.mvpNum [REF_PIC_LIST_0] = NOT_VALID;
pu.mvpNum [REF_PIC_LIST_1] = NOT_VALID;
if (CU::isIBC(*pu.cu))
{
pu.bv = pu.mv[REF_PIC_LIST_0];
pu.bv.changePrecision(MV_PRECISION_INTERNAL, MV_PRECISION_INT); // used for only integer resolution
pu.cu->imv = pu.cu->imv == IMV_HPEL ? 0 : pu.cu->imv;
}
pu.cu->GBiIdx = ( interDirNeighbours[candIdx] == 3 ) ? GBiIdx[candIdx] : GBI_DEFAULT;
PU::restrictBiPredMergeCandsOne(pu);
pu.mmvdEncOptMode = 0;
}
void MergeCtx::setMmvdMergeCandiInfo(PredictionUnit& pu, int candIdx)
{
const Slice &slice = *pu.cs->slice;
const int mvShift = MV_FRACTIONAL_BITS_DIFF;
const int refMvdCands[8] = { 1 << mvShift , 2 << mvShift , 4 << mvShift , 8 << mvShift , 16 << mvShift , 32 << mvShift, 64 << mvShift , 128 << mvShift };
int fPosGroup = 0;
int fPosBaseIdx = 0;
int fPosStep = 0;
int tempIdx = 0;
int fPosPosition = 0;
Mv tempMv[2];
tempIdx = candIdx;
fPosGroup = tempIdx / (MMVD_BASE_MV_NUM * MMVD_MAX_REFINE_NUM);
tempIdx = tempIdx - fPosGroup * (MMVD_BASE_MV_NUM * MMVD_MAX_REFINE_NUM);
fPosBaseIdx = tempIdx / MMVD_MAX_REFINE_NUM;
tempIdx = tempIdx - fPosBaseIdx * (MMVD_MAX_REFINE_NUM);
fPosStep = tempIdx / 4;
fPosPosition = tempIdx - fPosStep * (4);
int offset = refMvdCands[fPosStep];
if ( pu.cu->slice->getDisFracMMVD() )
{
offset <<= 2;
}
const int refList0 = mmvdBaseMv[fPosBaseIdx][0].refIdx;
const int refList1 = mmvdBaseMv[fPosBaseIdx][1].refIdx;
if ((refList0 != -1) && (refList1 != -1))
{
const int poc0 = slice.getRefPOC(REF_PIC_LIST_0, refList0);
const int poc1 = slice.getRefPOC(REF_PIC_LIST_1, refList1);
const int currPoc = slice.getPOC();
if (fPosPosition == 0)
{
tempMv[0] = Mv(offset, 0);
}
else if (fPosPosition == 1)
{
tempMv[0] = Mv(-offset, 0);
}
else if (fPosPosition == 2)
{
tempMv[0] = Mv(0, offset);
}
else
{
tempMv[0] = Mv(0, -offset);
}
if ((poc0 - currPoc) == (poc1 - currPoc))
{
tempMv[1] = tempMv[0];
}
else if (abs(poc1 - currPoc) > abs(poc0 - currPoc))
{
const int scale = PU::getDistScaleFactor(currPoc, poc0, currPoc, poc1);
tempMv[1] = tempMv[0];
const bool isL0RefLongTerm = slice.getRefPic(REF_PIC_LIST_0, refList0)->longTerm;
const bool isL1RefLongTerm = slice.getRefPic(REF_PIC_LIST_1, refList1)->longTerm;
if (isL0RefLongTerm || isL1RefLongTerm)
{
if ((poc1 - currPoc)*(poc0 - currPoc) > 0)
{
tempMv[0] = tempMv[1];
}
else
{
tempMv[0].set(-1 * tempMv[1].getHor(), -1 * tempMv[1].getVer());
}
}
else
tempMv[0] = tempMv[1].scaleMv(scale);
}
else
{
const int scale = PU::getDistScaleFactor(currPoc, poc1, currPoc, poc0);
const bool isL0RefLongTerm = slice.getRefPic(REF_PIC_LIST_0, refList0)->longTerm;
const bool isL1RefLongTerm = slice.getRefPic(REF_PIC_LIST_1, refList1)->longTerm;
if (isL0RefLongTerm || isL1RefLongTerm)
{
if ((poc1 - currPoc)*(poc0 - currPoc) > 0)
{
tempMv[1] = tempMv[0];
}
else
{
tempMv[1].set(-1 * tempMv[0].getHor(), -1 * tempMv[0].getVer());
}
}
else
tempMv[1] = tempMv[0].scaleMv(scale);
}
pu.interDir = 3;
pu.mv[REF_PIC_LIST_0] = mmvdBaseMv[fPosBaseIdx][0].mv + tempMv[0];
pu.refIdx[REF_PIC_LIST_0] = refList0;
pu.mv[REF_PIC_LIST_1] = mmvdBaseMv[fPosBaseIdx][1].mv + tempMv[1];
pu.refIdx[REF_PIC_LIST_1] = refList1;
}
else if (refList0 != -1)
{
if (fPosPosition == 0)
{
tempMv[0] = Mv(offset, 0);
}
else if (fPosPosition == 1)
{
tempMv[0] = Mv(-offset, 0);
}
else if (fPosPosition == 2)
{
tempMv[0] = Mv(0, offset);
}
else
{
tempMv[0] = Mv(0, -offset);
}
pu.interDir = 1;
pu.mv[REF_PIC_LIST_0] = mmvdBaseMv[fPosBaseIdx][0].mv + tempMv[0];
pu.refIdx[REF_PIC_LIST_0] = refList0;
pu.mv[REF_PIC_LIST_1] = Mv(0, 0);
pu.refIdx[REF_PIC_LIST_1] = -1;
}
else if (refList1 != -1)
{
if (fPosPosition == 0)
{
tempMv[1] = Mv(offset, 0);
}
else if (fPosPosition == 1)
{
tempMv[1] = Mv(-offset, 0);
}
else if (fPosPosition == 2)
{
tempMv[1] = Mv(0, offset);
}
else
{
tempMv[1] = Mv(0, -offset);
}
pu.interDir = 2;
pu.mv[REF_PIC_LIST_0] = Mv(0, 0);
pu.refIdx[REF_PIC_LIST_0] = -1;
pu.mv[REF_PIC_LIST_1] = mmvdBaseMv[fPosBaseIdx][1].mv + tempMv[1];
pu.refIdx[REF_PIC_LIST_1] = refList1;
}
pu.mmvdMergeFlag = true;
pu.mmvdMergeIdx = candIdx;
pu.mergeFlag = true;
pu.regularMergeFlag = true;
pu.mergeIdx = candIdx;
pu.mergeType = MRG_TYPE_DEFAULT_N;
pu.mvd[REF_PIC_LIST_0] = Mv();
pu.mvd[REF_PIC_LIST_1] = Mv();
pu.mvpIdx[REF_PIC_LIST_0] = NOT_VALID;
pu.mvpIdx[REF_PIC_LIST_1] = NOT_VALID;
pu.mvpNum[REF_PIC_LIST_0] = NOT_VALID;
pu.mvpNum[REF_PIC_LIST_1] = NOT_VALID;
pu.cu->imv = mmvdUseAltHpelIf[fPosBaseIdx] ? IMV_HPEL : 0;
pu.cu->GBiIdx = (interDirNeighbours[fPosBaseIdx] == 3) ? GBiIdx[fPosBaseIdx] : GBI_DEFAULT;
for (int refList = 0; refList < 2; refList++)
{
if (pu.refIdx[refList] >= 0)
{
pu.mv[refList].clipToStorageBitDepth();
}
}
PU::restrictBiPredMergeCandsOne(pu);
}
unsigned DeriveCtx::CtxMipFlag( const CodingUnit& cu )
{
const CodingStructure *cs = cu.cs;
unsigned ctxId = 0;
const CodingUnit *cuLeft = cs->getCURestricted( cu.lumaPos().offset( -1, 0 ), cu, CH_L );
ctxId = (cuLeft && cuLeft->mipFlag) ? 1 : 0;
const CodingUnit *cuAbove = cs->getCURestricted( cu.lumaPos().offset( 0, -1 ), cu, CH_L );
ctxId += (cuAbove && cuAbove->mipFlag) ? 1 : 0;
ctxId = (cu.lwidth() > 2*cu.lheight() || cu.lheight() > 2*cu.lwidth()) ? 3 : ctxId;
return ctxId;
}