Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file EncSlice.cpp
\brief slice encoder class
*/
#include "EncSlice.h"
#include "EncLib.h"
#include "CommonLib/UnitTools.h"
#include "CommonLib/Picture.h"
#if K0149_BLOCK_STATISTICS
#include "CommonLib/dtrace_blockstatistics.h"
#endif

Karsten Suehring
committed
#if ENABLE_WPP_PARALLELISM
#include <mutex>
extern recursive_mutex g_cache_mutex;
#endif
#include <math.h>
//! \ingroup EncoderLib
//! \{
// ====================================================================================================================
// Constructor / destructor / create / destroy
// ====================================================================================================================
EncSlice::EncSlice()
: m_encCABACTableIdx(I_SLICE)
#if ENABLE_QPA
, m_adaptedLumaQP(-1)
#endif

Karsten Suehring
committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
{
}
EncSlice::~EncSlice()
{
destroy();
}
void EncSlice::create( int iWidth, int iHeight, ChromaFormat chromaFormat, uint32_t iMaxCUWidth, uint32_t iMaxCUHeight, uint8_t uhTotalDepth )
{
}
void EncSlice::destroy()
{
// free lambda and QP arrays
m_vdRdPicLambda.clear();
m_vdRdPicQp.clear();
m_viRdPicQp.clear();
}
void EncSlice::init( EncLib* pcEncLib, const SPS& sps )
{
m_pcCfg = pcEncLib;
m_pcLib = pcEncLib;
m_pcListPic = pcEncLib->getListPic();
m_pcGOPEncoder = pcEncLib->getGOPEncoder();
m_pcCuEncoder = pcEncLib->getCuEncoder();
m_pcInterSearch = pcEncLib->getInterSearch();
m_CABACWriter = pcEncLib->getCABACEncoder()->getCABACWriter (&sps);
m_CABACEstimator = pcEncLib->getCABACEncoder()->getCABACEstimator(&sps);
m_pcTrQuant = pcEncLib->getTrQuant();
m_pcRdCost = pcEncLib->getRdCost();
// create lambda and QP arrays
m_vdRdPicLambda.resize(m_pcCfg->getDeltaQpRD() * 2 + 1 );
m_vdRdPicQp.resize( m_pcCfg->getDeltaQpRD() * 2 + 1 );
m_viRdPicQp.resize( m_pcCfg->getDeltaQpRD() * 2 + 1 );
m_pcRateCtrl = pcEncLib->getRateCtrl();
}
void
EncSlice::setUpLambda( Slice* slice, const double dLambda, int iQP)
{
// store lambda
m_pcRdCost ->setLambda( dLambda, slice->getSPS()->getBitDepths() );
// for RDO
// in RdCost there is only one lambda because the luma and chroma bits are not separated, instead we weight the distortion of chroma.
double dLambdas[MAX_NUM_COMPONENT] = { dLambda };
for( uint32_t compIdx = 1; compIdx < MAX_NUM_COMPONENT; compIdx++ )
{
const ComponentID compID = ComponentID( compIdx );
int chromaQPOffset = slice->getPPS()->getQpOffset( compID ) + slice->getSliceChromaQpDelta( compID );
int qpc = ( iQP + chromaQPOffset < 0 ) ? iQP : getScaledChromaQP( iQP + chromaQPOffset, m_pcCfg->getChromaFormatIdc() );
double tmpWeight = pow( 2.0, ( iQP - qpc ) / 3.0 ); // takes into account of the chroma qp mapping and chroma qp Offset
if( m_pcCfg->getDepQuantEnabledFlag() )
{
tmpWeight *= ( m_pcCfg->getGOPSize() >= 8 ? pow( 2.0, 0.1/3.0 ) : pow( 2.0, 0.2/3.0 ) ); // increase chroma weight for dependent quantization (in order to reduce bit rate shift from chroma to luma)
}
m_pcRdCost->setDistortionWeight( compID, tmpWeight );
#if ENABLE_WPP_PARALLELISM
for( int jId = 1; jId < ( m_pcLib->getNumWppThreads() + m_pcLib->getNumWppExtraLines() ); jId++ )
{
m_pcLib->getRdCost( slice->getPic()->scheduler.getWppDataId( jId ) )->setDistortionWeight( compID, tmpWeight );
}
#endif
dLambdas[compIdx] = dLambda / tmpWeight;
}
#if RDOQ_CHROMA_LAMBDA
// for RDOQ
m_pcTrQuant->setLambdas( dLambdas );
#else
m_pcTrQuant->setLambda( dLambda );
#endif
// for SAO
slice->setLambdas( dLambdas );
}
#if ENABLE_QPA
static inline int apprI3Log2 (const double d) // rounded 3*log2(d)
{
return d < 1.5e-13 ? -128 : int (floor (3.0 * log (d) / log (2.0) + 0.5));
}

Christian Helmrich
committed
static inline int lumaDQPOffset (const uint32_t avgLumaValue, const int bitDepth)
{
return (1 - int ((3 * uint64_t (avgLumaValue * avgLumaValue)) >> uint64_t (2 * bitDepth - 1)));
}
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
static void filterAndCalculateAverageEnergies (const Pel* pSrc, const int iSrcStride,
double &hpEner, const int iHeight, const int iWidth,
const uint32_t uBitDepth /* luma bit-depth (4-16) */)
{
uint64_t saAct = 0;
// skip first row as there may be a black border frame
pSrc += iSrcStride;
// center rows
for (int y = 1; y < iHeight - 1; y++)
{
// skip column as there may be a black border frame
for (int x = 1; x < iWidth - 1; x++) // and columns
{
const int f = 12 * (int)pSrc[x ] - 2 * ((int)pSrc[x-1] + (int)pSrc[x+1] + (int)pSrc[x -iSrcStride] + (int)pSrc[x +iSrcStride])
- (int)pSrc[x-1-iSrcStride] - (int)pSrc[x+1-iSrcStride] - (int)pSrc[x-1+iSrcStride] - (int)pSrc[x+1+iSrcStride];
saAct += abs (f);
}
// skip column as there may be a black border frame
pSrc += iSrcStride;
}
// skip last row as there may be a black border frame
hpEner = double(saAct) / double((iWidth - 2) * (iHeight - 2));
// lower limit, compensate for highpass amplification
if (hpEner < double(1 << (uBitDepth - 4))) hpEner = double(1 << (uBitDepth - 4));
}
#ifndef GLOBAL_AVERAGING
#define GLOBAL_AVERAGING 1 // "global" averaging of a_k across a set instead of one picture
#endif
#if GLOBAL_AVERAGING
static double getAveragePictureEnergy (const CPelBuf picOrig, const uint32_t uBitDepth)
{

Christian Helmrich
committed
const double hpEnerPic = 16.0 * sqrt ((3840.0 * 2160.0) / double(picOrig.width * picOrig.height)) * double(1 << uBitDepth);

Christian Helmrich
committed
return sqrt (hpEnerPic); // square-root of a_pic value
}
#endif

Christian Helmrich
committed
static int getGlaringColorQPOffset (Picture* const pcPic, const int ctuAddr, const uint32_t startAddr, const uint32_t boundingAddr,
const int bitDepth, uint32_t &avgLumaValue)
{
const PreCalcValues& pcv = *pcPic->cs->pcv;
const ChromaFormat chrFmt = pcPic->chromaFormat;
const uint32_t chrWidth = pcv.maxCUWidth >> getChannelTypeScaleX (CH_C, chrFmt);
const uint32_t chrHeight = pcv.maxCUHeight >> getChannelTypeScaleY (CH_C, chrFmt);
const int midLevel = 1 << (bitDepth - 1);
int chrValue = MAX_INT;
avgLumaValue = (startAddr < boundingAddr) ? 0 : (uint32_t)pcPic->getOrigBuf().Y().computeAvg();

Christian Helmrich
committed
if (ctuAddr >= 0) // luma
{
avgLumaValue = (uint32_t)pcPic->m_iOffsetCtu[ctuAddr];
}
else if (startAddr < boundingAddr)
{
for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
{
const uint32_t ctuRsAddr = pcPic->tileMap->getCtuTsToRsAddrMap (ctuTsAddr);
avgLumaValue += pcPic->m_iOffsetCtu[ctuRsAddr];
}
avgLumaValue = (avgLumaValue + ((boundingAddr - startAddr) >> 1)) / (boundingAddr - startAddr);
}
for (uint32_t comp = COMPONENT_Cb; comp < MAX_NUM_COMPONENT; comp++)
{
const ComponentID compID = (ComponentID)comp;
int avgCompValue;
if (ctuAddr >= 0) // chroma
{
const CompArea chrArea = clipArea (CompArea (compID, chrFmt, Area ((ctuAddr % pcv.widthInCtus) * chrWidth, (ctuAddr / pcv.widthInCtus) * chrHeight, chrWidth, chrHeight)), pcPic->block (compID));
avgCompValue = pcPic->getOrigBuf (chrArea).computeAvg();

Christian Helmrich
committed
}
else avgCompValue = pcPic->getOrigBuf (pcPic->block (compID)).computeAvg();

Christian Helmrich
committed
if (chrValue > avgCompValue) chrValue = avgCompValue; // minimum of the DC offsets
}
CHECK (chrValue < 0, "DC offset cannot be negative!");
chrValue = (int)avgLumaValue - chrValue;
if (chrValue > midLevel) return apprI3Log2 (double (chrValue * chrValue) / double (midLevel * midLevel));
return 0;
}
static int applyQPAdaptationChroma (Picture* const pcPic, Slice* const pcSlice, EncCfg* const pcEncCfg, const int sliceQP)
{
const int bitDepth = pcSlice->getSPS()->getBitDepth (CHANNEL_TYPE_LUMA); // overall image bit-depth
double hpEner[MAX_NUM_COMPONENT] = {0.0, 0.0, 0.0};
int optSliceChromaQpOffset[2] = {0, 0};
int savedLumaQP = -1;

Christian Helmrich
committed
uint32_t meanLuma = MAX_UINT;
for (uint32_t comp = 0; comp < getNumberValidComponents (pcPic->chromaFormat); comp++)
{
const ComponentID compID = (ComponentID)comp;
const CPelBuf picOrig = pcPic->getOrigBuf (pcPic->block (compID));

Christian Helmrich
committed
filterAndCalculateAverageEnergies (picOrig.buf, picOrig.stride, hpEner[comp],
picOrig.height, picOrig.width, bitDepth - (isChroma (compID) ? 1 : 0));
if (isChroma (compID))
{
const int adaptChromaQPOffset = 2.0 * hpEner[comp] <= hpEner[0] ? 0 : apprI3Log2 (2.0 * hpEner[comp] / hpEner[0]);

Christian Helmrich
committed
if (savedLumaQP < 0)

Christian Helmrich
committed
#if GLOBAL_AVERAGING
int averageAdaptedLumaQP = Clip3 (0, MAX_QP, sliceQP + apprI3Log2 (hpEner[0] / getAveragePictureEnergy (pcPic->getOrigBuf().Y(), bitDepth)));

Christian Helmrich
committed
#else
int averageAdaptedLumaQP = Clip3 (0, MAX_QP, sliceQP); // mean slice QP
#endif
averageAdaptedLumaQP += getGlaringColorQPOffset (pcPic, -1 /*ctuRsAddr*/, 0 /*startAddr*/, 0 /*boundingAddr*/, bitDepth, meanLuma);

Christian Helmrich
committed
if (averageAdaptedLumaQP > MAX_QP
#if SHARP_LUMA_DELTA_QP
&& (pcEncCfg->getLumaLevelToDeltaQPMapping().mode != LUMALVL_TO_DQP_NUM_MODES)
#endif
) averageAdaptedLumaQP = MAX_QP;
#if SHARP_LUMA_DELTA_QP
// change mean picture QP index based on picture's average luma value (Sharp)
if (pcEncCfg->getLumaLevelToDeltaQPMapping().mode == LUMALVL_TO_DQP_NUM_MODES)
if (meanLuma == MAX_UINT) meanLuma = pcPic->getOrigBuf().Y().computeAvg();

Christian Helmrich
committed
averageAdaptedLumaQP = Clip3 (0, MAX_QP, averageAdaptedLumaQP + lumaDQPOffset (meanLuma, bitDepth));

Christian Helmrich
committed
#endif

Christian Helmrich
committed
savedLumaQP = averageAdaptedLumaQP;
} // savedLumaQP < 0

Christian Helmrich
committed
const int lumaChromaMappingDQP = savedLumaQP - getScaledChromaQP (savedLumaQP, pcEncCfg->getChromaFormatIdc());

Karsten Suehring
committed

Christian Helmrich
committed
optSliceChromaQpOffset[comp-1] = std::min (3 + lumaChromaMappingDQP, adaptChromaQPOffset + lumaChromaMappingDQP);
}
}
pcEncCfg->setSliceChromaOffsetQpIntraOrPeriodic (pcEncCfg->getSliceChromaOffsetQpPeriodicity(), optSliceChromaQpOffset);
return savedLumaQP;
}
#endif // ENABLE_QPA

Karsten Suehring
committed
/**
- non-referenced frame marking
- QP computation based on temporal structure
- lambda computation based on QP
- set temporal layer ID and the parameter sets
.
\param pcPic picture class
\param pocLast POC of last picture
\param pocCurr current POC
\param iNumPicRcvd number of received pictures
\param iGOPid POC offset for hierarchical structure
\param rpcSlice slice header class
\param isField true for field coding
*/
void EncSlice::initEncSlice(Picture* pcPic, const int pocLast, const int pocCurr, const int iGOPid, Slice*& rpcSlice, const bool isField
, bool isEncodeLtRef
)

Karsten Suehring
committed
{
double dQP;
double dLambda;
rpcSlice = pcPic->slices[0];
rpcSlice->setSliceBits(0);
rpcSlice->setPic( pcPic );
rpcSlice->initSlice();
int multipleFactor = m_pcCfg->getUseCompositeRef() ? 2 : 1;
if (m_pcCfg->getUseCompositeRef() && isEncodeLtRef)
{
rpcSlice->setPicOutputFlag(false);
}
else
{
rpcSlice->setPicOutputFlag(true);
}

Karsten Suehring
committed
rpcSlice->setPOC( pocCurr );
rpcSlice->setDepQuantEnabledFlag( m_pcCfg->getDepQuantEnabledFlag() );
#if HEVC_USE_SIGN_HIDING
rpcSlice->setSignDataHidingEnabledFlag( m_pcCfg->getSignDataHidingEnabledFlag() );
#endif
#if SHARP_LUMA_DELTA_QP
pcPic->fieldPic = isField;
m_gopID = iGOPid;
#endif
// depth computation based on GOP size
int depth;
{
int poc = rpcSlice->getPOC();
if(isField)
{
poc = (poc/2) % (m_pcCfg->getGOPSize()/2);
}
else
{
poc = poc % (m_pcCfg->getGOPSize() * multipleFactor);

Karsten Suehring
committed
}
if ( poc == 0 )
{
depth = 0;
}
else
{
int step = m_pcCfg->getGOPSize() * multipleFactor;

Karsten Suehring
committed
depth = 0;
for( int i=step>>1; i>=1; i>>=1 )
{
for (int j = i; j<(m_pcCfg->getGOPSize() * multipleFactor); j += step)

Karsten Suehring
committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
{
if ( j == poc )
{
i=0;
break;
}
}
step >>= 1;
depth++;
}
}
if(m_pcCfg->getHarmonizeGopFirstFieldCoupleEnabled() && poc != 0)
{
if (isField && ((rpcSlice->getPOC() % 2) == 1))
{
depth++;
}
}
}
// slice type
SliceType eSliceType;
eSliceType=B_SLICE;
if(!(isField && pocLast == 1) || !m_pcCfg->getEfficientFieldIRAPEnabled())
{
if(m_pcCfg->getDecodingRefreshType() == 3)
{
eSliceType = (pocLast == 0 || pocCurr % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;

Karsten Suehring
committed
}
else
{
eSliceType = (pocLast == 0 || (pocCurr - (isField ? 1 : 0)) % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;

Karsten Suehring
committed
}
}
rpcSlice->setSliceType ( eSliceType );
// ------------------------------------------------------------------------------------------------------------------
// Non-referenced frame marking
// ------------------------------------------------------------------------------------------------------------------

Karsten Suehring
committed
if(pocLast == 0)
{
rpcSlice->setTemporalLayerNonReferenceFlag(false);
}
else
{
rpcSlice->setTemporalLayerNonReferenceFlag(!m_pcCfg->getGOPEntry(iGOPid).m_refPic);
}

Karsten Suehring
committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
pcPic->referenced = true;
// ------------------------------------------------------------------------------------------------------------------
// QP setting
// ------------------------------------------------------------------------------------------------------------------
#if X0038_LAMBDA_FROM_QP_CAPABILITY
dQP = m_pcCfg->getQPForPicture(iGOPid, rpcSlice);
#else
dQP = m_pcCfg->getBaseQP();
if(eSliceType!=I_SLICE)
{
#if SHARP_LUMA_DELTA_QP
if (!(( m_pcCfg->getMaxDeltaQP() == 0) && (!m_pcCfg->getLumaLevelToDeltaQPMapping().isEnabled()) && (dQP == -rpcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA) ) && (rpcSlice->getPPS()->getTransquantBypassEnabledFlag())))
#else
if (!(( m_pcCfg->getMaxDeltaQP() == 0 ) && (dQP == -rpcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA) ) && (rpcSlice->getPPS()->getTransquantBypassEnabledFlag())))
#endif
{
dQP += m_pcCfg->getGOPEntry(iGOPid).m_QPOffset;
}
}
// modify QP
const int* pdQPs = m_pcCfg->getdQPs();
if ( pdQPs )
{
dQP += pdQPs[ rpcSlice->getPOC() ];
}
if (m_pcCfg->getCostMode()==COST_LOSSLESS_CODING)
{
dQP=LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP;
m_pcCfg->setDeltaQpRD(0);
}
#endif
// ------------------------------------------------------------------------------------------------------------------
// Lambda computation
// ------------------------------------------------------------------------------------------------------------------
#if X0038_LAMBDA_FROM_QP_CAPABILITY
const int temporalId=m_pcCfg->getGOPEntry(iGOPid).m_temporalId;
#if !SHARP_LUMA_DELTA_QP
const std::vector<double> &intraLambdaModifiers=m_pcCfg->getIntraLambdaModifier();
#endif
#endif
int iQP;
double dOrigQP = dQP;
// pre-compute lambda and QP values for all possible QP candidates
for ( int iDQpIdx = 0; iDQpIdx < 2 * m_pcCfg->getDeltaQpRD() + 1; iDQpIdx++ )
{
// compute QP value
dQP = dOrigQP + ((iDQpIdx+1)>>1)*(iDQpIdx%2 ? -1 : 1);
#if SHARP_LUMA_DELTA_QP
dLambda = calculateLambda(rpcSlice, iGOPid, depth, dQP, dQP, iQP );
#else
// compute lambda value
int NumberBFrames = ( m_pcCfg->getGOPSize() - 1 );
int SHIFT_QP = 12;
int bitdepth_luma_qp_scale =
6
* (rpcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 8
- DISTORTION_PRECISION_ADJUSTMENT(rpcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA)));
double qp_temp = (double) dQP + bitdepth_luma_qp_scale - SHIFT_QP;
#if FULL_NBIT
double qp_temp_orig = (double) dQP - SHIFT_QP;
#endif
// Case #1: I or P-slices (key-frame)
double dQPFactor = m_pcCfg->getGOPEntry(iGOPid).m_QPFactor;
if ( eSliceType==I_SLICE )
{
if (m_pcCfg->getIntraQpFactor()>=0.0 && m_pcCfg->getGOPEntry(iGOPid).m_sliceType != I_SLICE)
{
dQPFactor=m_pcCfg->getIntraQpFactor();
}
else
{
#if X0038_LAMBDA_FROM_QP_CAPABILITY
if(m_pcCfg->getLambdaFromQPEnable())
{
dQPFactor=0.57;
}
else
{
#endif
double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(double)(isField ? NumberBFrames/2 : NumberBFrames) );
dQPFactor=0.57*dLambda_scale;
#if X0038_LAMBDA_FROM_QP_CAPABILITY
}
#endif
}
}
#if X0038_LAMBDA_FROM_QP_CAPABILITY
else if( m_pcCfg->getLambdaFromQPEnable() )
{
dQPFactor=0.57;
}
#endif
dLambda = dQPFactor*pow( 2.0, qp_temp/3.0 );
#if X0038_LAMBDA_FROM_QP_CAPABILITY
if(!m_pcCfg->getLambdaFromQPEnable() && depth>0)
#else
if ( depth>0 )
#endif
{
#if FULL_NBIT
dLambda *= Clip3( 2.00, 4.00, (qp_temp_orig / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 )
#else
dLambda *= Clip3( 2.00, 4.00, (qp_temp / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 )
#endif
}
// if hadamard is used in ME process
if ( !m_pcCfg->getUseHADME() && rpcSlice->getSliceType( ) != I_SLICE )
{
dLambda *= 0.95;
}
#if X0038_LAMBDA_FROM_QP_CAPABILITY
double lambdaModifier;
if( rpcSlice->getSliceType( ) != I_SLICE || intraLambdaModifiers.empty())
{
lambdaModifier = m_pcCfg->getLambdaModifier( temporalId );
}
else
{
lambdaModifier = intraLambdaModifiers[ (temporalId < intraLambdaModifiers.size()) ? temporalId : (intraLambdaModifiers.size()-1) ];
}
dLambda *= lambdaModifier;
#endif
iQP = Clip3( -rpcSlice->getSPS()->getQpBDOffset( CHANNEL_TYPE_LUMA ), MAX_QP, (int) floor( dQP + 0.5 ) );

Karsten Suehring
committed
#endif
m_vdRdPicLambda[iDQpIdx] = dLambda;
m_vdRdPicQp [iDQpIdx] = dQP;
m_viRdPicQp [iDQpIdx] = iQP;
}
// obtain dQP = 0 case
dLambda = m_vdRdPicLambda[0];
dQP = m_vdRdPicQp [0];
iQP = m_viRdPicQp [0];
#if !X0038_LAMBDA_FROM_QP_CAPABILITY
const int temporalId=m_pcCfg->getGOPEntry(iGOPid).m_temporalId;
const std::vector<double> &intraLambdaModifiers=m_pcCfg->getIntraLambdaModifier();
#endif
#if W0038_CQP_ADJ
#if ENABLE_QPA
m_adaptedLumaQP = -1;
if ((m_pcCfg->getUsePerceptQPA() || m_pcCfg->getSliceChromaOffsetQpPeriodicity() > 0) && !m_pcCfg->getUseRateCtrl() && rpcSlice->getPPS()->getSliceChromaQpFlag() &&
(rpcSlice->isIntra() || (m_pcCfg->getSliceChromaOffsetQpPeriodicity() > 0 && (rpcSlice->getPOC() % m_pcCfg->getSliceChromaOffsetQpPeriodicity()) == 0)))
{
m_adaptedLumaQP = applyQPAdaptationChroma (pcPic, rpcSlice, m_pcCfg, iQP);
}
#endif

Karsten Suehring
committed
if(rpcSlice->getPPS()->getSliceChromaQpFlag())
{
const bool bUseIntraOrPeriodicOffset = (rpcSlice->isIntra() && !rpcSlice->getSPS()->getIBCFlag()) || (m_pcCfg->getSliceChromaOffsetQpPeriodicity() > 0 && (rpcSlice->getPOC() % m_pcCfg->getSliceChromaOffsetQpPeriodicity()) == 0);
int cbQP = bUseIntraOrPeriodicOffset ? m_pcCfg->getSliceChromaOffsetQpIntraOrPeriodic(false) : m_pcCfg->getGOPEntry(iGOPid).m_CbQPoffset;
int crQP = bUseIntraOrPeriodicOffset ? m_pcCfg->getSliceChromaOffsetQpIntraOrPeriodic(true) : m_pcCfg->getGOPEntry(iGOPid).m_CrQPoffset;

Karsten Suehring
committed
cbQP = Clip3( -12, 12, cbQP + rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb) ) - rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb);
crQP = Clip3( -12, 12, crQP + rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr) ) - rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr);
rpcSlice->setSliceChromaQpDelta(COMPONENT_Cb, Clip3( -12, 12, cbQP));
CHECK(!(rpcSlice->getSliceChromaQpDelta(COMPONENT_Cb)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb)<=12 && rpcSlice->getSliceChromaQpDelta(COMPONENT_Cb)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb)>=-12), "Unspecified error");
rpcSlice->setSliceChromaQpDelta(COMPONENT_Cr, Clip3( -12, 12, crQP));
CHECK(!(rpcSlice->getSliceChromaQpDelta(COMPONENT_Cr)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr)<=12 && rpcSlice->getSliceChromaQpDelta(COMPONENT_Cr)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr)>=-12), "Unspecified error");
}
else
{
rpcSlice->setSliceChromaQpDelta( COMPONENT_Cb, 0 );
rpcSlice->setSliceChromaQpDelta( COMPONENT_Cr, 0 );
#if JVET_N0054_JOINT_CHROMA
rpcSlice->setSliceChromaQpDelta( JOINT_CbCr, 0 );
#endif

Karsten Suehring
committed
}
#endif
#if !X0038_LAMBDA_FROM_QP_CAPABILITY
double lambdaModifier;
if( rpcSlice->getSliceType( ) != I_SLICE || intraLambdaModifiers.empty())
{
lambdaModifier = m_pcCfg->getLambdaModifier( temporalId );
}
else
{
lambdaModifier = intraLambdaModifiers[ (temporalId < intraLambdaModifiers.size()) ? temporalId : (intraLambdaModifiers.size()-1) ];
}
dLambda *= lambdaModifier;
#endif
setUpLambda(rpcSlice, dLambda, iQP);

Karsten Suehring
committed
#if WCG_EXT
// cost = Distortion + Lambda*R,
// when QP is adjusted by luma, distortion is changed, so we have to adjust lambda to match the distortion, then the cost function becomes
// costA = Distortion + AdjustedLambda * R -- currently, costA is still used when calculating intermediate cost of using SAD, HAD, resisual etc.
// an alternative way is to weight the distortion to before the luma QP adjustment, then the cost function becomes
// costB = weightedDistortion + Lambda * R -- currently, costB is used to calculat final cost, and when DF_FUNC is DF_DEFAULT
m_pcRdCost->saveUnadjustedLambda();
#endif
if (m_pcCfg->getFastMEForGenBLowDelayEnabled())
{
// restore original slice type
if(!(isField && pocLast == 1) || !m_pcCfg->getEfficientFieldIRAPEnabled())
{
if(m_pcCfg->getDecodingRefreshType() == 3)
{
eSliceType = (pocLast == 0 || (pocCurr) % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;

Karsten Suehring
committed
}
else
{
eSliceType = (pocLast == 0 || (pocCurr - (isField ? 1 : 0)) % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;

Karsten Suehring
committed
}
}
rpcSlice->setSliceType ( eSliceType );
}
if (m_pcCfg->getUseRecalculateQPAccordingToLambda())
{
dQP = xGetQPValueAccordingToLambda( dLambda );
iQP = Clip3( -rpcSlice->getSPS()->getQpBDOffset( CHANNEL_TYPE_LUMA ), MAX_QP, (int) floor( dQP + 0.5 ) );

Karsten Suehring
committed
}
rpcSlice->setSliceQp ( iQP );
rpcSlice->setSliceQpDelta ( 0 );
#if !W0038_CQP_ADJ
rpcSlice->setSliceChromaQpDelta( COMPONENT_Cb, 0 );
rpcSlice->setSliceChromaQpDelta( COMPONENT_Cr, 0 );
#if JVET_N0054_JOINT_CHROMA
rpcSlice->setSliceChromaQpDelta( JOINT_CbCr, 0 );
#endif

Karsten Suehring
committed
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
#endif
rpcSlice->setUseChromaQpAdj( rpcSlice->getPPS()->getPpsRangeExtension().getChromaQpOffsetListEnabledFlag() );
rpcSlice->setNumRefIdx(REF_PIC_LIST_0,m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive);
rpcSlice->setNumRefIdx(REF_PIC_LIST_1,m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive);
if ( m_pcCfg->getDeblockingFilterMetric() )
{
rpcSlice->setDeblockingFilterOverrideFlag(true);
rpcSlice->setDeblockingFilterDisable(false);
rpcSlice->setDeblockingFilterBetaOffsetDiv2( 0 );
rpcSlice->setDeblockingFilterTcOffsetDiv2( 0 );
}
else if (rpcSlice->getPPS()->getDeblockingFilterControlPresentFlag())
{
rpcSlice->setDeblockingFilterOverrideFlag( rpcSlice->getPPS()->getDeblockingFilterOverrideEnabledFlag() );
rpcSlice->setDeblockingFilterDisable( rpcSlice->getPPS()->getPPSDeblockingFilterDisabledFlag() );
if ( !rpcSlice->getDeblockingFilterDisable())
{
if ( rpcSlice->getDeblockingFilterOverrideFlag() && eSliceType!=I_SLICE)
{
rpcSlice->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_betaOffsetDiv2 + m_pcCfg->getLoopFilterBetaOffset() );
rpcSlice->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_tcOffsetDiv2 + m_pcCfg->getLoopFilterTcOffset() );
}
else
{
rpcSlice->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getLoopFilterBetaOffset() );
rpcSlice->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getLoopFilterTcOffset() );
}
}
}
else
{
rpcSlice->setDeblockingFilterOverrideFlag( false );
rpcSlice->setDeblockingFilterDisable( false );
rpcSlice->setDeblockingFilterBetaOffsetDiv2( 0 );
rpcSlice->setDeblockingFilterTcOffsetDiv2( 0 );
}
rpcSlice->setDepth ( depth );
pcPic->layer = temporalId;
if(eSliceType==I_SLICE)
{
pcPic->layer = 0;
}
rpcSlice->setTLayer( pcPic->layer );
rpcSlice->setSliceMode ( m_pcCfg->getSliceMode() );
rpcSlice->setSliceArgument ( m_pcCfg->getSliceArgument() );
#if HEVC_DEPENDENT_SLICES
rpcSlice->setSliceSegmentMode ( m_pcCfg->getSliceSegmentMode() );
rpcSlice->setSliceSegmentArgument ( m_pcCfg->getSliceSegmentArgument() );
#endif
rpcSlice->setMaxNumMergeCand ( m_pcCfg->getMaxNumMergeCand() );
rpcSlice->setMaxNumAffineMergeCand( m_pcCfg->getMaxNumAffineMergeCand() );
rpcSlice->setSplitConsOverrideFlag(false);
rpcSlice->setMinQTSize( rpcSlice->getSPS()->getMinQTSize(eSliceType));
rpcSlice->setMaxBTDepth( rpcSlice->isIntra() ? rpcSlice->getSPS()->getMaxBTDepthI() : rpcSlice->getSPS()->getMaxBTDepth() );
rpcSlice->setMaxBTSize( rpcSlice->isIntra() ? rpcSlice->getSPS()->getMaxBTSizeI() : rpcSlice->getSPS()->getMaxBTSize() );
rpcSlice->setMaxTTSize( rpcSlice->isIntra() ? rpcSlice->getSPS()->getMaxTTSizeI() : rpcSlice->getSPS()->getMaxTTSize() );
if ( eSliceType == I_SLICE && rpcSlice->getSPS()->getUseDualITree() )
rpcSlice->setMinQTSizeIChroma( rpcSlice->getSPS()->getMinQTSize(eSliceType, CHANNEL_TYPE_CHROMA) );
rpcSlice->setMaxBTDepthIChroma( rpcSlice->getSPS()->getMaxBTDepthIChroma() );
rpcSlice->setMaxBTSizeIChroma( rpcSlice->getSPS()->getMaxBTSizeIChroma() );
rpcSlice->setMaxTTSizeIChroma( rpcSlice->getSPS()->getMaxTTSizeIChroma() );
#if JVET_N0329_IBC_SEARCH_IMP
rpcSlice->setDisableSATDForRD(false);
#endif

Karsten Suehring
committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
}
#if SHARP_LUMA_DELTA_QP
double EncSlice::calculateLambda( const Slice* slice,
const int GOPid, // entry in the GOP table
const int depth, // slice GOP hierarchical depth.
const double refQP, // initial slice-level QP
const double dQP, // initial double-precision QP
int &iQP ) // returned integer QP.
{
enum SliceType eSliceType = slice->getSliceType();
const bool isField = slice->getPic()->fieldPic;
const int NumberBFrames = ( m_pcCfg->getGOPSize() - 1 );
const int SHIFT_QP = 12;
#if X0038_LAMBDA_FROM_QP_CAPABILITY
const int temporalId=m_pcCfg->getGOPEntry(GOPid).m_temporalId;
const std::vector<double> &intraLambdaModifiers=m_pcCfg->getIntraLambdaModifier();
#endif
int bitdepth_luma_qp_scale = 6
* (slice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 8
- DISTORTION_PRECISION_ADJUSTMENT(slice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA)));
double qp_temp = dQP + bitdepth_luma_qp_scale - SHIFT_QP;
// Case #1: I or P-slices (key-frame)
double dQPFactor = m_pcCfg->getGOPEntry(GOPid).m_QPFactor;
if ( eSliceType==I_SLICE )
{
if (m_pcCfg->getIntraQpFactor()>=0.0 && m_pcCfg->getGOPEntry(GOPid).m_sliceType != I_SLICE)
{
dQPFactor=m_pcCfg->getIntraQpFactor();
}
else
{
#if X0038_LAMBDA_FROM_QP_CAPABILITY
if(m_pcCfg->getLambdaFromQPEnable())
{
dQPFactor=0.57;
}
else
{
#endif
double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(double)(isField ? NumberBFrames/2 : NumberBFrames) );
dQPFactor=0.57*dLambda_scale;
#if X0038_LAMBDA_FROM_QP_CAPABILITY
}
#endif
}
}
#if X0038_LAMBDA_FROM_QP_CAPABILITY
else if( m_pcCfg->getLambdaFromQPEnable() )
{
dQPFactor=0.57;
}
#endif
double dLambda = dQPFactor*pow( 2.0, qp_temp/3.0 );
#if X0038_LAMBDA_FROM_QP_CAPABILITY
if( !(m_pcCfg->getLambdaFromQPEnable()) && depth>0 )
#else
if ( depth>0 )
#endif
{
double qp_temp_ref = refQP + bitdepth_luma_qp_scale - SHIFT_QP;
dLambda *= Clip3(2.00, 4.00, (qp_temp_ref / 6.0)); // (j == B_SLICE && p_cur_frm->layer != 0 )
}
// if hadamard is used in ME process
if ( !m_pcCfg->getUseHADME() && slice->getSliceType( ) != I_SLICE )
{
dLambda *= 0.95;
}
#if X0038_LAMBDA_FROM_QP_CAPABILITY
double lambdaModifier;
if( eSliceType != I_SLICE || intraLambdaModifiers.empty())
{
lambdaModifier = m_pcCfg->getLambdaModifier( temporalId );
}
else
{
lambdaModifier = intraLambdaModifiers[ (temporalId < intraLambdaModifiers.size()) ? temporalId : (intraLambdaModifiers.size()-1) ];
}
dLambda *= lambdaModifier;
#endif
iQP = Clip3( -slice->getSPS()->getQpBDOffset( CHANNEL_TYPE_LUMA ), MAX_QP, (int) floor( dQP + 0.5 ) );

Karsten Suehring
committed
if( m_pcCfg->getDepQuantEnabledFlag() )
{
dLambda *= pow( 2.0, 0.25/3.0 ); // slight lambda adjustment for dependent quantization (due to different slope of quantizer)
}
// NOTE: the lambda modifiers that are sometimes applied later might be best always applied in here.
return dLambda;
}
#endif
void EncSlice::resetQP( Picture* pic, int sliceQP, double lambda )
{
Slice* slice = pic->slices[0];
// store lambda
slice->setSliceQp( sliceQP );
setUpLambda(slice, lambda, sliceQP);
}
#if ENABLE_QPA

Christian Helmrich
committed
static bool applyQPAdaptation (Picture* const pcPic, Slice* const pcSlice, const PreCalcValues& pcv,
const uint32_t startAddr, const uint32_t boundingAddr, const bool useSharpLumaDQP,
const bool useFrameWiseQPA, const int previouslyAdaptedLumaQP = -1)

Karsten Suehring
committed
{
const int bitDepth = pcSlice->getSPS()->getBitDepth (CHANNEL_TYPE_LUMA);

Karsten Suehring
committed
const int iQPIndex = pcSlice->getSliceQp(); // initial QP index for current slice, used in following loops
const TileMap& tileMap = *pcPic->tileMap;
bool sliceQPModified = false;

Christian Helmrich
committed
uint32_t meanLuma = MAX_UINT;
double hpEnerAvg = 0.0;
#if GLOBAL_AVERAGING

Christian Helmrich
committed
if (!useFrameWiseQPA || previouslyAdaptedLumaQP < 0) // mean visual activity value and luma value in each CTU
#endif
{
for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
{
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap (ctuTsAddr);
const Position pos ((ctuRsAddr % pcv.widthInCtus) * pcv.maxCUWidth, (ctuRsAddr / pcv.widthInCtus) * pcv.maxCUHeight);
const CompArea ctuArea = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area (pos.x, pos.y, pcv.maxCUWidth, pcv.maxCUHeight)), pcPic->Y());
const CompArea fltArea = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area (pos.x > 0 ? pos.x - 1 : 0, pos.y > 0 ? pos.y - 1 : 0, pcv.maxCUWidth + (pos.x > 0 ? 2 : 1), pcv.maxCUHeight + (pos.y > 0 ? 2 : 1))), pcPic->Y());
const CPelBuf picOrig = pcPic->getOrigBuf (fltArea);
double hpEner = 0.0;
filterAndCalculateAverageEnergies (picOrig.buf, picOrig.stride, hpEner,
picOrig.height, picOrig.width, bitDepth);

Christian Helmrich
committed
hpEnerAvg += hpEner;
pcPic->m_uEnerHpCtu[ctuRsAddr] = hpEner;
pcPic->m_iOffsetCtu[ctuRsAddr] = pcPic->getOrigBuf (ctuArea).computeAvg();

Christian Helmrich
committed
}
hpEnerAvg /= double (boundingAddr - startAddr);
}
#if GLOBAL_AVERAGING
const double hpEnerPic = 1.0 / getAveragePictureEnergy (pcPic->getOrigBuf().Y(), bitDepth); // inverse, speed
#else
const double hpEnerPic = 1.0 / hpEnerAvg; // speedup: multiply instead of divide in loop below; 1.0 for tuning
#endif

Karsten Suehring
committed
if (useFrameWiseQPA || (iQPIndex >= MAX_QP))

Karsten Suehring
committed
{

Christian Helmrich
committed
int iQPFixed = (previouslyAdaptedLumaQP < 0) ? Clip3 (0, MAX_QP, iQPIndex + apprI3Log2 (hpEnerAvg * hpEnerPic)) : previouslyAdaptedLumaQP;

Karsten Suehring
committed

Christian Helmrich
committed
if (isChromaEnabled (pcPic->chromaFormat) && (iQPIndex < MAX_QP) && (previouslyAdaptedLumaQP < 0))
iQPFixed += getGlaringColorQPOffset (pcPic, -1 /*ctuRsAddr*/, startAddr, boundingAddr, bitDepth, meanLuma);

Christian Helmrich
committed
if (iQPFixed > MAX_QP
#if SHARP_LUMA_DELTA_QP
&& !useSharpLumaDQP
#endif
) iQPFixed = MAX_QP;

Karsten Suehring
committed
#if SHARP_LUMA_DELTA_QP
// change new fixed QP based on average CTU luma value (Sharp)
if (useSharpLumaDQP && (iQPIndex < MAX_QP) && (previouslyAdaptedLumaQP < 0))

Karsten Suehring
committed
{

Christian Helmrich
committed
if (meanLuma == MAX_UINT) // collect picture mean luma value

Karsten Suehring
committed
{

Christian Helmrich
committed
meanLuma = 0;

Karsten Suehring
committed

Christian Helmrich
committed
for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
{
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap (ctuTsAddr);

Karsten Suehring
committed

Christian Helmrich
committed
meanLuma += pcPic->m_iOffsetCtu[ctuRsAddr]; // CTU mean
}
meanLuma = (meanLuma + ((boundingAddr - startAddr) >> 1)) / (boundingAddr - startAddr);
}
iQPFixed = Clip3 (0, MAX_QP, iQPFixed + lumaDQPOffset (meanLuma, bitDepth));

Karsten Suehring
committed
}
#endif
if (iQPIndex >= MAX_QP) iQPFixed = MAX_QP;

Karsten Suehring
committed
else
if (iQPFixed != iQPIndex)

Karsten Suehring
committed
{
const double* oldLambdas = pcSlice->getLambdas();
const double corrFactor = pow (2.0, double(iQPFixed - iQPIndex) / 3.0);
const double newLambdas[MAX_NUM_COMPONENT] = {oldLambdas[0] * corrFactor, oldLambdas[1] * corrFactor, oldLambdas[2] * corrFactor};
CHECK (iQPIndex != pcSlice->getSliceQpBase(), "Invalid slice QP!");
pcSlice->setLambdas (newLambdas);
pcSlice->setSliceQp (iQPFixed); // update the slice/base QPs
pcSlice->setSliceQpBase (iQPFixed);
sliceQPModified = true;
}
for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
{
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap (ctuTsAddr);
pcPic->m_iOffsetCtu[ctuRsAddr] = (Pel)iQPFixed; // fixed QPs
}
}

Christian Helmrich
committed
else // CTU-wise QPA

Karsten Suehring
committed
{
for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
{
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap (ctuTsAddr);
int iQPAdapt = Clip3 (0, MAX_QP, iQPIndex + apprI3Log2 (pcPic->m_uEnerHpCtu[ctuRsAddr] * hpEnerPic));

Karsten Suehring
committed
if (pcv.widthInCtus > 1) // try to enforce CTU SNR greater than zero dB

Karsten Suehring
committed
{

Christian Helmrich
committed
meanLuma = (uint32_t)pcPic->m_iOffsetCtu[ctuRsAddr];
if (isChromaEnabled (pcPic->chromaFormat))
{
iQPAdapt += getGlaringColorQPOffset (pcPic, (int)ctuRsAddr, startAddr, boundingAddr, bitDepth, meanLuma);

Christian Helmrich
committed
if (iQPAdapt > MAX_QP
#if SHARP_LUMA_DELTA_QP
&& !useSharpLumaDQP
#endif
) iQPAdapt = MAX_QP;
CHECK (meanLuma != (uint32_t)pcPic->m_iOffsetCtu[ctuRsAddr], "luma DC offsets don't match");
}

Karsten Suehring
committed
#if SHARP_LUMA_DELTA_QP
// change adaptive QP based on mean CTU luma value (Sharp)
if (useSharpLumaDQP)
{

Christian Helmrich
committed
#if ENABLE_QPA_SUB_CTU
pcPic->m_uEnerHpCtu[ctuRsAddr] = (double)meanLuma; // for sub-CTU QPA
#endif
iQPAdapt = Clip3 (0, MAX_QP, iQPAdapt + lumaDQPOffset (meanLuma, bitDepth));

Karsten Suehring
committed
}
#endif
#if JVET_N0246_MODIFIED_QUANTSCALES
const uint32_t uRefScale = g_invQuantScales[0][iQPAdapt % 6] << ((iQPAdapt / 6) + bitDepth - 4);
#else
const uint32_t uRefScale = g_invQuantScales[iQPAdapt % 6] << ((iQPAdapt / 6) + bitDepth - 4);

Karsten Suehring
committed
const CompArea subArea = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area ((ctuRsAddr % pcv.widthInCtus) * pcv.maxCUWidth, (ctuRsAddr / pcv.widthInCtus) * pcv.maxCUHeight, pcv.maxCUWidth, pcv.maxCUHeight)), pcPic->Y());
const Pel* pSrc = pcPic->getOrigBuf (subArea).buf;
const SizeType iSrcStride = pcPic->getOrigBuf (subArea).stride;
const SizeType iSrcHeight = pcPic->getOrigBuf (subArea).height;
const SizeType iSrcWidth = pcPic->getOrigBuf (subArea).width;