Newer
Older

Karsten Suehring
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2018, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file EncCu.cpp
\brief Coding Unit (CU) encoder class
*/
#include "EncCu.h"
#include "EncLib.h"
#include "Analyze.h"
#include "AQp.h"
#include "CommonLib/dtrace_codingstruct.h"
#include "CommonLib/Picture.h"
#include "CommonLib/UnitTools.h"
#include "CommonLib/dtrace_buffer.h"
#include <stdio.h>
#include <cmath>
#include <algorithm>
#if ENABLE_WPP_PARALLELISM
#include <mutex>
extern std::recursive_mutex g_cache_mutex;
#endif
//! \ingroup EncoderLib
//! \{
// ====================================================================================================================
// Constructor / destructor / create / destroy
// ====================================================================================================================
void EncCu::create( EncCfg* encCfg )
{
unsigned uiMaxWidth = encCfg->getMaxCUWidth();
unsigned uiMaxHeight = encCfg->getMaxCUHeight();
ChromaFormat chromaFormat = encCfg->getChromaFormatIdc();
bool BTnoRQT = encCfg->getQTBT();
unsigned numWidths = gp_sizeIdxInfo->numWidths();
unsigned numHeights = gp_sizeIdxInfo->numHeights();
unsigned maxMEPart = BTnoRQT ? 1 : NUMBER_OF_PART_SIZES;
m_pTempCS = new CodingStructure** [numWidths];
m_pBestCS = new CodingStructure** [numWidths];
for( unsigned w = 0; w < numWidths; w++ )
{
m_pTempCS[w] = new CodingStructure* [numHeights];
m_pBestCS[w] = new CodingStructure* [numHeights];
for( unsigned h = 0; h < numHeights; h++ )
{
unsigned width = gp_sizeIdxInfo->sizeFrom( w );
unsigned height = gp_sizeIdxInfo->sizeFrom( h );
if( ( BTnoRQT || w == h ) && gp_sizeIdxInfo->isCuSize( width ) && gp_sizeIdxInfo->isCuSize( height ) )
{
m_pTempCS[w][h] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pBestCS[w][h] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pTempCS[w][h]->create( chromaFormat, Area( 0, 0, width, height ), false );
m_pBestCS[w][h]->create( chromaFormat, Area( 0, 0, width, height ), false );
}
else
{
m_pTempCS[w][h] = nullptr;
m_pBestCS[w][h] = nullptr;
}
}
}
// WIA: only the weight==height case is relevant without QTBT
m_pImvTempCS = nullptr;
if( IMV_OFF != encCfg->getIMV() && !BTnoRQT )
{
m_pImvTempCS = new CodingStructure**[numWidths];
for( unsigned w = 0; w < numWidths; w++ )
{
unsigned width = gp_sizeIdxInfo->sizeFrom( w );
unsigned height = gp_sizeIdxInfo->sizeFrom( w );
m_pImvTempCS[w] = new CodingStructure*[maxMEPart];
for( unsigned p = 0; p < maxMEPart; p++ )
{
if( gp_sizeIdxInfo->isCuSize( width ) )
{
m_pImvTempCS[w][p] = new CodingStructure( m_unitCache.cuCache, m_unitCache.puCache, m_unitCache.tuCache );
m_pImvTempCS[w][p]->create( chromaFormat, Area( 0, 0, width, height ), false );
}
else
{
m_pImvTempCS[w][p] = nullptr;
}
}
}
}
m_cuChromaQpOffsetIdxPlus1 = 0;
unsigned maxDepth = numWidths + numHeights;
if( encCfg->getQTBT() )
{
m_modeCtrl = new EncModeCtrlMTnoRQT();
}
else
{
THROW( "Unknown partitioner!" );
}
#if REUSE_CU_RESULTS
m_modeCtrl->create( *encCfg );
#endif
for( unsigned ui = 0; ui < MRG_MAX_NUM_CANDS; ui++ )
{
m_acMergeBuffer[ui].create( chromaFormat, Area( 0, 0, uiMaxWidth, uiMaxHeight ) );
}
m_CtxBuffer.resize( maxDepth );
m_CurrCtx = 0;
}
void EncCu::destroy()
{
bool BTnoRQT = m_pcEncCfg->getQTBT();
unsigned maxMEPart = BTnoRQT ? 1 : NUMBER_OF_PART_SIZES;
unsigned numWidths = gp_sizeIdxInfo->numWidths();
unsigned numHeights = gp_sizeIdxInfo->numHeights();
for( unsigned w = 0; w < numWidths; w++ )
{
for( unsigned h = 0; h < numHeights; h++ )
{
if( BTnoRQT || w == h )
{
if( m_pBestCS[w][h] ) m_pBestCS[w][h]->destroy();
if( m_pTempCS[w][h] ) m_pTempCS[w][h]->destroy();
delete m_pBestCS[w][h];
delete m_pTempCS[w][h];
}
}
delete[] m_pTempCS[w];
delete[] m_pBestCS[w];
}
delete[] m_pBestCS; m_pBestCS = nullptr;
delete[] m_pTempCS; m_pTempCS = nullptr;
#if REUSE_CU_RESULTS
m_modeCtrl->destroy();
#endif
delete m_modeCtrl;
m_modeCtrl = nullptr;
// WIA: only the weight==height case is relevant without QTBT
if( m_pImvTempCS )
{
for( unsigned w = 0; w < numWidths; w++ )
{
for( unsigned p = 0; p < maxMEPart; p++ )
{
if( m_pImvTempCS[w][p] ) m_pImvTempCS[w][p]->destroy();
delete m_pImvTempCS[w][p];
}
delete[] m_pImvTempCS[w];
}
delete[] m_pImvTempCS;
m_pImvTempCS = nullptr;
}
for( unsigned ui = 0; ui < MRG_MAX_NUM_CANDS; ui++ )
{
m_acMergeBuffer[ui].destroy();
}
}
EncCu::~EncCu()
{
}
/** \param pcEncLib pointer of encoder class
*/
void EncCu::init( EncLib* pcEncLib, const SPS& sps PARL_PARAM( const int tId ) )
{
m_pcEncCfg = pcEncLib;
m_pcIntraSearch = pcEncLib->getIntraSearch( PARL_PARAM0( tId ) );
m_pcInterSearch = pcEncLib->getInterSearch( PARL_PARAM0( tId ) );
m_pcTrQuant = pcEncLib->getTrQuant( PARL_PARAM0( tId ) );
m_pcRdCost = pcEncLib->getRdCost ( PARL_PARAM0( tId ) );
m_CABACEstimator = pcEncLib->getCABACEncoder( PARL_PARAM0( tId ) )->getCABACEstimator( &sps );
m_CABACEstimator->setEncCu(this);
m_CtxCache = pcEncLib->getCtxCache( PARL_PARAM0( tId ) );
m_pcRateCtrl = pcEncLib->getRateCtrl();
m_pcSliceEncoder = pcEncLib->getSliceEncoder();
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
m_pcEncLib = pcEncLib;
m_dataId = tId;
#endif
#if REUSE_CU_RESULTS
DecCu::init( m_pcTrQuant, m_pcIntraSearch, m_pcInterSearch );
#endif
m_modeCtrl->init( m_pcEncCfg, m_pcRateCtrl, m_pcRdCost );
m_pcInterSearch->setModeCtrl( m_modeCtrl );
::memset(m_subMergeBlkSize, 0, sizeof(m_subMergeBlkSize));
::memset(m_subMergeBlkNum, 0, sizeof(m_subMergeBlkNum));
m_prevPOC = MAX_UINT;
m_clearSubMergeStatic = false;
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
void EncCu::compressCtu( CodingStructure& cs, const UnitArea& area, const unsigned ctuRsAddr, const int prevQP[], const int currQP[] )
{
m_modeCtrl->initCTUEncoding( *cs.slice );
#if ENABLE_SPLIT_PARALLELISM
if( m_pcEncCfg->getNumSplitThreads() > 1 )
{
for( int jId = 1; jId < NUM_RESERVERD_SPLIT_JOBS; jId++ )
{
EncCu* jobEncCu = m_pcEncLib->getCuEncoder( cs.picture->scheduler.getSplitDataId( jId ) );
CacheBlkInfoCtrl* cacheCtrl = dynamic_cast< CacheBlkInfoCtrl* >( jobEncCu->m_modeCtrl );
if( cacheCtrl )
{
cacheCtrl->init( *cs.slice );
}
}
}
if( auto* cacheCtrl = dynamic_cast<CacheBlkInfoCtrl*>( m_modeCtrl ) ) { cacheCtrl->tick(); }
#endif
// init the partitioning manager
Partitioner *partitioner = PartitionerFactory::get( *cs.slice );
partitioner->initCtu( area, CH_L, *cs.slice );
// init current context pointer
m_CurrCtx = m_CtxBuffer.data();
CodingStructure *tempCS = m_pTempCS[gp_sizeIdxInfo->idxFrom( area.lumaSize().width )][gp_sizeIdxInfo->idxFrom( area.lumaSize().height )];
CodingStructure *bestCS = m_pBestCS[gp_sizeIdxInfo->idxFrom( area.lumaSize().width )][gp_sizeIdxInfo->idxFrom( area.lumaSize().height )];
cs.initSubStructure( *tempCS, partitioner->chType, partitioner->currArea(), false );
cs.initSubStructure( *bestCS, partitioner->chType, partitioner->currArea(), false );
tempCS->currQP[CH_L] = bestCS->currQP[CH_L] =
tempCS->baseQP = bestCS->baseQP = currQP[CH_L];
tempCS->prevQP[CH_L] = bestCS->prevQP[CH_L] = prevQP[CH_L];
xCompressCU( tempCS, bestCS, *partitioner );
// all signals were already copied during compression if the CTU was split - at this point only the structures are copied to the top level CS
const bool copyUnsplitCTUSignals = bestCS->cus.size() == 1 && KEEP_PRED_AND_RESI_SIGNALS;
cs.useSubStructure( *bestCS, partitioner->chType, CS::getArea( *bestCS, area, partitioner->chType ), copyUnsplitCTUSignals, false, false, copyUnsplitCTUSignals );
if( !cs.pcv->ISingleTree && cs.slice->isIRAP() && cs.pcv->chrFormat != CHROMA_400 )

Karsten Suehring
committed
{
m_CABACEstimator->getCtx() = m_CurrCtx->start;
partitioner->initCtu( area, CH_C, *cs.slice );
cs.initSubStructure( *tempCS, partitioner->chType, partitioner->currArea(), false );
cs.initSubStructure( *bestCS, partitioner->chType, partitioner->currArea(), false );
tempCS->currQP[CH_C] = bestCS->currQP[CH_C] =
tempCS->baseQP = bestCS->baseQP = currQP[CH_C];
tempCS->prevQP[CH_C] = bestCS->prevQP[CH_C] = prevQP[CH_C];
xCompressCU( tempCS, bestCS, *partitioner );
const bool copyUnsplitCTUSignals = bestCS->cus.size() == 1 && KEEP_PRED_AND_RESI_SIGNALS;
cs.useSubStructure( *bestCS, partitioner->chType, CS::getArea( *bestCS, area, partitioner->chType ), copyUnsplitCTUSignals, false, false, copyUnsplitCTUSignals );
}
if (m_pcEncCfg->getUseRateCtrl())
{
(m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr)).m_actualMSE = (double)bestCS->dist / (double)m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr).m_numberOfPixel;
}

Karsten Suehring
committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
// reset context states and uninit context pointer
m_CABACEstimator->getCtx() = m_CurrCtx->start;
m_CurrCtx = 0;
delete partitioner;
#if ENABLE_SPLIT_PARALLELISM && ENABLE_WPP_PARALLELISM
if( m_pcEncCfg->getNumSplitThreads() > 1 && m_pcEncCfg->getNumWppThreads() > 1 )
{
cs.picture->finishCtuPart( area );
}
#endif
// Ensure that a coding was found
// Selected mode's RD-cost must be not MAX_DOUBLE.
CHECK( bestCS->cus.empty() , "No possible encoding found" );
CHECK( bestCS->cus[0]->partSize == NUMBER_OF_PART_SIZES , "No possible encoding found" );
CHECK( bestCS->cus[0]->predMode == NUMBER_OF_PREDICTION_MODES, "No possible encoding found" );
CHECK( bestCS->cost == MAX_DOUBLE , "No possible encoding found" );
}
// ====================================================================================================================
// Protected member functions
// ====================================================================================================================
static int xCalcHADs8x8_ISlice(const Pel *piOrg, const int iStrideOrg)
{
int k, i, j, jj;
int diff[64], m1[8][8], m2[8][8], m3[8][8], iSumHad = 0;
for (k = 0; k < 64; k += 8)
{
diff[k + 0] = piOrg[0];
diff[k + 1] = piOrg[1];
diff[k + 2] = piOrg[2];
diff[k + 3] = piOrg[3];
diff[k + 4] = piOrg[4];
diff[k + 5] = piOrg[5];
diff[k + 6] = piOrg[6];
diff[k + 7] = piOrg[7];
piOrg += iStrideOrg;
}
//horizontal
for (j = 0; j < 8; j++)
{
jj = j << 3;
m2[j][0] = diff[jj ] + diff[jj + 4];
m2[j][1] = diff[jj + 1] + diff[jj + 5];
m2[j][2] = diff[jj + 2] + diff[jj + 6];
m2[j][3] = diff[jj + 3] + diff[jj + 7];
m2[j][4] = diff[jj ] - diff[jj + 4];
m2[j][5] = diff[jj + 1] - diff[jj + 5];
m2[j][6] = diff[jj + 2] - diff[jj + 6];
m2[j][7] = diff[jj + 3] - diff[jj + 7];
m1[j][0] = m2[j][0] + m2[j][2];
m1[j][1] = m2[j][1] + m2[j][3];
m1[j][2] = m2[j][0] - m2[j][2];
m1[j][3] = m2[j][1] - m2[j][3];
m1[j][4] = m2[j][4] + m2[j][6];
m1[j][5] = m2[j][5] + m2[j][7];
m1[j][6] = m2[j][4] - m2[j][6];
m1[j][7] = m2[j][5] - m2[j][7];
m2[j][0] = m1[j][0] + m1[j][1];
m2[j][1] = m1[j][0] - m1[j][1];
m2[j][2] = m1[j][2] + m1[j][3];
m2[j][3] = m1[j][2] - m1[j][3];
m2[j][4] = m1[j][4] + m1[j][5];
m2[j][5] = m1[j][4] - m1[j][5];
m2[j][6] = m1[j][6] + m1[j][7];
m2[j][7] = m1[j][6] - m1[j][7];
}
//vertical
for (i = 0; i < 8; i++)
{
m3[0][i] = m2[0][i] + m2[4][i];
m3[1][i] = m2[1][i] + m2[5][i];
m3[2][i] = m2[2][i] + m2[6][i];
m3[3][i] = m2[3][i] + m2[7][i];
m3[4][i] = m2[0][i] - m2[4][i];
m3[5][i] = m2[1][i] - m2[5][i];
m3[6][i] = m2[2][i] - m2[6][i];
m3[7][i] = m2[3][i] - m2[7][i];
m1[0][i] = m3[0][i] + m3[2][i];
m1[1][i] = m3[1][i] + m3[3][i];
m1[2][i] = m3[0][i] - m3[2][i];
m1[3][i] = m3[1][i] - m3[3][i];
m1[4][i] = m3[4][i] + m3[6][i];
m1[5][i] = m3[5][i] + m3[7][i];
m1[6][i] = m3[4][i] - m3[6][i];
m1[7][i] = m3[5][i] - m3[7][i];
m2[0][i] = m1[0][i] + m1[1][i];
m2[1][i] = m1[0][i] - m1[1][i];
m2[2][i] = m1[2][i] + m1[3][i];
m2[3][i] = m1[2][i] - m1[3][i];
m2[4][i] = m1[4][i] + m1[5][i];
m2[5][i] = m1[4][i] - m1[5][i];
m2[6][i] = m1[6][i] + m1[7][i];
m2[7][i] = m1[6][i] - m1[7][i];
}
for (i = 0; i < 8; i++)
{
for (j = 0; j < 8; j++)
{
iSumHad += abs(m2[i][j]);
}
}
iSumHad -= abs(m2[0][0]);
iSumHad = (iSumHad + 2) >> 2;
return(iSumHad);
}
int EncCu::updateCtuDataISlice(const CPelBuf buf)
{
int xBl, yBl;
const int iBlkSize = 8;
const Pel* pOrgInit = buf.buf;
int iStrideOrig = buf.stride;
int iSumHad = 0;
for( yBl = 0; ( yBl + iBlkSize ) <= buf.height; yBl += iBlkSize )
{
for( xBl = 0; ( xBl + iBlkSize ) <= buf.width; xBl += iBlkSize )
{
const Pel* pOrg = pOrgInit + iStrideOrig*yBl + xBl;
iSumHad += xCalcHADs8x8_ISlice( pOrg, iStrideOrig );
}
}
return( iSumHad );
}
void EncCu::xCheckBestMode( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &partitioner, const EncTestMode& encTestMode )
{
if( !tempCS->cus.empty() )
{
if( tempCS->cus.size() == 1 )
{
const CodingUnit& cu = *tempCS->cus.front();
CHECK( cu.skip && !cu.firstPU->mergeFlag, "Skip flag without a merge flag is not allowed!" );
}
#if WCG_EXT
DTRACE_BEST_MODE( tempCS, bestCS, m_pcRdCost->getLambda( true ) );
#else
DTRACE_BEST_MODE( tempCS, bestCS, m_pcRdCost->getLambda() );
#endif
if( m_modeCtrl->useModeResult( encTestMode, tempCS, partitioner ) )
{
if( tempCS->cus.size() == 1 )
{
// if tempCS is not a split-mode
CodingUnit &cu = *tempCS->cus.front();
if( CU::isLosslessCoded( cu ) && !cu.ipcm )
{
xFillPCMBuffer( cu );
}
}
std::swap( tempCS, bestCS );
// store temp best CI for next CU coding
m_CurrCtx->best = m_CABACEstimator->getCtx();
}
}
// reset context states
m_CABACEstimator->getCtx() = m_CurrCtx->start;
}
void EncCu::xCompressCU( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &partitioner )
{
#if ENABLE_SPLIT_PARALLELISM
CHECK( m_dataId != tempCS->picture->scheduler.getDataId(), "Working in the wrong dataId!" );
if( m_pcEncCfg->getNumSplitThreads() != 1 && tempCS->picture->scheduler.getSplitJobId() == 0 )
{
if( m_modeCtrl->isParallelSplit( *tempCS, partitioner ) )
{
m_modeCtrl->setParallelSplit( true );
xCompressCUParallel( tempCS, bestCS, partitioner );
return;
}
}
#endif
Slice& slice = *tempCS->slice;
const PPS &pps = *tempCS->pps;
const SPS &sps = *tempCS->sps;
const uint32_t uiLPelX = tempCS->area.Y().lumaPos().x;
const uint32_t uiTPelY = tempCS->area.Y().lumaPos().y;
const unsigned wIdx = gp_sizeIdxInfo->idxFrom( partitioner.currArea().lwidth() );
const UnitArea currCsArea = clipArea( CS::getArea( *bestCS, bestCS->area, partitioner.chType ), *tempCS->picture );
if( m_pImvTempCS && !slice.isIntra() )
{
const unsigned maxMEPart = tempCS->pcv->only2Nx2N ? 1 : NUMBER_OF_PART_SIZES;
for( unsigned p = 0; p < maxMEPart; p++ )
{
tempCS->initSubStructure( *m_pImvTempCS[wIdx][p], partitioner.chType, partitioner.currArea(), false );
}
}
m_modeCtrl->initCULevel( partitioner, *tempCS );
m_CurrCtx->start = m_CABACEstimator->getCtx();
m_cuChromaQpOffsetIdxPlus1 = 0;
if( slice.getUseChromaQpAdj() )
{
int lgMinCuSize = sps.getLog2MinCodingBlockSize() +
std::max<int>( 0, sps.getLog2DiffMaxMinCodingBlockSize() - int( pps.getPpsRangeExtension().getDiffCuChromaQpOffsetDepth() ) );
m_cuChromaQpOffsetIdxPlus1 = ( ( uiLPelX >> lgMinCuSize ) + ( uiTPelY >> lgMinCuSize ) ) % ( pps.getPpsRangeExtension().getChromaQpOffsetListLen() + 1 );
}
if( !m_modeCtrl->anyMode() )
{
m_modeCtrl->finishCULevel( partitioner );
return;
}
DTRACE_UPDATE( g_trace_ctx, std::make_pair( "cux", uiLPelX ) );
DTRACE_UPDATE( g_trace_ctx, std::make_pair( "cuy", uiTPelY ) );
DTRACE_UPDATE( g_trace_ctx, std::make_pair( "cuw", tempCS->area.lwidth() ) );
DTRACE_UPDATE( g_trace_ctx, std::make_pair( "cuh", tempCS->area.lheight() ) );
DTRACE( g_trace_ctx, D_COMMON, "@(%4d,%4d) [%2dx%2d]\n", tempCS->area.lx(), tempCS->area.ly(), tempCS->area.lwidth(), tempCS->area.lheight() );
do
{
const EncTestMode currTestMode = m_modeCtrl->currTestMode();
#if SHARP_LUMA_DELTA_QP
if( m_pcEncCfg->getLumaLevelToDeltaQPMapping().isEnabled() && partitioner.currDepth <= pps.getMaxCuDQPDepth() )
{
#if ENABLE_SPLIT_PARALLELISM
CHECK( tempCS->picture->scheduler.getSplitJobId() > 0, "Changing lambda is only allowed in the master thread!" );
#endif
if (currTestMode.qp >= 0)
{
updateLambda(&slice, currTestMode.qp);
}
}
#endif
if( currTestMode.type == ETM_INTER_ME )
{
if( ( currTestMode.opts & ETO_IMV ) != 0 )
{
xCheckRDCostInterIMV(tempCS, bestCS, partitioner, currTestMode);
}
else
{
xCheckRDCostInter( tempCS, bestCS, partitioner, currTestMode );
}
}
else if( currTestMode.type == ETM_AFFINE )
{
xCheckRDCostAffineMerge2Nx2N( tempCS, bestCS, partitioner, currTestMode );
}
#if REUSE_CU_RESULTS
else if( currTestMode.type == ETM_RECO_CACHED )
{
xReuseCachedResult( tempCS, bestCS, partitioner );
}
#endif
else if( currTestMode.type == ETM_MERGE_SKIP )
{
xCheckRDCostMerge2Nx2N( tempCS, bestCS, partitioner, currTestMode );
}
else if( currTestMode.type == ETM_INTRA )
{
xCheckRDCostIntra( tempCS, bestCS, partitioner, currTestMode );
}
else if( currTestMode.type == ETM_IPCM )
{
xCheckIntraPCM( tempCS, bestCS, partitioner, currTestMode );
}
else if( isModeSplit( currTestMode ) )
{
xCheckModeSplit( tempCS, bestCS, partitioner, currTestMode );
}
else
{
THROW( "Don't know how to handle mode: type = " << currTestMode.type << ", size = " << currTestMode.partSize << ", options = " << currTestMode.opts );
}
} while( m_modeCtrl->nextMode( *tempCS, partitioner ) );
//////////////////////////////////////////////////////////////////////////
// Finishing CU
#if ENABLE_SPLIT_PARALLELISM
if( bestCS->cus.empty() )
{
CHECK( bestCS->cost != MAX_DOUBLE, "Cost should be maximal if no encoding found" );
CHECK( bestCS->picture->scheduler.getSplitJobId() == 0, "Should always get a result in serial case" );
m_modeCtrl->finishCULevel( partitioner );
return;
}
#endif
// set context states
m_CABACEstimator->getCtx() = m_CurrCtx->best;
// QP from last processed CU for further processing
bestCS->prevQP[partitioner.chType] = bestCS->cus.back()->qp;
bestCS->picture->getRecoBuf( currCsArea ).copyFrom( bestCS->getRecoBuf( currCsArea ) );
m_modeCtrl->finishCULevel( partitioner );
#if ENABLE_SPLIT_PARALLELISM
if( tempCS->picture->scheduler.getSplitJobId() == 0 && m_pcEncCfg->getNumSplitThreads() != 1 )
{
tempCS->picture->finishParallelPart( currCsArea );
}
#endif
// Assert if Best prediction mode is NONE
// Selected mode's RD-cost must be not MAX_DOUBLE.
CHECK( bestCS->cus.empty() , "No possible encoding found" );
CHECK( bestCS->cus[0]->partSize == NUMBER_OF_PART_SIZES , "No possible encoding found" );
CHECK( bestCS->cus[0]->predMode == NUMBER_OF_PREDICTION_MODES, "No possible encoding found" );
CHECK( bestCS->cost == MAX_DOUBLE , "No possible encoding found" );
}
#if SHARP_LUMA_DELTA_QP
void EncCu::updateLambda( Slice* slice, double dQP )
{
#if WCG_EXT
int NumberBFrames = ( m_pcEncCfg->getGOPSize() - 1 );
int SHIFT_QP = 12;
double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(double)(slice->getPic()->fieldPic ? NumberBFrames/2 : NumberBFrames) );
int bitdepth_luma_qp_scale = 6
* (slice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 8
- DISTORTION_PRECISION_ADJUSTMENT(slice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA)));
double qp_temp = (double) dQP + bitdepth_luma_qp_scale - SHIFT_QP;

Karsten Suehring
committed
double dQPFactor = m_pcEncCfg->getGOPEntry( m_pcSliceEncoder->getGopId() ).m_QPFactor;

Karsten Suehring
committed
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
if( slice->getSliceType() == I_SLICE )
{
if( m_pcEncCfg->getIntraQpFactor() >= 0.0 /*&& m_pcEncCfg->getGOPEntry( m_pcSliceEncoder->getGopId() ).m_sliceType != I_SLICE*/ )
{
dQPFactor = m_pcEncCfg->getIntraQpFactor();
}
else
{
if( m_pcEncCfg->getLambdaFromQPEnable() )
{
dQPFactor = 0.57;
}
else
{
dQPFactor = 0.57*dLambda_scale;
}
}
}
else if( m_pcEncCfg->getLambdaFromQPEnable() )
{
dQPFactor = 0.57*dQPFactor;
}
double dLambda = dQPFactor*pow( 2.0, qp_temp/3.0 );
int depth = slice->getDepth();
if( !m_pcEncCfg->getLambdaFromQPEnable() && depth>0 )
{
int qp_temp_slice = slice->getSliceQp() + bitdepth_luma_qp_scale - SHIFT_QP; // avoid lambda over adjustment, use slice_qp here
dLambda *= Clip3( 2.00, 4.00, (qp_temp_slice / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 )
}
if( !m_pcEncCfg->getUseHADME() && slice->getSliceType( ) != I_SLICE )
{
dLambda *= 0.95;
}
const int temporalId = m_pcEncCfg->getGOPEntry( m_pcSliceEncoder->getGopId() ).m_temporalId;
const std::vector<double> &intraLambdaModifiers = m_pcEncCfg->getIntraLambdaModifier();
double lambdaModifier;
if( slice->getSliceType( ) != I_SLICE || intraLambdaModifiers.empty())
{
lambdaModifier = m_pcEncCfg->getLambdaModifier(temporalId);
}
else
{
lambdaModifier = intraLambdaModifiers[(temporalId < intraLambdaModifiers.size()) ? temporalId : (intraLambdaModifiers.size() - 1)];
}
dLambda *= lambdaModifier;
int qpBDoffset = slice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA);
int iQP = Clip3(-qpBDoffset, MAX_QP, (int)floor(dQP + 0.5));

Karsten Suehring
committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
m_pcSliceEncoder->setUpLambda(slice, dLambda, iQP);
#else
int iQP = (int)dQP;
const double oldQP = (double)slice->getSliceQpBase();
const double oldLambda = m_pcSliceEncoder->calculateLambda (slice, m_pcSliceEncoder->getGopId(), slice->getDepth(), oldQP, oldQP, iQP);
const double newLambda = oldLambda * pow (2.0, (dQP - oldQP) / 3.0);
#if RDOQ_CHROMA_LAMBDA
const double chromaLambda = newLambda / m_pcRdCost->getChromaWeight();
const double lambdaArray[MAX_NUM_COMPONENT] = {newLambda, chromaLambda, chromaLambda};
m_pcTrQuant->setLambdas (lambdaArray);
#else
m_pcTrQuant->setLambda (newLambda);
#endif
m_pcRdCost->setLambda( newLambda, slice->getSPS()->getBitDepths() );
#endif
}
#endif
#if ENABLE_SPLIT_PARALLELISM
//#undef DEBUG_PARALLEL_TIMINGS
//#define DEBUG_PARALLEL_TIMINGS 1
void EncCu::xCompressCUParallel( CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &partitioner )
{
const unsigned wIdx = gp_sizeIdxInfo->idxFrom( partitioner.currArea().lwidth() );
const unsigned hIdx = gp_sizeIdxInfo->idxFrom( partitioner.currArea().lheight() );
Picture* picture = tempCS->picture;
int numJobs = m_modeCtrl->getNumParallelJobs( *bestCS, partitioner );
bool jobUsed [NUM_RESERVERD_SPLIT_JOBS];
std::fill( jobUsed, jobUsed + NUM_RESERVERD_SPLIT_JOBS, false );
const UnitArea currArea = CS::getArea( *tempCS, partitioner.currArea(), partitioner.chType );
#if ENABLE_WPP_PARALLELISM
const int wppTId = picture->scheduler.getWppThreadId();
#endif
const bool doParallel = !m_pcEncCfg->getForceSingleSplitThread();
#if _MSC_VER && ENABLE_WPP_PARALLELISM
#pragma omp parallel for schedule(dynamic,1) num_threads(NUM_SPLIT_THREADS_IF_MSVC) if(doParallel)
#else
omp_set_num_threads( m_pcEncCfg->getNumSplitThreads() );
#pragma omp parallel for schedule(dynamic,1) if(doParallel)
#endif
for( int jId = 1; jId <= numJobs; jId++ )
{
// thread start
#if ENABLE_WPP_PARALLELISM
picture->scheduler.setWppThreadId( wppTId );
#endif
picture->scheduler.setSplitThreadId();
picture->scheduler.setSplitJobId( jId );
Partitioner* jobPartitioner = PartitionerFactory::get( *tempCS->slice );
EncCu* jobCuEnc = m_pcEncLib->getCuEncoder( picture->scheduler.getSplitDataId( jId ) );
auto* jobBlkCache = dynamic_cast<CacheBlkInfoCtrl*>( jobCuEnc->m_modeCtrl );
jobPartitioner->copyState( partitioner );
jobCuEnc ->copyState( this, *jobPartitioner, currArea, true );
if( jobBlkCache )
{
jobBlkCache->tick();
}
CodingStructure *&jobBest = jobCuEnc->m_pBestCS[wIdx][hIdx];
CodingStructure *&jobTemp = jobCuEnc->m_pTempCS[wIdx][hIdx];
jobUsed[jId] = true;
jobCuEnc->xCompressCU( jobTemp, jobBest, *jobPartitioner );
delete jobPartitioner;
picture->scheduler.setSplitJobId( 0 );
// thread stop
}
picture->scheduler.setSplitThreadId( 0 );
int bestJId = 0;
double bestCost = bestCS->cost;
for( int jId = 1; jId <= numJobs; jId++ )
{
EncCu* jobCuEnc = m_pcEncLib->getCuEncoder( picture->scheduler.getSplitDataId( jId ) );
if( jobUsed[jId] && jobCuEnc->m_pBestCS[wIdx][hIdx]->cost < bestCost )
{
bestCost = jobCuEnc->m_pBestCS[wIdx][hIdx]->cost;
bestJId = jId;
}
}
if( bestJId > 0 )
{
copyState( m_pcEncLib->getCuEncoder( picture->scheduler.getSplitDataId( bestJId ) ), partitioner, currArea, false );
m_CurrCtx->best = m_CABACEstimator->getCtx();
tempCS = m_pTempCS[wIdx][hIdx];
bestCS = m_pBestCS[wIdx][hIdx];
}
const int bitDepthY = tempCS->sps->getBitDepth( CH_L );
const UnitArea clipdArea = clipArea( currArea, *picture );
CHECK( calcCheckSum( picture->getRecoBuf( clipdArea.Y() ), bitDepthY ) != calcCheckSum( bestCS->getRecoBuf( clipdArea.Y() ), bitDepthY ), "Data copied incorrectly!" );
picture->finishParallelPart( currArea );
if( auto *blkCache = dynamic_cast<CacheBlkInfoCtrl*>( m_modeCtrl ) )
{
for( int jId = 1; jId <= numJobs; jId++ )
{
if( !jobUsed[jId] || jId == bestJId ) continue;
auto *jobBlkCache = dynamic_cast<CacheBlkInfoCtrl*>( m_pcEncLib->getCuEncoder( picture->scheduler.getSplitDataId( jId ) )->m_modeCtrl );
CHECK( !jobBlkCache, "If own mode controller has blk info cache capability so should all other mode controllers!" );
blkCache->CacheBlkInfoCtrl::copyState( *jobBlkCache, partitioner.currArea() );
}
blkCache->tick();
}
}
void EncCu::copyState( EncCu* other, Partitioner& partitioner, const UnitArea& currArea, const bool isDist )
{
const unsigned wIdx = gp_sizeIdxInfo->idxFrom( partitioner.currArea().lwidth () );
const unsigned hIdx = gp_sizeIdxInfo->idxFrom( partitioner.currArea().lheight() );
if( isDist )
{
other->m_pBestCS[wIdx][hIdx]->initSubStructure( *m_pBestCS[wIdx][hIdx], partitioner.chType, partitioner.currArea(), false );
other->m_pTempCS[wIdx][hIdx]->initSubStructure( *m_pTempCS[wIdx][hIdx], partitioner.chType, partitioner.currArea(), false );
}
else
{
CodingStructure* dst = m_pBestCS[wIdx][hIdx];
const CodingStructure *src = other->m_pBestCS[wIdx][hIdx];
bool keepResi = KEEP_PRED_AND_RESI_SIGNALS;
dst->useSubStructure( *src, partitioner.chType, currArea, KEEP_PRED_AND_RESI_SIGNALS, true, keepResi, keepResi );
dst->cost = src->cost;
dst->dist = src->dist;
dst->fracBits = src->fracBits;
dst->features = src->features;
}
if( isDist )
{
m_CurrCtx = m_CtxBuffer.data();
}
m_pcInterSearch->copyState( *other->m_pcInterSearch );
m_modeCtrl ->copyState( *other->m_modeCtrl, partitioner.currArea() );
m_pcRdCost ->copyState( *other->m_pcRdCost );
m_pcTrQuant ->copyState( *other->m_pcTrQuant );
m_CABACEstimator->getCtx() = other->m_CABACEstimator->getCtx();
}
#endif
void EncCu::xCheckModeSplit(CodingStructure *&tempCS, CodingStructure *&bestCS, Partitioner &partitioner, const EncTestMode& encTestMode)
{
const int qp = encTestMode.qp;
const PPS &pps = *tempCS->pps;
const Slice &slice = *tempCS->slice;
const bool bIsLosslessMode = false; // False at this level. Next level down may set it to true.
const int oldPrevQp = tempCS->prevQP[partitioner.chType];
const uint32_t currDepth = partitioner.currDepth;
const PartSplit split = getPartSplit( encTestMode );
CHECK( split == CU_DONT_SPLIT, "No proper split provided!" );
tempCS->initStructData( qp, bIsLosslessMode );
m_CABACEstimator->getCtx() = m_CurrCtx->start;
if( tempCS->sps->getSpsNext().getUseQTBT() )
{
const TempCtx ctxStartSP( m_CtxCache, SubCtx( Ctx::SplitFlag, m_CABACEstimator->getCtx() ) );
const TempCtx ctxStartBT( m_CtxCache, SubCtx( Ctx::BTSplitFlag, m_CABACEstimator->getCtx() ) );
m_CABACEstimator->resetBits();
if( partitioner.getImplicitSplit( *tempCS ) != CU_QUAD_SPLIT )
{
if( partitioner.canSplit( CU_QUAD_SPLIT, *tempCS ) )
{
m_CABACEstimator->split_cu_flag( split == CU_QUAD_SPLIT, *tempCS, partitioner );
}
if( split != CU_QUAD_SPLIT )
{
m_CABACEstimator->split_cu_mode_mt( split, *tempCS, partitioner );
}
}
const double factor = ( tempCS->currQP[partitioner.chType] > 30 ? 1.1 : 1.075 );
const double cost = m_pcRdCost->calcRdCost( uint64_t( m_CABACEstimator->getEstFracBits() + ( ( bestCS->fracBits ) / factor ) ), Distortion( bestCS->dist / factor ) );
m_CABACEstimator->getCtx() = SubCtx( Ctx::SplitFlag, ctxStartSP );
m_CABACEstimator->getCtx() = SubCtx( Ctx::BTSplitFlag, ctxStartBT );
if( cost > bestCS->cost )
{
xCheckBestMode( tempCS, bestCS, partitioner, encTestMode );
return;
}
}
partitioner.splitCurrArea( split, *tempCS );
m_CurrCtx++;
tempCS->getRecoBuf().fill( 0 );
do
{
const auto &subCUArea = partitioner.currArea();
if( tempCS->picture->Y().contains( subCUArea.lumaPos() ) )
{
const unsigned wIdx = gp_sizeIdxInfo->idxFrom( subCUArea.lwidth () );
const unsigned hIdx = gp_sizeIdxInfo->idxFrom( subCUArea.lheight() );
CodingStructure *tempSubCS = m_pTempCS[wIdx][hIdx];
CodingStructure *bestSubCS = m_pBestCS[wIdx][hIdx];
tempCS->initSubStructure( *tempSubCS, partitioner.chType, subCUArea, false );
tempCS->initSubStructure( *bestSubCS, partitioner.chType, subCUArea, false );
xCompressCU( tempSubCS, bestSubCS, partitioner );
if( bestSubCS->cost == MAX_DOUBLE )
{
CHECK( split == CU_QUAD_SPLIT, "Split decision reusing cannot skip quad split" );
tempCS->cost = MAX_DOUBLE;
m_CurrCtx--;
partitioner.exitCurrSplit();
xCheckBestMode( tempCS, bestCS, partitioner, encTestMode );
return;
}
bool keepResi = KEEP_PRED_AND_RESI_SIGNALS;
tempCS->useSubStructure( *bestSubCS, partitioner.chType, CS::getArea( *tempCS, subCUArea, partitioner.chType ), KEEP_PRED_AND_RESI_SIGNALS, true, keepResi, keepResi );
if(currDepth < pps.getMaxCuDQPDepth())
{
tempCS->prevQP[partitioner.chType] = bestSubCS->prevQP[partitioner.chType];
}
tempSubCS->releaseIntermediateData();
bestSubCS->releaseIntermediateData();
}
} while( partitioner.nextPart( *tempCS ) );
partitioner.exitCurrSplit();
m_CurrCtx--;
// Finally, generate split-signaling bits for RD-cost check
const PartSplit implicitSplit = partitioner.getImplicitSplit( *tempCS );
{
bool enforceQT = implicitSplit == CU_QUAD_SPLIT;
#if HM_QTBT_REPRODUCE_FAST_LCTU_BUG