Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file WeightPredAnalysis.cpp
\brief weighted prediction encoder class
*/
#include "../CommonLib/CommonDef.h"
#include "../CommonLib/Slice.h"
#include "../CommonLib/Picture.h"
#include "WeightPredAnalysis.h"
#include <limits>
static const double WEIGHT_PRED_SAD_RELATIVE_TO_NON_WEIGHT_PRED_SAD=0.99; // NOTE: U0040 used 0.95
//! calculate SAD values for both WP version and non-WP version.
static
int64_t xCalcSADvalueWP(const int bitDepth,
const Pel *pOrgPel,
const Pel *pRefPel,
const int width,
const int height,
const int orgStride,
const int refStride,
const int log2Denom,
const int weight,
const int offset,
const bool useHighPrecision);
//! calculate SAD values for both WP version and non-WP version.
static
int64_t xCalcSADvalueWPOptionalClip(const int bitDepth,
const Pel *pOrgPel,
const Pel *pRefPel,
const int width,
const int height,
const int orgStride,
const int refStride,
const int log2Denom,
const int weight,
const int offset,
const bool useHighPrecision,
const bool clipped);
// -----------------------------------------------------------------------------
// Helper functions
//! calculate Histogram for array of pixels
static
void xCalcHistogram(const Pel *pPel,
std::vector<int> &histogram,
const int width,
const int height,
const int stride,
const int maxPel)
{
histogram.clear();
histogram.resize(maxPel);
for( int y = 0; y < height; y++ )
{
for( int x = 0; x < width; x++ )
{
const Pel v=pPel[x];
histogram[v<0?0:(v>=maxPel)?maxPel-1:v]++;
}
pPel += stride;
}
}
static
Distortion xCalcHistDistortion (const std::vector<int> &histogram0,
const std::vector<int> &histogram1)
{
Distortion distortion = 0;
CHECK(histogram0.size()!=histogram1.size(), "Different histogram sizes");
const int numElements=int(histogram0.size());
// Scan histograms to compute histogram distortion
for (int i = 0; i <= numElements; i++)
{
distortion += (Distortion)(abs(histogram0[i] - histogram1[i]));
}
return distortion;
}
static
void xScaleHistogram(const std::vector<int> &histogramInput,
std::vector<int> &histogramOutput, // cannot be the same as the input
const int bitDepth,
const int log2Denom,
const int weight,
const int offset,
const bool bHighPrecision)
{
CHECK(&histogramInput == &histogramOutput, "Input and output histogram are the same");
const int numElements=int(histogramInput.size());
histogramOutput.clear();
histogramOutput.resize(numElements);
const int64_t iRealLog2Denom = bHighPrecision ? 0 : (bitDepth - 8);
const int64_t iRealOffset = ((int64_t)offset)<<iRealLog2Denom;
const int divOffset = log2Denom == 0 ? 0 : 1 << (log2Denom - 1);
// Scan histogram and apply illumination parameters appropriately
// Then compute updated histogram.
// Note that this technique only works with single list weights/offsets.
for (int i = 0; i < numElements; i++)
{
const int j = Clip3(0, numElements - 1, (int)(((weight * i + divOffset) >> log2Denom) + iRealOffset));
histogramOutput[j] += histogramInput[i];
}
}
static
Distortion xSearchHistogram(const std::vector<int> &histogramSource,
const std::vector<int> &histogramRef,
std::vector<int> &outputHistogram,
const int bitDepth,
const int log2Denom,
int &weightToUpdate,
int &offsetToUpdate,
const bool bHighPrecision,
const ComponentID compID)
{
const int initialWeight = weightToUpdate;
const int initialOffset = offsetToUpdate;
const int weightRange = 10;
const int offsetRange = 10;
const int maxOffset = 1 << ((bHighPrecision == true) ? (bitDepth - 1) : 7);
const int range = bHighPrecision ? (1<<bitDepth) / 2 : 128;
const int defaultWeight = (1<<log2Denom);
const int minSearchWeight = std::max<int>(initialWeight - weightRange, defaultWeight - range);
const int maxSearchWeight = std::min<int>(initialWeight + weightRange+1, defaultWeight + range);
Distortion minDistortion = std::numeric_limits<Distortion>::max();
int bestWeight = initialWeight;
int bestOffset = initialOffset;
for (int searchWeight = minSearchWeight; searchWeight < maxSearchWeight; searchWeight++)
{
if (compID == COMPONENT_Y)
{
for (int searchOffset = std::max<int>(initialOffset - offsetRange, -maxOffset);
searchOffset <= initialOffset + offsetRange && searchOffset<=(maxOffset-1);
searchOffset++)
{
xScaleHistogram(histogramRef, outputHistogram, bitDepth, log2Denom, searchWeight, searchOffset, bHighPrecision);
const Distortion distortion = xCalcHistDistortion(histogramSource, outputHistogram);
if (distortion < minDistortion)
{
minDistortion = distortion;
bestWeight = searchWeight;
bestOffset = searchOffset;
}
}
}
else
{
const int pred = ( maxOffset - ( ( maxOffset*searchWeight)>>(log2Denom) ) );
for (int searchOffset = initialOffset - offsetRange; searchOffset <= initialOffset + offsetRange; searchOffset++)
{
const int deltaOffset = Clip3( -4*maxOffset, 4*maxOffset-1, (searchOffset - pred) ); // signed 10bit (if !bHighPrecision)
const int clippedOffset = Clip3( -1*maxOffset, 1*maxOffset-1, (deltaOffset + pred) ); // signed 8bit (if !bHighPrecision)
xScaleHistogram(histogramRef, outputHistogram, bitDepth, log2Denom, searchWeight, clippedOffset, bHighPrecision);
const Distortion distortion = xCalcHistDistortion(histogramSource, outputHistogram);
if (distortion < minDistortion)
{
minDistortion = distortion;
bestWeight = searchWeight;
bestOffset = clippedOffset;
}
}
}
}
weightToUpdate = bestWeight;
offsetToUpdate = bestOffset;
// regenerate best histogram
xScaleHistogram(histogramRef, outputHistogram, bitDepth, log2Denom, bestWeight, bestOffset, bHighPrecision);
return minDistortion;
}
// -----------------------------------------------------------------------------
// Member functions
WeightPredAnalysis::WeightPredAnalysis()
{
for ( uint32_t lst =0 ; lst<NUM_REF_PIC_LIST_01 ; lst++ )
{
for ( int refIdx=0 ; refIdx<MAX_NUM_REF ; refIdx++ )
{
for ( int comp=0 ; comp<MAX_NUM_COMPONENT ;comp++ )
{
WPScalingParam *pwp = &(m_wp[lst][refIdx][comp]);
pwp->bPresentFlag = false;
pwp->uiLog2WeightDenom = 0;
pwp->iWeight = 1;
pwp->iOffset = 0;
}
}
}
}
//! calculate AC and DC values for current original image
void WeightPredAnalysis::xCalcACDCParamSlice(Slice *const slice)
{
//===== calculate AC/DC value =====
// PicYuv* pPic = slice->getPic()->getPicYuvOrg();
const CPelUnitBuf pPic = slice->getPic()->getOrigBuf();
WPACDCParam weightACDCParam[MAX_NUM_COMPONENT];
for(int componentIndex = 0; componentIndex < ::getNumberValidComponents(pPic.chromaFormat); componentIndex++)
{
const ComponentID compID = ComponentID(componentIndex);
const CPelBuf compBuf = pPic.get( compID );
// calculate DC/AC value for channel
const int stride = compBuf.stride;
const int width = compBuf.width;
const int height = compBuf.height;
const int sample = width*height;
int64_t orgDC = 0;
{
const Pel *pPel = compBuf.buf;
for(int y = 0; y < height; y++, pPel+=stride )
{
for(int x = 0; x < width; x++ )
{
orgDC += (int)( pPel[x] );
}
}
}
const int64_t orgNormDC = ((orgDC+(sample>>1)) / sample);
int64_t orgAC = 0;
{
const Pel *pPel = compBuf.buf;
for(int y = 0; y < height; y++, pPel += stride )
{
for(int x = 0; x < width; x++ )
{
orgAC += abs( (int)pPel[x] - (int)orgNormDC );
}
}
}
const int fixedBitShift = (slice->getSPS()->getSpsRangeExtension().getHighPrecisionOffsetsEnabledFlag())?RExt__PREDICTION_WEIGHTING_ANALYSIS_DC_PRECISION:0;
weightACDCParam[compID].iDC = (((orgDC<<fixedBitShift)+(sample>>1)) / sample);
weightACDCParam[compID].iAC = orgAC;
}
slice->setWpAcDcParam(weightACDCParam);
}
//! check weighted pred or non-weighted pred
void WeightPredAnalysis::xCheckWPEnable(Slice *const slice)
{
// const PicYuv *pPic = slice->getPic()->getPicYuvOrg();
int presentCnt = 0;
for ( uint32_t lst=0 ; lst<NUM_REF_PIC_LIST_01 ; lst++ )
{
for ( int refIdx=0 ; refIdx<MAX_NUM_REF ; refIdx++ )
{
for(int componentIndex = 0; componentIndex < ::getNumberValidComponents( slice->getSPS()->getChromaFormatIdc() ); componentIndex++)
{
WPScalingParam *pwp = &(m_wp[lst][refIdx][componentIndex]);
presentCnt += (int)pwp->bPresentFlag;
}
}
}
if(presentCnt==0)
{
slice->setTestWeightPred(false);
slice->setTestWeightBiPred(false);
for ( uint32_t lst=0 ; lst<NUM_REF_PIC_LIST_01 ; lst++ )
{
for ( int refIdx=0 ; refIdx<MAX_NUM_REF ; refIdx++ )
{
for(int componentIndex = 0; componentIndex < ::getNumberValidComponents( slice->getSPS()->getChromaFormatIdc() ); componentIndex++)
{
WPScalingParam *pwp = &(m_wp[lst][refIdx][componentIndex]);
pwp->bPresentFlag = false;
pwp->uiLog2WeightDenom = 0;
pwp->iWeight = 1;
pwp->iOffset = 0;
}
}
}
slice->setWpScaling( m_wp );
}
else
{
slice->setTestWeightPred (slice->getPPS()->getUseWP());
slice->setTestWeightBiPred(slice->getPPS()->getWPBiPred());
}
}
//! estimate wp tables for explicit wp
void WeightPredAnalysis::xEstimateWPParamSlice(Slice *const slice, const WeightedPredictionMethod method)
{
int iDenom = 6;
bool validRangeFlag = false;
if(slice->getNumRefIdx(REF_PIC_LIST_0)>3)
{
iDenom = 7;
}
do
{
validRangeFlag = xUpdatingWPParameters(slice, iDenom);
if (!validRangeFlag)
{
iDenom--; // decrement to satisfy the range limitation
}
} while (validRangeFlag == false);
// selecting whether WP is used, or not (fast search)
// NOTE: This is not operating on a slice, but the entire picture.
switch (method)
{
case WP_PER_PICTURE_WITH_SIMPLE_DC_COMBINED_COMPONENT:
xSelectWP(slice, iDenom);
break;
case WP_PER_PICTURE_WITH_SIMPLE_DC_PER_COMPONENT:
xSelectWPHistExtClip(slice, iDenom, false, false, false);
break;
case WP_PER_PICTURE_WITH_HISTOGRAM_AND_PER_COMPONENT:
xSelectWPHistExtClip(slice, iDenom, false, false, true);
break;
case WP_PER_PICTURE_WITH_HISTOGRAM_AND_PER_COMPONENT_AND_CLIPPING:
xSelectWPHistExtClip(slice, iDenom, false, true, true);
break;
case WP_PER_PICTURE_WITH_HISTOGRAM_AND_PER_COMPONENT_AND_CLIPPING_AND_EXTENSION:
xSelectWPHistExtClip(slice, iDenom, true, true, true);
break;
default:
THROW("Invalid WP method");
break;
}
slice->setWpScaling( m_wp );
}
//! update wp tables for explicit wp w.r.t range limitation
bool WeightPredAnalysis::xUpdatingWPParameters(Slice *const slice, const int log2Denom)
{
const int numComp = ::getNumberValidComponents( slice->getSPS()->getChromaFormatIdc() );
const bool bUseHighPrecisionWeighting = slice->getSPS()->getSpsRangeExtension().getHighPrecisionOffsetsEnabledFlag();
const int numPredDir = slice->isInterP() ? 1 : 2;
CHECK(numPredDir > int(NUM_REF_PIC_LIST_01), "Invalid reference picture list");
for ( int refList = 0; refList < numPredDir; refList++ )
{
const RefPicList eRefPicList = ( refList ? REF_PIC_LIST_1 : REF_PIC_LIST_0 );
for ( int refIdxTemp = 0; refIdxTemp < slice->getNumRefIdx(eRefPicList); refIdxTemp++ )
{
const WPACDCParam *currWeightACDCParam, *refWeightACDCParam;
slice->getWpAcDcParam(currWeightACDCParam);
slice->getRefPic(eRefPicList, refIdxTemp)->slices[0]->getWpAcDcParam(refWeightACDCParam);
for ( int comp = 0; comp < numComp; comp++ )
{
const ComponentID compID = ComponentID(comp);
const int bitDepth = slice->getSPS()->getBitDepth(toChannelType(compID));
const int range = bUseHighPrecisionWeighting ? (1<<bitDepth)/2 : 128;
const int realLog2Denom = log2Denom + (bUseHighPrecisionWeighting ? RExt__PREDICTION_WEIGHTING_ANALYSIS_DC_PRECISION : (bitDepth - 8));
const int realOffset = ((int)1<<(realLog2Denom-1));
// current frame
const int64_t currDC = currWeightACDCParam[comp].iDC;
const int64_t currAC = currWeightACDCParam[comp].iAC;
// reference frame
const int64_t refDC = refWeightACDCParam[comp].iDC;
const int64_t refAC = refWeightACDCParam[comp].iAC;
// calculating iWeight and iOffset params
const double dWeight = (refAC==0) ? (double)1.0 : Clip3( -16.0, 15.0, ((double)currAC / (double)refAC) );
const int weight = (int)( 0.5 + dWeight * (double)(1<<log2Denom) );
const int offset = (int)( ((currDC<<log2Denom) - ((int64_t)weight * refDC) + (int64_t)realOffset) >> realLog2Denom );
int clippedOffset;
if(isChroma(compID)) // Chroma offset range limination
{
const int pred = ( range - ( ( range*weight)>>(log2Denom) ) );
const int deltaOffset = Clip3( -4*range, 4*range-1, (offset - pred) ); // signed 10bit
clippedOffset = Clip3( -range, range-1, (deltaOffset + pred) ); // signed 8bit
}
else // Luma offset range limitation
{
clippedOffset = Clip3( -range, range-1, offset);
}
// Weighting factor limitation
const int defaultWeight = (1<<log2Denom);
const int deltaWeight = (weight - defaultWeight);
if(deltaWeight >= range || deltaWeight < -range)
{
return false;
}
m_wp[refList][refIdxTemp][comp].bPresentFlag = true;
m_wp[refList][refIdxTemp][comp].iWeight = weight;
m_wp[refList][refIdxTemp][comp].iOffset = clippedOffset;
m_wp[refList][refIdxTemp][comp].uiLog2WeightDenom = log2Denom;
}
}
}
return true;
}
/** select whether weighted pred enables or not.
* \param Slice *slice
* \param log2Denom
* \returns bool
*/
bool WeightPredAnalysis::xSelectWPHistExtClip(Slice *const slice, const int log2Denom, const bool bDoEnhancement, const bool bClipInitialSADWP, const bool bUseHistogram)
{
const CPelUnitBuf pPic = slice->getPic()->getOrigBuf();
const int defaultWeight = 1<<log2Denom;
const int numPredDir = slice->isInterP() ? 1 : 2;
const bool useHighPrecision = slice->getSPS()->getSpsRangeExtension().getHighPrecisionOffsetsEnabledFlag();
CHECK(numPredDir > int(NUM_REF_PIC_LIST_01), "Invalid reference picture list");
for ( int refList = 0; refList < numPredDir; refList++ )
{
const RefPicList eRefPicList = ( refList ? REF_PIC_LIST_1 : REF_PIC_LIST_0 );
for ( int refIdxTemp = 0; refIdxTemp < slice->getNumRefIdx(eRefPicList); refIdxTemp++ )
{
bool useChromaWeight = false;
for (int comp = 0; comp < ::getNumberValidComponents(pPic.chromaFormat); comp++)
{
const ComponentID compID = ComponentID(comp);
const Pel *pRef = slice->getRefPic(eRefPicList, refIdxTemp)->getRecoBuf().get(compID).buf;
const int refStride = slice->getRefPic(eRefPicList, refIdxTemp)->getRecoBuf().get(compID).stride;;
const CPelBuf compBuf = pPic.get( compID );
const Pel *pOrg = compBuf.buf;
const int orgStride = compBuf.stride;
const int width = compBuf.width;
const int height = compBuf.height;
const int bitDepth = slice->getSPS()->getBitDepth(toChannelType(compID));
WPScalingParam &wp = m_wp[refList][refIdxTemp][compID];
int weight = wp.iWeight;
int offset = wp.iOffset;
int weightDef = defaultWeight;
int offsetDef = 0;
// calculate SAD costs with/without wp for luma
const int64_t SADnoWP = xCalcSADvalueWPOptionalClip(bitDepth, pOrg, pRef, width, height, orgStride, refStride, log2Denom, defaultWeight, 0, useHighPrecision, bClipInitialSADWP);
if (SADnoWP > 0)
{
const int64_t SADWP = xCalcSADvalueWPOptionalClip(bitDepth, pOrg, pRef, width, height, orgStride, refStride, log2Denom, weight, offset, useHighPrecision, bClipInitialSADWP);
const double dRatioSAD = (double)SADWP / (double)SADnoWP;
double dRatioSr0SAD = std::numeric_limits<double>::max();
double dRatioSrSAD = std::numeric_limits<double>::max();
if (bUseHistogram)
{
std::vector<int> histogramOrg;// = pPic->getHistogram(compID);
std::vector<int> histogramRef;// = slice->getRefPic(eRefPicList, refIdxTemp)->getPicYuvRec()->getHistogram(compID);
std::vector<int> searchedHistogram;
// Compute histograms
xCalcHistogram(pOrg, histogramOrg, width, height, orgStride, 1 << bitDepth);
xCalcHistogram(pRef, histogramRef, width, height, refStride, 1 << bitDepth);
// Do a histogram search around DC WP parameters; resulting distortion and 'searchedHistogram' is discarded
xSearchHistogram(histogramOrg, histogramRef, searchedHistogram, bitDepth, log2Denom, weight, offset, useHighPrecision, compID);
// calculate updated WP SAD
const int64_t SADSrWP = xCalcSADvalueWP(bitDepth, pOrg, pRef, width, height, orgStride, refStride, log2Denom, weight, offset, useHighPrecision);
dRatioSrSAD = (double)SADSrWP / (double)SADnoWP;
if (bDoEnhancement)
{
// Do the same around the default ones; resulting distortion and 'searchedHistogram' is discarded
xSearchHistogram(histogramOrg, histogramRef, searchedHistogram, bitDepth, log2Denom, weightDef, offsetDef, useHighPrecision, compID);
// calculate updated WP SAD
const int64_t SADSr0WP = xCalcSADvalueWP(bitDepth, pOrg, pRef, width, height, orgStride, refStride, log2Denom, weightDef, offsetDef, useHighPrecision);
dRatioSr0SAD = (double)SADSr0WP / (double)SADnoWP;
}
}
if(std::min(dRatioSr0SAD, std::min(dRatioSAD, dRatioSrSAD)) >= WEIGHT_PRED_SAD_RELATIVE_TO_NON_WEIGHT_PRED_SAD)
{
wp.bPresentFlag = false;
wp.iOffset = 0;
wp.iWeight = defaultWeight;
wp.uiLog2WeightDenom = log2Denom;
}
else
{
if (compID != COMPONENT_Y)
{
useChromaWeight = true;
}
if (dRatioSr0SAD < dRatioSrSAD && dRatioSr0SAD < dRatioSAD)
{
wp.bPresentFlag = true;
wp.iOffset = offsetDef;
wp.iWeight = weightDef;
wp.uiLog2WeightDenom = log2Denom;
}
else if (dRatioSrSAD < dRatioSAD)
{
wp.bPresentFlag = true;
wp.iOffset = offset;
wp.iWeight = weight;
wp.uiLog2WeightDenom = log2Denom;
}
}
}
else // (SADnoWP <= 0)
{
wp.bPresentFlag = false;
wp.iOffset = 0;
wp.iWeight = defaultWeight;
wp.uiLog2WeightDenom = log2Denom;
}
}
for (int comp = 1; comp < ::getNumberValidComponents(pPic.chromaFormat); comp++)
{
m_wp[refList][refIdxTemp][comp].bPresentFlag = useChromaWeight;
}
}
}
return true;
}
//! select whether weighted pred enables or not.
bool WeightPredAnalysis::xSelectWP(Slice *const slice, const int log2Denom)
{
const CPelUnitBuf pPic = slice->getPic()->getOrigBuf();
const int defaultWeight = 1<<log2Denom;
const int numPredDir = slice->isInterP() ? 1 : 2;
const bool useHighPrecisionPredictionWeighting = slice->getSPS()->getSpsRangeExtension().getHighPrecisionOffsetsEnabledFlag();
CHECK(numPredDir > int(NUM_REF_PIC_LIST_01), "Invalid reference picture list");
for ( int refList = 0; refList < numPredDir; refList++ )
{
const RefPicList eRefPicList = ( refList ? REF_PIC_LIST_1 : REF_PIC_LIST_0 );
for ( int refIdxTemp = 0; refIdxTemp < slice->getNumRefIdx(eRefPicList); refIdxTemp++ )
{
int64_t SADWP = 0, SADnoWP = 0;
for (int comp = 0; comp < ::getNumberValidComponents(pPic.chromaFormat); comp++)
{
const ComponentID compID = ComponentID(comp);
const CPelBuf compBuf = pPic.get( compID );
const Pel *pRef = slice->getRefPic(eRefPicList, refIdxTemp)->getRecoBuf().get( compID ).buf;
const int refStride = slice->getRefPic(eRefPicList, refIdxTemp)->getRecoBuf().get( compID ).stride;
const Pel *pOrg = compBuf.buf;
const int orgStride = compBuf.stride;
const int width = compBuf.width;
const int height = compBuf.height;
const int bitDepth = slice->getSPS()->getBitDepth(toChannelType(compID));
// calculate SAD costs with/without wp for luma
SADWP += xCalcSADvalueWP(bitDepth, pOrg, pRef, width, height, orgStride, refStride, log2Denom, m_wp[refList][refIdxTemp][compID].iWeight, m_wp[refList][refIdxTemp][compID].iOffset, useHighPrecisionPredictionWeighting);
SADnoWP += xCalcSADvalueWP(bitDepth, pOrg, pRef, width, height, orgStride, refStride, log2Denom, defaultWeight, 0, useHighPrecisionPredictionWeighting);
}
const double dRatio = SADnoWP > 0 ? (((double)SADWP / (double)SADnoWP)) : std::numeric_limits<double>::max();
const double dMaxRatio = double( 0.99 );
if(dRatio >= dMaxRatio)
{
for(int comp=0; comp < ::getNumberValidComponents(pPic.chromaFormat); comp++)
{
WPScalingParam &wp=m_wp[refList][refIdxTemp][comp];
wp.bPresentFlag = false;
wp.iOffset = 0;
wp.iWeight = defaultWeight;
wp.uiLog2WeightDenom = log2Denom;
}
}
}
}
return true;
}
// Alternatively, a SSE-based measure could be used instead.
// The respective function has been removed as it currently redundant.
static
int64_t xCalcSADvalueWP(const int bitDepth,
const Pel *pOrgPel,
const Pel *pRefPel,
const int width,
const int height,
const int orgStride,
const int refStride,
const int log2Denom,
const int weight,
const int offset,
const bool useHighPrecision)
{
//const int64_t iSize = iWidth*iHeight;
const int64_t realLog2Denom = useHighPrecision ? log2Denom : (log2Denom + (bitDepth - 8));
const int64_t realOffset = ((int64_t)offset)<<realLog2Denom;
int64_t SAD = 0;
for( int y = 0; y < height; y++ )
{
for( int x = 0; x < width; x++ )
{
SAD += abs(( ((int64_t)pOrgPel[x] << (int64_t) log2Denom) - ( (int64_t) pRefPel[x] * (int64_t) weight + (realOffset) ) ) );
}
pOrgPel += orgStride;
pRefPel += refStride;
}
//return (iSAD/iSize);
return SAD;
}
static
int64_t xCalcSADvalueWPOptionalClip(const int bitDepth,
const Pel *pOrgPel,
const Pel *pRefPel,
const int width,
const int height,
const int orgStride,
const int refStride,
const int log2Denom,
const int weight,
const int offset,
const bool useHighPrecision,
const bool clipped)
{
int64_t SAD = 0;
if (clipped)
{
const int64_t realLog2Denom = useHighPrecision ? 0 : (bitDepth - 8);
const int64_t realOffset = (int64_t)offset<<realLog2Denom;
const int64_t roundOffset = (log2Denom == 0) ? 0 : 1 << (log2Denom - 1);
const int64_t minValue = 0;
const int64_t maxValue = (1 << bitDepth) - 1;
for( int y = 0; y < height; y++ )
{
for( int x = 0; x < width; x++ )
{
int64_t scaledValue = Clip3(minValue, maxValue, ((((int64_t) pRefPel[x] * (int64_t) weight + roundOffset) ) >> (int64_t) log2Denom) + realOffset); //ClipPel
SAD += abs((int64_t)pOrgPel[x] - scaledValue);
}
pOrgPel += orgStride;
pRefPel += refStride;
}
}
else
{
//const int64_t iSize = iWidth*iHeight;
const int64_t realLog2Denom = useHighPrecision ? log2Denom : (log2Denom + (bitDepth - 8));
const int64_t realOffset = ((int64_t)offset)<<realLog2Denom;
for( int y = 0; y < height; y++ )
{
for( int x = 0; x < width; x++ )
{
SAD += abs(( ((int64_t)pOrgPel[x] << (int64_t) log2Denom) - ( (int64_t) pRefPel[x] * (int64_t) weight + (realOffset) ) ) );
}
pOrgPel += orgStride;
pRefPel += refStride;
}
}
return SAD;
}