Forked from
jvet / VVCSoftware_VTM
7736 commits behind the upstream repository.
-
Christian Helmrich authored
finalize QPA code, introduce sub-CTU QPA for <=HD sequences, encapsulated in macro ENABLE_QPA_SUB_CTU
Christian Helmrich authoredfinalize QPA code, introduce sub-CTU QPA for <=HD sequences, encapsulated in macro ENABLE_QPA_SUB_CTU
EncSlice.cpp 80.65 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file EncSlice.cpp
\brief slice encoder class
*/
#include "EncSlice.h"
#include "EncLib.h"
#include "CommonLib/UnitTools.h"
#include "CommonLib/Picture.h"
#if K0149_BLOCK_STATISTICS
#include "CommonLib/dtrace_blockstatistics.h"
#endif
#if ENABLE_WPP_PARALLELISM
#include <mutex>
extern recursive_mutex g_cache_mutex;
#endif
#include <math.h>
//! \ingroup EncoderLib
//! \{
// ====================================================================================================================
// Constructor / destructor / create / destroy
// ====================================================================================================================
EncSlice::EncSlice()
: m_encCABACTableIdx(I_SLICE)
#if ENABLE_QPA
, m_adaptedLumaQP(-1)
#endif
{
}
EncSlice::~EncSlice()
{
destroy();
}
void EncSlice::create( int iWidth, int iHeight, ChromaFormat chromaFormat, uint32_t iMaxCUWidth, uint32_t iMaxCUHeight, uint8_t uhTotalDepth )
{
}
void EncSlice::destroy()
{
// free lambda and QP arrays
m_vdRdPicLambda.clear();
m_vdRdPicQp.clear();
m_viRdPicQp.clear();
}
void EncSlice::init( EncLib* pcEncLib, const SPS& sps )
{
m_pcCfg = pcEncLib;
m_pcLib = pcEncLib;
m_pcListPic = pcEncLib->getListPic();
m_pcGOPEncoder = pcEncLib->getGOPEncoder();
m_pcCuEncoder = pcEncLib->getCuEncoder();
m_pcInterSearch = pcEncLib->getInterSearch();
m_CABACWriter = pcEncLib->getCABACEncoder()->getCABACWriter (&sps);
m_CABACEstimator = pcEncLib->getCABACEncoder()->getCABACEstimator(&sps);
m_pcTrQuant = pcEncLib->getTrQuant();
m_pcRdCost = pcEncLib->getRdCost();
// create lambda and QP arrays
m_vdRdPicLambda.resize(m_pcCfg->getDeltaQpRD() * 2 + 1 );
m_vdRdPicQp.resize( m_pcCfg->getDeltaQpRD() * 2 + 1 );
m_viRdPicQp.resize( m_pcCfg->getDeltaQpRD() * 2 + 1 );
m_pcRateCtrl = pcEncLib->getRateCtrl();
}
void
EncSlice::setUpLambda( Slice* slice, const double dLambda, int iQP)
{
// store lambda
m_pcRdCost ->setLambda( dLambda, slice->getSPS()->getBitDepths() );
// for RDO
// in RdCost there is only one lambda because the luma and chroma bits are not separated, instead we weight the distortion of chroma.
double dLambdas[MAX_NUM_COMPONENT] = { dLambda };
for( uint32_t compIdx = 1; compIdx < MAX_NUM_COMPONENT; compIdx++ )
{
const ComponentID compID = ComponentID( compIdx );
int chromaQPOffset = slice->getPPS()->getQpOffset( compID ) + slice->getSliceChromaQpDelta( compID );
int qpc = ( iQP + chromaQPOffset < 0 ) ? iQP : getScaledChromaQP( iQP + chromaQPOffset, m_pcCfg->getChromaFormatIdc() );
double tmpWeight = pow( 2.0, ( iQP - qpc ) / 3.0 ); // takes into account of the chroma qp mapping and chroma qp Offset
if( m_pcCfg->getDepQuantEnabledFlag() )
{
tmpWeight *= ( m_pcCfg->getGOPSize() >= 8 ? pow( 2.0, 0.1/3.0 ) : pow( 2.0, 0.2/3.0 ) ); // increase chroma weight for dependent quantization (in order to reduce bit rate shift from chroma to luma)
}
m_pcRdCost->setDistortionWeight( compID, tmpWeight );
#if ENABLE_WPP_PARALLELISM
for( int jId = 1; jId < ( m_pcLib->getNumWppThreads() + m_pcLib->getNumWppExtraLines() ); jId++ )
{
m_pcLib->getRdCost( slice->getPic()->scheduler.getWppDataId( jId ) )->setDistortionWeight( compID, tmpWeight );
}
#endif
dLambdas[compIdx] = dLambda / tmpWeight;
}
#if RDOQ_CHROMA_LAMBDA
// for RDOQ
m_pcTrQuant->setLambdas( dLambdas );
#else
m_pcTrQuant->setLambda( dLambda );
#endif
// for SAO
slice->setLambdas( dLambdas );
}
#if ENABLE_QPA
static inline int apprI3Log2 (const double d) // rounded 3*log2(d)
{
return d < 1.5e-13 ? -128 : int (floor (3.0 * log (d) / log (2.0) + 0.5));
}
static inline int lumaDQPOffset (const uint32_t avgLumaValue, const int bitDepth)
{
return (1 - int ((3 * uint64_t (avgLumaValue * avgLumaValue)) >> uint64_t (2 * bitDepth - 1)));
}
static void filterAndCalculateAverageEnergies (const Pel* pSrc, const int iSrcStride,
double &hpEner, const int iHeight, const int iWidth,
const uint32_t uBitDepth /* luma bit-depth (4-16) */)
{
uint64_t saAct = 0;
// skip first row as there may be a black border frame
pSrc += iSrcStride;
// center rows
for (int y = 1; y < iHeight - 1; y++)
{
// skip column as there may be a black border frame
for (int x = 1; x < iWidth - 1; x++) // and columns
{
const int f = 12 * (int)pSrc[x ] - 2 * ((int)pSrc[x-1] + (int)pSrc[x+1] + (int)pSrc[x -iSrcStride] + (int)pSrc[x +iSrcStride])
- (int)pSrc[x-1-iSrcStride] - (int)pSrc[x+1-iSrcStride] - (int)pSrc[x-1+iSrcStride] - (int)pSrc[x+1+iSrcStride];
saAct += abs (f);
}
// skip column as there may be a black border frame
pSrc += iSrcStride;
}
// skip last row as there may be a black border frame
hpEner = double(saAct) / double((iWidth - 2) * (iHeight - 2));
// lower limit, compensate for highpass amplification
if (hpEner < double(1 << (uBitDepth - 4))) hpEner = double(1 << (uBitDepth - 4));
}
#ifndef GLOBAL_AVERAGING
#define GLOBAL_AVERAGING 1 // "global" averaging of a_k across a set instead of one picture
#endif
#if GLOBAL_AVERAGING
static double getAveragePictureEnergy (const CPelBuf picOrig, const uint32_t uBitDepth)
{
double hpEnerPic = 5.65625 * double(1 << (uBitDepth >> 1)); // square-root of a_pic value
if (picOrig.width > 2048 && picOrig.height > 1280) // for UHD/4K
{
hpEnerPic *= (4.0 / 5.65625);
}
else if (picOrig.width <= 1024 || picOrig.height <= 640) // 480p
{
hpEnerPic *= (8.0 / 5.65625);
}
return hpEnerPic;
}
#endif
static int getGlaringColorQPOffset (Picture* const pcPic, const int ctuAddr, const uint32_t startAddr, const uint32_t boundingAddr,
const int bitDepth, uint32_t &avgLumaValue)
{
const PreCalcValues& pcv = *pcPic->cs->pcv;
const ChromaFormat chrFmt = pcPic->chromaFormat;
const uint32_t chrWidth = pcv.maxCUWidth >> getChannelTypeScaleX (CH_C, chrFmt);
const uint32_t chrHeight = pcv.maxCUHeight >> getChannelTypeScaleY (CH_C, chrFmt);
const int midLevel = 1 << (bitDepth - 1);
int chrValue = MAX_INT;
avgLumaValue = (startAddr < boundingAddr) ? 0 : (uint32_t)pcPic->getOrigBuf().Y().mean();
if (ctuAddr >= 0) // luma
{
avgLumaValue = (uint32_t)pcPic->m_iOffsetCtu[ctuAddr];
}
else if (startAddr < boundingAddr)
{
for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
{
#if HEVC_TILES_WPP
const uint32_t ctuRsAddr = pcPic->tileMap->getCtuTsToRsAddrMap (ctuTsAddr);
#else
const uint32_t ctuRsAddr = ctuTsAddr;
#endif
avgLumaValue += pcPic->m_iOffsetCtu[ctuRsAddr];
}
avgLumaValue = (avgLumaValue + ((boundingAddr - startAddr) >> 1)) / (boundingAddr - startAddr);
}
for (uint32_t comp = COMPONENT_Cb; comp < MAX_NUM_COMPONENT; comp++)
{
const ComponentID compID = (ComponentID)comp;
int avgCompValue;
if (ctuAddr >= 0) // chroma
{
const CompArea chrArea = clipArea (CompArea (compID, chrFmt, Area ((ctuAddr % pcv.widthInCtus) * chrWidth, (ctuAddr / pcv.widthInCtus) * chrHeight, chrWidth, chrHeight)), pcPic->block (compID));
avgCompValue = pcPic->getOrigBuf (chrArea).mean();
}
else avgCompValue = pcPic->getOrigBuf (pcPic->block (compID)).mean();
if (chrValue > avgCompValue) chrValue = avgCompValue; // minimum of the DC offsets
}
CHECK (chrValue < 0, "DC offset cannot be negative!");
chrValue = (int)avgLumaValue - chrValue;
if (chrValue > midLevel) return apprI3Log2 (double (chrValue * chrValue) / double (midLevel * midLevel));
return 0;
}
static int applyQPAdaptationChroma (Picture* const pcPic, Slice* const pcSlice, EncCfg* const pcEncCfg, const int sliceQP)
{
const int iBitDepth = pcSlice->getSPS()->getBitDepth (CHANNEL_TYPE_LUMA); // overall image bit-depth
double hpEner[MAX_NUM_COMPONENT] = {0.0, 0.0, 0.0};
int optSliceChromaQpOffset[2] = {0, 0};
int savedLumaQP = -1;
uint32_t meanLuma = MAX_UINT;
for (uint32_t comp = 0; comp < getNumberValidComponents (pcPic->chromaFormat); comp++)
{
const ComponentID compID = (ComponentID)comp;
const CPelBuf picOrig = pcPic->getOrigBuf (pcPic->block (compID));
filterAndCalculateAverageEnergies (picOrig.buf, picOrig.stride, hpEner[comp],
picOrig.height, picOrig.width, iBitDepth - (isChroma (compID) ? 1 : 0));
if (isChroma (compID))
{
const int adaptChromaQPOffset = 2.0 * hpEner[comp] <= hpEner[0] ? 0 : apprI3Log2 (2.0 * hpEner[comp] / hpEner[0]);
if (savedLumaQP < 0)
{
#if GLOBAL_AVERAGING
int averageAdaptedLumaQP = Clip3 (0, MAX_QP, sliceQP + apprI3Log2 (hpEner[0] / getAveragePictureEnergy (pcPic->getOrigBuf().Y(), iBitDepth)));
#else
int averageAdaptedLumaQP = Clip3 (0, MAX_QP, sliceQP); // mean slice QP
#endif
averageAdaptedLumaQP += getGlaringColorQPOffset (pcPic, -1 /*ctuRsAddr*/, 0 /*startAddr*/, 0 /*boundingAddr*/, iBitDepth, meanLuma);
if (averageAdaptedLumaQP > MAX_QP
#if SHARP_LUMA_DELTA_QP
&& (pcEncCfg->getLumaLevelToDeltaQPMapping().mode != LUMALVL_TO_DQP_NUM_MODES)
#endif
) averageAdaptedLumaQP = MAX_QP;
#if SHARP_LUMA_DELTA_QP
// change mean picture QP index based on picture's average luma value (Sharp)
if (pcEncCfg->getLumaLevelToDeltaQPMapping().mode == LUMALVL_TO_DQP_NUM_MODES)
{
if (meanLuma == MAX_UINT) meanLuma = pcPic->getOrigBuf().Y().mean();
averageAdaptedLumaQP = Clip3 (0, MAX_QP, averageAdaptedLumaQP + lumaDQPOffset (meanLuma, iBitDepth));
}
#endif
savedLumaQP = averageAdaptedLumaQP;
} // savedLumaQP < 0
const int lumaChromaMappingDQP = savedLumaQP - getScaledChromaQP (savedLumaQP, pcEncCfg->getChromaFormatIdc());
optSliceChromaQpOffset[comp-1] = std::min (3 + lumaChromaMappingDQP, adaptChromaQPOffset + lumaChromaMappingDQP);
}
}
pcEncCfg->setSliceChromaOffsetQpIntraOrPeriodic (pcEncCfg->getSliceChromaOffsetQpPeriodicity(), optSliceChromaQpOffset);
return savedLumaQP;
}
#endif // ENABLE_QPA
/**
- non-referenced frame marking
- QP computation based on temporal structure
- lambda computation based on QP
- set temporal layer ID and the parameter sets
.
\param pcPic picture class
\param pocLast POC of last picture
\param pocCurr current POC
\param iNumPicRcvd number of received pictures
\param iGOPid POC offset for hierarchical structure
\param rpcSlice slice header class
\param isField true for field coding
*/
void EncSlice::initEncSlice(Picture* pcPic, const int pocLast, const int pocCurr, const int iGOPid, Slice*& rpcSlice, const bool isField
, bool isEncodeLtRef
)
{
double dQP;
double dLambda;
rpcSlice = pcPic->slices[0];
rpcSlice->setSliceBits(0);
rpcSlice->setPic( pcPic );
rpcSlice->initSlice();
int multipleFactor = pcPic->cs->sps->getSpsNext().getUseCompositeRef() ? 2 : 1;
if (pcPic->cs->sps->getSpsNext().getUseCompositeRef() && isEncodeLtRef)
{
rpcSlice->setPicOutputFlag(false);
}
else
{
rpcSlice->setPicOutputFlag(true);
}
rpcSlice->setPOC( pocCurr );
rpcSlice->setDepQuantEnabledFlag( m_pcCfg->getDepQuantEnabledFlag() );
#if HEVC_USE_SIGN_HIDING
rpcSlice->setSignDataHidingEnabledFlag( m_pcCfg->getSignDataHidingEnabledFlag() );
#endif
#if SHARP_LUMA_DELTA_QP
pcPic->fieldPic = isField;
m_gopID = iGOPid;
#endif
// depth computation based on GOP size
int depth;
{
int poc = rpcSlice->getPOC();
if(isField)
{
poc = (poc/2) % (m_pcCfg->getGOPSize()/2);
}
else
{
poc = poc % (m_pcCfg->getGOPSize() * multipleFactor);
}
if ( poc == 0 )
{
depth = 0;
}
else
{
int step = m_pcCfg->getGOPSize() * multipleFactor;
depth = 0;
for( int i=step>>1; i>=1; i>>=1 )
{
for (int j = i; j<(m_pcCfg->getGOPSize() * multipleFactor); j += step)
{
if ( j == poc )
{
i=0;
break;
}
}
step >>= 1;
depth++;
}
}
if(m_pcCfg->getHarmonizeGopFirstFieldCoupleEnabled() && poc != 0)
{
if (isField && ((rpcSlice->getPOC() % 2) == 1))
{
depth++;
}
}
}
// slice type
SliceType eSliceType;
eSliceType=B_SLICE;
if(!(isField && pocLast == 1) || !m_pcCfg->getEfficientFieldIRAPEnabled())
{
if(m_pcCfg->getDecodingRefreshType() == 3)
{
eSliceType = (pocLast == 0 || pocCurr % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
}
else
{
eSliceType = (pocLast == 0 || (pocCurr - (isField ? 1 : 0)) % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
}
}
rpcSlice->setSliceType ( eSliceType );
// ------------------------------------------------------------------------------------------------------------------
// Non-referenced frame marking
// ------------------------------------------------------------------------------------------------------------------
if(pocLast == 0)
{
rpcSlice->setTemporalLayerNonReferenceFlag(false);
}
else
{
rpcSlice->setTemporalLayerNonReferenceFlag(!m_pcCfg->getGOPEntry(iGOPid).m_refPic);
}
pcPic->referenced = true;
// ------------------------------------------------------------------------------------------------------------------
// QP setting
// ------------------------------------------------------------------------------------------------------------------
#if X0038_LAMBDA_FROM_QP_CAPABILITY
dQP = m_pcCfg->getQPForPicture(iGOPid, rpcSlice);
#else
dQP = m_pcCfg->getBaseQP();
if(eSliceType!=I_SLICE)
{
#if SHARP_LUMA_DELTA_QP
if (!(( m_pcCfg->getMaxDeltaQP() == 0) && (!m_pcCfg->getLumaLevelToDeltaQPMapping().isEnabled()) && (dQP == -rpcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA) ) && (rpcSlice->getPPS()->getTransquantBypassEnabledFlag())))
#else
if (!(( m_pcCfg->getMaxDeltaQP() == 0 ) && (dQP == -rpcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA) ) && (rpcSlice->getPPS()->getTransquantBypassEnabledFlag())))
#endif
{
dQP += m_pcCfg->getGOPEntry(iGOPid).m_QPOffset;
}
}
// modify QP
const int* pdQPs = m_pcCfg->getdQPs();
if ( pdQPs )
{
dQP += pdQPs[ rpcSlice->getPOC() ];
}
if (m_pcCfg->getCostMode()==COST_LOSSLESS_CODING)
{
dQP=LOSSLESS_AND_MIXED_LOSSLESS_RD_COST_TEST_QP;
m_pcCfg->setDeltaQpRD(0);
}
#endif
// ------------------------------------------------------------------------------------------------------------------
// Lambda computation
// ------------------------------------------------------------------------------------------------------------------
#if X0038_LAMBDA_FROM_QP_CAPABILITY
const int temporalId=m_pcCfg->getGOPEntry(iGOPid).m_temporalId;
#if !SHARP_LUMA_DELTA_QP
const std::vector<double> &intraLambdaModifiers=m_pcCfg->getIntraLambdaModifier();
#endif
#endif
int iQP;
double dOrigQP = dQP;
// pre-compute lambda and QP values for all possible QP candidates
for ( int iDQpIdx = 0; iDQpIdx < 2 * m_pcCfg->getDeltaQpRD() + 1; iDQpIdx++ )
{
// compute QP value
dQP = dOrigQP + ((iDQpIdx+1)>>1)*(iDQpIdx%2 ? -1 : 1);
#if SHARP_LUMA_DELTA_QP
dLambda = calculateLambda(rpcSlice, iGOPid, depth, dQP, dQP, iQP );
#else
// compute lambda value
int NumberBFrames = ( m_pcCfg->getGOPSize() - 1 );
int SHIFT_QP = 12;
int bitdepth_luma_qp_scale =
6
* (rpcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 8
- DISTORTION_PRECISION_ADJUSTMENT(rpcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA)));
double qp_temp = (double) dQP + bitdepth_luma_qp_scale - SHIFT_QP;
#if FULL_NBIT
double qp_temp_orig = (double) dQP - SHIFT_QP;
#endif
// Case #1: I or P-slices (key-frame)
double dQPFactor = m_pcCfg->getGOPEntry(iGOPid).m_QPFactor;
if ( eSliceType==I_SLICE )
{
if (m_pcCfg->getIntraQpFactor()>=0.0 && m_pcCfg->getGOPEntry(iGOPid).m_sliceType != I_SLICE)
{
dQPFactor=m_pcCfg->getIntraQpFactor();
}
else
{
#if X0038_LAMBDA_FROM_QP_CAPABILITY
if(m_pcCfg->getLambdaFromQPEnable())
{
dQPFactor=0.57;
}
else
{
#endif
double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(double)(isField ? NumberBFrames/2 : NumberBFrames) );
dQPFactor=0.57*dLambda_scale;
#if X0038_LAMBDA_FROM_QP_CAPABILITY
}
#endif
}
}
#if X0038_LAMBDA_FROM_QP_CAPABILITY
else if( m_pcCfg->getLambdaFromQPEnable() )
{
dQPFactor=0.57;
}
#endif
dLambda = dQPFactor*pow( 2.0, qp_temp/3.0 );
#if X0038_LAMBDA_FROM_QP_CAPABILITY
if(!m_pcCfg->getLambdaFromQPEnable() && depth>0)
#else
if ( depth>0 )
#endif
{
#if FULL_NBIT
dLambda *= Clip3( 2.00, 4.00, (qp_temp_orig / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 )
#else
dLambda *= Clip3( 2.00, 4.00, (qp_temp / 6.0) ); // (j == B_SLICE && p_cur_frm->layer != 0 )
#endif
}
// if hadamard is used in ME process
if ( !m_pcCfg->getUseHADME() && rpcSlice->getSliceType( ) != I_SLICE )
{
dLambda *= 0.95;
}
#if X0038_LAMBDA_FROM_QP_CAPABILITY
double lambdaModifier;
if( rpcSlice->getSliceType( ) != I_SLICE || intraLambdaModifiers.empty())
{
lambdaModifier = m_pcCfg->getLambdaModifier( temporalId );
}
else
{
lambdaModifier = intraLambdaModifiers[ (temporalId < intraLambdaModifiers.size()) ? temporalId : (intraLambdaModifiers.size()-1) ];
}
dLambda *= lambdaModifier;
#endif
iQP = Clip3( -rpcSlice->getSPS()->getQpBDOffset( CHANNEL_TYPE_LUMA ), MAX_QP, (int) floor( dQP + 0.5 ) );
#endif
m_vdRdPicLambda[iDQpIdx] = dLambda;
m_vdRdPicQp [iDQpIdx] = dQP;
m_viRdPicQp [iDQpIdx] = iQP;
}
// obtain dQP = 0 case
dLambda = m_vdRdPicLambda[0];
dQP = m_vdRdPicQp [0];
iQP = m_viRdPicQp [0];
#if !X0038_LAMBDA_FROM_QP_CAPABILITY
const int temporalId=m_pcCfg->getGOPEntry(iGOPid).m_temporalId;
const std::vector<double> &intraLambdaModifiers=m_pcCfg->getIntraLambdaModifier();
#endif
#if W0038_CQP_ADJ
#if ENABLE_QPA
m_adaptedLumaQP = -1;
if ((m_pcCfg->getUsePerceptQPA() || m_pcCfg->getSliceChromaOffsetQpPeriodicity() > 0) && !m_pcCfg->getUseRateCtrl() && rpcSlice->getPPS()->getSliceChromaQpFlag() &&
(rpcSlice->isIntra() || (m_pcCfg->getSliceChromaOffsetQpPeriodicity() > 0 && (rpcSlice->getPOC() % m_pcCfg->getSliceChromaOffsetQpPeriodicity()) == 0)))
{
m_adaptedLumaQP = applyQPAdaptationChroma (pcPic, rpcSlice, m_pcCfg, iQP);
}
#endif
if(rpcSlice->getPPS()->getSliceChromaQpFlag())
{
const bool bUseIntraOrPeriodicOffset = rpcSlice->isIntra() || (m_pcCfg->getSliceChromaOffsetQpPeriodicity() > 0 && (rpcSlice->getPOC() % m_pcCfg->getSliceChromaOffsetQpPeriodicity()) == 0);
int cbQP = bUseIntraOrPeriodicOffset ? m_pcCfg->getSliceChromaOffsetQpIntraOrPeriodic(false) : m_pcCfg->getGOPEntry(iGOPid).m_CbQPoffset;
int crQP = bUseIntraOrPeriodicOffset ? m_pcCfg->getSliceChromaOffsetQpIntraOrPeriodic(true) : m_pcCfg->getGOPEntry(iGOPid).m_CrQPoffset;
cbQP = Clip3( -12, 12, cbQP + rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb) ) - rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb);
crQP = Clip3( -12, 12, crQP + rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr) ) - rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr);
rpcSlice->setSliceChromaQpDelta(COMPONENT_Cb, Clip3( -12, 12, cbQP));
CHECK(!(rpcSlice->getSliceChromaQpDelta(COMPONENT_Cb)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb)<=12 && rpcSlice->getSliceChromaQpDelta(COMPONENT_Cb)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cb)>=-12), "Unspecified error");
rpcSlice->setSliceChromaQpDelta(COMPONENT_Cr, Clip3( -12, 12, crQP));
CHECK(!(rpcSlice->getSliceChromaQpDelta(COMPONENT_Cr)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr)<=12 && rpcSlice->getSliceChromaQpDelta(COMPONENT_Cr)+rpcSlice->getPPS()->getQpOffset(COMPONENT_Cr)>=-12), "Unspecified error");
}
else
{
rpcSlice->setSliceChromaQpDelta( COMPONENT_Cb, 0 );
rpcSlice->setSliceChromaQpDelta( COMPONENT_Cr, 0 );
}
#endif
#if !X0038_LAMBDA_FROM_QP_CAPABILITY
double lambdaModifier;
if( rpcSlice->getSliceType( ) != I_SLICE || intraLambdaModifiers.empty())
{
lambdaModifier = m_pcCfg->getLambdaModifier( temporalId );
}
else
{
lambdaModifier = intraLambdaModifiers[ (temporalId < intraLambdaModifiers.size()) ? temporalId : (intraLambdaModifiers.size()-1) ];
}
dLambda *= lambdaModifier;
#endif
setUpLambda(rpcSlice, dLambda, iQP);
#if WCG_EXT
// cost = Distortion + Lambda*R,
// when QP is adjusted by luma, distortion is changed, so we have to adjust lambda to match the distortion, then the cost function becomes
// costA = Distortion + AdjustedLambda * R -- currently, costA is still used when calculating intermediate cost of using SAD, HAD, resisual etc.
// an alternative way is to weight the distortion to before the luma QP adjustment, then the cost function becomes
// costB = weightedDistortion + Lambda * R -- currently, costB is used to calculat final cost, and when DF_FUNC is DF_DEFAULT
m_pcRdCost->saveUnadjustedLambda();
#endif
if (m_pcCfg->getFastMEForGenBLowDelayEnabled())
{
// restore original slice type
if(!(isField && pocLast == 1) || !m_pcCfg->getEfficientFieldIRAPEnabled())
{
if(m_pcCfg->getDecodingRefreshType() == 3)
{
eSliceType = (pocLast == 0 || (pocCurr) % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
}
else
{
eSliceType = (pocLast == 0 || (pocCurr - (isField ? 1 : 0)) % (m_pcCfg->getIntraPeriod() * multipleFactor) == 0 || m_pcGOPEncoder->getGOPSize() == 0) ? I_SLICE : eSliceType;
}
}
rpcSlice->setSliceType ( eSliceType );
}
if (m_pcCfg->getUseRecalculateQPAccordingToLambda())
{
dQP = xGetQPValueAccordingToLambda( dLambda );
iQP = Clip3( -rpcSlice->getSPS()->getQpBDOffset( CHANNEL_TYPE_LUMA ), MAX_QP, (int) floor( dQP + 0.5 ) );
}
rpcSlice->setSliceQp ( iQP );
rpcSlice->setSliceQpDelta ( 0 );
#if !W0038_CQP_ADJ
rpcSlice->setSliceChromaQpDelta( COMPONENT_Cb, 0 );
rpcSlice->setSliceChromaQpDelta( COMPONENT_Cr, 0 );
#endif
rpcSlice->setUseChromaQpAdj( rpcSlice->getPPS()->getPpsRangeExtension().getChromaQpOffsetListEnabledFlag() );
rpcSlice->setNumRefIdx(REF_PIC_LIST_0,m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive);
rpcSlice->setNumRefIdx(REF_PIC_LIST_1,m_pcCfg->getGOPEntry(iGOPid).m_numRefPicsActive);
if ( m_pcCfg->getDeblockingFilterMetric() )
{
rpcSlice->setDeblockingFilterOverrideFlag(true);
rpcSlice->setDeblockingFilterDisable(false);
rpcSlice->setDeblockingFilterBetaOffsetDiv2( 0 );
rpcSlice->setDeblockingFilterTcOffsetDiv2( 0 );
}
else if (rpcSlice->getPPS()->getDeblockingFilterControlPresentFlag())
{
rpcSlice->setDeblockingFilterOverrideFlag( rpcSlice->getPPS()->getDeblockingFilterOverrideEnabledFlag() );
rpcSlice->setDeblockingFilterDisable( rpcSlice->getPPS()->getPPSDeblockingFilterDisabledFlag() );
if ( !rpcSlice->getDeblockingFilterDisable())
{
if ( rpcSlice->getDeblockingFilterOverrideFlag() && eSliceType!=I_SLICE)
{
rpcSlice->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_betaOffsetDiv2 + m_pcCfg->getLoopFilterBetaOffset() );
rpcSlice->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getGOPEntry(iGOPid).m_tcOffsetDiv2 + m_pcCfg->getLoopFilterTcOffset() );
}
else
{
rpcSlice->setDeblockingFilterBetaOffsetDiv2( m_pcCfg->getLoopFilterBetaOffset() );
rpcSlice->setDeblockingFilterTcOffsetDiv2( m_pcCfg->getLoopFilterTcOffset() );
}
}
}
else
{
rpcSlice->setDeblockingFilterOverrideFlag( false );
rpcSlice->setDeblockingFilterDisable( false );
rpcSlice->setDeblockingFilterBetaOffsetDiv2( 0 );
rpcSlice->setDeblockingFilterTcOffsetDiv2( 0 );
}
rpcSlice->setDepth ( depth );
pcPic->layer = temporalId;
if(eSliceType==I_SLICE)
{
pcPic->layer = 0;
}
rpcSlice->setTLayer( pcPic->layer );
rpcSlice->setSliceMode ( m_pcCfg->getSliceMode() );
rpcSlice->setSliceArgument ( m_pcCfg->getSliceArgument() );
#if HEVC_DEPENDENT_SLICES
rpcSlice->setSliceSegmentMode ( m_pcCfg->getSliceSegmentMode() );
rpcSlice->setSliceSegmentArgument ( m_pcCfg->getSliceSegmentArgument() );
#endif
rpcSlice->setMaxNumMergeCand ( m_pcCfg->getMaxNumMergeCand() );
rpcSlice->setMaxNumAffineMergeCand( m_pcCfg->getMaxNumAffineMergeCand() );
rpcSlice->setSplitConsOverrideFlag(false);
rpcSlice->setMinQTSize( rpcSlice->getSPS()->getMinQTSize(eSliceType));
rpcSlice->setMaxBTDepth( rpcSlice->isIntra() ? rpcSlice->getSPS()->getMaxBTDepthI() : rpcSlice->getSPS()->getMaxBTDepth() );
rpcSlice->setMaxBTSize( rpcSlice->isIntra() ? rpcSlice->getSPS()->getMaxBTSizeI() : rpcSlice->getSPS()->getMaxBTSize() );
rpcSlice->setMaxTTSize( rpcSlice->isIntra() ? rpcSlice->getSPS()->getMaxTTSizeI() : rpcSlice->getSPS()->getMaxTTSize() );
if ( eSliceType == I_SLICE && rpcSlice->getSPS()->getUseDualITree() )
{
rpcSlice->setMinQTSizeIChroma( rpcSlice->getSPS()->getMinQTSize(eSliceType, CHANNEL_TYPE_CHROMA) );
rpcSlice->setMaxBTDepthIChroma( rpcSlice->getSPS()->getMaxBTDepthIChroma() );
rpcSlice->setMaxBTSizeIChroma( rpcSlice->getSPS()->getMaxBTSizeIChroma() );
rpcSlice->setMaxTTSizeIChroma( rpcSlice->getSPS()->getMaxTTSizeIChroma() );
}
}
#if SHARP_LUMA_DELTA_QP
double EncSlice::calculateLambda( const Slice* slice,
const int GOPid, // entry in the GOP table
const int depth, // slice GOP hierarchical depth.
const double refQP, // initial slice-level QP
const double dQP, // initial double-precision QP
int &iQP ) // returned integer QP.
{
enum SliceType eSliceType = slice->getSliceType();
const bool isField = slice->getPic()->fieldPic;
const int NumberBFrames = ( m_pcCfg->getGOPSize() - 1 );
const int SHIFT_QP = 12;
#if X0038_LAMBDA_FROM_QP_CAPABILITY
const int temporalId=m_pcCfg->getGOPEntry(GOPid).m_temporalId;
const std::vector<double> &intraLambdaModifiers=m_pcCfg->getIntraLambdaModifier();
#endif
int bitdepth_luma_qp_scale = 6
* (slice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 8
- DISTORTION_PRECISION_ADJUSTMENT(slice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA)));
double qp_temp = dQP + bitdepth_luma_qp_scale - SHIFT_QP;
// Case #1: I or P-slices (key-frame)
double dQPFactor = m_pcCfg->getGOPEntry(GOPid).m_QPFactor;
if ( eSliceType==I_SLICE )
{
if (m_pcCfg->getIntraQpFactor()>=0.0 && m_pcCfg->getGOPEntry(GOPid).m_sliceType != I_SLICE)
{
dQPFactor=m_pcCfg->getIntraQpFactor();
}
else
{
#if X0038_LAMBDA_FROM_QP_CAPABILITY
if(m_pcCfg->getLambdaFromQPEnable())
{
dQPFactor=0.57;
}
else
{
#endif
double dLambda_scale = 1.0 - Clip3( 0.0, 0.5, 0.05*(double)(isField ? NumberBFrames/2 : NumberBFrames) );
dQPFactor=0.57*dLambda_scale;
#if X0038_LAMBDA_FROM_QP_CAPABILITY
}
#endif
}
}
#if X0038_LAMBDA_FROM_QP_CAPABILITY
else if( m_pcCfg->getLambdaFromQPEnable() )
{
dQPFactor=0.57;
}
#endif
double dLambda = dQPFactor*pow( 2.0, qp_temp/3.0 );
#if X0038_LAMBDA_FROM_QP_CAPABILITY
if( !(m_pcCfg->getLambdaFromQPEnable()) && depth>0 )
#else
if ( depth>0 )
#endif
{
double qp_temp_ref = refQP + bitdepth_luma_qp_scale - SHIFT_QP;
dLambda *= Clip3(2.00, 4.00, (qp_temp_ref / 6.0)); // (j == B_SLICE && p_cur_frm->layer != 0 )
}
// if hadamard is used in ME process
if ( !m_pcCfg->getUseHADME() && slice->getSliceType( ) != I_SLICE )
{
dLambda *= 0.95;
}
#if X0038_LAMBDA_FROM_QP_CAPABILITY
double lambdaModifier;
if( eSliceType != I_SLICE || intraLambdaModifiers.empty())
{
lambdaModifier = m_pcCfg->getLambdaModifier( temporalId );
}
else
{
lambdaModifier = intraLambdaModifiers[ (temporalId < intraLambdaModifiers.size()) ? temporalId : (intraLambdaModifiers.size()-1) ];
}
dLambda *= lambdaModifier;
#endif
iQP = Clip3( -slice->getSPS()->getQpBDOffset( CHANNEL_TYPE_LUMA ), MAX_QP, (int) floor( dQP + 0.5 ) );
if( m_pcCfg->getDepQuantEnabledFlag() )
{
dLambda *= pow( 2.0, 0.25/3.0 ); // slight lambda adjustment for dependent quantization (due to different slope of quantizer)
}
// NOTE: the lambda modifiers that are sometimes applied later might be best always applied in here.
return dLambda;
}
#endif
void EncSlice::resetQP( Picture* pic, int sliceQP, double lambda )
{
Slice* slice = pic->slices[0];
// store lambda
slice->setSliceQp( sliceQP );
setUpLambda(slice, lambda, sliceQP);
}
#if ENABLE_QPA
static bool applyQPAdaptation (Picture* const pcPic, Slice* const pcSlice, const PreCalcValues& pcv,
const uint32_t startAddr, const uint32_t boundingAddr, const bool useSharpLumaDQP,
const bool useFrameWiseQPA, const int previouslyAdaptedLumaQP = -1)
{
const int iBitDepth = pcSlice->getSPS()->getBitDepth (CHANNEL_TYPE_LUMA);
const int iQPIndex = pcSlice->getSliceQp(); // initial QP index for current slice, used in following loops
#if HEVC_TILES_WPP
const TileMap& tileMap = *pcPic->tileMap;
#endif
bool sliceQPModified = false;
uint32_t meanLuma = MAX_UINT;
double hpEnerAvg = 0.0;
#if GLOBAL_AVERAGING
if (!useFrameWiseQPA || previouslyAdaptedLumaQP < 0) // mean visual activity value and luma value in each CTU
#endif
{
for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
{
#if HEVC_TILES_WPP
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap (ctuTsAddr);
#else
const uint32_t ctuRsAddr = ctuTsAddr;
#endif
const Position pos ((ctuRsAddr % pcv.widthInCtus) * pcv.maxCUWidth, (ctuRsAddr / pcv.widthInCtus) * pcv.maxCUHeight);
const CompArea ctuArea = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area (pos.x, pos.y, pcv.maxCUWidth, pcv.maxCUHeight)), pcPic->Y());
const CompArea fltArea = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area (pos.x > 0 ? pos.x - 1 : 0, pos.y > 0 ? pos.y - 1 : 0, pcv.maxCUWidth + (pos.x > 0 ? 2 : 1), pcv.maxCUHeight + (pos.y > 0 ? 2 : 1))), pcPic->Y());
const CPelBuf picOrig = pcPic->getOrigBuf (fltArea);
double hpEner = 0.0;
filterAndCalculateAverageEnergies (picOrig.buf, picOrig.stride, hpEner,
picOrig.height, picOrig.width, iBitDepth);
hpEnerAvg += hpEner;
pcPic->m_uEnerHpCtu[ctuRsAddr] = hpEner;
pcPic->m_iOffsetCtu[ctuRsAddr] = pcPic->getOrigBuf (ctuArea).mean();
}
hpEnerAvg /= double (boundingAddr - startAddr);
}
#if GLOBAL_AVERAGING
const double hpEnerPic = 1.0 / getAveragePictureEnergy (pcPic->getOrigBuf().Y(), iBitDepth); // inverse, speed
#else
const double hpEnerPic = 1.0 / hpEnerAvg; // speedup: multiply instead of divide in loop below; 1.0 for tuning
#endif
if (useFrameWiseQPA || (iQPIndex >= MAX_QP))
{
int iQPFixed = (previouslyAdaptedLumaQP < 0) ? Clip3 (0, MAX_QP, iQPIndex + apprI3Log2 (hpEnerAvg * hpEnerPic)) : previouslyAdaptedLumaQP;
if (isChromaEnabled (pcPic->chromaFormat) && (iQPIndex < MAX_QP) && (previouslyAdaptedLumaQP < 0))
{
iQPFixed += getGlaringColorQPOffset (pcPic, -1 /*ctuRsAddr*/, startAddr, boundingAddr, iBitDepth, meanLuma);
if (iQPFixed > MAX_QP
#if SHARP_LUMA_DELTA_QP
&& !useSharpLumaDQP
#endif
) iQPFixed = MAX_QP;
}
#if SHARP_LUMA_DELTA_QP
// change new fixed QP based on average CTU luma value (Sharp)
if (useSharpLumaDQP && (iQPIndex < MAX_QP) && (previouslyAdaptedLumaQP < 0))
{
if (meanLuma == MAX_UINT) // collect picture mean luma value
{
meanLuma = 0;
for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
{
#if HEVC_TILES_WPP
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap (ctuTsAddr);
#else
const uint32_t ctuRsAddr = ctuTsAddr;
#endif
meanLuma += pcPic->m_iOffsetCtu[ctuRsAddr]; // CTU mean
}
meanLuma = (meanLuma + ((boundingAddr - startAddr) >> 1)) / (boundingAddr - startAddr);
}
iQPFixed = Clip3 (0, MAX_QP, iQPFixed + lumaDQPOffset (meanLuma, iBitDepth));
}
#endif
if (iQPIndex >= MAX_QP) iQPFixed = MAX_QP;
else
if (iQPFixed != iQPIndex)
{
const double* oldLambdas = pcSlice->getLambdas();
const double corrFactor = pow (2.0, double(iQPFixed - iQPIndex) / 3.0);
const double newLambdas[MAX_NUM_COMPONENT] = {oldLambdas[0] * corrFactor, oldLambdas[1] * corrFactor, oldLambdas[2] * corrFactor};
CHECK (iQPIndex != pcSlice->getSliceQpBase(), "Invalid slice QP!");
pcSlice->setLambdas (newLambdas);
pcSlice->setSliceQp (iQPFixed); // update the slice/base QPs
pcSlice->setSliceQpBase (iQPFixed);
sliceQPModified = true;
}
for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
{
#if HEVC_TILES_WPP
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap (ctuTsAddr);
#else
const uint32_t ctuRsAddr = ctuTsAddr;
#endif
pcPic->m_iOffsetCtu[ctuRsAddr] = (Pel)iQPFixed; // fixed QPs
}
}
else // CTU-wise QPA
{
for (uint32_t ctuTsAddr = startAddr; ctuTsAddr < boundingAddr; ctuTsAddr++)
{
#if HEVC_TILES_WPP
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap (ctuTsAddr);
#else
const uint32_t ctuRsAddr = ctuTsAddr;
#endif
int iQPAdapt = Clip3 (0, MAX_QP, iQPIndex + apprI3Log2 (pcPic->m_uEnerHpCtu[ctuRsAddr] * hpEnerPic));
if (pcv.widthInCtus > 1) // try to enforce CTU SNR greater than zero dB
{
meanLuma = (uint32_t)pcPic->m_iOffsetCtu[ctuRsAddr];
if (isChromaEnabled (pcPic->chromaFormat))
{
iQPAdapt += getGlaringColorQPOffset (pcPic, (int)ctuRsAddr, startAddr, boundingAddr, iBitDepth, meanLuma);
if (iQPAdapt > MAX_QP
#if SHARP_LUMA_DELTA_QP
&& !useSharpLumaDQP
#endif
) iQPAdapt = MAX_QP;
CHECK (meanLuma != (uint32_t)pcPic->m_iOffsetCtu[ctuRsAddr], "luma DC offsets don't match");
}
#if SHARP_LUMA_DELTA_QP
// change adaptive QP based on mean CTU luma value (Sharp)
if (useSharpLumaDQP)
{
#if ENABLE_QPA_SUB_CTU
pcPic->m_uEnerHpCtu[ctuRsAddr] = (double)meanLuma; // for sub-CTU QPA
#endif
iQPAdapt = Clip3 (0, MAX_QP, iQPAdapt + lumaDQPOffset (meanLuma, iBitDepth));
}
#endif
const uint32_t uRefScale = g_invQuantScales[iQPAdapt % 6] << ((iQPAdapt / 6) + iBitDepth - 4);
const CompArea subArea = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area ((ctuRsAddr % pcv.widthInCtus) * pcv.maxCUWidth, (ctuRsAddr / pcv.widthInCtus) * pcv.maxCUHeight, pcv.maxCUWidth, pcv.maxCUHeight)), pcPic->Y());
const Pel* pSrc = pcPic->getOrigBuf (subArea).buf;
const SizeType iSrcStride = pcPic->getOrigBuf (subArea).stride;
const SizeType iSrcHeight = pcPic->getOrigBuf (subArea).height;
const SizeType iSrcWidth = pcPic->getOrigBuf (subArea).width;
uint32_t uAbsDCless = 0;
// compute sum of absolute DC-less (high-pass) luma values
for (SizeType h = 0; h < iSrcHeight; h++)
{
for (SizeType w = 0; w < iSrcWidth; w++)
{
uAbsDCless += (uint32_t)abs (pSrc[w] - (Pel)meanLuma);
}
pSrc += iSrcStride;
}
if (iSrcHeight >= 64 || iSrcWidth >= 64) // normalization
{
const uint64_t blockSize = uint64_t(iSrcWidth * iSrcHeight);
uAbsDCless = uint32_t((uint64_t(uAbsDCless) * 64*64 + (blockSize >> 1)) / blockSize);
}
if (uAbsDCless < 64*64) uAbsDCless = 64*64; // limit to 1
// reduce QP index if CTU would be fully quantized to zero
if (uAbsDCless < uRefScale)
{
const int limit = std::min (0, ((iQPIndex + 4) >> 3) - 6);
const int redVal = std::max (limit, apprI3Log2 ((double)uAbsDCless / (double)uRefScale));
iQPAdapt = std::max (0, iQPAdapt + redVal);
}
}
pcPic->m_iOffsetCtu[ctuRsAddr] = (Pel)iQPAdapt; // adapted QPs
#if ENABLE_QPA_SUB_CTU
if (pcv.widthInCtus > 1 && pcSlice->getPPS()->getMaxCuDQPDepth() == 0) // reduce local DQP rate peaks
#else
if (pcv.widthInCtus > 1) // try to reduce local bitrate peaks via minimum smoothing of the adapted QPs
#endif
{
iQPAdapt = ctuRsAddr % pcv.widthInCtus; // horizontal offset
if (iQPAdapt == 0)
{
iQPAdapt = (ctuRsAddr > 1) ? pcPic->m_iOffsetCtu[ctuRsAddr - 2] : 0;
}
else // iQPAdapt >= 1
{
iQPAdapt = (iQPAdapt > 1) ? std::min (pcPic->m_iOffsetCtu[ctuRsAddr - 2], pcPic->m_iOffsetCtu[ctuRsAddr]) : pcPic->m_iOffsetCtu[ctuRsAddr];
}
if (ctuRsAddr > pcv.widthInCtus)
{
iQPAdapt = std::min (iQPAdapt, (int)pcPic->m_iOffsetCtu[ctuRsAddr - 1 - pcv.widthInCtus]);
}
if ((ctuRsAddr > 0) && (pcPic->m_iOffsetCtu[ctuRsAddr - 1] < (Pel)iQPAdapt))
{
pcPic->m_iOffsetCtu[ctuRsAddr - 1] = (Pel)iQPAdapt;
}
if ((ctuTsAddr == boundingAddr - 1) && (ctuRsAddr > pcv.widthInCtus)) // last CTU in the given slice
{
iQPAdapt = std::min (pcPic->m_iOffsetCtu[ctuRsAddr - 1], pcPic->m_iOffsetCtu[ctuRsAddr - pcv.widthInCtus]);
if (pcPic->m_iOffsetCtu[ctuRsAddr] < (Pel)iQPAdapt)
{
pcPic->m_iOffsetCtu[ctuRsAddr] = (Pel)iQPAdapt;
}
}
}
} // end iteration over all CTUs in current slice
}
return sliceQPModified;
}
#if ENABLE_QPA_SUB_CTU
static int applyQPAdaptationSubCtu (CodingStructure &cs, const UnitArea ctuArea, const uint32_t ctuAddr, const bool useSharpLumaDQP)
{
const PreCalcValues &pcv = *cs.pcv;
const Picture *pcPic = cs.picture;
const int iBitDepth = cs.slice->getSPS()->getBitDepth (CHANNEL_TYPE_LUMA); // overall image bit-depth
const int adaptedCtuQP = pcPic ? pcPic->m_iOffsetCtu[ctuAddr] : cs.slice->getSliceQpBase();
if (!pcPic || cs.pps->getMaxCuDQPDepth() == 0) return adaptedCtuQP;
for (unsigned addr = 0; addr < cs.picture->m_subCtuQP.size(); addr++)
{
cs.picture->m_subCtuQP[addr] = (int8_t)adaptedCtuQP;
}
if (cs.slice->getSliceQp() < MAX_QP && pcv.widthInCtus > 1)
{
#if SHARP_LUMA_DELTA_QP
const int lumaCtuDQP = useSharpLumaDQP ? lumaDQPOffset ((uint32_t)pcPic->m_uEnerHpCtu[ctuAddr], iBitDepth) : 0;
#endif
const unsigned mts = std::min (cs.sps->getMaxTrSize(), pcv.maxCUWidth);
const unsigned mtsLog2 = (unsigned)g_aucLog2[mts];
const unsigned stride = pcv.maxCUWidth >> mtsLog2;
unsigned numAct = 0; // number of block activities
double sumAct = 0.0; // sum of all block activities
double subAct[16]; // individual block activities
#if SHARP_LUMA_DELTA_QP
uint32_t subMLV[16]; // individual mean luma values
#endif
CHECK (mts * 4 < pcv.maxCUWidth || mts * 4 < pcv.maxCUHeight, "max. transform size is too small for given CTU size");
for (unsigned h = 0; h < (pcv.maxCUHeight >> mtsLog2); h++)
{
for (unsigned w = 0; w < stride; w++)
{
const unsigned addr = w + h * stride;
const PosType x = ctuArea.lx() + w * mts;
const PosType y = ctuArea.ly() + h * mts;
const CompArea fltArea = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area (x > 0 ? x - 1 : 0, y > 0 ? y - 1 : 0, mts + (x > 0 ? 2 : 1), mts + (y > 0 ? 2 : 1))), pcPic->Y());
const CPelBuf picOrig = pcPic->getOrigBuf (fltArea);
if (x >= pcPic->lwidth() || y >= pcPic->lheight())
{
continue;
}
filterAndCalculateAverageEnergies (picOrig.buf, picOrig.stride, subAct[addr],
picOrig.height, picOrig.width, iBitDepth);
numAct++;
sumAct += subAct[addr];
#if SHARP_LUMA_DELTA_QP
if (useSharpLumaDQP)
{
const CompArea subArea = clipArea (CompArea (COMPONENT_Y, pcPic->chromaFormat, Area (x, y, mts, mts)), pcPic->Y());
subMLV[addr] = pcPic->getOrigBuf (subArea).mean();
}
#endif
}
}
if (sumAct <= 0.0) return adaptedCtuQP;
sumAct = double(numAct) / sumAct; // 1.0 / (average CTU activity)
for (unsigned h = 0; h < (pcv.maxCUHeight >> mtsLog2); h++)
{
for (unsigned w = 0; w < stride; w++)
{
const unsigned addr = w + h * stride;
if (ctuArea.lx() + w * mts >= pcPic->lwidth() || ctuArea.ly() + h * mts >= pcPic->lheight())
{
continue;
}
cs.picture->m_subCtuQP[addr] = (int8_t)Clip3 (0, MAX_QP, adaptedCtuQP + apprI3Log2 (subAct[addr] * sumAct));
#if SHARP_LUMA_DELTA_QP
// change adapted QP based on mean sub-CTU luma value (Sharp)
if (useSharpLumaDQP)
{
cs.picture->m_subCtuQP[addr] = (int8_t)Clip3 (0, MAX_QP, (int)cs.picture->m_subCtuQP[addr] - lumaCtuDQP + lumaDQPOffset (subMLV[addr], iBitDepth));
}
#endif
}
}
}
return adaptedCtuQP;
}
#endif // ENABLE_QPA_SUB_CTU
#endif // ENABLE_QPA
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
//! set adaptive search range based on poc difference
void EncSlice::setSearchRange( Slice* pcSlice )
{
int iCurrPOC = pcSlice->getPOC();
int iRefPOC;
int iGOPSize = m_pcCfg->getGOPSize();
int iOffset = (iGOPSize >> 1);
int iMaxSR = m_pcCfg->getSearchRange();
int iNumPredDir = pcSlice->isInterP() ? 1 : 2;
for (int iDir = 0; iDir < iNumPredDir; iDir++)
{
RefPicList e = ( iDir ? REF_PIC_LIST_1 : REF_PIC_LIST_0 );
for (int iRefIdx = 0; iRefIdx < pcSlice->getNumRefIdx(e); iRefIdx++)
{
iRefPOC = pcSlice->getRefPic(e, iRefIdx)->getPOC();
int newSearchRange = Clip3(m_pcCfg->getMinSearchWindow(), iMaxSR, (iMaxSR*ADAPT_SR_SCALE*abs(iCurrPOC - iRefPOC)+iOffset)/iGOPSize);
m_pcInterSearch->setAdaptiveSearchRange(iDir, iRefIdx, newSearchRange);
#if ENABLE_WPP_PARALLELISM
for( int jId = 1; jId < m_pcLib->getNumCuEncStacks(); jId++ )
{
m_pcLib->getInterSearch( jId )->setAdaptiveSearchRange( iDir, iRefIdx, newSearchRange );
}
#endif
}
}
}
/**
Multi-loop slice encoding for different slice QP
\param pcPic picture class
*/
void EncSlice::precompressSlice( Picture* pcPic )
{
// if deltaQP RD is not used, simply return
if ( m_pcCfg->getDeltaQpRD() == 0 )
{
return;
}
if ( m_pcCfg->getUseRateCtrl() )
{
THROW("\nMultiple QP optimization is not allowed when rate control is enabled." );
}
Slice* pcSlice = pcPic->slices[getSliceSegmentIdx()];
#if HEVC_DEPENDENT_SLICES
if (pcSlice->getDependentSliceSegmentFlag())
{
// if this is a dependent slice segment, then it was optimised
// when analysing the entire slice.
return;
}
#endif
if (pcSlice->getSliceMode()==FIXED_NUMBER_OF_BYTES)
{
// TODO: investigate use of average cost per CTU so that this Slice Mode can be used.
THROW( "Unable to optimise Slice-level QP if Slice Mode is set to FIXED_NUMBER_OF_BYTES\n" );
}
double dPicRdCostBest = MAX_DOUBLE;
uint32_t uiQpIdxBest = 0;
double dFrameLambda;
int SHIFT_QP = 12
+ 6
* (pcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA) - 8
- DISTORTION_PRECISION_ADJUSTMENT(pcSlice->getSPS()->getBitDepth(CHANNEL_TYPE_LUMA)));
// set frame lambda
if (m_pcCfg->getGOPSize() > 1)
{
dFrameLambda = 0.68 * pow (2, (m_viRdPicQp[0] - SHIFT_QP) / 3.0) * (pcSlice->isInterB()? 2 : 1);
}
else
{
dFrameLambda = 0.68 * pow (2, (m_viRdPicQp[0] - SHIFT_QP) / 3.0);
}
// for each QP candidate
for ( uint32_t uiQpIdx = 0; uiQpIdx < 2 * m_pcCfg->getDeltaQpRD() + 1; uiQpIdx++ )
{
pcSlice ->setSliceQp ( m_viRdPicQp [uiQpIdx] );
setUpLambda(pcSlice, m_vdRdPicLambda[uiQpIdx], m_viRdPicQp [uiQpIdx]);
// try compress
compressSlice ( pcPic, true, m_pcCfg->getFastDeltaQp());
uint64_t uiPicDist = m_uiPicDist; // Distortion, as calculated by compressSlice.
// NOTE: This distortion is the chroma-weighted SSE distortion for the slice.
// Previously a standard SSE distortion was calculated (for the entire frame).
// Which is correct?
#if W0038_DB_OPT
// TODO: Update loop filter, SAO and distortion calculation to work on one slice only.
// uiPicDist = m_pcGOPEncoder->preLoopFilterPicAndCalcDist( pcPic );
#endif
// compute RD cost and choose the best
double dPicRdCost = double( uiPicDist ) + dFrameLambda * double( m_uiPicTotalBits );
if ( dPicRdCost < dPicRdCostBest )
{
uiQpIdxBest = uiQpIdx;
dPicRdCostBest = dPicRdCost;
}
}
// set best values
pcSlice ->setSliceQp ( m_viRdPicQp [uiQpIdxBest] );
setUpLambda(pcSlice, m_vdRdPicLambda[uiQpIdxBest], m_viRdPicQp [uiQpIdxBest]);
}
void EncSlice::calCostSliceI(Picture* pcPic) // TODO: this only analyses the first slice segment. What about the others?
{
double iSumHadSlice = 0;
Slice * const pcSlice = pcPic->slices[getSliceSegmentIdx()];
#if HEVC_TILES_WPP
const TileMap &tileMap = *pcPic->tileMap;
#endif
const PreCalcValues& pcv = *pcPic->cs->pcv;
const SPS &sps = *(pcSlice->getSPS());
const int shift = sps.getBitDepth(CHANNEL_TYPE_LUMA)-8;
const int offset = (shift>0)?(1<<(shift-1)):0;
#if HEVC_DEPENDENT_SLICES
pcSlice->setSliceSegmentBits(0);
#endif
uint32_t startCtuTsAddr, boundingCtuTsAddr;
xDetermineStartAndBoundingCtuTsAddr ( startCtuTsAddr, boundingCtuTsAddr, pcPic );
#if HEVC_TILES_WPP
for( uint32_t ctuTsAddr = startCtuTsAddr, ctuRsAddr = tileMap.getCtuTsToRsAddrMap( startCtuTsAddr);
ctuTsAddr < boundingCtuTsAddr;
ctuRsAddr = tileMap.getCtuTsToRsAddrMap(++ctuTsAddr) )
#else
for( uint32_t ctuTsAddr = startCtuTsAddr, ctuRsAddr = startCtuTsAddr;
ctuTsAddr < boundingCtuTsAddr;
ctuRsAddr = ++ctuTsAddr )
#endif
{
Position pos( (ctuRsAddr % pcv.widthInCtus) * pcv.maxCUWidth, (ctuRsAddr / pcv.widthInCtus) * pcv.maxCUHeight);
const int height = std::min( pcv.maxCUHeight, pcv.lumaHeight - pos.y );
const int width = std::min( pcv.maxCUWidth, pcv.lumaWidth - pos.x );
const CompArea blk( COMPONENT_Y, pcv.chrFormat, pos, Size( width, height));
int iSumHad = m_pcCuEncoder->updateCtuDataISlice( pcPic->getOrigBuf( blk ) );
(m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr)).m_costIntra=(iSumHad+offset)>>shift;
iSumHadSlice += (m_pcRateCtrl->getRCPic()->getLCU(ctuRsAddr)).m_costIntra;
}
m_pcRateCtrl->getRCPic()->setTotalIntraCost(iSumHadSlice);
}
/** \param pcPic picture class
*/
void EncSlice::compressSlice( Picture* pcPic, const bool bCompressEntireSlice, const bool bFastDeltaQP )
{
// if bCompressEntireSlice is true, then the entire slice (not slice segment) is compressed,
// effectively disabling the slice-segment-mode.
Slice* const pcSlice = pcPic->slices[getSliceSegmentIdx()];
#if HEVC_TILES_WPP
const TileMap& tileMap = *pcPic->tileMap;
#endif
uint32_t startCtuTsAddr;
uint32_t boundingCtuTsAddr;
#if HEVC_DEPENDENT_SLICES
pcSlice->setSliceSegmentBits(0);
#endif
xDetermineStartAndBoundingCtuTsAddr ( startCtuTsAddr, boundingCtuTsAddr, pcPic );
if (bCompressEntireSlice)
{
boundingCtuTsAddr = pcSlice->getSliceCurEndCtuTsAddr();
#if HEVC_DEPENDENT_SLICES
pcSlice->setSliceSegmentCurEndCtuTsAddr(boundingCtuTsAddr);
#endif
}
// initialize cost values - these are used by precompressSlice (they should be parameters).
m_uiPicTotalBits = 0;
m_uiPicDist = 0;
pcSlice->setSliceQpBase( pcSlice->getSliceQp() );
m_CABACEstimator->initCtxModels( *pcSlice );
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
for( int jId = 1; jId < m_pcLib->getNumCuEncStacks(); jId++ )
{
CABACWriter* cw = m_pcLib->getCABACEncoder( jId )->getCABACEstimator( pcSlice->getSPS() );
cw->initCtxModels( *pcSlice );
}
#endif
m_pcCuEncoder->getModeCtrl()->setFastDeltaQp(bFastDeltaQP);
//------------------------------------------------------------------------------
// Weighted Prediction parameters estimation.
//------------------------------------------------------------------------------
// calculate AC/DC values for current picture
if( pcSlice->getPPS()->getUseWP() || pcSlice->getPPS()->getWPBiPred() )
{
xCalcACDCParamSlice(pcSlice);
}
const bool bWp_explicit = (pcSlice->getSliceType()==P_SLICE && pcSlice->getPPS()->getUseWP()) || (pcSlice->getSliceType()==B_SLICE && pcSlice->getPPS()->getWPBiPred());
if ( bWp_explicit )
{
//------------------------------------------------------------------------------
// Weighted Prediction implemented at Slice level. SliceMode=2 is not supported yet.
//------------------------------------------------------------------------------
#if HEVC_DEPENDENT_SLICES
if ( pcSlice->getSliceMode()==FIXED_NUMBER_OF_BYTES || pcSlice->getSliceSegmentMode()==FIXED_NUMBER_OF_BYTES )
#else
if(pcSlice->getSliceMode() == FIXED_NUMBER_OF_BYTES)
#endif
{
EXIT("Weighted Prediction is not yet supported with slice mode determined by max number of bins.");
}
xEstimateWPParamSlice( pcSlice, m_pcCfg->getWeightedPredictionMethod() );
pcSlice->initWpScaling(pcSlice->getSPS());
// check WP on/off
xCheckWPEnable( pcSlice );
}
#if HEVC_DEPENDENT_SLICES
#if HEVC_TILES_WPP
// Adjust initial state if this is the start of a dependent slice.
{
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap( startCtuTsAddr);
const uint32_t currentTileIdx = tileMap.getTileIdxMap(ctuRsAddr);
const Tile& currentTile = tileMap.tiles[currentTileIdx];
const uint32_t firstCtuRsAddrOfTile = currentTile.getFirstCtuRsAddr();
if( pcSlice->getDependentSliceSegmentFlag() && ctuRsAddr != firstCtuRsAddrOfTile )
{
// This will only occur if dependent slice-segments (m_entropyCodingSyncContextState=true) are being used.
if( currentTile.getTileWidthInCtus() >= 2 || !m_pcCfg->getEntropyCodingSyncEnabledFlag() )
{
m_CABACEstimator->getCtx() = m_lastSliceSegmentEndContextState;
m_CABACEstimator->start();
}
}
}
#else
// KJS: not sure if this works (but both dep slices and tiles shall be removed in VTM, so this code should not be used)
if( pcSlice->getDependentSliceSegmentFlag() && ctuRsAddr != startCtuTsAddr )
{
if( pcPic->cs->pcv->widthInCtus >= 2 || !m_pcCfg->getEntropyCodingSyncEnabledFlag() )
{
m_CABACEstimator->getCtx() = m_lastSliceSegmentEndContextState;
m_CABACEstimator->start();
}
#endif
#endif
#if HEVC_DEPENDENT_SLICES
if( !pcSlice->getDependentSliceSegmentFlag() )
{
#endif
pcPic->m_prevQP[0] = pcPic->m_prevQP[1] = pcSlice->getSliceQp();
#if HEVC_DEPENDENT_SLICES
}
#endif
CHECK( pcPic->m_prevQP[0] == std::numeric_limits<int>::max(), "Invalid previous QP" );
CodingStructure& cs = *pcPic->cs;
cs.slice = pcSlice;
cs.pcv = pcSlice->getPPS()->pcv;
cs.fracBits = 0;
if (startCtuTsAddr == 0)
{
cs.initStructData (pcSlice->getSliceQp(), pcSlice->getPPS()->getTransquantBypassEnabledFlag());
}
#if ENABLE_QPA
if (m_pcCfg->getUsePerceptQPA() && !m_pcCfg->getUseRateCtrl() && (boundingCtuTsAddr > startCtuTsAddr))
{
if (applyQPAdaptation (pcPic, pcSlice, *cs.pcv, startCtuTsAddr, boundingCtuTsAddr, m_pcCfg->getLumaLevelToDeltaQPMapping().mode == LUMALVL_TO_DQP_NUM_MODES,
(m_pcCfg->getBaseQP() >= 38) || (m_pcCfg->getSourceWidth() <= 512 && m_pcCfg->getSourceHeight() <= 320), m_adaptedLumaQP))
{
m_CABACEstimator->initCtxModels (*pcSlice);
#if ENABLE_SPLIT_PARALLELISM || ENABLE_WPP_PARALLELISM
for (int jId = 1; jId < m_pcLib->getNumCuEncStacks(); jId++)
{
CABACWriter* cw = m_pcLib->getCABACEncoder (jId)->getCABACEstimator (pcSlice->getSPS());
cw->initCtxModels (*pcSlice);
}
#endif
#if HEVC_DEPENDENT_SLICES
if (!pcSlice->getDependentSliceSegmentFlag())
{
#endif
pcPic->m_prevQP[0] = pcPic->m_prevQP[1] = pcSlice->getSliceQp();
#if HEVC_DEPENDENT_SLICES
}
#endif
if (startCtuTsAddr == 0)
{
cs.currQP[0] = cs.currQP[1] = pcSlice->getSliceQp(); // cf code above
}
}
}
#endif // ENABLE_QPA
#if ENABLE_WPP_PARALLELISM
bool bUseThreads = m_pcCfg->getNumWppThreads() > 1;
if( bUseThreads )
{
CHECK( startCtuTsAddr != 0 || boundingCtuTsAddr != pcPic->cs->pcv->sizeInCtus, "not intended" );
pcPic->cs->allocateVectorsAtPicLevel();
omp_set_num_threads( m_pcCfg->getNumWppThreads() + m_pcCfg->getNumWppExtraLines() );
#pragma omp parallel for schedule(static,1) if(bUseThreads)
for( int ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ctuTsAddr += widthInCtus )
{
// wpp thread start
pcPic->scheduler.setWppThreadId();
#if ENABLE_SPLIT_PARALLELISM
pcPic->scheduler.setSplitThreadId( 0 );
#endif
encodeCtus( pcPic, bCompressEntireSlice, bFastDeltaQP, ctuTsAddr, ctuTsAddr + widthInCtus, m_pcLib );
// wpp thread stop
}
}
else
#endif
#if K0149_BLOCK_STATISTICS
const SPS *sps = pcSlice->getSPS();
CHECK(sps == 0, "No SPS present");
writeBlockStatisticsHeader(sps);
#endif
m_pcInterSearch->resetAffineMVList();
encodeCtus( pcPic, bCompressEntireSlice, bFastDeltaQP, startCtuTsAddr, boundingCtuTsAddr, m_pcLib );
#if HEVC_DEPENDENT_SLICES
// store context state at the end of this slice-segment, in case the next slice is a dependent slice and continues using the CABAC contexts.
if( pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag() )
{
m_lastSliceSegmentEndContextState = m_CABACEstimator->getCtx();//ctx end of dep.slice
}
#endif
}
void EncSlice::encodeCtus( Picture* pcPic, const bool bCompressEntireSlice, const bool bFastDeltaQP, uint32_t startCtuTsAddr, uint32_t boundingCtuTsAddr, EncLib* pEncLib )
{
//PROF_ACCUM_AND_START_NEW_SET( getProfilerCTU( pcPic, 0, 0 ), P_PIC_LEVEL );
//PROF_START( getProfilerCTU( cs.slice->isIntra(), pcPic->scheduler.getWppThreadId() ), P_PIC_LEVEL, toWSizeIdx( cs.pcv->maxCUWidth ), toHSizeIdx( cs.pcv->maxCUHeight ) );
CodingStructure& cs = *pcPic->cs;
Slice* pcSlice = cs.slice;
const PreCalcValues& pcv = *cs.pcv;
const uint32_t widthInCtus = pcv.widthInCtus;
#if HEVC_TILES_WPP
const TileMap& tileMap = *pcPic->tileMap;
#endif
#if ENABLE_QPA
const int iQPIndex = pcSlice->getSliceQpBase();
#endif
#if ENABLE_WPP_PARALLELISM
const int dataId = pcPic->scheduler.getWppDataId();
#elif ENABLE_SPLIT_PARALLELISM
const int dataId = 0;
#endif
CABACWriter* pCABACWriter = pEncLib->getCABACEncoder( PARL_PARAM0( dataId ) )->getCABACEstimator( pcSlice->getSPS() );
TrQuant* pTrQuant = pEncLib->getTrQuant( PARL_PARAM0( dataId ) );
RdCost* pRdCost = pEncLib->getRdCost( PARL_PARAM0( dataId ) );
EncCfg* pCfg = pEncLib;
RateCtrl* pRateCtrl = pEncLib->getRateCtrl();
#if ENABLE_WPP_PARALLELISM
// first version dont use ctx from above
pCABACWriter->initCtxModels( *pcSlice );
#endif
#if RDOQ_CHROMA_LAMBDA
pTrQuant ->setLambdas( pcSlice->getLambdas() );
#else
pTrQuant ->setLambda ( pcSlice->getLambdas()[0] );
#endif
pRdCost ->setLambda ( pcSlice->getLambdas()[0], pcSlice->getSPS()->getBitDepths() );
int prevQP[2];
int currQP[2];
prevQP[0] = prevQP[1] = pcSlice->getSliceQp();
currQP[0] = currQP[1] = pcSlice->getSliceQp();
#if HEVC_DEPENDENT_SLICES
if( !pcSlice->getDependentSliceSegmentFlag() )
{
#endif
prevQP[0] = prevQP[1] = pcSlice->getSliceQp();
#if HEVC_DEPENDENT_SLICES
}
#endif
// for every CTU in the slice segment (may terminate sooner if there is a byte limit on the slice-segment)
for( uint32_t ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ctuTsAddr++ )
{
#if HEVC_TILES_WPP
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap(ctuTsAddr);
#else
const uint32_t ctuRsAddr = ctuTsAddr;
#endif
#if HEVC_TILES_WPP
// update CABAC state
const uint32_t firstCtuRsAddrOfTile = tileMap.tiles[tileMap.getTileIdxMap(ctuRsAddr)].getFirstCtuRsAddr();
const uint32_t tileXPosInCtus = firstCtuRsAddrOfTile % widthInCtus;
#endif
const uint32_t ctuXPosInCtus = ctuRsAddr % widthInCtus;
const uint32_t ctuYPosInCtus = ctuRsAddr / widthInCtus;
const Position pos (ctuXPosInCtus * pcv.maxCUWidth, ctuYPosInCtus * pcv.maxCUHeight);
const UnitArea ctuArea( cs.area.chromaFormat, Area( pos.x, pos.y, pcv.maxCUWidth, pcv.maxCUHeight ) );
DTRACE_UPDATE( g_trace_ctx, std::make_pair( "ctu", ctuRsAddr ) );
if ( pcSlice->getSliceType() != I_SLICE && ctuXPosInCtus == 0)
{
pcSlice->resetMotionLUTs();
}
#if ENABLE_WPP_PARALLELISM
pcPic->scheduler.wait( ctuXPosInCtus, ctuYPosInCtus );
#endif
#if HEVC_TILES_WPP
if (ctuRsAddr == firstCtuRsAddrOfTile)
{
pCABACWriter->initCtxModels( *pcSlice );
prevQP[0] = prevQP[1] = pcSlice->getSliceQp();
}
else if (ctuXPosInCtus == tileXPosInCtus && pEncLib->getEntropyCodingSyncEnabledFlag())
{
// reset and then update contexts to the state at the end of the top-right CTU (if within current slice and tile).
pCABACWriter->initCtxModels( *pcSlice );
if( cs.getCURestricted( pos.offset(pcv.maxCUWidth, -1), pcSlice->getIndependentSliceIdx(), tileMap.getTileIdxMap( pos ), CH_L ) )
{
// Top-right is available, we use it.
pCABACWriter->getCtx() = pEncLib->m_entropyCodingSyncContextState;
}
prevQP[0] = prevQP[1] = pcSlice->getSliceQp();
}
#endif
#if ENABLE_WPP_PARALLELISM
if( ctuXPosInCtus == 0 && ctuYPosInCtus > 0 && widthInCtus > 1 && ( pEncLib->getNumWppThreads() > 1 || pEncLib->getEnsureWppBitEqual() ) )
{
pCABACWriter->getCtx() = pEncLib->m_entropyCodingSyncContextStateVec[ctuYPosInCtus-1]; // last line
}
#else
#endif
#if RDOQ_CHROMA_LAMBDA && ENABLE_QPA && !ENABLE_QPA_SUB_CTU
double oldLambdaArray[MAX_NUM_COMPONENT] = {0.0};
#endif
const double oldLambda = pRdCost->getLambda();
if ( pCfg->getUseRateCtrl() )
{
int estQP = pcSlice->getSliceQp();
double estLambda = -1.0;
double bpp = -1.0;
if( ( pcPic->slices[0]->isIRAP() && pCfg->getForceIntraQP() ) || !pCfg->getLCULevelRC() )
{
estQP = pcSlice->getSliceQp();
}
else
{
bpp = pRateCtrl->getRCPic()->getLCUTargetBpp(pcSlice->isIRAP());
if ( pcPic->slices[0]->isIRAP())
{
estLambda = pRateCtrl->getRCPic()->getLCUEstLambdaAndQP(bpp, pcSlice->getSliceQp(), &estQP);
}
else
{
estLambda = pRateCtrl->getRCPic()->getLCUEstLambda( bpp );
estQP = pRateCtrl->getRCPic()->getLCUEstQP ( estLambda, pcSlice->getSliceQp() );
}
estQP = Clip3( -pcSlice->getSPS()->getQpBDOffset(CHANNEL_TYPE_LUMA), MAX_QP, estQP );
pRdCost->setLambda(estLambda, pcSlice->getSPS()->getBitDepths());
#if RDOQ_CHROMA_LAMBDA
// set lambda for RDOQ
const double chromaLambda = estLambda / pRdCost->getChromaWeight();
const double lambdaArray[MAX_NUM_COMPONENT] = { estLambda, chromaLambda, chromaLambda };
pTrQuant->setLambdas( lambdaArray );
#else
pTrQuant->setLambda( estLambda );
#endif
}
pRateCtrl->setRCQP( estQP );
}
#if ENABLE_QPA
else if (pCfg->getUsePerceptQPA() && pcSlice->getPPS()->getUseDQP())
{
#if ENABLE_QPA_SUB_CTU
const int adaptedQP = applyQPAdaptationSubCtu (cs, ctuArea, ctuRsAddr, m_pcCfg->getLumaLevelToDeltaQPMapping().mode == LUMALVL_TO_DQP_NUM_MODES);
#else
const int adaptedQP = pcPic->m_iOffsetCtu[ctuRsAddr];
#endif
const double newLambda = pcSlice->getLambdas()[0] * pow (2.0, double (adaptedQP - iQPIndex) / 3.0);
pcPic->m_uEnerHpCtu[ctuRsAddr] = newLambda; // for ALF and SAO
#if !ENABLE_QPA_SUB_CTU
#if RDOQ_CHROMA_LAMBDA
pTrQuant->getLambdas (oldLambdaArray); // save the old lambdas
const double chromaLambda = newLambda / pRdCost->getChromaWeight();
const double lambdaArray[MAX_NUM_COMPONENT] = {newLambda, chromaLambda, chromaLambda};
pTrQuant->setLambdas (lambdaArray);
#else
pTrQuant->setLambda (newLambda);
#endif
pRdCost->setLambda (newLambda, pcSlice->getSPS()->getBitDepths());
#endif
currQP[0] = currQP[1] = adaptedQP;
}
#endif
bool updateGbiCodingOrder = cs.slice->getSliceType() == B_SLICE && ctuTsAddr == startCtuTsAddr;
if( updateGbiCodingOrder )
{
resetGbiCodingOrder(false, cs);
m_pcInterSearch->initWeightIdxBits();
}
#if ENABLE_WPP_PARALLELISM
pEncLib->getCuEncoder( dataId )->compressCtu( cs, ctuArea, ctuRsAddr, prevQP, currQP );
#else
m_pcCuEncoder->compressCtu( cs, ctuArea, ctuRsAddr, prevQP, currQP );
#endif
#if K0149_BLOCK_STATISTICS
getAndStoreBlockStatistics(cs, ctuArea);
#endif
pCABACWriter->resetBits();
pCABACWriter->coding_tree_unit( cs, ctuArea, prevQP, ctuRsAddr, true );
const int numberOfWrittenBits = int( pCABACWriter->getEstFracBits() >> SCALE_BITS );
// Calculate if this CTU puts us over slice bit size.
// cannot terminate if current slice/slice-segment would be 0 Ctu in size,
const uint32_t validEndOfSliceCtuTsAddr = ctuTsAddr + (ctuTsAddr == startCtuTsAddr ? 1 : 0);
// Set slice end parameter
if(pcSlice->getSliceMode()==FIXED_NUMBER_OF_BYTES && pcSlice->getSliceBits()+numberOfWrittenBits > (pcSlice->getSliceArgument()<<3))
{
#if HEVC_DEPENDENT_SLICES
pcSlice->setSliceSegmentCurEndCtuTsAddr(validEndOfSliceCtuTsAddr);
#endif
pcSlice->setSliceCurEndCtuTsAddr(validEndOfSliceCtuTsAddr);
boundingCtuTsAddr=validEndOfSliceCtuTsAddr;
}
#if HEVC_DEPENDENT_SLICES
else if((!bCompressEntireSlice) && pcSlice->getSliceSegmentMode()==FIXED_NUMBER_OF_BYTES && pcSlice->getSliceSegmentBits()+numberOfWrittenBits > (pcSlice->getSliceSegmentArgument()<<3))
{
pcSlice->setSliceSegmentCurEndCtuTsAddr(validEndOfSliceCtuTsAddr);
boundingCtuTsAddr=validEndOfSliceCtuTsAddr;
}
#endif
if (boundingCtuTsAddr <= ctuTsAddr)
{
break;
}
#if ENABLE_WPP_PARALLELISM || ENABLE_SPLIT_PARALLELISM
#pragma omp critical
#endif
pcSlice->setSliceBits( ( uint32_t ) ( pcSlice->getSliceBits() + numberOfWrittenBits ) );
#if ENABLE_WPP_PARALLELISM || ENABLE_SPLIT_PARALLELISM
#pragma omp critical
#endif
#if HEVC_DEPENDENT_SLICES
pcSlice->setSliceSegmentBits( pcSlice->getSliceSegmentBits() + numberOfWrittenBits );
#endif
#if HEVC_TILES_WPP
// Store probabilities of second CTU in line into buffer - used only if wavefront-parallel-processing is enabled.
if( ctuXPosInCtus == tileXPosInCtus + 1 && pEncLib->getEntropyCodingSyncEnabledFlag() )
{
pEncLib->m_entropyCodingSyncContextState = pCABACWriter->getCtx();
}
#endif
#if ENABLE_WPP_PARALLELISM
if( ctuXPosInCtus == 1 && ( pEncLib->getNumWppThreads() > 1 || pEncLib->getEnsureWppBitEqual() ) )
{
pEncLib->m_entropyCodingSyncContextStateVec[ctuYPosInCtus] = pCABACWriter->getCtx();
}
#endif
#if !ENABLE_WPP_PARALLELISM
int actualBits = int(cs.fracBits >> SCALE_BITS);
actualBits -= (int)m_uiPicTotalBits;
#endif
if ( pCfg->getUseRateCtrl() )
{
#if ENABLE_WPP_PARALLELISM
int actualBits = int( cs.fracBits >> SCALE_BITS );
actualBits -= (int)m_uiPicTotalBits;
#endif
int actualQP = g_RCInvalidQPValue;
double actualLambda = pRdCost->getLambda();
int numberOfEffectivePixels = 0;
for( auto &cu : cs.traverseCUs( ctuArea, CH_L ) )
{
if( !cu.skip || cu.rootCbf )
{
numberOfEffectivePixels += cu.lumaSize().area();
break;
}
}
CodingUnit* cu = cs.getCU( ctuArea.lumaPos(), CH_L );
if ( numberOfEffectivePixels == 0 )
{
actualQP = g_RCInvalidQPValue;
}
else
{
actualQP = cu->qp;
}
pRdCost->setLambda(oldLambda, pcSlice->getSPS()->getBitDepths());
pRateCtrl->getRCPic()->updateAfterCTU( pRateCtrl->getRCPic()->getLCUCoded(), actualBits, actualQP, actualLambda,
pcSlice->isIRAP() ? 0 : pCfg->getLCULevelRC() );
}
#if ENABLE_QPA && !ENABLE_QPA_SUB_CTU
else if (pCfg->getUsePerceptQPA() && pcSlice->getPPS()->getUseDQP())
{
#if RDOQ_CHROMA_LAMBDA
pTrQuant->setLambdas (oldLambdaArray);
#else
pTrQuant->setLambda (oldLambda);
#endif
pRdCost->setLambda (oldLambda, pcSlice->getSPS()->getBitDepths());
}
#endif
#if !ENABLE_WPP_PARALLELISM
m_uiPicTotalBits += actualBits;
m_uiPicDist = cs.dist;
#endif
#if ENABLE_WPP_PARALLELISM
pcPic->scheduler.setReady( ctuXPosInCtus, ctuYPosInCtus );
#endif
}
// this is wpp exclusive section
// m_uiPicTotalBits += actualBits;
// m_uiPicDist = cs.dist;
}
void EncSlice::encodeSlice ( Picture* pcPic, OutputBitstream* pcSubstreams, uint32_t &numBinsCoded )
{
Slice *const pcSlice = pcPic->slices[getSliceSegmentIdx()];
#if HEVC_TILES_WPP
const TileMap& tileMap = *pcPic->tileMap;
#endif
#if HEVC_DEPENDENT_SLICES
const uint32_t startCtuTsAddr = pcSlice->getSliceSegmentCurStartCtuTsAddr();
const uint32_t boundingCtuTsAddr = pcSlice->getSliceSegmentCurEndCtuTsAddr();
const bool depSliceSegmentsEnabled = pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag();
#else
const uint32_t startCtuTsAddr = pcSlice->getSliceCurStartCtuTsAddr();
const uint32_t boundingCtuTsAddr = pcSlice->getSliceCurEndCtuTsAddr();
#endif
#if HEVC_TILES_WPP
const bool wavefrontsEnabled = pcSlice->getPPS()->getEntropyCodingSyncEnabledFlag();
#endif
// setup coding structure
CodingStructure& cs = *pcPic->cs;
cs.slice = pcSlice;
// initialise entropy coder for the slice
m_CABACWriter->initCtxModels( *pcSlice );
DTRACE( g_trace_ctx, D_HEADER, "=========== POC: %d ===========\n", pcSlice->getPOC() );
#if HEVC_DEPENDENT_SLICES
if (depSliceSegmentsEnabled)
{
#if HEVC_TILES_WPP
// modify initial contexts with previous slice segment if this is a dependent slice.
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap( startCtuTsAddr );
const uint32_t currentTileIdx = tileMap.getTileIdxMap(ctuRsAddr);
const Tile& currentTile = tileMap.tiles[currentTileIdx];
const uint32_t firstCtuRsAddrOfTile = currentTile.getFirstCtuRsAddr();
if( pcSlice->getDependentSliceSegmentFlag() && ctuRsAddr != firstCtuRsAddrOfTile )
{
if( currentTile.getTileWidthInCtus() >= 2 || !wavefrontsEnabled )
{
m_CABACWriter->getCtx() = m_lastSliceSegmentEndContextState;
}
}
#else
// KJS: not sure if this works (but both dep slices and tiles shall be removed in VTM, so this code should not be used)
if( pcSlice->getDependentSliceSegmentFlag() && ctuRsAddr != startCtuTsAddr )
{
if( pcPic->cs->pcv->widthInCtus >= 2 || !m_pcCfg->getEntropyCodingSyncEnabledFlag() )
{
m_CABACWriter->getCtx() = m_lastSliceSegmentEndContextState;
}
#endif
}
if( !pcSlice->getDependentSliceSegmentFlag() )
{
#endif
pcPic->m_prevQP[0] = pcPic->m_prevQP[1] = pcSlice->getSliceQp();
#if HEVC_DEPENDENT_SLICES
}
#endif
const PreCalcValues& pcv = *cs.pcv;
const uint32_t widthInCtus = pcv.widthInCtus;
// for every CTU in the slice segment...
for( uint32_t ctuTsAddr = startCtuTsAddr; ctuTsAddr < boundingCtuTsAddr; ctuTsAddr++ )
{
#if HEVC_TILES_WPP
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap(ctuTsAddr);
const Tile& currentTile = tileMap.tiles[tileMap.getTileIdxMap(ctuRsAddr)];
const uint32_t firstCtuRsAddrOfTile = currentTile.getFirstCtuRsAddr();
const uint32_t tileXPosInCtus = firstCtuRsAddrOfTile % widthInCtus;
const uint32_t tileYPosInCtus = firstCtuRsAddrOfTile / widthInCtus;
#else
const uint32_t ctuRsAddr = ctuTsAddr;
#endif
const uint32_t ctuXPosInCtus = ctuRsAddr % widthInCtus;
const uint32_t ctuYPosInCtus = ctuRsAddr / widthInCtus;
#if HEVC_TILES_WPP
const uint32_t uiSubStrm = tileMap.getSubstreamForCtuAddr(ctuRsAddr, true, pcSlice);
#else
const uint32_t uiSubStrm = 0;
#endif
DTRACE_UPDATE( g_trace_ctx, std::make_pair( "ctu", ctuRsAddr ) );
const Position pos (ctuXPosInCtus * pcv.maxCUWidth, ctuYPosInCtus * pcv.maxCUHeight);
const UnitArea ctuArea (cs.area.chromaFormat, Area(pos.x, pos.y, pcv.maxCUWidth, pcv.maxCUHeight));
m_CABACWriter->initBitstream( &pcSubstreams[uiSubStrm] );
#if HEVC_TILES_WPP
// set up CABAC contexts' state for this CTU
if (ctuRsAddr == firstCtuRsAddrOfTile)
{
if (ctuTsAddr != startCtuTsAddr) // if it is the first CTU, then the entropy coder has already been reset
{
m_CABACWriter->initCtxModels( *pcSlice );
}
}
else if (ctuXPosInCtus == tileXPosInCtus && wavefrontsEnabled)
{
// Synchronize cabac probabilities with upper-right CTU if it's available and at the start of a line.
if (ctuTsAddr != startCtuTsAddr) // if it is the first CTU, then the entropy coder has already been reset
{
m_CABACWriter->initCtxModels( *pcSlice );
}
if( cs.getCURestricted( pos.offset( pcv.maxCUWidth, -1 ), pcSlice->getIndependentSliceIdx(), tileMap.getTileIdxMap( pos ), CH_L ) )
{
// Top-right is available, so use it.
m_CABACWriter->getCtx() = m_entropyCodingSyncContextState;
}
}
#endif
bool updateGbiCodingOrder = cs.slice->getSliceType() == B_SLICE && ctuTsAddr == startCtuTsAddr;
if( updateGbiCodingOrder )
{
resetGbiCodingOrder(false, cs);
}
m_CABACWriter->coding_tree_unit( cs, ctuArea, pcPic->m_prevQP, ctuRsAddr );
#if HEVC_TILES_WPP
// store probabilities of second CTU in line into buffer
if( ctuXPosInCtus == tileXPosInCtus + 1 && wavefrontsEnabled )
{
m_entropyCodingSyncContextState = m_CABACWriter->getCtx();
}
#endif
// terminate the sub-stream, if required (end of slice-segment, end of tile, end of wavefront-CTU-row):
#if HEVC_TILES_WPP
if( ctuTsAddr + 1 == boundingCtuTsAddr ||
( ctuXPosInCtus + 1 == tileXPosInCtus + currentTile.getTileWidthInCtus () &&
( ctuYPosInCtus + 1 == tileYPosInCtus + currentTile.getTileHeightInCtus() || wavefrontsEnabled )
)
)
#else
if( ctuTsAddr + 1 == boundingCtuTsAddr )
#endif
{
m_CABACWriter->end_of_slice();
// Byte-alignment in slice_data() when new tile
pcSubstreams[uiSubStrm].writeByteAlignment();
// write sub-stream size
if( ctuTsAddr + 1 != boundingCtuTsAddr )
{
pcSlice->addSubstreamSize( (pcSubstreams[uiSubStrm].getNumberOfWrittenBits() >> 3) + pcSubstreams[uiSubStrm].countStartCodeEmulations() );
}
}
} // CTU-loop
#if HEVC_DEPENDENT_SLICES
if( depSliceSegmentsEnabled )
{
m_lastSliceSegmentEndContextState = m_CABACWriter->getCtx();//ctx end of dep.slice
}
#endif
#if HEVC_DEPENDENT_SLICES
if (pcSlice->getPPS()->getCabacInitPresentFlag() && !pcSlice->getPPS()->getDependentSliceSegmentsEnabledFlag())
#else
if(pcSlice->getPPS()->getCabacInitPresentFlag())
#endif
{
m_encCABACTableIdx = m_CABACWriter->getCtxInitId( *pcSlice );
}
else
{
m_encCABACTableIdx = pcSlice->getSliceType();
}
numBinsCoded = m_CABACWriter->getNumBins();
}
#if HEVC_TILES_WPP
void EncSlice::calculateBoundingCtuTsAddrForSlice(uint32_t &startCtuTSAddrSlice, uint32_t &boundingCtuTSAddrSlice, bool &haveReachedTileBoundary,
Picture* pcPic, const int sliceMode, const int sliceArgument)
#else
void EncSlice::calculateBoundingCtuTsAddrForSlice(uint32_t &startCtuTSAddrSlice, uint32_t &boundingCtuTSAddrSlice,
Picture* pcPic, const int sliceMode, const int sliceArgument)
#endif
{
#if HEVC_TILES_WPP
Slice* pcSlice = pcPic->slices[getSliceSegmentIdx()];
const TileMap& tileMap = *( pcPic->tileMap );
const PPS &pps = *( pcSlice->getPPS() );
#endif
const uint32_t numberOfCtusInFrame = pcPic->cs->pcv->sizeInCtus;
boundingCtuTSAddrSlice=0;
#if HEVC_TILES_WPP
haveReachedTileBoundary=false;
#endif
switch (sliceMode)
{
case FIXED_NUMBER_OF_CTU:
{
uint32_t ctuAddrIncrement = sliceArgument;
boundingCtuTSAddrSlice = ((startCtuTSAddrSlice + ctuAddrIncrement) < numberOfCtusInFrame) ? (startCtuTSAddrSlice + ctuAddrIncrement) : numberOfCtusInFrame;
}
break;
case FIXED_NUMBER_OF_BYTES:
boundingCtuTSAddrSlice = numberOfCtusInFrame; // This will be adjusted later if required.
break;
#if HEVC_TILES_WPP
case FIXED_NUMBER_OF_TILES:
{
const uint32_t tileIdx = tileMap.getTileIdxMap( tileMap.getCtuTsToRsAddrMap(startCtuTSAddrSlice) );
const uint32_t tileTotalCount = (pps.getNumTileColumnsMinus1()+1) * (pps.getNumTileRowsMinus1()+1);
uint32_t ctuAddrIncrement = 0;
for(uint32_t tileIdxIncrement = 0; tileIdxIncrement < sliceArgument; tileIdxIncrement++)
{
if((tileIdx + tileIdxIncrement) < tileTotalCount)
{
uint32_t tileWidthInCtus = tileMap.tiles[tileIdx + tileIdxIncrement].getTileWidthInCtus();
uint32_t tileHeightInCtus = tileMap.tiles[tileIdx + tileIdxIncrement].getTileHeightInCtus();
ctuAddrIncrement += (tileWidthInCtus * tileHeightInCtus);
}
}
boundingCtuTSAddrSlice = ((startCtuTSAddrSlice + ctuAddrIncrement) < numberOfCtusInFrame) ? (startCtuTSAddrSlice + ctuAddrIncrement) : numberOfCtusInFrame;
}
break;
#endif
default:
boundingCtuTSAddrSlice = numberOfCtusInFrame;
break;
}
#if HEVC_TILES_WPP
// Adjust for tiles and wavefronts.
const bool wavefrontsAreEnabled = pps.getEntropyCodingSyncEnabledFlag();
if ((sliceMode == FIXED_NUMBER_OF_CTU || sliceMode == FIXED_NUMBER_OF_BYTES) &&
(pps.getNumTileRowsMinus1() > 0 || pps.getNumTileColumnsMinus1() > 0))
{
const uint32_t ctuRsAddr = tileMap.getCtuTsToRsAddrMap(startCtuTSAddrSlice);
const uint32_t startTileIdx = tileMap.getTileIdxMap(ctuRsAddr);
const Tile& startingTile = tileMap.tiles[startTileIdx];
const uint32_t tileStartTsAddr = tileMap.getCtuRsToTsAddrMap(startingTile.getFirstCtuRsAddr());
const uint32_t tileStartWidth = startingTile.getTileWidthInCtus();
const uint32_t tileStartHeight = startingTile.getTileHeightInCtus();
const uint32_t tileLastTsAddr_excl = tileStartTsAddr + tileStartWidth*tileStartHeight;
const uint32_t tileBoundingCtuTsAddrSlice = tileLastTsAddr_excl;
const uint32_t ctuColumnOfStartingTile = ((startCtuTSAddrSlice-tileStartTsAddr)%tileStartWidth);
if (wavefrontsAreEnabled && ctuColumnOfStartingTile!=0)
{
// WPP: if a slice does not start at the beginning of a CTB row, it must end within the same CTB row
const uint32_t numberOfCTUsToEndOfRow = tileStartWidth - ctuColumnOfStartingTile;
const uint32_t wavefrontTileBoundingCtuAddrSlice = startCtuTSAddrSlice + numberOfCTUsToEndOfRow;
if (wavefrontTileBoundingCtuAddrSlice < boundingCtuTSAddrSlice)
{
boundingCtuTSAddrSlice = wavefrontTileBoundingCtuAddrSlice;
}
}
if (tileBoundingCtuTsAddrSlice < boundingCtuTSAddrSlice)
{
boundingCtuTSAddrSlice = tileBoundingCtuTsAddrSlice;
haveReachedTileBoundary = true;
}
}
else if ((sliceMode == FIXED_NUMBER_OF_CTU || sliceMode == FIXED_NUMBER_OF_BYTES) && wavefrontsAreEnabled && ((startCtuTSAddrSlice % pcPic->cs->pcv->widthInCtus) != 0))
{
// Adjust for wavefronts (no tiles).
// WPP: if a slice does not start at the beginning of a CTB row, it must end within the same CTB row
boundingCtuTSAddrSlice = std::min(boundingCtuTSAddrSlice, startCtuTSAddrSlice - (startCtuTSAddrSlice % pcPic->cs->pcv->widthInCtus) + (pcPic->cs->pcv->widthInCtus));
}
#endif
}
/** Determines the starting and bounding CTU address of current slice / dependent slice
* \param [out] startCtuTsAddr
* \param [out] boundingCtuTsAddr
* \param [in] pcPic
* Updates startCtuTsAddr, boundingCtuTsAddr with appropriate CTU address
*/
void EncSlice::xDetermineStartAndBoundingCtuTsAddr ( uint32_t& startCtuTsAddr, uint32_t& boundingCtuTsAddr, Picture* pcPic )
{
Slice* pcSlice = pcPic->slices[getSliceSegmentIdx()];
// Non-dependent slice
uint32_t startCtuTsAddrSlice = pcSlice->getSliceCurStartCtuTsAddr();
#if HEVC_TILES_WPP
bool haveReachedTileBoundarySlice = false;
#endif
uint32_t boundingCtuTsAddrSlice;
#if HEVC_TILES_WPP
calculateBoundingCtuTsAddrForSlice(startCtuTsAddrSlice, boundingCtuTsAddrSlice, haveReachedTileBoundarySlice, pcPic,
m_pcCfg->getSliceMode(), m_pcCfg->getSliceArgument());
#else
calculateBoundingCtuTsAddrForSlice(startCtuTsAddrSlice, boundingCtuTsAddrSlice, pcPic,
m_pcCfg->getSliceMode(), m_pcCfg->getSliceArgument());
#endif
pcSlice->setSliceCurEndCtuTsAddr( boundingCtuTsAddrSlice );
pcSlice->setSliceCurStartCtuTsAddr( startCtuTsAddrSlice );
#if HEVC_DEPENDENT_SLICES
// Dependent slice
uint32_t startCtuTsAddrSliceSegment = pcSlice->getSliceSegmentCurStartCtuTsAddr();
#if HEVC_TILES_WPP
bool haveReachedTileBoundarySliceSegment = false;
#endif
uint32_t boundingCtuTsAddrSliceSegment;
#if HEVC_TILES_WPP
calculateBoundingCtuTsAddrForSlice(startCtuTsAddrSliceSegment, boundingCtuTsAddrSliceSegment, haveReachedTileBoundarySliceSegment, pcPic,
m_pcCfg->getSliceSegmentMode(), m_pcCfg->getSliceSegmentArgument());
#else
calculateBoundingCtuTsAddrForSlice(startCtuTsAddrSliceSegment, boundingCtuTsAddrSliceSegment, pcPic,
m_pcCfg->getSliceSegmentMode(), m_pcCfg->getSliceSegmentArgument());
#endif
if (boundingCtuTsAddrSliceSegment>boundingCtuTsAddrSlice)
{
boundingCtuTsAddrSliceSegment = boundingCtuTsAddrSlice;
}
pcSlice->setSliceSegmentCurEndCtuTsAddr( boundingCtuTsAddrSliceSegment );
pcSlice->setSliceSegmentCurStartCtuTsAddr(startCtuTsAddrSliceSegment);
// Make a joint decision based on reconstruction and dependent slice bounds
startCtuTsAddr = std::max(startCtuTsAddrSlice, startCtuTsAddrSliceSegment);
boundingCtuTsAddr = boundingCtuTsAddrSliceSegment;
#else
startCtuTsAddr = startCtuTsAddrSlice;
boundingCtuTsAddr = boundingCtuTsAddrSlice;
#endif
}
double EncSlice::xGetQPValueAccordingToLambda ( double lambda )
{
return 4.2005*log(lambda) + 13.7122;
}
//! \}