Newer
Older

Karsten Suehring
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2018, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file UnitPartitioner.h
* \brief Provides a class for partitioning management
*/
#include "UnitPartitioner.h"
#include "CodingStructure.h"
#include "Unit.h"
#include "Slice.h"
#include "UnitTools.h"
#include "Picture.h"
PartLevel::PartLevel()
: split ( CU_DONT_SPLIT )
, parts ( )
, idx ( 0u )
, checkdIfImplicit ( false )
, isImplicit ( false )
, implicitSplit ( CU_DONT_SPLIT )
, firstSubPartSplit ( CU_DONT_SPLIT )
, canQtSplit ( true )
{
}
PartLevel::PartLevel( const PartSplit _split, const Partitioning& _parts )
: split ( _split )
, parts ( _parts )
, idx ( 0u )
, checkdIfImplicit ( false )
, isImplicit ( false )
, implicitSplit ( CU_DONT_SPLIT )
, firstSubPartSplit ( CU_DONT_SPLIT )
, canQtSplit ( true )
{
}
PartLevel::PartLevel( const PartSplit _split, Partitioning&& _parts )
: split ( _split )
, parts ( std::forward<Partitioning>( _parts ) )
, idx ( 0u )
, checkdIfImplicit ( false )
, isImplicit ( false )
, implicitSplit ( CU_DONT_SPLIT )
, firstSubPartSplit ( CU_DONT_SPLIT )
, canQtSplit ( true )
{
}
//////////////////////////////////////////////////////////////////////////
// Partitioner class
//////////////////////////////////////////////////////////////////////////
SplitSeries Partitioner::getSplitSeries() const
{
SplitSeries splitSeries = 0;
SplitSeries depth = 0;
for( const auto &level : m_partStack )
{
if( level.split == CTU_LEVEL ) continue;
else splitSeries += static_cast< SplitSeries >( level.split ) << ( depth * SPLIT_DMULT );
depth++;
}
return splitSeries;
}
void Partitioner::setCUData( CodingUnit& cu )
{
cu.depth = currDepth;
cu.btDepth = currBtDepth;
cu.mtDepth = currMtDepth;
cu.qtDepth = currQtDepth;
cu.splitSeries = getSplitSeries();
}
void Partitioner::copyState( const Partitioner& other )
{
m_partStack = other.m_partStack;
currBtDepth = other.currBtDepth;
currQtDepth = other.currQtDepth;
currDepth = other.currDepth;
currMtDepth = other.currMtDepth;
currTrDepth = other.currTrDepth;
currImplicitBtDepth
= other.currImplicitBtDepth;
chType = other.chType;
#ifdef _DEBUG
m_currArea = other.m_currArea;
#endif
}
//////////////////////////////////////////////////////////////////////////
// AdaptiveDepthPartitioner class
//////////////////////////////////////////////////////////////////////////
void AdaptiveDepthPartitioner::setMaxMinDepth( unsigned& minDepth, unsigned& maxDepth, const CodingStructure& cs ) const
{
unsigned stdMinDepth = 0;
unsigned stdMaxDepth = ( g_aucLog2[cs.sps->getSpsNext().getCTUSize()] - g_aucLog2[cs.sps->getSpsNext().getMinQTSize( cs.slice->getSliceType(), chType )]);

Karsten Suehring
committed
const Position pos = currArea().blocks[chType].pos();
const unsigned curSliceIdx = cs.slice->getIndependentSliceIdx();
#if HEVC_TILES_WPP
const unsigned curTileIdx = cs.picture->tileMap->getTileIdxMap( currArea().lumaPos() );
const CodingUnit* cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), curSliceIdx, curTileIdx, chType );
const CodingUnit* cuBelowLeft = cs.getCURestricted( pos.offset( -1, currArea().blocks[chType].height), curSliceIdx, curTileIdx, chType );
const CodingUnit* cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), curSliceIdx, curTileIdx, chType );
const CodingUnit* cuAboveRight = cs.getCURestricted( pos.offset( currArea().blocks[chType].width, -1 ), curSliceIdx, curTileIdx, chType );

Karsten Suehring
committed
#else
const CodingUnit* cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), curSliceIdx, chType );
const CodingUnit* cuBelowLeft = cs.getCURestricted( pos.offset( -1, currArea().blocks[chType].height), curSliceIdx, chType );
const CodingUnit* cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), curSliceIdx, chType );
const CodingUnit* cuAboveRight = cs.getCURestricted( pos.offset( currArea().blocks[chType].width, -1 ), curSliceIdx, chType );

Karsten Suehring
committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#endif
minDepth = stdMaxDepth;
maxDepth = stdMinDepth;
if( cuLeft )
{
minDepth = std::min<unsigned>( minDepth, cuLeft->qtDepth );
maxDepth = std::max<unsigned>( maxDepth, cuLeft->qtDepth );
}
else
{
minDepth = stdMinDepth;
maxDepth = stdMaxDepth;
}
if( cuBelowLeft )
{
minDepth = std::min<unsigned>( minDepth, cuBelowLeft->qtDepth );
maxDepth = std::max<unsigned>( maxDepth, cuBelowLeft->qtDepth );
}
else
{
minDepth = stdMinDepth;
maxDepth = stdMaxDepth;
}
if( cuAbove )
{
minDepth = std::min<unsigned>( minDepth, cuAbove->qtDepth );
maxDepth = std::max<unsigned>( maxDepth, cuAbove->qtDepth );
}
else
{
minDepth = stdMinDepth;
maxDepth = stdMaxDepth;
}
if( cuAboveRight )
{
minDepth = std::min<unsigned>( minDepth, cuAboveRight->qtDepth );
maxDepth = std::max<unsigned>( maxDepth, cuAboveRight->qtDepth );
}
else
{
minDepth = stdMinDepth;
maxDepth = stdMaxDepth;
}
minDepth = ( minDepth >= 1 ? minDepth - 1 : 0 );
maxDepth = std::min<unsigned>( stdMaxDepth, maxDepth + 1 );
}
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// QTBTPartitioner
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
void QTBTPartitioner::initCtu( const UnitArea& ctuArea, const ChannelType _chType, const Slice& slice )
{
#if _DEBUG
m_currArea = ctuArea;
#endif
currDepth = 0;
currTrDepth = 0;
currBtDepth = 0;
currMtDepth = 0;
currQtDepth = 0;
currImplicitBtDepth = 0;
chType = _chType;
m_partStack.clear();
m_partStack.push_back( PartLevel( CTU_LEVEL, Partitioning{ ctuArea } ) );
}
void QTBTPartitioner::splitCurrArea( const PartSplit split, const CodingStructure& cs )
{
CHECKD( !canSplit( split, cs ), "Trying to apply a prohibited split!" );
bool isImplicit = isSplitImplicit( split, cs );
bool canQtSplit = canSplit( CU_QUAD_SPLIT, cs );
switch( split )
{
case CU_QUAD_SPLIT:
m_partStack.push_back( PartLevel( split, PartitionerImpl::getCUSubPartitions( currArea(), cs ) ) );
break;
case CU_HORZ_SPLIT:
case CU_VERT_SPLIT:
m_partStack.push_back( PartLevel( split, PartitionerImpl::getCUSubPartitions( currArea(), cs, split ) ) );
break;
case CU_TRIH_SPLIT:
case CU_TRIV_SPLIT:
CHECK( ( cs.sps->getSpsNext().getMTTMode() & 1 ) != 1, "Triple splits are not allowed" );
m_partStack.push_back( PartLevel( split, PartitionerImpl::getCUSubPartitions( currArea(), cs, split ) ) );
break;
case TU_MAX_TR_SPLIT:
m_partStack.push_back( PartLevel( split, PartitionerImpl::getMaxTuTiling( currArea(), cs ) ) );
break;
default:
THROW( "Unknown split mode" );
break;
}
currDepth++;
#if _DEBUG
m_currArea = m_partStack.back().parts.front();
#endif
if( split == TU_MAX_TR_SPLIT )
{
currTrDepth++;
}
else
{
currTrDepth = 0;
}
if( split == CU_HORZ_SPLIT || split == CU_VERT_SPLIT || split == CU_TRIH_SPLIT || split == CU_TRIV_SPLIT )
{
currBtDepth++;
if( isImplicit ) currImplicitBtDepth++;
currMtDepth++;
if( split == CU_TRIH_SPLIT || split == CU_TRIV_SPLIT )
{
// first and last part of triple split are equivalent to double bt split
currBtDepth++;
}
m_partStack.back().canQtSplit = canQtSplit;
}
else if( split == CU_QUAD_SPLIT )
{
CHECK( currBtDepth > 0, "Cannot split a non-square area other than with a binary split" );
CHECK( currMtDepth > 0, "Cannot split a non-square area other than with a binary split" );
currMtDepth = 0;
currBtDepth = 0;
currQtDepth++;
}
}
bool QTBTPartitioner::canSplit( const PartSplit split, const CodingStructure &cs )
{
const PartSplit implicitSplit = getImplicitSplit( cs );
// the minimal and maximal sizes are given in luma samples
const CompArea area = currArea().Y();
const unsigned maxBTD = cs.pcv->getMaxBtDepth( *cs.slice, chType ) + currImplicitBtDepth;
const unsigned maxBtSize = cs.pcv->getMaxBtSize( *cs.slice, chType );
const unsigned minBtSize = cs.pcv->getMinBtSize( *cs.slice, chType );
const unsigned maxTtSize = cs.pcv->getMaxTtSize( *cs.slice, chType );
const unsigned minTtSize = cs.pcv->getMinTtSize( *cs.slice, chType );
const unsigned maxTrSize = cs.sps->getMaxTrSize();
const PartSplit lastSplit = m_partStack.back().split;
const PartSplit parlSplit = lastSplit == CU_TRIH_SPLIT ? CU_HORZ_SPLIT : CU_VERT_SPLIT;
if( isNonLog2BlockSize( currArea().Y() ) )
{
return false;
}
switch( split )
{
case CTU_LEVEL:
THROW( "Checking if top level split is possible" );
return true;
break;
case TU_MAX_TR_SPLIT:
return area.width > maxTrSize || area.height > maxTrSize;
break;
case CU_QUAD_SPLIT:
{
// don't allow QT-splitting below a BT split
PartSplit lastSplit = m_partStack.back().split;
if( lastSplit != CTU_LEVEL && lastSplit != CU_QUAD_SPLIT ) return false;
unsigned minQtSize = cs.pcv->getMinQtSize( *cs.slice, chType );
if( currArea().lwidth() <= minQtSize || currArea().lheight() <= minQtSize ) return false;
// allowing QT split even if a BT split is implied
if( implicitSplit != CU_DONT_SPLIT ) return true;
return true;
}
break;
case CU_DONT_SPLIT:
return implicitSplit == CU_DONT_SPLIT;
break;
// general check for BT split, specific checks are done in a separate switch
case CU_HORZ_SPLIT:
case CU_VERT_SPLIT:
{
if( ( lastSplit == CU_TRIH_SPLIT || lastSplit == CU_TRIV_SPLIT ) && currPartIdx() == 1 && split == parlSplit )
{
return false;
}
if (CS::isDualITree(cs) && (area.width > 64 || area.height > 64))
{
return false;
}
}
case CU_TRIH_SPLIT:
case CU_TRIV_SPLIT:
{
if (CS::isDualITree(cs) && (area.width > 64 || area.height > 64))
{
return false;
}
}
if( implicitSplit == split ) return true;
if( implicitSplit != CU_DONT_SPLIT && implicitSplit != split ) return false;
case CU_MT_SPLIT:
case CU_BT_SPLIT:
{
if( currMtDepth >= maxBTD ) return false;
if( ( area.width <= minBtSize && area.height <= minBtSize )
&& ( ( area.width <= minTtSize && area.height <= minTtSize ) || cs.sps->getSpsNext().getMTTMode() == 0 ) ) return false;
if( ( area.width > maxBtSize || area.height > maxBtSize )
&& ( ( area.width > maxTtSize || area.height > maxTtSize ) || cs.sps->getSpsNext().getMTTMode() == 0 ) ) return false;
if (CS::isDualITree(cs) && (area.width > 64 || area.height > 64))
{
return false;
}
}
break;
default:
THROW( "Unknown split mode" );
return false;
break;
}
// specific check for BT splits
switch( split )
{
case CU_HORZ_SPLIT:
if( area.height <= minBtSize || area.height > maxBtSize ) return false;
#if JVET_L0081_VPDU_SPLIT_CONSTRAINTS
Chia-Ming Tsai
committed
if( area.width > MAX_TU_SIZE_FOR_PROFILE && area.height <= MAX_TU_SIZE_FOR_PROFILE ) return false;

Karsten Suehring
committed
break;
case CU_VERT_SPLIT:
if( area.width <= minBtSize || area.width > maxBtSize ) return false;
#if JVET_L0081_VPDU_SPLIT_CONSTRAINTS
Chia-Ming Tsai
committed
if( area.width <= MAX_TU_SIZE_FOR_PROFILE && area.height > MAX_TU_SIZE_FOR_PROFILE ) return false;

Karsten Suehring
committed
break;
case CU_TRIH_SPLIT:
if( ( cs.sps->getSpsNext().getMTTMode() & 1 ) != 1 ) return false;
if( area.height <= 2 * minTtSize || area.height > maxTtSize || area.width > maxTtSize) return false;
#if JVET_L0081_VPDU_SPLIT_CONSTRAINTS
Chia-Ming Tsai
committed
if( area.width > MAX_TU_SIZE_FOR_PROFILE || area.height > MAX_TU_SIZE_FOR_PROFILE ) return false;

Karsten Suehring
committed
break;
case CU_TRIV_SPLIT:
if( ( cs.sps->getSpsNext().getMTTMode() & 1 ) != 1 ) return false;
if( area.width <= 2 * minTtSize || area.width > maxTtSize || area.height > maxTtSize) return false;
#if JVET_L0081_VPDU_SPLIT_CONSTRAINTS
Chia-Ming Tsai
committed
if( area.width > MAX_TU_SIZE_FOR_PROFILE || area.height > MAX_TU_SIZE_FOR_PROFILE ) return false;

Karsten Suehring
committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
break;
default:
break;
}
return true;
}
bool QTBTPartitioner::isSplitImplicit( const PartSplit split, const CodingStructure &cs )
{
return split == getImplicitSplit( cs );
}
PartSplit QTBTPartitioner::getImplicitSplit( const CodingStructure &cs )
{
if( m_partStack.back().checkdIfImplicit )
{
return m_partStack.back().implicitSplit;
}
PartSplit split = CU_DONT_SPLIT;
if( split == CU_DONT_SPLIT )
{
const bool isBlInPic = cs.picture->Y().contains( currArea().Y().bottomLeft() );
const bool isTrInPic = cs.picture->Y().contains( currArea().Y().topRight() );
const CompArea& area = currArea().Y();
const unsigned maxBtSize = cs.pcv->getMaxBtSize( *cs.slice, chType );
const bool isBtAllowed = area.width <= maxBtSize && area.height <= maxBtSize;
const unsigned minQtSize = cs.pcv->getMinQtSize( *cs.slice, chType );
const bool isQtAllowed = area.width > minQtSize && area.height > minQtSize && currBtDepth == 0;
if( !isBlInPic && !isTrInPic && isQtAllowed )
{
split = CU_QUAD_SPLIT;
}
else if( !isBlInPic && isBtAllowed )
{
split = CU_HORZ_SPLIT;
}
else if( !isTrInPic && isBtAllowed )
{
split = CU_VERT_SPLIT;
}
else if( !isBlInPic || !isTrInPic )
{
split = CU_QUAD_SPLIT;
}
if (CS::isDualITree(cs) && (currArea().Y().width > 64 || currArea().Y().height > 64))
{
split = CU_QUAD_SPLIT;
}
}
m_partStack.back().checkdIfImplicit = true;
m_partStack.back().isImplicit = split != CU_DONT_SPLIT;
m_partStack.back().implicitSplit = split;
return split;
}
void QTBTPartitioner::exitCurrSplit()
{
PartSplit currSplit = m_partStack.back().split;
unsigned currIdx = m_partStack.back().idx;
m_partStack.pop_back();
CHECK( currDepth == 0, "depth is '0', although a split was performed" );
currDepth--;
#if _DEBUG
m_currArea = m_partStack.back().parts[m_partStack.back().idx];
#endif
if( currSplit == CU_HORZ_SPLIT || currSplit == CU_VERT_SPLIT || currSplit == CU_TRIH_SPLIT || currSplit == CU_TRIV_SPLIT )
{
CHECK( !m_partStack.back().checkdIfImplicit, "Didn't check if the current split is implicit" );
CHECK( currBtDepth == 0, "BT depth is '0', athough a BT split was performed" );
CHECK( currMtDepth == 0, "MT depth is '0', athough a BT split was performed" );
currMtDepth--;
if( m_partStack.back().isImplicit ) currImplicitBtDepth--;
currBtDepth--;
if( ( currSplit == CU_TRIH_SPLIT || currSplit == CU_TRIV_SPLIT ) && currIdx != 1 )
{
CHECK( currBtDepth == 0, "BT depth is '0', athough a TT split was performed" );
currBtDepth--;
}
}
else if( currSplit == TU_MAX_TR_SPLIT )
{
CHECK( currTrDepth == 0, "TR depth is '0', although a TU split was performed" );
currTrDepth--;
}
else
{
CHECK( currTrDepth > 0, "RQT found with QTBT partitioner" );
CHECK( currQtDepth == 0, "QT depth is '0', although a QT split was performed" );
currQtDepth--;
}
}
bool QTBTPartitioner::nextPart( const CodingStructure &cs, bool autoPop /*= false*/ )
{
const Position &prevPos = currArea().blocks[chType].pos();
unsigned currIdx = ++m_partStack.back().idx;
m_partStack.back().checkdIfImplicit = false;
m_partStack.back().isImplicit = false;
if( currIdx == 1 )
{
const CodingUnit* prevCU = cs.getCU( prevPos, chType );
m_partStack.back().firstSubPartSplit = prevCU ? CU::getSplitAtDepth( *prevCU, currDepth ) : CU_DONT_SPLIT;
}
if( currIdx < m_partStack.back().parts.size() )
{
if( m_partStack.back().split == CU_TRIH_SPLIT || m_partStack.back().split == CU_TRIV_SPLIT )
{
// adapt the current bt depth
if( currIdx == 1 ) currBtDepth--;
else currBtDepth++;
}
#if _DEBUG
m_currArea = m_partStack.back().parts[currIdx];
#endif
return true;
}
else
{
if( autoPop ) exitCurrSplit();
return false;
}
}
bool QTBTPartitioner::hasNextPart()
{
return ( ( m_partStack.back().idx + 1 ) < m_partStack.back().parts.size() );
}
//////////////////////////////////////////////////////////////////////////
// PartitionerFactory
//////////////////////////////////////////////////////////////////////////
Partitioner* PartitionerFactory::get( const Slice& slice )
{

Karsten Suehring
committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
}
//////////////////////////////////////////////////////////////////////////
// Partitioner methods describing the actual partitioning logic
//////////////////////////////////////////////////////////////////////////
Partitioning PartitionerImpl::getCUSubPartitions( const UnitArea &cuArea, const CodingStructure &cs, const PartSplit _splitType /*= CU_QUAD_SPLIT*/ )
{
const PartSplit splitType = _splitType;
if( splitType == CU_QUAD_SPLIT )
{
if( !cs.pcv->noChroma2x2 )
{
Partitioning sub;
sub.resize( 4, cuArea );
for( uint32_t i = 0; i < 4; i++ )
{
for( auto &blk : sub[i].blocks )
{
blk.height >>= 1;
blk.width >>= 1;
if( i >= 2 ) blk.y += blk.height;
if( i & 1 ) blk.x += blk.width;
}
CHECK( sub[i].lumaSize().height < MIN_TU_SIZE, "the split causes the block to be smaller than the minimal TU size" );
}
return sub;
}
else
{
const uint32_t minCUSize = ( cs.sps->getMaxCUWidth() >> cs.sps->getMaxCodingDepth() );
bool canSplit = cuArea.lumaSize().width > minCUSize && cuArea.lumaSize().height > minCUSize;
Partitioning ret;
if( cs.slice->getSliceType() == I_SLICE )
{
canSplit &= cuArea.lumaSize().width > cs.pcv->minCUWidth && cuArea.lumaSize().height > cs.pcv->minCUHeight;
}
if( canSplit )
{
ret.resize( 4 );
if( cuArea.chromaFormat == CHROMA_400 )
{
CompArea blkY = cuArea.Y();
blkY.width >>= 1;
blkY.height >>= 1;
ret[0] = UnitArea( cuArea.chromaFormat, blkY );
blkY.x += blkY.width;
ret[1] = UnitArea( cuArea.chromaFormat, blkY );
blkY.x -= blkY.width;
blkY.y += blkY.height;
ret[2] = UnitArea( cuArea.chromaFormat, blkY );
blkY.x += blkY.width;
ret[3] = UnitArea( cuArea.chromaFormat, blkY );
}
else
{
for( uint32_t i = 0; i < 4; i++ )
{
ret[i] = cuArea;
CompArea &blkY = ret[i].Y();
CompArea &blkCb = ret[i].Cb();
CompArea &blkCr = ret[i].Cr();
blkY.width /= 2;
blkY.height /= 2;
// TODO: get those params from SPS
if( blkCb.width > 4 )
{
blkCb.width /= 2;
blkCb.height /= 2;
blkCr.width /= 2;
blkCr.height /= 2;
}
else if( i > 0 )
{
blkCb = CompArea();
blkCr = CompArea();
}
if( ( i & 1 ) == 1 )
{
blkY.x += blkY .width;
blkCb.x += blkCb.width;
blkCr.x += blkCr.width;
}
if( i > 1 )
{
blkY.y += blkY .height;
blkCb.y += blkCb.height;
blkCr.y += blkCr.height;
}
}
}
}
return ret;
}
}
else if( splitType == CU_HORZ_SPLIT )
{
Partitioning sub;
sub.resize(2, cuArea);
for (uint32_t i = 0; i < 2; i++)
{
for (auto &blk : sub[i].blocks)
{
blk.height >>= 1;
if (i == 1) blk.y += blk.height;
}
CHECK(sub[i].lumaSize().height < MIN_TU_SIZE, "the cs split causes the block to be smaller than the minimal TU size");
}
return sub;
}
else if( splitType == CU_VERT_SPLIT )
{
Partitioning sub;
sub.resize( 2, cuArea );
for( uint32_t i = 0; i < 2; i++ )
{
for( auto &blk : sub[i].blocks )
{
blk.width >>= 1;
if( i == 1 ) blk.x += blk.width;
}
CHECK( sub[i].lumaSize().width < MIN_TU_SIZE, "the split causes the block to be smaller than the minimal TU size" );
}
return sub;
}
else if( splitType == CU_TRIH_SPLIT )
{
Partitioning sub;
sub.resize( 3, cuArea );
for( int i = 0; i < 3; i++ )
{
for( auto &blk : sub[i].blocks )
{
blk.height >>= 1;
if( ( i + 1 ) & 1 ) blk.height >>= 1;
if( i == 1 ) blk.y += blk.height / 2;
if( i == 2 ) blk.y += 3 * blk.height;
}
CHECK( sub[i].lumaSize().height < MIN_TU_SIZE, "the cs split causes the block to be smaller than the minimal TU size" );
}
return sub;
}
else if( splitType == CU_TRIV_SPLIT )
{
Partitioning sub;
sub.resize( 3, cuArea );
for( int i = 0; i < 3; i++ )
{
for( auto &blk : sub[i].blocks )
{
blk.width >>= 1;
if( ( i + 1 ) & 1 ) blk.width >>= 1;
if( i == 1 ) blk.x += blk.width / 2;
if( i == 2 ) blk.x += 3 * blk.width;
}
CHECK( sub[i].lumaSize().width < MIN_TU_SIZE, "the cs split causes the block to be smaller than the minimal TU size" );
}
return sub;
}
else
{
THROW( "Unknown CU sub-partitioning" );
return Partitioning();
}
}
static const int g_maxRtGridSize = 3;
static const int g_zScanToX[1 << ( g_maxRtGridSize << 1 )] =
{
0, 1, 0, 1, 2, 3, 2, 3,
0, 1, 0, 1, 2, 3, 2, 3,
4, 5, 4, 5, 6, 7, 6, 7,
4, 5, 4, 5, 6, 7, 6, 7,
0, 1, 0, 1, 2, 3, 2, 3,
0, 1, 0, 1, 2, 3, 2, 3,
4, 5, 4, 5, 6, 7, 6, 7,
4, 5, 4, 5, 6, 7, 6, 7,
};
static const int g_zScanToY[1 << ( g_maxRtGridSize << 1 )] =
{
0, 0, 1, 1, 0, 0, 1, 1,
2, 2, 3, 3, 2, 2, 3, 3,
0, 0, 1, 1, 0, 0, 1, 1,
2, 2, 3, 3, 2, 2, 3, 3,
4, 4, 5, 5, 4, 4, 5, 5,
6, 6, 7, 7, 6, 5, 7, 7,
4, 4, 5, 5, 4, 4, 5, 5,
6, 6, 7, 7, 6, 5, 7, 7,
};
static const int g_rsScanToZ[1 << ( g_maxRtGridSize << 1 )] =
{
0, 1, 4, 5, 16, 17, 20, 21,
2, 3, 6, 7, 18, 19, 22, 23,
8, 9, 12, 13, 24, 25, 28, 29,
10, 11, 14, 15, 26, 27, 30, 31,
32, 33, 36, 37, 48, 49, 52, 53,
34, 35, 38, 39, 50, 51, 54, 55,
40, 41, 44, 45, 56, 57, 60, 61,
42, 43, 46, 47, 58, 59, 62, 63,
};
Partitioning PartitionerImpl::getMaxTuTiling( const UnitArea &cuArea, const CodingStructure &cs )
{
static_assert( MAX_LOG2_DIFF_CU_TR_SIZE <= g_maxRtGridSize, "Z-scan tables are only provided for MAX_LOG2_DIFF_CU_TR_SIZE for up to 3 (8x8 tiling)!" );
const CompArea area = cuArea.Y().valid() ? cuArea.Y() : cuArea.Cb();
const int maxTrSize = cs.sps->getMaxTrSize() >> ( isLuma( area.compID ) ? 0 : 1 );
const int numTilesH = std::max<int>( 1, area.width / maxTrSize );
const int numTilesV = std::max<int>( 1, area.height / maxTrSize );
const int numTiles = numTilesH * numTilesV;
CHECK( numTiles > MAX_CU_TILING_PARTITIONS, "CU partitioning requires more partitions than available" );
Partitioning ret;
ret.resize( numTiles, cuArea );
for( int i = 0; i < numTiles; i++ )
{
const int rsy = i / numTilesH;
const int rsx = i % numTilesH;
const int x = g_zScanToX[g_rsScanToZ[( rsy << g_maxRtGridSize ) + rsx]];
const int y = g_zScanToY[g_rsScanToZ[( rsy << g_maxRtGridSize ) + rsx]];
UnitArea& tile = ret[i];
for( CompArea &comp : tile.blocks )
{
if( !comp.valid() ) continue;
comp.width /= numTilesH;
comp.height /= numTilesV;
comp.x += comp.width * x;
comp.y += comp.height * y;
}
}
return ret;
}