Skip to content
Snippets Groups Projects
MatrixIntraPrediction.h 5.01 KiB
Newer Older
  • Learn to ignore specific revisions
  • /* The copyright in this software is being made available under the BSD
    * License, included below. This software may be subject to other third party
    * and contributor rights, including patent rights, and no such rights are
    * granted under this license.
    *
    * Copyright (c) 2010-2019, ITU/ISO/IEC
    * All rights reserved.
    *
    * Redistribution and use in source and binary forms, with or without
    * modification, are permitted provided that the following conditions are met:
    *
    *  * Redistributions of source code must retain the above copyright notice,
    *    this list of conditions and the following disclaimer.
    *  * Redistributions in binary form must reproduce the above copyright notice,
    *    this list of conditions and the following disclaimer in the documentation
    *    and/or other materials provided with the distribution.
    *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
    *    be used to endorse or promote products derived from this software without
    *    specific prior written permission.
    *
    * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
    * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
    * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
    * THE POSSIBILITY OF SUCH DAMAGE.
    */
    
    /** \file     MatrixIntraPrediction.h
    \brief    matrix-based intra prediction class (header)
    */
    
    #ifndef __MATRIXINTRAPPREDICTION__
    #define __MATRIXINTRAPPREDICTION__
    
    
    #include "Unit.h"
    
    static const int MIP_MAX_INPUT_SIZE             =  8;
    static const int MIP_MAX_REDUCED_OUTPUT_SAMPLES = 64;
    
    
    namespace Mip
    {
      class PredictorMIP
      {
      public:
        PredictorMIP();
        void             deriveBoundaryData(const CPelBuf& src, const Area& block, const int bitDepth, const AvailableInfo &availInfo);
        void             getPrediction     (int* const result, const int modeIdx, const int bitDepth);
    
      private:
        static_vector<int, MIP_MAX_INPUT_SIZE> m_reducedBoundary;           // downsampled             boundary of a block
        static_vector<int, MIP_MAX_INPUT_SIZE> m_reducedBoundaryTransposed; // downsampled, transposed boundary of a block
        static_vector<int, MIP_MAX_WIDTH>      m_boundaryForUpsamplingTop;  // top  boundary samples for upsampling
        static_vector<int, MIP_MAX_HEIGHT>     m_boundaryForUpsamplingLeft; // left boundary samples for upsampling
    
        Size m_blockSize;
        int  m_numModes;
        Size m_reducedBoundarySize;
        Size m_reducedPredictionSize;
        Size m_boundarySizeForUpsampling;
        unsigned int m_upsmpFactorHor;
        unsigned int m_upsmpFactorVer;
    
        void initPredBlockParams(const Size& block);
    
        static void boundaryDownsampling1D( int* reducedDst, int* fullSrcAndIntermediateDst, const SizeType srcLen, const SizeType dstLen, const bool saveIntermediate, const SizeType intermediateLen );
        static void doDownsampling( int* dst, const int* src, const SizeType srcLen, const SizeType dstLen );
    
        void predictionUpsampling( int* const dst, const int* const src, const bool transpose ) const;
        static void predictionUpsampling1D( int* const dst, const int* const src, const int* const bndry,
                                            const SizeType srcSizeUpsmpDim, const SizeType srcSizeOrthDim,
                                            const SizeType srcStep, const SizeType srcStride,
                                            const SizeType dstStep, const SizeType dstStride,
                                            const unsigned int upsmpFactor );
    
        void getMatrixBias( const short*& matrix, const short*& bias, const int modeIdx ) const;
        void getShifts( int &shiftMatrix, int &shiftBias, const int modeIdx, const int bitDepth ) const;
    
        bool isTransposed( const int modeIdx ) const;
        int  getWeightIdx( const int modeIdx ) const;
    
        void xComputeMatrixTimesRedBndryPlusBias( int*const result, const int* const input,
                                                  const short*matrix, const short*bias,
    
                                                  const bool leaveHorOut, const bool leaveVerOut,
    
                                                  const int shiftMatrix, const int shiftBias,
    
                                                  const bool transpose, const bool needUpsampling );
      };
    }
    
    class MatrixIntraPrediction
    {
    public:
      MatrixIntraPrediction();
    
      Mip::PredictorMIP m_predictorMip;
    
      void prepareInputForPred(const CPelBuf &src, const Area& puArea, const int bitDepth, const AvailableInfo &availInfo);
      void predBlock( const Size &puSize, const int modeIdx, PelBuf &dst, const int bitDepth );
    };
    
    
    #endif //__MATRIXINTRAPPREDICTION__