Skip to content
Snippets Groups Projects
DepQuant.cpp 57 KiB
Newer Older
/* The copyright in this software is being made available under the BSD
 * License, included below. This software may be subject to other third party
 * and contributor rights, including patent rights, and no such rights are
 * granted under this license.
 *
 * Copyright (c) 2010-2018, ITU/ISO/IEC
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
 *    be used to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "DepQuant.h"
#include "TrQuant.h"
#include "CodingStructure.h"
#include "UnitTools.h"

#include <bitset>






namespace DQIntern
{
  /*================================================================================*/
  /*=====                                                                      =====*/
  /*=====   R A T E   E S T I M A T O R                                        =====*/
  /*=====                                                                      =====*/
  /*================================================================================*/

  struct NbInfoSbb
  {
    uint8_t   num;
    uint8_t   inPos[5];
  };
  struct NbInfoOut
  {
    uint16_t  maxDist;
    uint16_t  num;
    uint16_t  outPos[5];
  };
  struct CoeffFracBits
  {
    int32_t   bits[7];
  };


  class Rom
  {
  public:
    Rom() : m_scansInitialized(false) {}
    ~Rom() { xUninitScanArrays(); }
    void              init        ()                                  { xInitScanArrays(); }
    const NbInfoSbb*  getNbInfoSbb( int sId, int hId, int vId ) const { return m_scanId2NbInfoSbbArray[sId][hId][vId]; }
    const NbInfoOut*  getNbInfoOut( int sId, int hId, int vId ) const { return m_scanId2NbInfoOutArray[sId][hId][vId]; }
  private:
    void  xInitScanArrays   ();
    void  xUninitScanArrays ();
  private:
    bool       m_scansInitialized;
    NbInfoSbb* m_scanId2NbInfoSbbArray[ SCAN_NUMBER_OF_TYPES ][ MAX_CU_SIZE/2+1 ][ MAX_CU_SIZE/2+1 ];
    NbInfoOut* m_scanId2NbInfoOutArray[ SCAN_NUMBER_OF_TYPES ][ MAX_CU_SIZE/2+1 ][ MAX_CU_SIZE/2+1 ];
  };

  void Rom::xInitScanArrays()
  {
    if( m_scansInitialized )
    {
      return;
    }
    ::memset( m_scanId2NbInfoSbbArray, 0, sizeof(m_scanId2NbInfoSbbArray) );
    ::memset( m_scanId2NbInfoOutArray, 0, sizeof(m_scanId2NbInfoOutArray) );

    SizeIndexInfoLog2 sizeInfo;
    sizeInfo.init ( MAX_CU_SIZE );
    uint32_t raster2id[ MAX_CU_SIZE * MAX_CU_SIZE ];

    for( uint32_t blockHeightIdx = 0; blockHeightIdx < sizeInfo.numHeights(); blockHeightIdx++ )
    {
      for( uint32_t blockWidthIdx = 0; blockWidthIdx < sizeInfo.numWidths(); blockWidthIdx++ )
      {
        const uint32_t blockWidth   = sizeInfo.sizeFrom( blockWidthIdx  );
        const uint32_t blockHeight  = sizeInfo.sizeFrom( blockHeightIdx );
        const uint32_t totalValues  = blockWidth * blockHeight;
        const uint32_t log2CGWidth  = (blockWidth & 3) + (blockHeight & 3) > 0 ? 1 : 2;
        const uint32_t log2CGHeight = (blockWidth & 3) + (blockHeight & 3) > 0 ? 1 : 2;
        const uint32_t groupWidth   = 1 << log2CGWidth;
        const uint32_t groupHeight  = 1 << log2CGHeight;
        const uint32_t groupSize    = groupWidth * groupHeight;
        if( ((blockWidth>>log2CGWidth)<<log2CGWidth)!=blockWidth || ((blockHeight>>log2CGHeight)<<log2CGHeight)!=blockHeight )
        {
          continue;
        }
        for( uint32_t scanTypeIdx = 0; scanTypeIdx < SCAN_NUMBER_OF_TYPES; scanTypeIdx++ )
        {
          const CoeffScanType scanType  = CoeffScanType(scanTypeIdx);
          const uint32_t*         scanId2RP = g_scanOrder     [SCAN_GROUPED_4x4][scanType][blockWidthIdx][blockHeightIdx];
          const uint32_t*         scanId2X  = g_scanOrderPosXY[SCAN_GROUPED_4x4][scanType][blockWidthIdx][blockHeightIdx][0];
          const uint32_t*         scanId2Y  = g_scanOrderPosXY[SCAN_GROUPED_4x4][scanType][blockWidthIdx][blockHeightIdx][1];
          NbInfoSbb*&         sId2NbSbb = m_scanId2NbInfoSbbArray           [scanType][blockWidthIdx][blockHeightIdx];
          NbInfoOut*&         sId2NbOut = m_scanId2NbInfoOutArray           [scanType][blockWidthIdx][blockHeightIdx];

          sId2NbSbb = new NbInfoSbb[ totalValues ];
          sId2NbOut = new NbInfoOut[ totalValues ];

          for( uint32_t scanId = 0; scanId < totalValues; scanId++ )
          {
            raster2id[ scanId2RP[ scanId ] ] = scanId;
          }

          for( unsigned scanId = 0; scanId < totalValues; scanId++ )
          {
            const int posX = scanId2X [ scanId ];
            const int posY = scanId2Y [ scanId ];
            const int rpos = scanId2RP[ scanId ];
            {
              //===== inside subband neighbours =====
              NbInfoSbb&     nbSbb  = sId2NbSbb[ scanId ];
              const int      begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
              int            cpos[5];
              cpos[0] = ( posX < blockWidth -1                         ? ( raster2id[rpos+1           ] - begSbb < groupSize ? raster2id[rpos+1           ] - begSbb : 0 ) : 0 );
              cpos[1] = ( posX < blockWidth -2                         ? ( raster2id[rpos+2           ] - begSbb < groupSize ? raster2id[rpos+2           ] - begSbb : 0 ) : 0 );
              cpos[2] = ( posX < blockWidth -1 && posY < blockHeight-1 ? ( raster2id[rpos+1+blockWidth] - begSbb < groupSize ? raster2id[rpos+1+blockWidth] - begSbb : 0 ) : 0 );
              cpos[3] = ( posY < blockHeight-1                         ? ( raster2id[rpos+  blockWidth] - begSbb < groupSize ? raster2id[rpos+  blockWidth] - begSbb : 0 ) : 0 );
              cpos[4] = ( posY < blockHeight-2                         ? ( raster2id[rpos+2*blockWidth] - begSbb < groupSize ? raster2id[rpos+2*blockWidth] - begSbb : 0 ) : 0 );
              for( nbSbb.num = 0; true; )
              {
                int nk = -1;
                for( int k = 0; k < 5; k++ )
                {
                  if( cpos[k] != 0 && ( nk < 0 || cpos[k] < cpos[nk] ) )
                  {
                    nk = k;
                  }
                }
                if( nk < 0 )
                {
                  break;
                }
                nbSbb.inPos[ nbSbb.num++ ] = uint8_t( cpos[nk] );
                cpos[nk] = 0;
              }
              for( int k = nbSbb.num; k < 5; k++ )
              {
                nbSbb.inPos[k] = 0;
              }
            }
            {
              //===== outside subband neighbours =====
              NbInfoOut&     nbOut  = sId2NbOut[ scanId ];
              const int      begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
              int            cpos[5];
              cpos[0] = ( posX < blockWidth -1                         ? ( raster2id[rpos+1           ] - begSbb >= groupSize ? raster2id[rpos+1           ] : 0 ) : 0 );
              cpos[1] = ( posX < blockWidth -2                         ? ( raster2id[rpos+2           ] - begSbb >= groupSize ? raster2id[rpos+2           ] : 0 ) : 0 );
              cpos[2] = ( posX < blockWidth -1 && posY < blockHeight-1 ? ( raster2id[rpos+1+blockWidth] - begSbb >= groupSize ? raster2id[rpos+1+blockWidth] : 0 ) : 0 );
              cpos[3] = ( posY < blockHeight-1                         ? ( raster2id[rpos+  blockWidth] - begSbb >= groupSize ? raster2id[rpos+  blockWidth] : 0 ) : 0 );
              cpos[4] = ( posY < blockHeight-2                         ? ( raster2id[rpos+2*blockWidth] - begSbb >= groupSize ? raster2id[rpos+2*blockWidth] : 0 ) : 0 );
              for( nbOut.num = 0; true; )
              {
                int nk = -1;
                for( int k = 0; k < 5; k++ )
                {
                  if( cpos[k] != 0 && ( nk < 0 || cpos[k] < cpos[nk] ) )
                  {
                    nk = k;
                  }
                }
                if( nk < 0 )
                {
                  break;
                }
                nbOut.outPos[ nbOut.num++ ] = uint16_t( cpos[nk] );
                cpos[nk] = 0;
              }
              for( int k = nbOut.num; k < 5; k++ )
              {
                nbOut.outPos[k] = 0;
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
              }
              nbOut.maxDist = ( scanId == 0 ? 0 : sId2NbOut[scanId-1].maxDist );
              for( int k = 0; k < nbOut.num; k++ )
              {
                if( nbOut.outPos[k] > nbOut.maxDist )
                {
                  nbOut.maxDist = nbOut.outPos[k];
                }
              }
            }
          }

          // make it relative
          for( unsigned scanId = 0; scanId < totalValues; scanId++ )
          {
            NbInfoOut& nbOut  = sId2NbOut[scanId];
            const int  begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
            for( int k = 0; k < nbOut.num; k++ )
            {
              nbOut.outPos[k] -= begSbb;
            }
            nbOut.maxDist -= scanId;
          }
        }
      }
    }
    m_scansInitialized = true;
  }

  void Rom::xUninitScanArrays()
  {
    if( !m_scansInitialized )
    {
      return;
    }
    for( uint32_t blockHeightIdx = 0; blockHeightIdx <= MAX_CU_SIZE/2; blockHeightIdx++ )
    {
      for( uint32_t blockWidthIdx = 0; blockWidthIdx <= MAX_CU_SIZE/2; blockWidthIdx++ )
      {
        for( uint32_t scanTypeIdx = 0; scanTypeIdx < SCAN_NUMBER_OF_TYPES; scanTypeIdx++ )
        {
          NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[scanTypeIdx][blockWidthIdx][blockHeightIdx];
          NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[scanTypeIdx][blockWidthIdx][blockHeightIdx];
          if( sId2NbSbb )
          {
            delete [] sId2NbSbb;
          }
          if( sId2NbOut )
          {
            delete [] sId2NbOut;
          }
        }
      }
    }
    m_scansInitialized = false;
  }


  static Rom g_Rom;


  class RateEstimator
  {
  public:
    RateEstimator () {}
    ~RateEstimator() {}
    void initBlock( const TransformUnit& tu, const ComponentID     compID );
    void initCtx  ( const TransformUnit& tu, const FracBitsAccess& fracBitsAccess );

    inline bool               luma() const { return m_compID == COMPONENT_Y; }
    inline int32_t            widthInSbb() const { return m_widthInSbb; }
    inline int32_t            heightInSbb() const { return m_heightInSbb; }
    inline int32_t            numCoeff() const { return m_numCoeff; }
    inline int32_t            numSbb() const { return m_numSbb; }
    inline int32_t            sbbSize() const { return m_sbbSize; }
    inline int32_t            sbbPos(unsigned scanIdx) const { return m_scanSbbId2SbbPos[scanIdx >> m_log2SbbSize]; }
    inline int32_t            rasterPos(unsigned scanIdx) const { return m_scanId2BlkPos[scanIdx]; }
    inline int32_t            posX(unsigned scanIdx) const { return m_scanId2PosX[scanIdx]; }
    inline int32_t            posY(unsigned scanIdx) const { return m_scanId2PosY[scanIdx]; }
    inline const NbInfoSbb &  nbInfoSbb(unsigned scanIdx) const { return m_scanId2NbInfoSbb[scanIdx]; }
    inline const NbInfoOut *  nbInfoOut() const { return m_scanId2NbInfoOut; }
    inline const BinFracBits *sigSbbFracBits() const { return m_sigSbbFracBits; }
    inline const BinFracBits *sigFlagBits(unsigned stateId) const
    {
      return m_sigFracBits[std::max(((int) stateId) - 1, 0)];
    }
    inline const CoeffFracBits *gtxFracBits(unsigned stateId) const { return m_gtxFracBits; }
    inline int32_t              lastOffset(unsigned scanIdx) const
    {
      return m_lastBitsX[m_scanId2PosX[scanIdx]] + m_lastBitsY[m_scanId2PosY[scanIdx]];
    }

  private:
    void  xSetLastCoeffOffset ( const FracBitsAccess& fracBitsAccess, const TransformUnit& tu );
    void  xSetSigSbbFracBits  ( const FracBitsAccess& fracBitsAccess );
    void  xSetSigFlagBits     ( const FracBitsAccess& fracBitsAccess );
    void  xSetGtxFlagBits     ( const FracBitsAccess& fracBitsAccess );

  private:
    static const unsigned sm_numCtxSetsSig    = 3;
    static const unsigned sm_numCtxSetsGtx    = 2;
    static const unsigned sm_maxNumSigSbbCtx  = 2;
    static const unsigned sm_maxNumSigCtx     = 18;
    static const unsigned sm_maxNumGtxCtx     = 21;

  private:
    ComponentID       m_compID;
    ChannelType       m_chType;
    unsigned          m_width;
    unsigned          m_height;
    unsigned          m_numCoeff;
    unsigned          m_numSbb;
    unsigned          m_log2SbbWidth;
    unsigned          m_log2SbbHeight;
    unsigned          m_log2SbbSize;
    unsigned          m_sbbSize;
    unsigned          m_sbbMask;
    unsigned          m_widthInSbb;
    unsigned          m_heightInSbb;
    CoeffScanType     m_scanType;
    const unsigned*   m_scanSbbId2SbbPos;
    const unsigned*   m_scanId2BlkPos;
    const unsigned*   m_scanId2PosX;
    const unsigned*   m_scanId2PosY;
    const NbInfoSbb*  m_scanId2NbInfoSbb;
    const NbInfoOut*  m_scanId2NbInfoOut;
    int32_t           m_lastBitsX      [ MAX_TU_SIZE ];
    int32_t           m_lastBitsY      [ MAX_TU_SIZE ];
    BinFracBits       m_sigSbbFracBits [ sm_maxNumSigSbbCtx ];
    BinFracBits       m_sigFracBits    [ sm_numCtxSetsSig   ][ sm_maxNumSigCtx ];
    CoeffFracBits     m_gtxFracBits                          [ sm_maxNumGtxCtx ];
  };

  void RateEstimator::initBlock( const TransformUnit& tu, const ComponentID compID )
  {
    CHECKD( tu.cs->sps->getSpsRangeExtension().getExtendedPrecisionProcessingFlag(), "ext precision is not supported" );

    const CompArea& area  = tu.blocks[ compID ];
    m_compID              = compID;
    m_chType              = toChannelType( m_compID );
    m_width               = area.width;
    m_height              = area.height;
    m_numCoeff            = m_width * m_height;
    const bool      no4x4 = ( ( m_width & 3 ) != 0 || ( m_height & 3 ) != 0 );
    m_log2SbbWidth        = ( no4x4 ? 1 : 2 );
    m_log2SbbHeight       = ( no4x4 ? 1 : 2 );
    m_log2SbbSize         = m_log2SbbWidth + m_log2SbbHeight;
    m_sbbSize             = ( 1 << m_log2SbbSize );
    m_sbbMask             = m_sbbSize - 1;
    m_widthInSbb          = m_width  >> m_log2SbbWidth;
    m_heightInSbb         = m_height >> m_log2SbbHeight;
    m_numSbb              = m_widthInSbb * m_heightInSbb;
#if HEVC_USE_MDCS
    m_scanType            = CoeffScanType( TU::getCoefScanIdx( tu, m_compID ) );
#else
    m_scanType            = SCAN_DIAG;
#endif
    SizeType        hsbb  = gp_sizeIdxInfo->idxFrom( m_widthInSbb  );
    SizeType        vsbb  = gp_sizeIdxInfo->idxFrom( m_heightInSbb );
    SizeType        hsId  = gp_sizeIdxInfo->idxFrom( m_width  );
    SizeType        vsId  = gp_sizeIdxInfo->idxFrom( m_height );
    m_scanSbbId2SbbPos    = g_scanOrder     [ SCAN_UNGROUPED   ][ m_scanType ][ hsbb ][ vsbb ];
    m_scanId2BlkPos       = g_scanOrder     [ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ];
    m_scanId2PosX         = g_scanOrderPosXY[ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 0 ];
    m_scanId2PosY         = g_scanOrderPosXY[ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 1 ];
    m_scanId2NbInfoSbb    = g_Rom.getNbInfoSbb( m_scanType, hsId, vsId );
    m_scanId2NbInfoOut    = g_Rom.getNbInfoOut( m_scanType, hsId, vsId );
  }

  void RateEstimator::initCtx( const TransformUnit& tu, const FracBitsAccess& fracBitsAccess )
  {
    xSetSigSbbFracBits  ( fracBitsAccess );
    xSetSigFlagBits     ( fracBitsAccess );
    xSetGtxFlagBits     ( fracBitsAccess );
    xSetLastCoeffOffset ( fracBitsAccess, tu );
  }

  void RateEstimator::xSetLastCoeffOffset( const FracBitsAccess& fracBitsAccess, const TransformUnit& tu )
  {
    int32_t cbfDeltaBits = 0;
    if( m_compID == COMPONENT_Y && !CU::isIntra(*tu.cu) && !tu.depth )
    {
      const BinFracBits bits  = fracBitsAccess.getFracBitsArray( Ctx::QtRootCbf() );
      cbfDeltaBits            = int32_t( bits.intBits[1] ) - int32_t( bits.intBits[0] );
    }
    else
    {
#if ENABLE_BMS
      BinFracBits bits = fracBitsAccess.getFracBitsArray( Ctx::QtCbf[m_compID]( DeriveCtx::CtxQtCbf( m_compID, tu.depth, tu.cbf[COMPONENT_Cb] ) ) );
#else
      BinFracBits bits = fracBitsAccess.getFracBitsArray( Ctx::QtCbf[m_compID]( DeriveCtx::CtxQtCbf( m_compID, tu.cbf[COMPONENT_Cb] ) ) );
#endif
      cbfDeltaBits = int32_t( bits.intBits[1] ) - int32_t( bits.intBits[0] );
    }

    static const unsigned prefixCtx[] = { 0, 0, 0, 3, 6, 10, 15, 21 };
    uint32_t              ctxBits  [ LAST_SIGNIFICANT_GROUPS ];
    for( unsigned xy = 0; xy < 2; xy++ )
    {
      int32_t             bitOffset   = ( xy ? cbfDeltaBits : 0 );
      int32_t*            lastBits    = ( xy ? m_lastBitsY : m_lastBitsX );
      const unsigned      size        = ( xy ? m_height : m_width );
      const unsigned      log2Size    = g_aucNextLog2[ size ];
#if HEVC_USE_MDCS
      const bool          useYCtx     = ( m_scanType == SCAN_VER ? ( xy == 0 ) : ( xy != 0 ) );
#else
      const bool          useYCtx     = ( xy != 0 );
#endif
      const CtxSet&       ctxSetLast  = ( useYCtx ? Ctx::LastY : Ctx::LastX )[ m_chType ];
      const unsigned      lastShift   = ( m_compID == COMPONENT_Y ? (log2Size+1)>>2 : ( tu.cs->pcv->rectCUs ? Clip3<unsigned>(0,2,size>>3) : log2Size-2 ) );
      const unsigned      lastOffset  = ( m_compID == COMPONENT_Y ? ( tu.cs->pcv->rectCUs ? prefixCtx[log2Size] : 3*(log2Size-2)+((log2Size-1)>>2) ) : 0 );
      uint32_t            sumFBits    = 0;
      unsigned            maxCtxId    = g_uiGroupIdx[ size - 1 ];
      for( unsigned ctxId = 0; ctxId < maxCtxId; ctxId++ )
      {
        const BinFracBits bits  = fracBitsAccess.getFracBitsArray( ctxSetLast( lastOffset + ( ctxId >> lastShift ) ) );
        ctxBits[ ctxId ]        = sumFBits + bits.intBits[0] + ( ctxId>3 ? ((ctxId-2)>>1)<<SCALE_BITS : 0 ) + bitOffset;
        sumFBits               +=            bits.intBits[1];
      }
      ctxBits  [ maxCtxId ]     = sumFBits + ( maxCtxId>3 ? ((maxCtxId-2)>>1)<<SCALE_BITS : 0 ) + bitOffset;
      for( unsigned pos = 0; pos < size; pos++ )
      {
        lastBits[ pos ]         = ctxBits[ g_uiGroupIdx[ pos ] ];
      }
    }
  }

  void RateEstimator::xSetSigSbbFracBits( const FracBitsAccess& fracBitsAccess )
  {
    const CtxSet& ctxSet = Ctx::SigCoeffGroup[ m_chType ];
    for( unsigned ctxId = 0; ctxId < sm_maxNumSigSbbCtx; ctxId++ )
    {
      m_sigSbbFracBits[ ctxId ] = fracBitsAccess.getFracBitsArray( ctxSet( ctxId ) );
    }
  }

  void RateEstimator::xSetSigFlagBits( const FracBitsAccess& fracBitsAccess )
  {
    for( unsigned ctxSetId = 0; ctxSetId < sm_numCtxSetsSig; ctxSetId++ )
    {
      BinFracBits*    bits    = m_sigFracBits [ ctxSetId ];
      const CtxSet&   ctxSet  = Ctx::SigFlag  [ m_chType + 2*ctxSetId ];
      const unsigned  numCtx  = ( m_compID == COMPONENT_Y ? 18 : 12 );
      for( unsigned ctxId = 0; ctxId < numCtx; ctxId++ )
      {
        bits[ ctxId ] = fracBitsAccess.getFracBitsArray( ctxSet( ctxId ) );
      }
    }
  }

  void RateEstimator::xSetGtxFlagBits( const FracBitsAccess& fracBitsAccess )
  {
    const CtxSet&   ctxSetPar   = Ctx::ParFlag [     m_chType ];
    const CtxSet&   ctxSetGt1   = Ctx::GtxFlag [ 2 + m_chType ];
    const CtxSet&   ctxSetGt2   = Ctx::GtxFlag [     m_chType ];
    const unsigned  numCtx      = ( m_compID == COMPONENT_Y ? 21 : 11 );
    for( unsigned ctxId = 0; ctxId < numCtx; ctxId++ )
    {
      BinFracBits     fbPar = fracBitsAccess.getFracBitsArray( ctxSetPar( ctxId ) );
      BinFracBits     fbGt1 = fracBitsAccess.getFracBitsArray( ctxSetGt1( ctxId ) );
      BinFracBits     fbGt2 = fracBitsAccess.getFracBitsArray( ctxSetGt2( ctxId ) );
      CoeffFracBits&  cb    = m_gtxFracBits[ ctxId ];
      int32_t         par0  = (1<<SCALE_BITS) + int32_t(fbPar.intBits[0]);
      int32_t         par1  = (1<<SCALE_BITS) + int32_t(fbPar.intBits[1]);
      cb.bits[0]  = 0;
      cb.bits[1]  = par0 + fbGt1.intBits[0];
      cb.bits[2]  = par1 + fbGt1.intBits[0];
      cb.bits[3]  = par0 + fbGt1.intBits[1] + fbGt2.intBits[0];
      cb.bits[4]  = par1 + fbGt1.intBits[1] + fbGt2.intBits[0];
      cb.bits[5]  = par0 + fbGt1.intBits[1] + fbGt2.intBits[1];
      cb.bits[6]  = par1 + fbGt1.intBits[1] + fbGt2.intBits[1];
    }
  }





  /*================================================================================*/
  /*=====                                                                      =====*/
  /*=====   D A T A   S T R U C T U R E S                                      =====*/
  /*=====                                                                      =====*/
  /*================================================================================*/

  enum ScanPosType { SCAN_ISCSBB = 0, SCAN_SOCSBB = 1, SCAN_EOCSBB = 2 };

  struct ScanInfo
  {
    const int     sbbSize;
    const int     numSbb;
    int           scanIdx;
    int           rasterPos;
    int           lastOffset;
    unsigned      sigCtxOffsetNext;
    unsigned      gtxCtxOffsetNext;
    int           insidePos;
    int           nextInsidePos;
    NbInfoSbb     nextNbInfoSbb;
    bool          sosbb;
    bool          eosbb;
    bool          socsbb;
    bool          eocsbb;
    int           sbbPos;
    int           nextSbbRight;
    int           nextSbbBelow;
  protected:
    ScanInfo( int _sbbSize, int _numSbb ) : sbbSize( _sbbSize ), numSbb( _numSbb ) {}
  };

  class ScanData : public ScanInfo
  {
  public:
    ScanData( const RateEstimator& rateEst, int firstPos )
      : ScanInfo          ( rateEst.sbbSize(), rateEst.numSbb() )
      , m_rateEst         ( rateEst )
      , m_luma            ( m_rateEst.luma() )
      , m_sbbMask         ( sbbSize - 1 )
      , m_widthInSbb      ( m_rateEst.widthInSbb() )
      , m_heightInSbb     ( m_rateEst.heightInSbb() )
      , m_numCoeffMinus1  ( m_rateEst.numCoeff() - 1 )
      , m_numCoeffMinusSbb( m_rateEst.numCoeff() - sbbSize )
    {
      xSet( firstPos );
    }
    inline bool    valid() const { return scanIdx >= 0; }
    void           next  ()               { xSet( scanIdx-1 ); }
    void           set   ( int id )       { xSet(id); }

  private:
    inline void xSet(int _scanIdx)
    {
      scanIdx = _scanIdx;
      if( scanIdx >= 0 )
      {
        rasterPos               = m_rateEst.rasterPos   ( scanIdx );
        sbbPos                  = m_rateEst.sbbPos      ( scanIdx );
        lastOffset              = m_rateEst.lastOffset  ( scanIdx );
        insidePos               = scanIdx & m_sbbMask;
        sosbb                   = ( insidePos == m_sbbMask );
        eosbb                   = ( insidePos == 0 );
        socsbb                  = ( sosbb && scanIdx > sbbSize && scanIdx < m_numCoeffMinus1   );
        eocsbb                  = ( eosbb && scanIdx > 0       && scanIdx < m_numCoeffMinusSbb );
        if( scanIdx )
        {
          const int nextScanIdx = scanIdx - 1;
          const int diag        = m_rateEst.posX( nextScanIdx ) + m_rateEst.posY( nextScanIdx );
          if( m_luma )
          {
            sigCtxOffsetNext    = ( diag < 2 ? 12 : diag < 5 ?  6 : 0 );
            gtxCtxOffsetNext    = ( diag < 1 ? 16 : diag < 3 ? 11 : diag < 10 ? 6 : 1 );
          }
          else
          {
            sigCtxOffsetNext    = ( diag < 2 ? 6 : 0 );
            gtxCtxOffsetNext    = ( diag < 1 ? 6 : 1 );
          }
          nextInsidePos         = nextScanIdx & m_sbbMask;
          nextNbInfoSbb         = m_rateEst.nbInfoSbb( nextScanIdx );
          if( eosbb )
          {
            const int nextSbbPos  = m_rateEst.sbbPos( nextScanIdx );
            const int nextSbbPosY = nextSbbPos               / m_widthInSbb;
            const int nextSbbPosX = nextSbbPos - nextSbbPosY * m_widthInSbb;
            nextSbbRight          = ( nextSbbPosX < m_widthInSbb  - 1 ? nextSbbPos + 1            : 0 );
            nextSbbBelow          = ( nextSbbPosY < m_heightInSbb - 1 ? nextSbbPos + m_widthInSbb : 0 );
          }
        }
      }
    }
  private:
    const RateEstimator& m_rateEst;
    const bool           m_luma;
    const int            m_sbbMask;
    const int            m_widthInSbb;
    const int            m_heightInSbb;
    const int            m_numCoeffMinus1;
    const int            m_numCoeffMinusSbb;
  };


  struct PQData
  {
    TCoeff  absLevel;
    int64_t deltaDist;
  };


  struct Decision
  {
    int64_t rdCost;
    TCoeff  absLevel;
    int     prevId;
  };




  /*================================================================================*/
  /*=====                                                                      =====*/
  /*=====   P R E - Q U A N T I Z E R                                          =====*/
  /*=====                                                                      =====*/
  /*================================================================================*/

  class Quantizer
  {
  public:
    Quantizer() {}

    void  dequantBlock  ( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, CoeffBuf& recCoeff   ) const;
    void  initQuantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, const double lambda  );

    inline void   preQuantCoeff(const TCoeff absCoeff, PQData *pqData) const;
    inline TCoeff getLastThreshold() const { return m_thresLast; }
    inline TCoeff getSSbbThreshold() const { return m_thresSSbb; }

  private:
    // quantization
    int               m_QShift;
    int64_t           m_QAdd;
    int64_t           m_QScale;
    TCoeff            m_maxQIdx;
    TCoeff            m_thresLast;
    TCoeff            m_thresSSbb;
    // distortion normalization
    int               m_DistShift;
    int64_t           m_DistAdd;
    int64_t           m_DistStepAdd;
    int64_t           m_DistOrgFact;
  };

  inline int ceil_log2(uint64_t x)
  {
    static const uint64_t t[6] = { 0xFFFFFFFF00000000ull, 0x00000000FFFF0000ull, 0x000000000000FF00ull, 0x00000000000000F0ull, 0x000000000000000Cull, 0x0000000000000002ull };
    int y = (((x & (x - 1)) == 0) ? 0 : 1);
    int j = 32;
    for( int i = 0; i < 6; i++)
    {
      int k = (((x & t[i]) == 0) ? 0 : j);
      y += k;
      x >>= k;
      j >>= 1;
    }
    return y;
  }

  void Quantizer::initQuantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, const double lambda )
  {
#if HEVC_USE_SCALING_LISTS
    CHECK ( tu.cs->sps->getScalingListFlag(), "Scaling lists not supported" );
#endif
    CHECKD( lambda <= 0.0, "Lambda must be greater than 0" );

    const int         qpDQ                  = cQP.Qp + 1;
    const int         qpPer                 = qpDQ / 6;
    const int         qpRem                 = qpDQ - 6 * qpPer;
    const SPS&        sps                   = *tu.cs->sps;
    const CompArea&   area                  = tu.blocks[ compID ];
    const ChannelType chType                = toChannelType( compID );
    const int         channelBitDepth       = sps.getBitDepth( chType );
    const int         maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange( chType );
    const int         nomTransformShift     = getTransformShift( channelBitDepth, area.size(), maxLog2TrDynamicRange );
    const bool        clipTransformShift    = ( tu.transformSkip[ compID ] && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );
    const int         transformShift        = ( clipTransformShift ? std::max<int>( 0, nomTransformShift ) : nomTransformShift );

    // quant parameters
    m_QShift                    = QUANT_SHIFT  - 1 + qpPer + transformShift;
    m_QAdd                      = -( ( 3 << m_QShift ) >> 1 );
#if HM_QTBT_AS_IN_JEM_QUANT
    Intermediate_Int  invShift  = IQUANT_SHIFT + 1 - qpPer - transformShift + ( TU::needsBlockSizeTrafoScale( area ) ? ADJ_DEQUANT_SHIFT : 0 );
    m_QScale                    = ( TU::needsSqrt2Scale( area ) ? ( g_quantScales[ qpRem ] * 181 ) >> 7 : g_quantScales[ qpRem ] );
#else
    Intermediate_Int  invShift  = IQUANT_SHIFT + 1 - qpPer - transformShift;
    m_QScale                    = g_quantScales   [ qpRem ];
#endif
    const unsigned    qIdxBD    = std::min<unsigned>( maxLog2TrDynamicRange + 1, 8*sizeof(Intermediate_Int) + invShift - IQUANT_SHIFT - 1 );
    m_maxQIdx                   = ( 1 << (qIdxBD-1) ) - 4;
    m_thresLast                 = TCoeff( ( int64_t(3) << m_QShift ) / ( 4 * m_QScale ) );
    m_thresSSbb                 = TCoeff( ( int64_t(3) << m_QShift ) / ( 4 * m_QScale ) );

    // distortion calculation parameters
    const int64_t qScale        = g_quantScales[ qpRem ];
#if HM_QTBT_AS_IN_JEM_QUANT
    const int nomDShift =
      SCALE_BITS - 2 * (nomTransformShift + DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth)) + m_QShift;
#else
    const int nomDShift = SCALE_BITS - 2 * (nomTransformShift + DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth))
                          + m_QShift + (TU::needsQP3Offset(tu, compID) ? 1 : 0);
#endif
    const double  qScale2       = double( qScale * qScale );
    const double  nomDistFactor = ( nomDShift < 0 ? 1.0/(double(int64_t(1)<<(-nomDShift))*qScale2*lambda) : double(int64_t(1)<<nomDShift)/(qScale2*lambda) );
    const int64_t pow2dfShift   = (int64_t)( nomDistFactor * qScale2 ) + 1;
    const int     dfShift       = ceil_log2( pow2dfShift );
    m_DistShift                 = 62 + m_QShift - 2*maxLog2TrDynamicRange - dfShift;
    m_DistAdd                   = (int64_t(1) << m_DistShift) >> 1;
    m_DistStepAdd               = (int64_t)( nomDistFactor * double(int64_t(1)<<(m_DistShift+m_QShift)) + .5 );
    m_DistOrgFact               = (int64_t)( nomDistFactor * double(int64_t(1)<<(m_DistShift+1       )) + .5 );
  }

  void Quantizer::dequantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, CoeffBuf& recCoeff ) const
  {
#if HEVC_USE_SCALING_LISTS
    CHECK ( tu.cs->sps->getScalingListFlag(), "Scaling lists not supported" );
#endif

    //----- set basic parameters -----
    const CompArea&     area      = tu.blocks[ compID ];
    const int           numCoeff  = area.area();
    const SizeType      hsId      = gp_sizeIdxInfo->idxFrom( area.width  );
    const SizeType      vsId      = gp_sizeIdxInfo->idxFrom( area.height );
#if HEVC_USE_MDCS
    const CoeffScanType scanType  = CoeffScanType( TU::getCoefScanIdx( tu, compID ) );
#else
    const CoeffScanType scanType  = SCAN_DIAG;
#endif
    const unsigned*     scan      = g_scanOrder[ SCAN_GROUPED_4x4 ][ scanType ][ hsId ][ vsId ];
    const TCoeff*       qCoeff    = tu.getCoeffs( compID ).buf;
          TCoeff*       tCoeff    = recCoeff.buf;

    //----- reset coefficients and get last scan index -----
    ::memset( tCoeff, 0, numCoeff * sizeof(TCoeff) );
    int lastScanIdx = -1;
    for( int scanIdx = numCoeff - 1; scanIdx >= 0; scanIdx-- )
    {
      if( qCoeff[ scan[ scanIdx ] ] )
      {
        lastScanIdx = scanIdx;
        break;
      }
    }
    if( lastScanIdx < 0 )
    {
      return;
    }

    //----- set dequant parameters -----
    const int         qpDQ                  = cQP.Qp + 1;
    const int         qpPer                 = qpDQ / 6;
    const int         qpRem                 = qpDQ - 6 * qpPer;
    const SPS&        sps                   = *tu.cs->sps;
    const ChannelType chType                = toChannelType( compID );
    const int         channelBitDepth       = sps.getBitDepth( chType );
    const int         maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange( chType );
    const TCoeff      minTCoeff             = -( 1 << maxLog2TrDynamicRange );
    const TCoeff      maxTCoeff             =  ( 1 << maxLog2TrDynamicRange ) - 1;
    const int         nomTransformShift     = getTransformShift( channelBitDepth, area.size(), maxLog2TrDynamicRange );
    const bool        clipTransformShift    = ( tu.transformSkip[ compID ] && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );
    const int         transformShift        = ( clipTransformShift ? std::max<int>( 0, nomTransformShift ) : nomTransformShift );
#if HM_QTBT_AS_IN_JEM_QUANT
    Intermediate_Int  shift                 = IQUANT_SHIFT + 1 - qpPer - transformShift + ( TU::needsBlockSizeTrafoScale( area ) ? ADJ_DEQUANT_SHIFT : 0 );
    Intermediate_Int  invQScale             = g_invQuantScales[ qpRem ] * ( TU::needsSqrt2Scale( area ) ? 181 : 1 );
#else
    Intermediate_Int  shift                 = IQUANT_SHIFT + 1 - qpPer - transformShift;
    Intermediate_Int  invQScale             = g_invQuantScales[ qpRem ];
#endif
    if( shift < 0 )
    {
      invQScale <<= -shift;
      shift       = 0;
    }
    Intermediate_Int  add       = ( 1 << shift ) >> 1;

    //----- dequant coefficients -----
    for( int state = 0, scanIdx = lastScanIdx; scanIdx >= 0; scanIdx-- )
    {
      const unsigned  rasterPos = scan  [ scanIdx   ];
      const TCoeff&   level     = qCoeff[ rasterPos ];
      if( level )
      {
        Intermediate_Int  qIdx      = ( level << 1 ) + ( level > 0 ? -(state>>1) : (state>>1) );
        Intermediate_Int  nomTCoeff = ( qIdx * invQScale + add ) >> shift;
        tCoeff[ rasterPos ]         = (TCoeff)Clip3<Intermediate_Int>( minTCoeff, maxTCoeff, nomTCoeff );
      }
      state = ( 32040 >> ((state<<2)+((level&1)<<1)) ) & 3;   // the 16-bit value "32040" represent the state transition table
    }
  }

  inline void Quantizer::preQuantCoeff(const TCoeff absCoeff, PQData *pqData) const
  {
    int64_t scaledOrg = int64_t( absCoeff ) * m_QScale;
    TCoeff  qIdx      = std::max<TCoeff>( 1, std::min<TCoeff>( m_maxQIdx, TCoeff( ( scaledOrg + m_QAdd ) >> m_QShift ) ) );
    int64_t scaledAdd = qIdx * m_DistStepAdd - scaledOrg * m_DistOrgFact;
    PQData& pq_a      = pqData[ qIdx & 3 ];
    pq_a.deltaDist    = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
    pq_a.absLevel     = ( ++qIdx ) >> 1;
    scaledAdd        += m_DistStepAdd;
    PQData& pq_b      = pqData[ qIdx & 3 ];
    pq_b.deltaDist    = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
    pq_b.absLevel     = ( ++qIdx ) >> 1;
    scaledAdd        += m_DistStepAdd;
    PQData& pq_c      = pqData[ qIdx & 3 ];
    pq_c.deltaDist    = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
    pq_c.absLevel     = ( ++qIdx ) >> 1;
    scaledAdd        += m_DistStepAdd;
    PQData& pq_d      = pqData[ qIdx & 3 ];
    pq_d.deltaDist    = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
    pq_d.absLevel     = ( ++qIdx ) >> 1;
  }







  /*================================================================================*/
  /*=====                                                                      =====*/
  /*=====   T C Q   S T A T E                                                  =====*/
  /*=====                                                                      =====*/
  /*================================================================================*/

  class State;

  struct SbbCtx
  {
    uint8_t*  sbbFlags;
    uint8_t*  levels;
  };

  class CommonCtx
  {
  public:
    CommonCtx() : m_currSbbCtx( m_allSbbCtx ), m_prevSbbCtx( m_currSbbCtx + 4 ) {}

    inline void swap() { std::swap(m_currSbbCtx, m_prevSbbCtx); }

    inline void reset(const RateEstimator &rateEst)
    {
      m_nbInfo = rateEst.nbInfoOut();
      ::memcpy( m_sbbFlagBits, rateEst.sigSbbFracBits(), 2*sizeof(BinFracBits) );
      const int numSbb    = rateEst.numSbb();
      const int chunkSize = numSbb + rateEst.numCoeff();
      uint8_t*  nextMem   = m_memory;
      for( int k = 0; k < 8; k++, nextMem += chunkSize )
      {
        m_allSbbCtx[k].sbbFlags = nextMem;
        m_allSbbCtx[k].levels   = nextMem + numSbb;
      }
    }

    inline void update(const ScanInfo &scanInfo, const State *prevState, State &currState);

  private:
    const NbInfoOut*            m_nbInfo;
    BinFracBits                 m_sbbFlagBits[2];
    SbbCtx                      m_allSbbCtx  [8];
    SbbCtx*                     m_currSbbCtx;
    SbbCtx*                     m_prevSbbCtx;
    uint8_t                     m_memory[ 8 * ( MAX_TU_SIZE * MAX_TU_SIZE + MLS_GRP_NUM ) ];
  };


  class State
  {
    friend class CommonCtx;
  public:
    State( const RateEstimator& rateEst, CommonCtx& commonCtx, const int stateId );

    template<uint8_t numIPos>
    inline void updateState(const ScanInfo &scanInfo, const State *prevStates, const Decision &decision);
    inline void updateStateEOS(const ScanInfo &scanInfo, const State *prevStates, const State *skipStates,
                               const Decision &decision);

    inline void init()
    {
      m_rdCost        = std::numeric_limits<int64_t>::max()>>1;
      m_numSigSbb     = 0;
      m_refSbbCtxId   = -1;
      m_sigFracBits   = m_sigFracBitsArray[ 0 ];
      m_coeffFracBits = m_gtxFracBitsArray[ 0 ];
      m_goRicePar     = 0;
    }

    template<ScanPosType spt> inline void checkRdCostZero(Decision &decision) const
    {
      int64_t rdCost = m_rdCost;
      if( spt == SCAN_ISCSBB )
      {
        rdCost += m_sigFracBits.intBits[0];
      }
      else if( spt == SCAN_SOCSBB )
      {
        rdCost += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[0];
      }
      else if( m_numSigSbb )
      {
        rdCost += m_sigFracBits.intBits[0];
      }
      else
      {
        return;
      }
      if( rdCost < decision.rdCost )
      {
        decision.rdCost   = rdCost;
        decision.absLevel = 0;
        decision.prevId   = m_stateId;
      }
    }

    inline int32_t getLevelBits(const unsigned level) const
    {
      if( level < 5 )
      {
        return m_coeffFracBits.bits[level];
      }
      unsigned  value   = ( level - 5 ) >> 1;
      int32_t   bits    = m_coeffFracBits.bits[ level - (value << 1) ];
      unsigned  thres   = g_auiGoRiceRange[ m_goRicePar ] << m_goRicePar;
      if( value < thres )
      {
        return bits + ( ( ( value >> m_goRicePar ) + 1 + m_goRicePar ) << SCALE_BITS );
      }
      unsigned  length  = m_goRicePar;
      unsigned  delta   = 1 << length;
      unsigned  valLeft = value - thres;
      while( valLeft >= delta )
      {
        valLeft -= delta;
        delta    = 1 << (++length);
      }
      return bits + ( ( g_auiGoRiceRange[ m_goRicePar ] + 1 + ( length << 1 ) - m_goRicePar ) << SCALE_BITS );
    }

    template<ScanPosType spt> inline void checkRdCostNonZero(const PQData &pqData, Decision &decision) const
    {
      int64_t rdCost = m_rdCost + pqData.deltaDist + getLevelBits( pqData.absLevel );
      if( spt == SCAN_ISCSBB )
      {
        rdCost += m_sigFracBits.intBits[1];
      }
      else if( spt == SCAN_SOCSBB )
      {
        rdCost += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[1];
      }
      else if( m_numSigSbb )
      {
        rdCost += m_sigFracBits.intBits[1];
      }
      if( rdCost < decision.rdCost )
      {
        decision.rdCost   = rdCost;
        decision.absLevel = pqData.absLevel;
        decision.prevId   = m_stateId;
      }
    }

    inline void checkRdCostStart(int32_t lastOffset, const PQData &pqData, Decision &decision) const
    {
      int64_t rdCost = pqData.deltaDist + lastOffset + getLevelBits( pqData.absLevel );
      if( rdCost < decision.rdCost )
      {
        decision.rdCost   = rdCost;
        decision.absLevel = pqData.absLevel;
        decision.prevId   = -1;
      }
    }

    inline void checkRdCostSkipSbb(Decision &decision) const
    {
      int64_t rdCost = m_rdCost + m_sbbFracBits.intBits[0];
      if( rdCost < decision.rdCost )
      {
        decision.rdCost   = rdCost;
        decision.absLevel = 0;
        decision.prevId   = 4+m_stateId;
      }
    }

  private:
    int64_t                   m_rdCost;
    uint16_t                  m_absLevelsAndCtxInit[24];  // 16x8bit for abs levels + 16x16bit for ctx init id
    int32_t                   m_numSigSbb;
    int32_t                   m_refSbbCtxId;
    BinFracBits               m_sbbFracBits;
    BinFracBits               m_sigFracBits;
    CoeffFracBits             m_coeffFracBits;
    int                       m_goRicePar;
    const int                 m_stateId;
    const BinFracBits*const   m_sigFracBitsArray;
    const CoeffFracBits*const m_gtxFracBitsArray;
    CommonCtx&                m_commonCtx;
  };


  State::State( const RateEstimator& rateEst, CommonCtx& commonCtx, const int stateId )
    : m_sbbFracBits     { { 0, 0 } }
    , m_stateId         ( stateId )
    , m_sigFracBitsArray( rateEst.sigFlagBits(stateId) )
    , m_gtxFracBitsArray( rateEst.gtxFracBits(stateId) )
    , m_commonCtx       ( commonCtx )
  {
  }

  template<uint8_t numIPos>
  inline void State::updateState(const ScanInfo &scanInfo, const State *prevStates, const Decision &decision)
  {
    m_rdCost = decision.rdCost;
    if( decision.prevId > -2 )
    {
      if( decision.prevId >= 0 )
      {
        const State*  prvState  = prevStates            +   decision.prevId;
        m_numSigSbb             = prvState->m_numSigSbb + !!decision.absLevel;
        m_refSbbCtxId           = prvState->m_refSbbCtxId;
        m_sbbFracBits           = prvState->m_sbbFracBits;
        ::memcpy( m_absLevelsAndCtxInit, prvState->m_absLevelsAndCtxInit, 48*sizeof(uint8_t) );
      }
      else
      {
        m_numSigSbb     =  1;
        m_refSbbCtxId   = -1;
        ::memset( m_absLevelsAndCtxInit, 0, 48*sizeof(uint8_t) );
      }

      uint8_t* levels               = reinterpret_cast<uint8_t*>(m_absLevelsAndCtxInit);
      levels[ scanInfo.insidePos ]  = (uint8_t)std::min<TCoeff>( 255, decision.absLevel );

      TCoeff  tinit   = m_absLevelsAndCtxInit[ 8 + scanInfo.nextInsidePos ];
      TCoeff  sumAbs  =   tinit >> 8;
      TCoeff  sumAbs1 = ( tinit >> 3 ) & 31;
      TCoeff  sumNum  =   tinit        & 7;
#define UPDATE(k) {TCoeff t=levels[scanInfo.nextNbInfoSbb.inPos[k]]; sumAbs+=t; sumAbs1+=std::min<TCoeff>(4-(t&1),t); sumNum+=!!t; }
      if( numIPos == 1 )
      {
        UPDATE(0);
      }
      else if( numIPos == 2 )
      {
        UPDATE(0);
        UPDATE(1);
      }
      else if( numIPos == 3 )
      {
        UPDATE(0);
        UPDATE(1);
        UPDATE(2);
      }
      else if( numIPos == 4 )
      {
        UPDATE(0);
        UPDATE(1);
        UPDATE(2);
        UPDATE(3);
      }
      else if( numIPos == 5 )
      {
        UPDATE(0);
        UPDATE(1);
        UPDATE(2);
        UPDATE(3);
        UPDATE(4);
      }
#undef UPDATE
      TCoeff sumGt1   = sumAbs1 - sumNum;
      sumAbs         -= sumNum;
      m_sigFracBits   = m_sigFracBitsArray[ scanInfo.sigCtxOffsetNext + ( sumAbs1 < 5 ? sumAbs1 : 5 ) ];
      m_coeffFracBits = m_gtxFracBitsArray[ scanInfo.gtxCtxOffsetNext + ( sumGt1  < 4 ? sumGt1  : 4 ) ];
      m_goRicePar     = g_auiGoRicePars   [ sumAbs < 31 ? sumAbs : 31 ];
    }
  }

  inline void State::updateStateEOS(const ScanInfo &scanInfo, const State *prevStates, const State *skipStates,
                                    const Decision &decision)
  {
    m_rdCost = decision.rdCost;
    if( decision.prevId > -2 )
    {
      const State* prvState = 0;
      if( decision.prevId  >= 0 )
      {
        prvState    = ( decision.prevId < 4 ? prevStates : skipStates - 4 ) +   decision.prevId;
        m_numSigSbb = prvState->m_numSigSbb                                 + !!decision.absLevel;
        ::memcpy( m_absLevelsAndCtxInit, prvState->m_absLevelsAndCtxInit, 16*sizeof(uint8_t) );
      }
      else
      {
        m_numSigSbb = 1;
        ::memset( m_absLevelsAndCtxInit, 0, 16*sizeof(uint8_t) );
      }
      reinterpret_cast<uint8_t*>(m_absLevelsAndCtxInit)[ scanInfo.insidePos ] = (uint8_t)std::min<TCoeff>( 255, decision.absLevel );

      m_commonCtx.update( scanInfo, prvState, *this );

      TCoeff  tinit   = m_absLevelsAndCtxInit[ 8 + scanInfo.nextInsidePos ];
      TCoeff  sumNum  =   tinit        & 7;
      TCoeff  sumAbs1 = ( tinit >> 3 ) & 31;
      TCoeff  sumAbs  = ( tinit >> 8 ) - sumNum;
      TCoeff  sumGt1  = sumAbs1        - sumNum;
      m_sigFracBits   = m_sigFracBitsArray[ scanInfo.sigCtxOffsetNext + ( sumAbs1 < 5 ? sumAbs1 : 5 ) ];
      m_coeffFracBits = m_gtxFracBitsArray[ scanInfo.gtxCtxOffsetNext + ( sumGt1  < 4 ? sumGt1  : 4 ) ];
      m_goRicePar     = g_auiGoRicePars   [ sumAbs < 31 ? sumAbs : 31 ];
    }
  }

  inline void CommonCtx::update(const ScanInfo &scanInfo, const State *prevState, State &currState)
  {
    uint8_t*    sbbFlags  = m_currSbbCtx[ currState.m_stateId ].sbbFlags;
    uint8_t*    levels    = m_currSbbCtx[ currState.m_stateId ].levels;
    std::size_t setCpSize = m_nbInfo[ scanInfo.scanIdx - 1 ].maxDist * sizeof(uint8_t);
    if( prevState && prevState->m_refSbbCtxId >= 0 )
    {
      ::memcpy( sbbFlags,                  m_prevSbbCtx[prevState->m_refSbbCtxId].sbbFlags,                  scanInfo.numSbb*sizeof(uint8_t) );
      ::memcpy( levels + scanInfo.scanIdx, m_prevSbbCtx[prevState->m_refSbbCtxId].levels + scanInfo.scanIdx, setCpSize );
    }
    else
    {
      ::memset( sbbFlags,                  0, scanInfo.numSbb*sizeof(uint8_t) );
      ::memset( levels + scanInfo.scanIdx, 0, setCpSize );
    }
    sbbFlags[ scanInfo.sbbPos ] = !!currState.m_numSigSbb;
    ::memcpy( levels + scanInfo.scanIdx, currState.m_absLevelsAndCtxInit, scanInfo.sbbSize*sizeof(uint8_t) );

    const int       sigNSbb   = ( ( scanInfo.nextSbbRight ? sbbFlags[ scanInfo.nextSbbRight ] : false ) || ( scanInfo.nextSbbBelow ? sbbFlags[ scanInfo.nextSbbBelow ] : false ) ? 1 : 0 );
    currState.m_numSigSbb     = 0;
    currState.m_refSbbCtxId   = currState.m_stateId;
    currState.m_sbbFracBits   = m_sbbFlagBits[ sigNSbb ];

    uint16_t          templateCtxInit[16];
    const int         scanBeg   = scanInfo.scanIdx - scanInfo.sbbSize;
    const NbInfoOut*  nbOut     = m_nbInfo + scanBeg;
    const uint8_t*    absLevels = levels   + scanBeg;
    for( int id = 0; id < scanInfo.sbbSize; id++, nbOut++ )
    {
      if( nbOut->num )
      {
        TCoeff sumAbs = 0, sumAbs1 = 0, sumNum = 0;
#define UPDATE(k) {TCoeff t=absLevels[nbOut->outPos[k]]; sumAbs+=t; sumAbs1+=std::min<TCoeff>(4-(t&1),t); sumNum+=!!t; }
        UPDATE(0);
        if( nbOut->num > 1 )
        {
          UPDATE(1);
          if( nbOut->num > 2 )
          {
            UPDATE(2);
            if( nbOut->num > 3 )
            {
              UPDATE(3);
              if( nbOut->num > 4 )
              {
                UPDATE(4);
              }
            }
          }
        }
#undef UPDATE
        templateCtxInit[id] = uint16_t(sumNum) + ( uint16_t(sumAbs1) << 3 ) + ( (uint16_t)std::min<TCoeff>( 127, sumAbs ) << 8 );
      }
      else
      {
        templateCtxInit[id] = 0;
      }
    }
    ::memset( currState.m_absLevelsAndCtxInit,     0,               16*sizeof(uint8_t) );
    ::memcpy( currState.m_absLevelsAndCtxInit + 8, templateCtxInit, 16*sizeof(uint16_t) );
  }



  /*================================================================================*/
  /*=====                                                                      =====*/
  /*=====   T C Q                                                              =====*/
  /*=====                                                                      =====*/
  /*================================================================================*/
  class DepQuant : private RateEstimator
  {
  public:
    DepQuant();

    void    quant   ( TransformUnit& tu, const CCoeffBuf& srcCoeff, const ComponentID compID, const QpParam& cQP, const double lambda, const Ctx& ctx, TCoeff& absSum );
    void    dequant ( const TransformUnit& tu,  CoeffBuf& recCoeff, const ComponentID compID, const QpParam& cQP )  const;

  private:
    void    xDecideAndUpdate  ( const TCoeff absCoeff, const ScanInfo& scanInfo );
    template<ScanPosType spt>
    void    xDecide           ( const TCoeff absCoeff, int32_t lastOffset, Decision* decisions );

  private:
    CommonCtx   m_commonCtx;
    State       m_allStates[ 12 ];
    State*      m_currStates;
    State*      m_prevStates;
    State*      m_skipStates;
    State       m_startState;
    Quantizer   m_quant;
    Decision    m_trellis[ MAX_TU_SIZE * MAX_TU_SIZE ][ 8 ];
  };


#define TINIT(x) {*this,m_commonCtx,x}
  DepQuant::DepQuant()
    : RateEstimator ()
    , m_commonCtx   ()
    , m_allStates   {TINIT(0),TINIT(1),TINIT(2),TINIT(3),TINIT(0),TINIT(1),TINIT(2),TINIT(3),TINIT(0),TINIT(1),TINIT(2),TINIT(3)}
    , m_currStates  (  m_allStates      )
    , m_prevStates  (  m_currStates + 4 )
    , m_skipStates  (  m_prevStates + 4 )
    , m_startState  TINIT(0)
  {}
#undef TINIT


  void DepQuant::dequant( const TransformUnit& tu,  CoeffBuf& recCoeff, const ComponentID compID, const QpParam& cQP ) const
  {
    m_quant.dequantBlock( tu, compID, cQP, recCoeff );
  }


#define DINIT(l,p) {std::numeric_limits<int64_t>::max()>>2,l,p}
  static const Decision startDec[8] = {DINIT(-1,-2),DINIT(-1,-2),DINIT(-1,-2),DINIT(-1,-2),DINIT(0,4),DINIT(0,5),DINIT(0,6),DINIT(0,7)};
#undef  DINIT


  template<ScanPosType spt>
  void DepQuant::xDecide( const TCoeff absCoeff, int32_t lastOffset, Decision* decisions )
  {
    ::memcpy( decisions, startDec, 8*sizeof(Decision) );

    PQData  pqData[4];
    m_quant.preQuantCoeff( absCoeff, pqData );
    m_prevStates[0].checkRdCostNonZero<spt> ( pqData[0],  decisions[0] );
    m_prevStates[0].checkRdCostNonZero<spt> ( pqData[2],  decisions[2] );
    m_prevStates[0].checkRdCostZero<spt>                ( decisions[0] );
    m_prevStates[1].checkRdCostNonZero<spt> ( pqData[2],  decisions[0] );
    m_prevStates[1].checkRdCostNonZero<spt> ( pqData[0],  decisions[2] );
    m_prevStates[1].checkRdCostZero<spt>                ( decisions[2] );
    m_prevStates[2].checkRdCostNonZero<spt> ( pqData[3],  decisions[1] );
    m_prevStates[2].checkRdCostNonZero<spt> ( pqData[1],  decisions[3] );
    m_prevStates[2].checkRdCostZero<spt>                ( decisions[1] );
    m_prevStates[3].checkRdCostNonZero<spt> ( pqData[1],  decisions[1] );
    m_prevStates[3].checkRdCostNonZero<spt> ( pqData[3],  decisions[3] );
    m_prevStates[3].checkRdCostZero<spt>                ( decisions[3] );
    if( spt==SCAN_EOCSBB )
    {
      m_skipStates[0].checkRdCostSkipSbb( decisions[0] );
      m_skipStates[1].checkRdCostSkipSbb( decisions[1] );
      m_skipStates[2].checkRdCostSkipSbb( decisions[2] );
      m_skipStates[3].checkRdCostSkipSbb( decisions[3] );
    }
    m_startState.checkRdCostStart( lastOffset, pqData[0], decisions[0] );
    m_startState.checkRdCostStart( lastOffset, pqData[2], decisions[2] );
  }

  void DepQuant::xDecideAndUpdate( const TCoeff absCoeff, const ScanInfo& scanInfo )
  {
    Decision* decisions = m_trellis[ scanInfo.scanIdx ];

    std::swap( m_prevStates, m_currStates );

    if     ( scanInfo.socsbb )  { xDecide<SCAN_SOCSBB>( absCoeff, scanInfo.lastOffset, decisions ); }
    else if( scanInfo.eocsbb )  { xDecide<SCAN_EOCSBB>( absCoeff, scanInfo.lastOffset, decisions ); }
    else                        { xDecide<SCAN_ISCSBB>( absCoeff, scanInfo.lastOffset, decisions ); }

    if( scanInfo.scanIdx )
    {
      if( scanInfo.eosbb )
      {
        m_commonCtx.swap();
        m_currStates[0].updateStateEOS( scanInfo, m_prevStates, m_skipStates, decisions[0] );
        m_currStates[1].updateStateEOS( scanInfo, m_prevStates, m_skipStates, decisions[1] );
        m_currStates[2].updateStateEOS( scanInfo, m_prevStates, m_skipStates, decisions[2] );
        m_currStates[3].updateStateEOS( scanInfo, m_prevStates, m_skipStates, decisions[3] );
        ::memcpy( decisions+4, decisions, 4*sizeof(Decision) );
      }
      else
      {
        switch( scanInfo.nextNbInfoSbb.num )
        {
        case 0:
          m_currStates[0].updateState<0>( scanInfo, m_prevStates, decisions[0] );
          m_currStates[1].updateState<0>( scanInfo, m_prevStates, decisions[1] );
          m_currStates[2].updateState<0>( scanInfo, m_prevStates, decisions[2] );
          m_currStates[3].updateState<0>( scanInfo, m_prevStates, decisions[3] );
          break;
        case 1:
          m_currStates[0].updateState<1>( scanInfo, m_prevStates, decisions[0] );
          m_currStates[1].updateState<1>( scanInfo, m_prevStates, decisions[1] );
          m_currStates[2].updateState<1>( scanInfo, m_prevStates, decisions[2] );
          m_currStates[3].updateState<1>( scanInfo, m_prevStates, decisions[3] );
          break;
        case 2:
          m_currStates[0].updateState<2>( scanInfo, m_prevStates, decisions[0] );
          m_currStates[1].updateState<2>( scanInfo, m_prevStates, decisions[1] );
          m_currStates[2].updateState<2>( scanInfo, m_prevStates, decisions[2] );
          m_currStates[3].updateState<2>( scanInfo, m_prevStates, decisions[3] );
          break;
        case 3:
          m_currStates[0].updateState<3>( scanInfo, m_prevStates, decisions[0] );
          m_currStates[1].updateState<3>( scanInfo, m_prevStates, decisions[1] );
          m_currStates[2].updateState<3>( scanInfo, m_prevStates, decisions[2] );
          m_currStates[3].updateState<3>( scanInfo, m_prevStates, decisions[3] );
          break;
        case 4:
          m_currStates[0].updateState<4>( scanInfo, m_prevStates, decisions[0] );
          m_currStates[1].updateState<4>( scanInfo, m_prevStates, decisions[1] );
          m_currStates[2].updateState<4>( scanInfo, m_prevStates, decisions[2] );
          m_currStates[3].updateState<4>( scanInfo, m_prevStates, decisions[3] );
          break;
        default:
          m_currStates[0].updateState<5>( scanInfo, m_prevStates, decisions[0] );
          m_currStates[1].updateState<5>( scanInfo, m_prevStates, decisions[1] );
          m_currStates[2].updateState<5>( scanInfo, m_prevStates, decisions[2] );
          m_currStates[3].updateState<5>( scanInfo, m_prevStates, decisions[3] );
        }
      }

      if( scanInfo.socsbb )
      {
        std::swap( m_prevStates, m_skipStates );
      }
    }
  }


  void DepQuant::quant( TransformUnit& tu, const CCoeffBuf& srcCoeff, const ComponentID compID, const QpParam& cQP, const double lambda, const Ctx& ctx, TCoeff& absSum )
  {
    //===== reset / pre-init =====
    RateEstimator::initBlock  ( tu, compID );
    m_quant.initQuantBlock    ( tu, compID, cQP, lambda );
    TCoeff*       qCoeff      = tu.getCoeffs( compID ).buf;
    const TCoeff* tCoeff      = srcCoeff.buf;
    const int     numCoeff    = tu.blocks[compID].area();
    ::memset( tu.getCoeffs( compID ).buf, 0x00, numCoeff*sizeof(TCoeff) );
    absSum          = 0;

    //===== find first test position =====
    int   firstTestPos = numCoeff - 1;
    const TCoeff thres = m_quant.getLastThreshold();
    for( ; firstTestPos >= 0; firstTestPos-- )
    {
      if( abs( tCoeff[ rasterPos(firstTestPos) ] ) > thres )
      {
        break;
      }
    }
    if( firstTestPos < 0 )
    {
      return;
    }

    //===== real init =====
    RateEstimator::initCtx( tu, ctx.getFracBitsAcess() );
    m_commonCtx.reset( *this );
    for( int k = 0; k < 12; k++ )
    {
      m_allStates[k].init();
    }
    m_startState.init();


    //===== populate trellis =====
    for( ScanData scanData(*this,firstTestPos); scanData.valid(); scanData.next() )
    {
      xDecideAndUpdate( abs( tCoeff[ scanData.rasterPos ] ), scanData );
    }

    //===== find best path =====
    Decision  decision    = { std::numeric_limits<int64_t>::max(), -1, -2 };
    int64_t   minPathCost =  0;
    for( int8_t stateId = 0; stateId < 4; stateId++ )
    {
      int64_t pathCost = m_trellis[0][stateId].rdCost;
      if( pathCost < minPathCost )
      {
        decision.prevId = stateId;
        minPathCost     = pathCost;
      }
    }

    //===== backward scanning =====
    int scanIdx = 0;
    for( ; decision.prevId >= 0; scanIdx++ )
    {
      decision          = m_trellis[ scanIdx ][ decision.prevId ];
      int32_t blkpos    = rasterPos( scanIdx );
      qCoeff[ blkpos ]  = ( tCoeff[ blkpos ] < 0 ? -decision.absLevel : decision.absLevel );
      absSum           += decision.absLevel;
    }
  }

}; // namespace DQIntern




//===== interface class =====
DepQuant::DepQuant( const Quant* other, bool enc ) : QuantRDOQ( other )
{
  const DepQuant* dq = dynamic_cast<const DepQuant*>( other );
  CHECK( other && !dq, "The DepQuant cast must be successfull!" );
  p = new DQIntern::DepQuant();
  if( enc )
  {
    DQIntern::g_Rom.init();
  }
}

DepQuant::~DepQuant()
{
  delete static_cast<DQIntern::DepQuant*>(p);
}

void DepQuant::quant( TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &pSrc, TCoeff &uiAbsSum, const QpParam &cQP, const Ctx& ctx )
{
  if( tu.cs->slice->getDepQuantEnabledFlag() )
  {
    static_cast<DQIntern::DepQuant*>(p)->quant( tu, pSrc, compID, cQP, Quant::m_dLambda, ctx, uiAbsSum );
  }
  else
  {
    QuantRDOQ::quant( tu, compID, pSrc, uiAbsSum, cQP, ctx );
  }
}

void DepQuant::dequant( const TransformUnit &tu, CoeffBuf &dstCoeff, const ComponentID &compID, const QpParam &cQP )
{
  if( tu.cs->slice->getDepQuantEnabledFlag() )
  {
    static_cast<DQIntern::DepQuant*>(p)->dequant( tu, dstCoeff, compID, cQP );
  }
  else
  {
    QuantRDOQ::dequant( tu, dstCoeff, compID, cQP );
  }
}