Skip to content
Snippets Groups Projects
UnitPartitioner.cpp 35.8 KiB
Newer Older
  • Learn to ignore specific revisions
  •       CHECK( sub[i].lumaSize().width < MIN_TB_SIZEY, "the split causes the block to be smaller than the minimal TU size" );
    
        }
    
        return sub;
      }
      else if( splitType == CU_TRIH_SPLIT )
      {
        Partitioning sub;
    
        sub.resize( 3, cuArea );
    
        for( int i = 0; i < 3; i++ )
        {
          for( auto &blk : sub[i].blocks )
          {
            blk.height >>= 1;
            if( ( i + 1 ) & 1 ) blk.height >>= 1;
            if( i == 1 )        blk.y       +=     blk.height / 2;
            if( i == 2 )        blk.y       += 3 * blk.height;
          }
    
    
          CHECK( sub[i].lumaSize().height < MIN_TB_SIZEY, "the cs split causes the block to be smaller than the minimal TU size" );
    
        }
    
        return sub;
      }
      else if( splitType == CU_TRIV_SPLIT )
      {
        Partitioning sub;
    
        sub.resize( 3, cuArea );
    
        for( int i = 0; i < 3; i++ )
        {
          for( auto &blk : sub[i].blocks )
          {
            blk.width >>= 1;
    
            if( ( i + 1 ) & 1 ) blk.width >>= 1;
            if( i == 1 )        blk.x      +=     blk.width / 2;
            if( i == 2 )        blk.x      += 3 * blk.width;
          }
    
    
          CHECK( sub[i].lumaSize().width < MIN_TB_SIZEY, "the cs split causes the block to be smaller than the minimal TU size" );
    
    void PartitionerImpl::getTUIntraSubPartitions( Partitioning &sub, const UnitArea &tuArea, const CodingStructure &cs, const PartSplit splitType )
    {
      uint32_t nPartitions;
      uint32_t splitDimensionSize = CU::getISPSplitDim( tuArea.lumaSize().width, tuArea.lumaSize().height, splitType );
    
    
      bool isDualTree = CS::isDualITree( cs ) || cs.treeType != TREE_D;
    
        nPartitions = tuArea.lumaSize().height >> floorLog2(splitDimensionSize);
    
    
        sub.resize( nPartitions );
    
        for( uint32_t i = 0; i < nPartitions; i++ )
        {
          sub[i] = tuArea;
          CompArea& blkY = sub[i].blocks[COMPONENT_Y];
    
          blkY.height = splitDimensionSize;
          blkY.y = i > 0 ? sub[i - 1].blocks[COMPONENT_Y].y + splitDimensionSize : blkY.y;
    
          CHECK( sub[i].lumaSize().height < 1, "the cs split causes the block to be smaller than the minimal TU size" );
        }
      }
      else if( splitType == TU_1D_VERT_SPLIT )
      {
    
        nPartitions = tuArea.lumaSize().width >> floorLog2(splitDimensionSize);
    
    
        sub.resize( nPartitions );
    
        for( uint32_t i = 0; i < nPartitions; i++ )
        {
          sub[i] = tuArea;
          CompArea& blkY = sub[i].blocks[COMPONENT_Y];
    
          blkY.width = splitDimensionSize;
          blkY.x = i > 0 ? sub[i - 1].blocks[COMPONENT_Y].x + splitDimensionSize : blkY.x;
          CHECK( sub[i].lumaSize().width < 1, "the split causes the block to be smaller than the minimal TU size" );
        }
      }
      else
      {
        THROW( "Unknown TU sub-partitioning" );
      }
      //we only partition luma, so there is going to be only one chroma tu at the end (unless it is dual tree, in which case there won't be any chroma components)
    
      uint32_t partitionsWithoutChroma =
        !isChromaEnabled(cs.area.chromaFormat) ? 0 : (isDualTree ? nPartitions : nPartitions - 1);
    
      for( uint32_t i = 0; i < partitionsWithoutChroma; i++ )
      {
        CompArea& blkCb = sub[i].blocks[COMPONENT_Cb];
        CompArea& blkCr = sub[i].blocks[COMPONENT_Cr];
        blkCb = CompArea();
        blkCr = CompArea();
      }
    }
    
    
    static const int g_maxRtGridSize = 3;
    
    static const int g_zScanToX[1 << ( g_maxRtGridSize << 1 )] =
    {
       0,  1,  0,  1,  2,  3,  2,  3,
       0,  1,  0,  1,  2,  3,  2,  3,
       4,  5,  4,  5,  6,  7,  6,  7,
       4,  5,  4,  5,  6,  7,  6,  7,
       0,  1,  0,  1,  2,  3,  2,  3,
       0,  1,  0,  1,  2,  3,  2,  3,
       4,  5,  4,  5,  6,  7,  6,  7,
       4,  5,  4,  5,  6,  7,  6,  7,
    };
    static const int g_zScanToY[1 << ( g_maxRtGridSize << 1 )] =
    {
       0,  0,  1,  1,  0,  0,  1,  1,
       2,  2,  3,  3,  2,  2,  3,  3,
       0,  0,  1,  1,  0,  0,  1,  1,
       2,  2,  3,  3,  2,  2,  3,  3,
       4,  4,  5,  5,  4,  4,  5,  5,
    
       6,  6,  7,  7,  6,  6,  7,  7,
       4,  4,  5,  5,  4,  4,  5,  5,
       6,  6,  7,  7,  6,  6,  7,  7,
    
    };
    static const int g_rsScanToZ[1 << ( g_maxRtGridSize << 1 )] =
    {
       0,  1,  4,  5, 16, 17, 20, 21,
       2,  3,  6,  7, 18, 19, 22, 23,
       8,  9, 12, 13, 24, 25, 28, 29,
      10, 11, 14, 15, 26, 27, 30, 31,
      32, 33, 36, 37, 48, 49, 52, 53,
      34, 35, 38, 39, 50, 51, 54, 55,
      40, 41, 44, 45, 56, 57, 60, 61,
      42, 43, 46, 47, 58, 59, 62, 63,
    };
    
    Partitioning PartitionerImpl::getMaxTuTiling( const UnitArea &cuArea, const CodingStructure &cs )
    {
      static_assert( MAX_LOG2_DIFF_CU_TR_SIZE <= g_maxRtGridSize, "Z-scan tables are only provided for MAX_LOG2_DIFF_CU_TR_SIZE for up to 3 (8x8 tiling)!" );
    
    
      const Size area     = cuArea.lumaSize();
      const int maxTrSize = (area.width>64 || area.height>64) ? 64 : cs.sps->getMaxTbSize();
    
      const int numTilesH = std::max<int>( 1, area.width  / maxTrSize );
      const int numTilesV = std::max<int>( 1, area.height / maxTrSize );
      const int numTiles  = numTilesH * numTilesV;
    
      CHECK( numTiles > MAX_CU_TILING_PARTITIONS, "CU partitioning requires more partitions than available" );
    
      Partitioning ret;
      ret.resize( numTiles, cuArea );
    
      for( int i = 0; i < numTiles; i++ )
      {
        const int rsy = i / numTilesH;
        const int rsx = i % numTilesH;
    
        const int x = g_zScanToX[g_rsScanToZ[( rsy << g_maxRtGridSize ) + rsx]];
        const int y = g_zScanToY[g_rsScanToZ[( rsy << g_maxRtGridSize ) + rsx]];
    
        UnitArea& tile = ret[i];
    
        for( CompArea &comp : tile.blocks )
        {
    
          if (!comp.valid())
          {
            continue;
          }
    
    
          comp.width  /= numTilesH;
          comp.height /= numTilesV;
    
          comp.x += comp.width  * x;
          comp.y += comp.height * y;
        }
      }
    
      return ret;
    }
    
    
    Partitioning PartitionerImpl::getSbtTuTiling( const UnitArea& cuArea, const CodingStructure &cs, const PartSplit splitType )
    {
      Partitioning ret;
      int numTiles = 2;
      int widthFactor, heightFactor, xOffsetFactor, yOffsetFactor; // y = (x * factor) >> 2;
      assert( splitType >= SBT_VER_HALF_POS0_SPLIT && splitType <= SBT_HOR_QUAD_POS1_SPLIT );
    
      ret.resize( numTiles, cuArea );
      for( int i = 0; i < numTiles; i++ )
      {
        if( splitType >= SBT_VER_QUAD_POS0_SPLIT )
        {
          if( splitType == SBT_HOR_QUAD_POS0_SPLIT || splitType == SBT_HOR_QUAD_POS1_SPLIT )
          {
            widthFactor = 4;
            xOffsetFactor = 0;
            heightFactor = ( ( i == 0 && splitType == SBT_HOR_QUAD_POS0_SPLIT ) || ( i == 1 && splitType == SBT_HOR_QUAD_POS1_SPLIT ) ) ? 1 : 3;
            yOffsetFactor = ( i == 0 ) ? 0 : ( splitType == SBT_HOR_QUAD_POS0_SPLIT ? 1 : 3 );
          }
          else
          {
            widthFactor = ( ( i == 0 && splitType == SBT_VER_QUAD_POS0_SPLIT ) || ( i == 1 && splitType == SBT_VER_QUAD_POS1_SPLIT ) ) ? 1 : 3;
            xOffsetFactor = ( i == 0 ) ? 0 : ( splitType == SBT_VER_QUAD_POS0_SPLIT ? 1 : 3 );
            heightFactor = 4;
            yOffsetFactor = 0;
          }
        }
        else
        {
          if( splitType == SBT_HOR_HALF_POS0_SPLIT || splitType == SBT_HOR_HALF_POS1_SPLIT )
          {
            widthFactor = 4;
            xOffsetFactor = 0;
            heightFactor = 2;
            yOffsetFactor = ( i == 0 ) ? 0 : 2;
          }
          else
          {
            widthFactor = 2;
            xOffsetFactor = ( i == 0 ) ? 0 : 2;
            heightFactor = 4;
            yOffsetFactor = 0;
          }
        }
    
        UnitArea& tile = ret[i];
        for( CompArea &comp : tile.blocks )
        {
    
          if (!comp.valid())
          {
            continue;
          }
    
          comp.x += ( comp.width  * xOffsetFactor ) >> 2;
          comp.y += ( comp.height * yOffsetFactor ) >> 2;
          comp.width = ( comp.width  * widthFactor ) >> 2;
          comp.height = ( comp.height * heightFactor ) >> 2;
        }
      }
    
      return ret;
    }