Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file EncGOP.cpp
\brief GOP encoder class
*/
#include <list>
#include <algorithm>
#include <functional>
#include "EncLib.h"
#include "EncGOP.h"
#include "Analyze.h"
#include "libmd5/MD5.h"
#include "CommonLib/SEI.h"
#include "CommonLib/NAL.h"
#include "NALwrite.h"
#include <math.h>
#include <deque>
#include <chrono>
#include <cinttypes>
#include "CommonLib/UnitTools.h"
#include "CommonLib/dtrace_codingstruct.h"
#include "CommonLib/dtrace_buffer.h"
#include "DecoderLib/DecLib.h"
#define ENCODE_SUB_SET 0
using namespace std;
//! \ingroup EncoderLib
//! \{
// ====================================================================================================================
// Constructor / destructor / initialization / destroy
// ====================================================================================================================
int getLSB(int poc, int maxLSB)
{
if (poc >= 0)
{
return poc % maxLSB;
}
else
{
return (maxLSB - ((-poc) % maxLSB)) % maxLSB;
}
}
EncGOP::EncGOP()
{
m_iLastIDR = 0;
m_iGopSize = 0;
m_iNumPicCoded = 0; //Niko
m_bFirst = true;
m_iLastRecoveryPicPOC = 0;
m_lastRasPoc = MAX_INT;
m_pcCfg = NULL;
m_pcSliceEncoder = NULL;
m_pcListPic = NULL;
m_HLSWriter = NULL;
m_bSeqFirst = true;
m_bRefreshPending = 0;
m_pocCRA = 0;
m_numLongTermRefPicSPS = 0;
::memset(m_ltRefPicPocLsbSps, 0, sizeof(m_ltRefPicPocLsbSps));
::memset(m_ltRefPicUsedByCurrPicFlag, 0, sizeof(m_ltRefPicUsedByCurrPicFlag));
m_lastBPSEI = 0;
m_bufferingPeriodSEIPresentInAU = false;
m_associatedIRAPType = NAL_UNIT_CODED_SLICE_IDR_N_LP;
m_associatedIRAPPOC = 0;
#if W0038_DB_OPT
m_pcDeblockingTempPicYuv = NULL;
#endif
m_bInitAMaxBT = true;
m_bgPOC = -1;
m_picBg = NULL;
m_picOrig = NULL;
m_isEncodedLTRef = false;
m_isUseLTRef = false;
m_isPrepareLTRef = true;
m_lastLTRefPoc = 0;

Karsten Suehring
committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
}
EncGOP::~EncGOP()
{
if( !m_pcCfg->getDecodeBitstream(0).empty() || !m_pcCfg->getDecodeBitstream(1).empty() )
{
// reset potential decoder resources
tryDecodePicture( NULL, 0, std::string("") );
}
}
/** Create list to contain pointers to CTU start addresses of slice.
*/
void EncGOP::create()
{
m_bLongtermTestPictureHasBeenCoded = 0;
m_bLongtermTestPictureHasBeenCoded2 = 0;
}
void EncGOP::destroy()
{
#if W0038_DB_OPT
if (m_pcDeblockingTempPicYuv)
{
m_pcDeblockingTempPicYuv->destroy();
delete m_pcDeblockingTempPicYuv;
m_pcDeblockingTempPicYuv = NULL;
}
#endif
if (m_picBg)
{
m_picBg->destroy();
delete m_picBg;
m_picBg = NULL;
}
if (m_picOrig)
{
m_picOrig->destroy();
delete m_picOrig;
m_picOrig = NULL;
}

Karsten Suehring
committed
}
void EncGOP::init ( EncLib* pcEncLib )
{
m_pcEncLib = pcEncLib;
m_pcCfg = pcEncLib;
m_seiEncoder.init(m_pcCfg, pcEncLib, this);
m_pcSliceEncoder = pcEncLib->getSliceEncoder();
m_pcListPic = pcEncLib->getListPic();
m_HLSWriter = pcEncLib->getHLSWriter();
m_pcLoopFilter = pcEncLib->getLoopFilter();
m_pcSAO = pcEncLib->getSAO();
m_pcALF = pcEncLib->getALF();
m_pcRateCtrl = pcEncLib->getRateCtrl();
m_lastBPSEI = 0;
m_totalCoded = 0;
m_AUWriterIf = pcEncLib->getAUWriterIf();

Karsten Suehring
committed
#if WCG_EXT
#if JVET_M0427_INLOOP_RESHAPER
if (m_pcCfg->getReshaper())
{
pcEncLib->getRdCost()->setReshapeInfo(m_pcCfg->getReshapeSignalType(), m_pcCfg->getBitDepth(CHANNEL_TYPE_LUMA));
pcEncLib->getRdCost()->initLumaLevelToWeightTableReshape();
}
else if (m_pcCfg->getLumaLevelToDeltaQPMapping().mode)
{
pcEncLib->getRdCost()->initLumaLevelToWeightTableReshape();
#else
pcEncLib->getRdCost()->initLumaLevelToWeightTable();
}
pcEncLib->getALF()->getLumaLevelWeightTable() = pcEncLib->getRdCost()->getLumaLevelWeightTable();
int alfWSSD = 0;
if (m_pcCfg->getReshaper() && m_pcCfg->getReshapeSignalType() == RESHAPE_SIGNAL_PQ )
{
alfWSSD = 1;
}
pcEncLib->getALF()->setAlfWSSD(alfWSSD);
#endif
#endif
#if JVET_M0427_INLOOP_RESHAPER
m_pcReshaper = pcEncLib->getReshaper();

Karsten Suehring
committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#endif
}
#if HEVC_VPS
int EncGOP::xWriteVPS (AccessUnit &accessUnit, const VPS *vps)
{
OutputNALUnit nalu(NAL_UNIT_VPS);
m_HLSWriter->setBitstream( &nalu.m_Bitstream );
m_HLSWriter->codeVPS( vps );
accessUnit.push_back(new NALUnitEBSP(nalu));
return (int)(accessUnit.back()->m_nalUnitData.str().size()) * 8;
}
#endif
int EncGOP::xWriteSPS (AccessUnit &accessUnit, const SPS *sps)
{
OutputNALUnit nalu(NAL_UNIT_SPS);
m_HLSWriter->setBitstream( &nalu.m_Bitstream );
m_HLSWriter->codeSPS( sps );
accessUnit.push_back(new NALUnitEBSP(nalu));
return (int)(accessUnit.back()->m_nalUnitData.str().size()) * 8;
}
int EncGOP::xWritePPS (AccessUnit &accessUnit, const PPS *pps)
{
OutputNALUnit nalu(NAL_UNIT_PPS);
m_HLSWriter->setBitstream( &nalu.m_Bitstream );
m_HLSWriter->codePPS( pps );
accessUnit.push_back(new NALUnitEBSP(nalu));
return (int)(accessUnit.back()->m_nalUnitData.str().size()) * 8;
}
int EncGOP::xWriteParameterSets (AccessUnit &accessUnit, Slice *slice, const bool bSeqFirst)
{
int actualTotalBits = 0;
#if HEVC_VPS
if (bSeqFirst)
{
actualTotalBits += xWriteVPS(accessUnit, m_pcEncLib->getVPS());
}
#endif
if (m_pcEncLib->SPSNeedsWriting(slice->getSPS()->getSPSId())) // Note this assumes that all changes to the SPS are made at the EncLib level prior to picture creation (EncLib::xGetNewPicBuffer).
{
CHECK(!(bSeqFirst), "Unspecified error"); // Implementations that use more than 1 SPS need to be aware of activation issues.
actualTotalBits += xWriteSPS(accessUnit, slice->getSPS());
}
if (m_pcEncLib->PPSNeedsWriting(slice->getPPS()->getPPSId())) // Note this assumes that all changes to the PPS are made at the EncLib level prior to picture creation (EncLib::xGetNewPicBuffer).
{
actualTotalBits += xWritePPS(accessUnit, slice->getPPS());
}
return actualTotalBits;
}
void EncGOP::xWriteAccessUnitDelimiter (AccessUnit &accessUnit, Slice *slice)
{
AUDWriter audWriter;
OutputNALUnit nalu(NAL_UNIT_ACCESS_UNIT_DELIMITER);
int picType = slice->isIntra() ? 0 : (slice->isInterP() ? 1 : 2);
audWriter.codeAUD(nalu.m_Bitstream, picType);
accessUnit.push_front(new NALUnitEBSP(nalu));
}
// write SEI list into one NAL unit and add it to the Access unit at auPos
void EncGOP::xWriteSEI (NalUnitType naluType, SEIMessages& seiMessages, AccessUnit &accessUnit, AccessUnit::iterator &auPos, int temporalId, const SPS *sps)
{
// don't do anything, if we get an empty list
if (seiMessages.empty())
{
return;
}
OutputNALUnit nalu(naluType, temporalId);
m_seiWriter.writeSEImessages(nalu.m_Bitstream, seiMessages, sps, false);
auPos = accessUnit.insert(auPos, new NALUnitEBSP(nalu));
auPos++;
}
void EncGOP::xWriteSEISeparately (NalUnitType naluType, SEIMessages& seiMessages, AccessUnit &accessUnit, AccessUnit::iterator &auPos, int temporalId, const SPS *sps)
{
// don't do anything, if we get an empty list
if (seiMessages.empty())
{
return;
}
for (SEIMessages::const_iterator sei = seiMessages.begin(); sei!=seiMessages.end(); sei++ )
{
SEIMessages tmpMessages;
tmpMessages.push_back(*sei);
OutputNALUnit nalu(naluType, temporalId);
m_seiWriter.writeSEImessages(nalu.m_Bitstream, tmpMessages, sps, false);
auPos = accessUnit.insert(auPos, new NALUnitEBSP(nalu));
auPos++;
}
}
void EncGOP::xClearSEIs(SEIMessages& seiMessages, bool deleteMessages)
{
if (deleteMessages)
{
deleteSEIs(seiMessages);
}
else
{
seiMessages.clear();
}
}
// write SEI messages as separate NAL units ordered
void EncGOP::xWriteLeadingSEIOrdered (SEIMessages& seiMessages, SEIMessages& duInfoSeiMessages, AccessUnit &accessUnit, int temporalId, const SPS *sps, bool testWrite)
{
AccessUnit::iterator itNalu = accessUnit.begin();
while ( (itNalu!=accessUnit.end())&&
( (*itNalu)->m_nalUnitType==NAL_UNIT_ACCESS_UNIT_DELIMITER
#if HEVC_VPS
|| (*itNalu)->m_nalUnitType==NAL_UNIT_VPS
#endif
|| (*itNalu)->m_nalUnitType==NAL_UNIT_SPS
|| (*itNalu)->m_nalUnitType==NAL_UNIT_PPS
))
{
itNalu++;
}
SEIMessages localMessages = seiMessages;
SEIMessages currentMessages;
#if ENABLE_TRACING
g_HLSTraceEnable = !testWrite;
#endif
// The case that a specific SEI is not present is handled in xWriteSEI (empty list)
// Active parameter sets SEI must always be the first SEI
currentMessages = extractSeisByType(localMessages, SEI::ACTIVE_PARAMETER_SETS);
CHECK(!(currentMessages.size() <= 1), "Unspecified error");
xWriteSEI(NAL_UNIT_PREFIX_SEI, currentMessages, accessUnit, itNalu, temporalId, sps);
xClearSEIs(currentMessages, !testWrite);
// Buffering period SEI must always be following active parameter sets
currentMessages = extractSeisByType(localMessages, SEI::BUFFERING_PERIOD);
CHECK(!(currentMessages.size() <= 1), "Unspecified error");
xWriteSEI(NAL_UNIT_PREFIX_SEI, currentMessages, accessUnit, itNalu, temporalId, sps);
xClearSEIs(currentMessages, !testWrite);
// Picture timing SEI must always be following buffering period
currentMessages = extractSeisByType(localMessages, SEI::PICTURE_TIMING);
CHECK(!(currentMessages.size() <= 1), "Unspecified error");
xWriteSEI(NAL_UNIT_PREFIX_SEI, currentMessages, accessUnit, itNalu, temporalId, sps);
xClearSEIs(currentMessages, !testWrite);
// Decoding unit info SEI must always be following picture timing
if (!duInfoSeiMessages.empty())
{
currentMessages.push_back(duInfoSeiMessages.front());
if (!testWrite)
{
duInfoSeiMessages.pop_front();
}
xWriteSEI(NAL_UNIT_PREFIX_SEI, currentMessages, accessUnit, itNalu, temporalId, sps);
xClearSEIs(currentMessages, !testWrite);
}
// Scalable nesting SEI must always be the following DU info
currentMessages = extractSeisByType(localMessages, SEI::SCALABLE_NESTING);
xWriteSEISeparately(NAL_UNIT_PREFIX_SEI, currentMessages, accessUnit, itNalu, temporalId, sps);
xClearSEIs(currentMessages, !testWrite);
// And finally everything else one by one
xWriteSEISeparately(NAL_UNIT_PREFIX_SEI, localMessages, accessUnit, itNalu, temporalId, sps);
xClearSEIs(localMessages, !testWrite);
if (!testWrite)
{
seiMessages.clear();
}
}
void EncGOP::xWriteLeadingSEIMessages (SEIMessages& seiMessages, SEIMessages& duInfoSeiMessages, AccessUnit &accessUnit, int temporalId, const SPS *sps, std::deque<DUData> &duData)
{
AccessUnit testAU;
SEIMessages picTimingSEIs = getSeisByType(seiMessages, SEI::PICTURE_TIMING);
CHECK(!(picTimingSEIs.size() < 2), "Unspecified error");
SEIPictureTiming * picTiming = picTimingSEIs.empty() ? NULL : (SEIPictureTiming*) picTimingSEIs.front();
// test writing
xWriteLeadingSEIOrdered(seiMessages, duInfoSeiMessages, testAU, temporalId, sps, true);
// update Timing and DU info SEI
xUpdateDuData(testAU, duData);
xUpdateTimingSEI(picTiming, duData, sps);
xUpdateDuInfoSEI(duInfoSeiMessages, picTiming);
// actual writing
xWriteLeadingSEIOrdered(seiMessages, duInfoSeiMessages, accessUnit, temporalId, sps, false);
// testAU will automatically be cleaned up when losing scope
}
void EncGOP::xWriteTrailingSEIMessages (SEIMessages& seiMessages, AccessUnit &accessUnit, int temporalId, const SPS *sps)
{
// Note: using accessUnit.end() works only as long as this function is called after slice coding and before EOS/EOB NAL units
AccessUnit::iterator pos = accessUnit.end();
xWriteSEISeparately(NAL_UNIT_SUFFIX_SEI, seiMessages, accessUnit, pos, temporalId, sps);
deleteSEIs(seiMessages);
}
void EncGOP::xWriteDuSEIMessages (SEIMessages& duInfoSeiMessages, AccessUnit &accessUnit, int temporalId, const SPS *sps, std::deque<DUData> &duData)
{
const HRD *hrd = sps->getVuiParameters()->getHrdParameters();
if( m_pcCfg->getDecodingUnitInfoSEIEnabled() && hrd->getSubPicCpbParamsPresentFlag() )
{
int naluIdx = 0;
AccessUnit::iterator nalu = accessUnit.begin();
// skip over first DU, we have a DU info SEI there already
while (naluIdx < duData[0].accumNalsDU && nalu!=accessUnit.end())
{
naluIdx++;
nalu++;
}
SEIMessages::iterator duSEI = duInfoSeiMessages.begin();
// loop over remaining DUs
for (int duIdx = 1; duIdx < duData.size(); duIdx++)
{
if (duSEI == duInfoSeiMessages.end())
{
// if the number of generated SEIs matches the number of DUs, this should not happen
CHECK(!(false), "Unspecified error");
return;
}
// write the next SEI
SEIMessages tmpSEI;
tmpSEI.push_back(*duSEI);
xWriteSEI(NAL_UNIT_PREFIX_SEI, tmpSEI, accessUnit, nalu, temporalId, sps);
// nalu points to the position after the SEI, so we have to increase the index as well
naluIdx++;
while ((naluIdx < duData[duIdx].accumNalsDU) && nalu!=accessUnit.end())
{
naluIdx++;
nalu++;
}
duSEI++;
}
}
deleteSEIs(duInfoSeiMessages);
}
void EncGOP::xCreateIRAPLeadingSEIMessages (SEIMessages& seiMessages, const SPS *sps, const PPS *pps)
{
OutputNALUnit nalu(NAL_UNIT_PREFIX_SEI);
if(m_pcCfg->getActiveParameterSetsSEIEnabled())
{
SEIActiveParameterSets *sei = new SEIActiveParameterSets;
#if HEVC_VPS
m_seiEncoder.initSEIActiveParameterSets (sei, m_pcCfg->getVPS(), sps);
#else
m_seiEncoder.initSEIActiveParameterSets(sei, sps);
#endif
seiMessages.push_back(sei);
}
if(m_pcCfg->getFramePackingArrangementSEIEnabled())
{
SEIFramePacking *sei = new SEIFramePacking;
m_seiEncoder.initSEIFramePacking (sei, m_iNumPicCoded);
seiMessages.push_back(sei);
}
if(m_pcCfg->getSegmentedRectFramePackingArrangementSEIEnabled())
{
SEISegmentedRectFramePacking *sei = new SEISegmentedRectFramePacking;
m_seiEncoder.initSEISegmentedRectFramePacking(sei);
seiMessages.push_back(sei);
}
if (m_pcCfg->getDisplayOrientationSEIAngle())
{
SEIDisplayOrientation *sei = new SEIDisplayOrientation;
m_seiEncoder.initSEIDisplayOrientation(sei);
seiMessages.push_back(sei);
}
if(m_pcCfg->getToneMappingInfoSEIEnabled())
{
SEIToneMappingInfo *sei = new SEIToneMappingInfo;
m_seiEncoder.initSEIToneMappingInfo (sei);
seiMessages.push_back(sei);
}
#if HEVC_TILES_WPP
if(m_pcCfg->getTMCTSSEIEnabled())
{
SEITempMotionConstrainedTileSets *sei = new SEITempMotionConstrainedTileSets;
m_seiEncoder.initSEITempMotionConstrainedTileSets(sei, pps);
seiMessages.push_back(sei);
}
#endif
if(m_pcCfg->getTimeCodeSEIEnabled())
{
SEITimeCode *seiTimeCode = new SEITimeCode;
m_seiEncoder.initSEITimeCode(seiTimeCode);
seiMessages.push_back(seiTimeCode);
}
if(m_pcCfg->getKneeSEIEnabled())
{
SEIKneeFunctionInfo *sei = new SEIKneeFunctionInfo;
m_seiEncoder.initSEIKneeFunctionInfo(sei);
seiMessages.push_back(sei);
}
if(m_pcCfg->getMasteringDisplaySEI().colourVolumeSEIEnabled)
{
const SEIMasteringDisplay &seiCfg=m_pcCfg->getMasteringDisplaySEI();
SEIMasteringDisplayColourVolume *sei = new SEIMasteringDisplayColourVolume;
sei->values = seiCfg;
seiMessages.push_back(sei);
}
if(m_pcCfg->getChromaResamplingFilterHintEnabled())
{
SEIChromaResamplingFilterHint *seiChromaResamplingFilterHint = new SEIChromaResamplingFilterHint;
m_seiEncoder.initSEIChromaResamplingFilterHint(seiChromaResamplingFilterHint, m_pcCfg->getChromaResamplingHorFilterIdc(), m_pcCfg->getChromaResamplingVerFilterIdc());
seiMessages.push_back(seiChromaResamplingFilterHint);
}
#if U0033_ALTERNATIVE_TRANSFER_CHARACTERISTICS_SEI
if(m_pcCfg->getSEIAlternativeTransferCharacteristicsSEIEnable())
{
SEIAlternativeTransferCharacteristics *seiAlternativeTransferCharacteristics = new SEIAlternativeTransferCharacteristics;
m_seiEncoder.initSEIAlternativeTransferCharacteristics(seiAlternativeTransferCharacteristics);
seiMessages.push_back(seiAlternativeTransferCharacteristics);
}
#endif
}
void EncGOP::xCreatePerPictureSEIMessages (int picInGOP, SEIMessages& seiMessages, SEIMessages& nestedSeiMessages, Slice *slice)
{
if( ( m_pcCfg->getBufferingPeriodSEIEnabled() ) && ( slice->getSliceType() == I_SLICE ) &&
( slice->getSPS()->getVuiParametersPresentFlag() ) &&
( ( slice->getSPS()->getVuiParameters()->getHrdParameters()->getNalHrdParametersPresentFlag() )
|| ( slice->getSPS()->getVuiParameters()->getHrdParameters()->getVclHrdParametersPresentFlag() ) ) )
{
SEIBufferingPeriod *bufferingPeriodSEI = new SEIBufferingPeriod();
m_seiEncoder.initSEIBufferingPeriod(bufferingPeriodSEI, slice);
seiMessages.push_back(bufferingPeriodSEI);
m_bufferingPeriodSEIPresentInAU = true;
if (m_pcCfg->getScalableNestingSEIEnabled())
{
SEIBufferingPeriod *bufferingPeriodSEIcopy = new SEIBufferingPeriod();
bufferingPeriodSEI->copyTo(*bufferingPeriodSEIcopy);
nestedSeiMessages.push_back(bufferingPeriodSEIcopy);
}
}
if (picInGOP ==0 && m_pcCfg->getSOPDescriptionSEIEnabled() ) // write SOP description SEI (if enabled) at the beginning of GOP
{
SEISOPDescription* sopDescriptionSEI = new SEISOPDescription();
m_seiEncoder.initSEISOPDescription(sopDescriptionSEI, slice, picInGOP, m_iLastIDR, m_iGopSize);
seiMessages.push_back(sopDescriptionSEI);
}
if( ( m_pcEncLib->getRecoveryPointSEIEnabled() ) && ( slice->getSliceType() == I_SLICE ) )
{
if( m_pcEncLib->getGradualDecodingRefreshInfoEnabled() && !slice->getRapPicFlag() )
{
// Gradual decoding refresh SEI
SEIGradualDecodingRefreshInfo *gradualDecodingRefreshInfoSEI = new SEIGradualDecodingRefreshInfo();
gradualDecodingRefreshInfoSEI->m_gdrForegroundFlag = true; // Indicating all "foreground"
seiMessages.push_back(gradualDecodingRefreshInfoSEI);
}
// Recovery point SEI
SEIRecoveryPoint *recoveryPointSEI = new SEIRecoveryPoint();
m_seiEncoder.initSEIRecoveryPoint(recoveryPointSEI, slice);
seiMessages.push_back(recoveryPointSEI);
}
if (m_pcCfg->getTemporalLevel0IndexSEIEnabled())
{
SEITemporalLevel0Index *temporalLevel0IndexSEI = new SEITemporalLevel0Index();
m_seiEncoder.initTemporalLevel0IndexSEI(temporalLevel0IndexSEI, slice);
seiMessages.push_back(temporalLevel0IndexSEI);
}
if( m_pcEncLib->getNoDisplaySEITLayer() && ( slice->getTLayer() >= m_pcEncLib->getNoDisplaySEITLayer() ) )
{
SEINoDisplay *seiNoDisplay = new SEINoDisplay;
seiNoDisplay->m_noDisplay = true;
seiMessages.push_back(seiNoDisplay);
}
// insert one Colour Remapping Info SEI for the picture (if the file exists)
if (!m_pcCfg->getColourRemapInfoSEIFileRoot().empty())
{
SEIColourRemappingInfo *seiColourRemappingInfo = new SEIColourRemappingInfo();
const bool success = m_seiEncoder.initSEIColourRemappingInfo(seiColourRemappingInfo, slice->getPOC() );
if(success)
{
seiMessages.push_back(seiColourRemappingInfo);
}
else
{
delete seiColourRemappingInfo;
}
}
}
void EncGOP::xCreateScalableNestingSEI (SEIMessages& seiMessages, SEIMessages& nestedSeiMessages)
{
SEIMessages tmpMessages;
while (!nestedSeiMessages.empty())
{
SEI* sei=nestedSeiMessages.front();
nestedSeiMessages.pop_front();
tmpMessages.push_back(sei);
SEIScalableNesting *nestingSEI = new SEIScalableNesting();
m_seiEncoder.initSEIScalableNesting(nestingSEI, tmpMessages);
seiMessages.push_back(nestingSEI);
tmpMessages.clear();
}
}
void EncGOP::xCreatePictureTimingSEI (int IRAPGOPid, SEIMessages& seiMessages, SEIMessages& nestedSeiMessages, SEIMessages& duInfoSeiMessages, Slice *slice, bool isField, std::deque<DUData> &duData)
{
const VUI *vui = slice->getSPS()->getVuiParameters();
const HRD *hrd = vui->getHrdParameters();
// update decoding unit parameters
if( ( m_pcCfg->getPictureTimingSEIEnabled() || m_pcCfg->getDecodingUnitInfoSEIEnabled() ) &&
( slice->getSPS()->getVuiParametersPresentFlag() ) &&
( hrd->getNalHrdParametersPresentFlag() || hrd->getVclHrdParametersPresentFlag() ) )
{
int picSptDpbOutputDuDelay = 0;
SEIPictureTiming *pictureTimingSEI = new SEIPictureTiming();
// DU parameters
if( hrd->getSubPicCpbParamsPresentFlag() )
{
uint32_t numDU = (uint32_t) duData.size();
pictureTimingSEI->m_numDecodingUnitsMinus1 = ( numDU - 1 );
pictureTimingSEI->m_duCommonCpbRemovalDelayFlag = false;
pictureTimingSEI->m_numNalusInDuMinus1.resize( numDU );
pictureTimingSEI->m_duCpbRemovalDelayMinus1.resize( numDU );
}
pictureTimingSEI->m_auCpbRemovalDelay = std::min<int>(std::max<int>(1, m_totalCoded - m_lastBPSEI), static_cast<int>(pow(2, static_cast<double>(hrd->getCpbRemovalDelayLengthMinus1()+1)))); // Syntax element signalled as minus, hence the .
pictureTimingSEI->m_picDpbOutputDelay = slice->getSPS()->getNumReorderPics(slice->getSPS()->getMaxTLayers()-1) + slice->getPOC() - m_totalCoded;
if(m_pcCfg->getEfficientFieldIRAPEnabled() && IRAPGOPid > 0 && IRAPGOPid < m_iGopSize)
{
// if pictures have been swapped there is likely one more picture delay on their tid. Very rough approximation
pictureTimingSEI->m_picDpbOutputDelay ++;
}
int factor = hrd->getTickDivisorMinus2() + 2;
pictureTimingSEI->m_picDpbOutputDuDelay = factor * pictureTimingSEI->m_picDpbOutputDelay;
if( m_pcCfg->getDecodingUnitInfoSEIEnabled() )
{
picSptDpbOutputDuDelay = factor * pictureTimingSEI->m_picDpbOutputDelay;
}
if (m_bufferingPeriodSEIPresentInAU)
{
m_lastBPSEI = m_totalCoded;
}
if( hrd->getSubPicCpbParamsPresentFlag() )
{
int i;
uint64_t ui64Tmp;
uint32_t uiPrev = 0;
uint32_t numDU = ( pictureTimingSEI->m_numDecodingUnitsMinus1 + 1 );
std::vector<uint32_t> &rDuCpbRemovalDelayMinus1 = pictureTimingSEI->m_duCpbRemovalDelayMinus1;
uint32_t maxDiff = ( hrd->getTickDivisorMinus2() + 2 ) - 1;
for( i = 0; i < numDU; i ++ )
{
pictureTimingSEI->m_numNalusInDuMinus1[ i ] = ( i == 0 ) ? ( duData[i].accumNalsDU - 1 ) : ( duData[i].accumNalsDU- duData[i-1].accumNalsDU - 1 );
}
if( numDU == 1 )
{
rDuCpbRemovalDelayMinus1[ 0 ] = 0; /* don't care */
}
else
{
rDuCpbRemovalDelayMinus1[ numDU - 1 ] = 0;/* by definition */
uint32_t tmp = 0;
uint32_t accum = 0;
for( i = ( numDU - 2 ); i >= 0; i -- )
{
ui64Tmp = ( ( ( duData[numDU - 1].accumBitsDU - duData[i].accumBitsDU ) * ( vui->getTimingInfo()->getTimeScale() / vui->getTimingInfo()->getNumUnitsInTick() ) * ( hrd->getTickDivisorMinus2() + 2 ) ) / ( m_pcCfg->getTargetBitrate() ) );
if( (uint32_t)ui64Tmp > maxDiff )
{
tmp ++;
}
}
uiPrev = 0;
uint32_t flag = 0;
for( i = ( numDU - 2 ); i >= 0; i -- )
{
flag = 0;
ui64Tmp = ( ( ( duData[numDU - 1].accumBitsDU - duData[i].accumBitsDU ) * ( vui->getTimingInfo()->getTimeScale() / vui->getTimingInfo()->getNumUnitsInTick() ) * ( hrd->getTickDivisorMinus2() + 2 ) ) / ( m_pcCfg->getTargetBitrate() ) );
if( (uint32_t)ui64Tmp > maxDiff )
{
if(uiPrev >= maxDiff - tmp)
{
ui64Tmp = uiPrev + 1;
flag = 1;
}
else ui64Tmp = maxDiff - tmp + 1;
}
rDuCpbRemovalDelayMinus1[ i ] = (uint32_t)ui64Tmp - uiPrev - 1;
if( (int)rDuCpbRemovalDelayMinus1[ i ] < 0 )
{
rDuCpbRemovalDelayMinus1[ i ] = 0;
}
else if (tmp > 0 && flag == 1)
{
tmp --;
}
accum += rDuCpbRemovalDelayMinus1[ i ] + 1;
uiPrev = accum;
}
}
}
if( m_pcCfg->getPictureTimingSEIEnabled() )
{
pictureTimingSEI->m_picStruct = (isField && slice->getPic()->topField)? 1 : isField? 2 : 0;
seiMessages.push_back(pictureTimingSEI);
if ( m_pcCfg->getScalableNestingSEIEnabled() ) // put picture timing SEI into scalable nesting SEI
{
SEIPictureTiming *pictureTimingSEIcopy = new SEIPictureTiming();
pictureTimingSEI->copyTo(*pictureTimingSEIcopy);
nestedSeiMessages.push_back(pictureTimingSEIcopy);
}
}
if( m_pcCfg->getDecodingUnitInfoSEIEnabled() && hrd->getSubPicCpbParamsPresentFlag() )
{
for( int i = 0; i < ( pictureTimingSEI->m_numDecodingUnitsMinus1 + 1 ); i ++ )
{
SEIDecodingUnitInfo *duInfoSEI = new SEIDecodingUnitInfo();
duInfoSEI->m_decodingUnitIdx = i;
duInfoSEI->m_duSptCpbRemovalDelay = pictureTimingSEI->m_duCpbRemovalDelayMinus1[i] + 1;
duInfoSEI->m_dpbOutputDuDelayPresentFlag = false;
duInfoSEI->m_picSptDpbOutputDuDelay = picSptDpbOutputDuDelay;
duInfoSeiMessages.push_back(duInfoSEI);
}
}
if( !m_pcCfg->getPictureTimingSEIEnabled() && pictureTimingSEI )
{
delete pictureTimingSEI;
}
}
}
void EncGOP::xUpdateDuData(AccessUnit &testAU, std::deque<DUData> &duData)
{
if (duData.empty())
{
return;
}
// fix first
uint32_t numNalUnits = (uint32_t)testAU.size();
uint32_t numRBSPBytes = 0;
for (AccessUnit::const_iterator it = testAU.begin(); it != testAU.end(); it++)
{
numRBSPBytes += uint32_t((*it)->m_nalUnitData.str().size());
}
duData[0].accumBitsDU += ( numRBSPBytes << 3 );
duData[0].accumNalsDU += numNalUnits;
// adapt cumulative sums for all following DUs
// and add one DU info SEI, if enabled
for (int i=1; i<duData.size(); i++)
{
if (m_pcCfg->getDecodingUnitInfoSEIEnabled())
{
numNalUnits += 1;
numRBSPBytes += ( 5 << 3 );
}
duData[i].accumBitsDU += numRBSPBytes; // probably around 5 bytes
duData[i].accumNalsDU += numNalUnits;
}
// The last DU may have a trailing SEI
if (m_pcCfg->getDecodedPictureHashSEIType()!=HASHTYPE_NONE)
{
duData.back().accumBitsDU += ( 20 << 3 ); // probably around 20 bytes - should be further adjusted, e.g. by type
duData.back().accumNalsDU += 1;
}
}
void EncGOP::xUpdateTimingSEI(SEIPictureTiming *pictureTimingSEI, std::deque<DUData> &duData, const SPS *sps)
{
if (!pictureTimingSEI)
{
return;
}
const VUI *vui = sps->getVuiParameters();
const HRD *hrd = vui->getHrdParameters();
if( hrd->getSubPicCpbParamsPresentFlag() )
{
int i;
uint64_t ui64Tmp;
uint32_t uiPrev = 0;
uint32_t numDU = ( pictureTimingSEI->m_numDecodingUnitsMinus1 + 1 );
std::vector<uint32_t> &rDuCpbRemovalDelayMinus1 = pictureTimingSEI->m_duCpbRemovalDelayMinus1;
uint32_t maxDiff = ( hrd->getTickDivisorMinus2() + 2 ) - 1;
for( i = 0; i < numDU; i ++ )
{
pictureTimingSEI->m_numNalusInDuMinus1[ i ] = ( i == 0 ) ? ( duData[i].accumNalsDU - 1 ) : ( duData[i].accumNalsDU- duData[i-1].accumNalsDU - 1 );
}
if( numDU == 1 )
{
rDuCpbRemovalDelayMinus1[ 0 ] = 0; /* don't care */
}
else
{
rDuCpbRemovalDelayMinus1[ numDU - 1 ] = 0;/* by definition */
uint32_t tmp = 0;
uint32_t accum = 0;
for( i = ( numDU - 2 ); i >= 0; i -- )
{
ui64Tmp = ( ( ( duData[numDU - 1].accumBitsDU - duData[i].accumBitsDU ) * ( vui->getTimingInfo()->getTimeScale() / vui->getTimingInfo()->getNumUnitsInTick() ) * ( hrd->getTickDivisorMinus2() + 2 ) ) / ( m_pcCfg->getTargetBitrate() ) );
if( (uint32_t)ui64Tmp > maxDiff )
{
tmp ++;
}
}
uiPrev = 0;
uint32_t flag = 0;
for( i = ( numDU - 2 ); i >= 0; i -- )
{
flag = 0;
ui64Tmp = ( ( ( duData[numDU - 1].accumBitsDU - duData[i].accumBitsDU ) * ( vui->getTimingInfo()->getTimeScale() / vui->getTimingInfo()->getNumUnitsInTick() ) * ( hrd->getTickDivisorMinus2() + 2 ) ) / ( m_pcCfg->getTargetBitrate() ) );
if( (uint32_t)ui64Tmp > maxDiff )
{
if(uiPrev >= maxDiff - tmp)
{
ui64Tmp = uiPrev + 1;
flag = 1;
}
else ui64Tmp = maxDiff - tmp + 1;
}
rDuCpbRemovalDelayMinus1[ i ] = (uint32_t)ui64Tmp - uiPrev - 1;
if( (int)rDuCpbRemovalDelayMinus1[ i ] < 0 )
{
rDuCpbRemovalDelayMinus1[ i ] = 0;
}
else if (tmp > 0 && flag == 1)
{
tmp --;
}
accum += rDuCpbRemovalDelayMinus1[ i ] + 1;
uiPrev = accum;
}
}
}
}
void EncGOP::xUpdateDuInfoSEI(SEIMessages &duInfoSeiMessages, SEIPictureTiming *pictureTimingSEI)
{
if (duInfoSeiMessages.empty() || (pictureTimingSEI == NULL))
{
return;
}
int i=0;
for (SEIMessages::iterator du = duInfoSeiMessages.begin(); du!= duInfoSeiMessages.end(); du++)
{
SEIDecodingUnitInfo *duInfoSEI = (SEIDecodingUnitInfo*) (*du);
duInfoSEI->m_decodingUnitIdx = i;
duInfoSEI->m_duSptCpbRemovalDelay = pictureTimingSEI->m_duCpbRemovalDelayMinus1[i] + 1;
duInfoSEI->m_dpbOutputDuDelayPresentFlag = false;
i++;
}
}
static void
cabac_zero_word_padding(Slice *const pcSlice, Picture *const pcPic, const std::size_t binCountsInNalUnits, const std::size_t numBytesInVclNalUnits, std::ostringstream &nalUnitData, const bool cabacZeroWordPaddingEnabled)
{
const SPS &sps=*(pcSlice->getSPS());
const ChromaFormat format = sps.getChromaFormatIdc();
const int log2subWidthCxsubHeightC = (::getComponentScaleX(COMPONENT_Cb, format)+::getComponentScaleY(COMPONENT_Cb, format));
const int minCuWidth = pcPic->cs->pcv->minCUWidth;
const int minCuHeight = pcPic->cs->pcv->minCUHeight;
const int paddedWidth = ((sps.getPicWidthInLumaSamples() + minCuWidth - 1) / minCuWidth) * minCuWidth;
const int paddedHeight= ((sps.getPicHeightInLumaSamples() + minCuHeight - 1) / minCuHeight) * minCuHeight;
const int rawBits = paddedWidth * paddedHeight *
(sps.getBitDepth(CHANNEL_TYPE_LUMA) + 2*(sps.getBitDepth(CHANNEL_TYPE_CHROMA)>>log2subWidthCxsubHeightC));
const std::size_t threshold = (32/3)*numBytesInVclNalUnits + (rawBits/32);
if (binCountsInNalUnits >= threshold)
{
// need to add additional cabac zero words (each one accounts for 3 bytes (=00 00 03)) to increase numBytesInVclNalUnits
const std::size_t targetNumBytesInVclNalUnits = ((binCountsInNalUnits - (rawBits/32))*3+31)/32;
if (targetNumBytesInVclNalUnits>numBytesInVclNalUnits) // It should be!
{
const std::size_t numberOfAdditionalBytesNeeded=targetNumBytesInVclNalUnits - numBytesInVclNalUnits;
const std::size_t numberOfAdditionalCabacZeroWords=(numberOfAdditionalBytesNeeded+2)/3;
const std::size_t numberOfAdditionalCabacZeroBytes=numberOfAdditionalCabacZeroWords*3;
if (cabacZeroWordPaddingEnabled)
{
std::vector<uint8_t> zeroBytesPadding(numberOfAdditionalCabacZeroBytes, uint8_t(0));
for(std::size_t i=0; i<numberOfAdditionalCabacZeroWords; i++)
{
zeroBytesPadding[i*3+2]=3; // 00 00 03
}
nalUnitData.write(reinterpret_cast<const char*>(&(zeroBytesPadding[0])), numberOfAdditionalCabacZeroBytes);
msg( NOTICE, "Adding %d bytes of padding\n", uint32_t( numberOfAdditionalCabacZeroWords * 3 ) );
}
else
{
msg( NOTICE, "Standard would normally require adding %d bytes of padding\n", uint32_t( numberOfAdditionalCabacZeroWords * 3 ) );
}
}
}
}
class EfficientFieldIRAPMapping
{
private:
int IRAPGOPid;
bool IRAPtoReorder;
bool swapIRAPForward;
public:
EfficientFieldIRAPMapping() :
IRAPGOPid(-1),
IRAPtoReorder(false),
swapIRAPForward(false)
{ }
void initialize(const bool isField, const int gopSize, const int POCLast, const int numPicRcvd, const int lastIDR, EncGOP *pEncGop, EncCfg *pCfg);
int adjustGOPid(const int gopID);
int restoreGOPid(const int gopID);
int GetIRAPGOPid() const { return IRAPGOPid; }
};
void EfficientFieldIRAPMapping::initialize(const bool isField, const int gopSize, const int POCLast, const int numPicRcvd, const int lastIDR, EncGOP *pEncGop, EncCfg *pCfg )
{
if(isField)
{
int pocCurr;
for ( int iGOPid=0; iGOPid < gopSize; iGOPid++ )
{
// determine actual POC
if(POCLast == 0) //case first frame or first top field
{
pocCurr=0;
}
else if(POCLast == 1 && isField) //case first bottom field, just like the first frame, the poc computation is not right anymore, we set the right value
{
pocCurr = 1;
}
else
{
pocCurr = POCLast - numPicRcvd + pCfg->getGOPEntry(iGOPid).m_POC - isField;
}
// check if POC corresponds to IRAP
NalUnitType tmpUnitType = pEncGop->getNalUnitType(pocCurr, lastIDR, isField);
if(tmpUnitType >= NAL_UNIT_CODED_SLICE_BLA_W_LP && tmpUnitType <= NAL_UNIT_CODED_SLICE_CRA) // if picture is an IRAP
{
if(pocCurr%2 == 0 && iGOPid < gopSize-1 && pCfg->getGOPEntry(iGOPid).m_POC == pCfg->getGOPEntry(iGOPid+1).m_POC-1)
{ // if top field and following picture in enc order is associated bottom field
IRAPGOPid = iGOPid;
IRAPtoReorder = true;
swapIRAPForward = true;
break;
}
if(pocCurr%2 != 0 && iGOPid > 0 && pCfg->getGOPEntry(iGOPid).m_POC == pCfg->getGOPEntry(iGOPid-1).m_POC+1)
{
// if picture is an IRAP remember to process it first
IRAPGOPid = iGOPid;
IRAPtoReorder = true;