Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file QuantRDOQ.cpp
\brief transform and quantization class
*/
#include "QuantRDOQ.h"
#include "UnitTools.h"
#include "ContextModelling.h"
#include "CodingStructure.h"
#include "CrossCompPrediction.h"
#include "dtrace_next.h"
#include "dtrace_buffer.h"
#include <stdlib.h>
#include <limits>
#include <memory.h>
struct coeffGroupRDStats
{
int iNNZbeforePos0;
double d64CodedLevelandDist; // distortion and level cost only
double d64UncodedDist; // all zero coded block distortion
double d64SigCost;
double d64SigCost_0;
};
//! \ingroup CommonLib
//! \{
// ====================================================================================================================
// Constants
// ====================================================================================================================
// ====================================================================================================================
// Static functions
// ====================================================================================================================
// ====================================================================================================================
// QuantRDOQ class member functions
// ====================================================================================================================
QuantRDOQ::QuantRDOQ( const Quant* other ) : Quant( other )
{
const QuantRDOQ *rdoq = dynamic_cast<const QuantRDOQ*>( other );
CHECK( other && !rdoq, "The RDOQ cast must be successfull!" );
#if HEVC_USE_SCALING_LISTS
xInitScalingList( rdoq );
#endif
}
QuantRDOQ::~QuantRDOQ()
{
#if HEVC_USE_SCALING_LISTS
xDestroyScalingList();
#endif
}
/** Get the best level in RD sense
*
* \returns best quantized transform level for given scan position
*
* This method calculates the best quantized transform level for a given scan position.
*/
inline uint32_t QuantRDOQ::xGetCodedLevel( double& rd64CodedCost,
double& rd64CodedCost0,
double& rd64CodedCostSig,
Intermediate_Int lLevelDouble,
uint32_t uiMaxAbsLevel,
const BinFracBits* fracBitsSig,
const BinFracBits& fracBitsPar,
const BinFracBits& fracBitsGt1,
const BinFracBits& fracBitsGt2,
const int remGt2Bins,
const int remRegBins,
unsigned goRiceZero,

Karsten Suehring
committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
uint16_t ui16AbsGoRice,
int iQBits,
double errorScale,
bool bLast,
bool useLimitedPrefixLength,
const int maxLog2TrDynamicRange
) const
{
double dCurrCostSig = 0;
uint32_t uiBestAbsLevel = 0;
if( !bLast && uiMaxAbsLevel < 3 )
{
rd64CodedCostSig = xGetRateSigCoef( *fracBitsSig, 0 );
rd64CodedCost = rd64CodedCost0 + rd64CodedCostSig;
if( uiMaxAbsLevel == 0 )
{
return uiBestAbsLevel;
}
}
else
{
rd64CodedCost = MAX_DOUBLE;
}
if( !bLast )
{
dCurrCostSig = xGetRateSigCoef( *fracBitsSig, 1 );
}
uint32_t uiMinAbsLevel = ( uiMaxAbsLevel > 1 ? uiMaxAbsLevel - 1 : 1 );
for( int uiAbsLevel = uiMaxAbsLevel; uiAbsLevel >= uiMinAbsLevel ; uiAbsLevel-- )
{
double dErr = double( lLevelDouble - ( Intermediate_Int(uiAbsLevel) << iQBits ) );
Muhammed Coban
committed
double dCurrCost = dErr * dErr * errorScale + xGetICost( xGetICRate( uiAbsLevel, fracBitsPar, fracBitsGt1, fracBitsGt2, remGt2Bins, remRegBins, goRiceZero, ui16AbsGoRice, true, maxLog2TrDynamicRange ) );

Karsten Suehring
committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
dCurrCost += dCurrCostSig;
if( dCurrCost < rd64CodedCost )
{
uiBestAbsLevel = uiAbsLevel;
rd64CodedCost = dCurrCost;
rd64CodedCostSig = dCurrCostSig;
}
}
return uiBestAbsLevel;
}
/** Calculates the cost for specific absolute transform level
* \param uiAbsLevel scaled quantized level
* \param ui16CtxNumOne current ctxInc for coeff_abs_level_greater1 (1st bin of coeff_abs_level_minus1 in AVC)
* \param ui16CtxNumAbs current ctxInc for coeff_abs_level_greater2 (remaining bins of coeff_abs_level_minus1 in AVC)
* \param ui16AbsGoRice Rice parameter for coeff_abs_level_minus3
* \param c1Idx
* \param c2Idx
* \param useLimitedPrefixLength
* \param maxLog2TrDynamicRange
* \returns cost of given absolute transform level
*/
inline int QuantRDOQ::xGetICRate( const uint32_t uiAbsLevel,
const BinFracBits& fracBitsPar,
const BinFracBits& fracBitsGt1,
const BinFracBits& fracBitsGt2,
const int remGt2Bins,
const int remRegBins,
unsigned goRiceZero,

Karsten Suehring
committed
const uint16_t ui16AbsGoRice,
const bool useLimitedPrefixLength,
const int maxLog2TrDynamicRange ) const
{
if( remRegBins < 4 )
{
int iRate = int( xGetIEPRate() ); // cost of sign bit
uint32_t symbol = ( uiAbsLevel == 0 ? goRiceZero : uiAbsLevel <= goRiceZero ? uiAbsLevel-1 : uiAbsLevel );
uint32_t length;
Muhammed Coban
committed
const int threshold = COEF_REMAIN_BIN_REDUCTION;
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
if( symbol < ( threshold << ui16AbsGoRice ) )
{
length = symbol >> ui16AbsGoRice;
iRate += ( length + 1 + ui16AbsGoRice ) << SCALE_BITS;
}
else if( useLimitedPrefixLength )
{
const uint32_t maximumPrefixLength = ( 32 - ( COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange ) );
uint32_t prefixLength = 0;
uint32_t suffix = ( symbol >> ui16AbsGoRice ) - COEF_REMAIN_BIN_REDUCTION;
while( ( prefixLength < maximumPrefixLength ) && ( suffix > ( ( 2 << prefixLength ) - 2 ) ) )
{
prefixLength++;
}
const uint32_t suffixLength = ( prefixLength == maximumPrefixLength ) ? ( maxLog2TrDynamicRange - ui16AbsGoRice ) : ( prefixLength + 1/*separator*/ );
iRate += ( COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + ui16AbsGoRice ) << SCALE_BITS;
}
else
{
length = ui16AbsGoRice;
symbol = symbol - ( threshold << ui16AbsGoRice );
while( symbol >= ( 1 << length ) )
{
symbol -= ( 1 << ( length++ ) );
}
iRate += ( threshold + length + 1 - ui16AbsGoRice + length ) << SCALE_BITS;
}
return iRate;
}
int iRate = int( xGetIEPRate() ); // cost of sign bit
const uint32_t cthres = 4;
if( uiAbsLevel >= cthres )
{
uint32_t symbol = ( uiAbsLevel - cthres ) >> 1;

Karsten Suehring
committed
uint32_t length;
Muhammed Coban
committed
const int threshold = COEF_REMAIN_BIN_REDUCTION;

Karsten Suehring
committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
if( symbol < ( threshold << ui16AbsGoRice ) )
{
length = symbol >> ui16AbsGoRice;
iRate += ( length + 1 + ui16AbsGoRice ) << SCALE_BITS;
}
else if( useLimitedPrefixLength )
{
const uint32_t maximumPrefixLength = ( 32 - ( COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange ) );
uint32_t prefixLength = 0;
uint32_t suffix = ( symbol >> ui16AbsGoRice ) - COEF_REMAIN_BIN_REDUCTION;
while( ( prefixLength < maximumPrefixLength ) && ( suffix > ( ( 2 << prefixLength ) - 2 ) ) )
{
prefixLength++;
}
const uint32_t suffixLength = ( prefixLength == maximumPrefixLength ) ? ( maxLog2TrDynamicRange - ui16AbsGoRice ) : ( prefixLength + 1/*separator*/ );
iRate += ( COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + ui16AbsGoRice ) << SCALE_BITS;
}
else
{
length = ui16AbsGoRice;
symbol = symbol - ( threshold << ui16AbsGoRice );
while( symbol >= ( 1 << length ) )
{
symbol -= ( 1 << ( length++ ) );
}
iRate += ( threshold + length + 1 - ui16AbsGoRice + length ) << SCALE_BITS;
}
iRate += fracBitsGt1.intBits[1];
iRate += fracBitsPar.intBits[( uiAbsLevel - 2 ) & 1];

Karsten Suehring
committed
}
else if( uiAbsLevel == 1 )
{
iRate += fracBitsGt1.intBits[0];

Karsten Suehring
committed
}
else if( uiAbsLevel == 2 )
{
iRate += fracBitsGt1.intBits[1];
iRate += fracBitsPar.intBits[0];
iRate += fracBitsGt2.intBits[0];

Karsten Suehring
committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
}
else if( uiAbsLevel == 3 )
{
iRate += fracBitsGt1.intBits[1];
iRate += fracBitsPar.intBits[1];
iRate += fracBitsGt2.intBits[0];
}
else
{
iRate = 0;
}
return iRate;
}
inline double QuantRDOQ::xGetRateSigCoeffGroup( const BinFracBits& fracBitsSigCG, unsigned uiSignificanceCoeffGroup ) const
{
return xGetICost( fracBitsSigCG.intBits[uiSignificanceCoeffGroup] );
}
/** Calculates the cost of signaling the last significant coefficient in the block
* \param uiPosX X coordinate of the last significant coefficient
* \param uiPosY Y coordinate of the last significant coefficient
* \param component colour component ID
* \returns cost of last significant coefficient
*/
/*
* \param uiWidth width of the transform unit (TU)
*/
inline double QuantRDOQ::xGetRateLast( const int* lastBitsX, const int* lastBitsY, unsigned PosX, unsigned PosY ) const
{
uint32_t CtxX = g_uiGroupIdx[PosX];
uint32_t CtxY = g_uiGroupIdx[PosY];
double Cost = lastBitsX[ CtxX ] + lastBitsY[ CtxY ];
if( CtxX > 3 )
{
Cost += xGetIEPRate() * ((CtxX-2)>>1);
}
if( CtxY > 3 )
{
Cost += xGetIEPRate() * ((CtxY-2)>>1);
}
return xGetICost( Cost );
}
inline double QuantRDOQ::xGetRateSigCoef( const BinFracBits& fracBitsSig, unsigned uiSignificance ) const
{
return xGetICost( fracBitsSig.intBits[uiSignificance] );
}
/** Get the cost for a specific rate
* \param dRate rate of a bit
* \returns cost at the specific rate
*/
inline double QuantRDOQ::xGetICost ( double dRate ) const
{
return m_dLambda * dRate;
}
/** Get the cost of an equal probable bit
* \returns cost of equal probable bit
*/
inline double QuantRDOQ::xGetIEPRate ( ) const
{
return 32768;
}
#if HEVC_USE_SCALING_LISTS
/** set quantized matrix coefficient for encode
* \param scalingList quantized matrix address
* \param format chroma format
* \param maxLog2TrDynamicRange
* \param bitDepths reference to bit depth array for all channels
*/
void QuantRDOQ::setScalingList(ScalingList *scalingList, const int maxLog2TrDynamicRange[MAX_NUM_CHANNEL_TYPE], const BitDepths &bitDepths)
{
Quant::setScalingList( scalingList, maxLog2TrDynamicRange, bitDepths );
const int minimumQp = 0;
const int maximumQp = SCALING_LIST_REM_NUM;
for(uint32_t size = 0; size < SCALING_LIST_SIZE_NUM; size++)
{
for(uint32_t list = 0; list < SCALING_LIST_NUM; list++)
{
for(int qp = minimumQp; qp < maximumQp; qp++)
{
// xSetScalingListEnc(scalingList,list,size,qp);
// xSetScalingListDec(*scalingList,list,size,qp);
xSetErrScaleCoeff(list,size, size,qp,maxLog2TrDynamicRange, bitDepths);
}
}
}
}
#if HM_QTBT_AS_IN_JEM_QUANT
#endif
#else
double QuantRDOQ::xGetErrScaleCoeff( const bool needsSqrt2, SizeType width, SizeType height, int qp, const int maxLog2TrDynamicRange, const int channelBitDepth )

Karsten Suehring
committed
{
const int iTransformShift = getTransformShift(channelBitDepth, Size(width, height), maxLog2TrDynamicRange);
#if HM_QTBT_AS_IN_JEM_QUANT
double dErrScale = (double)( 1 << SCALE_BITS ); // Compensate for scaling of bitcount in Lagrange cost function
double dTransShift = (double)iTransformShift + ( needsSqrt2 ? -0.5 : 0.0 );
dErrScale = dErrScale*pow( 2.0, ( -2.0*dTransShift ) ); // Compensate for scaling through forward transform
int QStep = ( needsSqrt2 ? ( ( g_quantScales[qp] * 181 ) >> 7 ) : g_quantScales[qp] );

Karsten Suehring
committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
double finalErrScale = dErrScale / QStep / QStep / (1 << (DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth) << 1));
#else
int errShift = SCALE_BITS - ((iTransformShift + DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth)) << 1);
double dErrScale = exp2( double( errShift ) );
double finalErrScale = dErrScale / double( g_quantScales[qp] * g_quantScales[qp] );
#endif
return finalErrScale;
}
#endif
#if HEVC_USE_SCALING_LISTS
/** set error scale coefficients
* \param list list ID
* \param size
* \param qp quantization parameter
* \param maxLog2TrDynamicRange
* \param bitDepths reference to bit depth array for all channels
*/
void QuantRDOQ::xSetErrScaleCoeff( uint32_t list, uint32_t sizeX, uint32_t sizeY, int qp, const int maxLog2TrDynamicRange[MAX_NUM_CHANNEL_TYPE], const BitDepths &bitDepths )
{
const int width = g_scalingListSizeX[sizeX];
const int height = g_scalingListSizeX[sizeY];
const ChannelType channelType = ( ( list == 0 ) || ( list == MAX_NUM_COMPONENT ) ) ? CHANNEL_TYPE_LUMA : CHANNEL_TYPE_CHROMA;
const int channelBitDepth = bitDepths.recon[channelType];
const int iTransformShift = getTransformShift( channelBitDepth, Size( g_scalingListSizeX[sizeX], g_scalingListSizeX[sizeY] ), maxLog2TrDynamicRange[channelType] ); // Represents scaling through forward transform
uint32_t i, uiMaxNumCoeff = width * height;
int *piQuantcoeff;
double *pdErrScale;
piQuantcoeff = getQuantCoeff( list, qp, sizeX, sizeY );
pdErrScale = xGetErrScaleCoeff( list, sizeX, sizeY, qp );
#if HM_QTBT_AS_IN_JEM_QUANT
double dErrScale = (double)( 1 << SCALE_BITS ); // Compensate for scaling of bitcount in Lagrange cost function
bool needsSqrt2 = TU::needsBlockSizeTrafoScale( Size( g_scalingListSizeX[sizeX], g_scalingListSizeX[sizeY] ) );// ( ( (sizeX+sizeY) & 1 ) !=0 );
double dTransShift = (double)iTransformShift + ( needsSqrt2 ? -0.5 : 0.0 );

Karsten Suehring
committed
dErrScale = dErrScale*pow( 2.0, ( -2.0*dTransShift ) ); // Compensate for scaling through forward transform
for( i = 0; i < uiMaxNumCoeff; i++ )
{
pdErrScale[i] = dErrScale / piQuantcoeff[i] / piQuantcoeff[i]
/ (1 << (DISTORTION_PRECISION_ADJUSTMENT(bitDepths.recon[channelType]) << 1));
}
int QStep = ( needsSqrt2 ? ( ( g_quantScales[qp] * 181 ) >> 7 ) : g_quantScales[qp] );

Karsten Suehring
committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
xGetErrScaleCoeffNoScalingList(list, sizeX, sizeY, qp) =
dErrScale / QStep / QStep / (1 << (DISTORTION_PRECISION_ADJUSTMENT(bitDepths.recon[channelType]) << 1));
#else
int errShift = SCALE_BITS - ((iTransformShift + DISTORTION_PRECISION_ADJUSTMENT(bitDepths.recon[channelType])) << 1);
double dErrScale = exp2( double( errShift ) );
for( i = 0; i < uiMaxNumCoeff; i++ )
{
pdErrScale[i] = dErrScale / double( piQuantcoeff[i] * piQuantcoeff[i] );
}
xGetErrScaleCoeffNoScalingList( list, sizeX, sizeY, qp ) = dErrScale / double( g_quantScales[qp] * g_quantScales[qp] );
#endif
}
/** set flat matrix value to quantized coefficient
*/
void QuantRDOQ::setFlatScalingList(const int maxLog2TrDynamicRange[MAX_NUM_CHANNEL_TYPE], const BitDepths &bitDepths)
{
Quant::setFlatScalingList( maxLog2TrDynamicRange, bitDepths );
const int minimumQp = 0;
const int maximumQp = SCALING_LIST_REM_NUM;
for(uint32_t sizeX = 0; sizeX < SCALING_LIST_SIZE_NUM; sizeX++)
{
for(uint32_t sizeY = 0; sizeY < SCALING_LIST_SIZE_NUM; sizeY++)
{
for(uint32_t list = 0; list < SCALING_LIST_NUM; list++)
{
for(int qp = minimumQp; qp < maximumQp; qp++)
{
xSetErrScaleCoeff( list, sizeX, sizeY, qp, maxLog2TrDynamicRange, bitDepths );
}
}
}
}
}
/** initialization process of scaling list array
*/
void QuantRDOQ::xInitScalingList( const QuantRDOQ* other )
{
m_isErrScaleListOwner = other == nullptr;
for(uint32_t sizeIdX = 0; sizeIdX < SCALING_LIST_SIZE_NUM; sizeIdX++)
{
for(uint32_t sizeIdY = 0; sizeIdY < SCALING_LIST_SIZE_NUM; sizeIdY++)
{
for(uint32_t qp = 0; qp < SCALING_LIST_REM_NUM; qp++)
{
for(uint32_t listId = 0; listId < SCALING_LIST_NUM; listId++)
{
if( m_isErrScaleListOwner )
{
m_errScale[sizeIdX][sizeIdY][listId][qp] = new double[g_scalingListSizeX[sizeIdX] * g_scalingListSizeX[sizeIdY]];
}
else
{
m_errScale[sizeIdX][sizeIdY][listId][qp] = other->m_errScale[sizeIdX][sizeIdY][listId][qp];
}
} // listID loop
}
}
}
}
/** destroy quantization matrix array
*/
void QuantRDOQ::xDestroyScalingList()
{
if( !m_isErrScaleListOwner ) return;
for(uint32_t sizeIdX = 0; sizeIdX < SCALING_LIST_SIZE_NUM; sizeIdX++)
{
for(uint32_t sizeIdY = 0; sizeIdY < SCALING_LIST_SIZE_NUM; sizeIdY++)
{
for(uint32_t listId = 0; listId < SCALING_LIST_NUM; listId++)
{
for(uint32_t qp = 0; qp < SCALING_LIST_REM_NUM; qp++)
{
if(m_errScale[sizeIdX][sizeIdY][listId][qp])
{
delete [] m_errScale[sizeIdX][sizeIdY][listId][qp];
}
}
}
}
}
// Quant::destroyScalingList();
}
#endif
void QuantRDOQ::quant(TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &pSrc, TCoeff &uiAbsSum, const QpParam &cQP, const Ctx& ctx)
{
const CompArea &rect = tu.blocks[compID];
const uint32_t uiWidth = rect.width;
const uint32_t uiHeight = rect.height;
const CCoeffBuf &piCoef = pSrc;
CoeffBuf piQCoef = tu.getCoeffs(compID);

Karsten Suehring
committed
bool useRDOQ = useTransformSkip ? m_useRDOQTS : m_useRDOQ;
if( !tu.cu->ispMode || !isLuma(compID) )

Karsten Suehring
committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
{
useRDOQ &= uiWidth > 2;
useRDOQ &= uiHeight > 2;
}
if (useRDOQ && (isLuma(compID) || RDOQ_CHROMA))
{
#if T0196_SELECTIVE_RDOQ
if (!m_useSelectiveRDOQ || xNeedRDOQ(tu, compID, piCoef, cQP))
{
#endif
xRateDistOptQuant( tu, compID, pSrc, uiAbsSum, cQP, ctx );
#if T0196_SELECTIVE_RDOQ
}
else
{
piQCoef.fill(0);
uiAbsSum = 0;
}
#endif
}
else
{
Quant::quant( tu, compID, pSrc, uiAbsSum, cQP, ctx );
}
}
void QuantRDOQ::xRateDistOptQuant(TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &pSrc, TCoeff &uiAbsSum, const QpParam &cQP, const Ctx &ctx)
{
const FracBitsAccess& fracBits = ctx.getFracBitsAcess();
const SPS &sps = *tu.cs->sps;
const CompArea &rect = tu.blocks[compID];
const uint32_t uiWidth = rect.width;
const uint32_t uiHeight = rect.height;
const ChannelType chType = toChannelType(compID);
const int channelBitDepth = sps.getBitDepth( chType );
const bool extendedPrecision = sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag();
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange(chType);
const bool useIntraSubPartitions = tu.cu->ispMode && isLuma(compID);

Karsten Suehring
committed
/* for 422 chroma blocks, the effective scaling applied during transformation is not a power of 2, hence it cannot be
* implemented as a bit-shift (the quantised result will be sqrt(2) * larger than required). Alternatively, adjust the
* uiLog2TrSize applied in iTransformShift, such that the result is 1/sqrt(2) the required result (i.e. smaller)
* Then a QP+3 (sqrt(2)) or QP-3 (1/sqrt(2)) method could be used to get the required result
*/
// Represents scaling through forward transform
int iTransformShift = getTransformShift(channelBitDepth, rect.size(), maxLog2TrDynamicRange);

Karsten Suehring
committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
{
iTransformShift = std::max<int>(0, iTransformShift);
}
double d64BlockUncodedCost = 0;
const uint32_t uiLog2BlockWidth = g_aucLog2[uiWidth];
#if HEVC_USE_SCALING_LISTS
const uint32_t uiLog2BlockHeight = g_aucLog2[uiHeight];
#endif
const uint32_t uiMaxNumCoeff = rect.area();
CHECK(compID >= MAX_NUM_TBLOCKS, "Invalid component ID");
#if HEVC_USE_SCALING_LISTS
int scalingListType = getScalingListType(tu.cu->predMode, compID);
CHECK(scalingListType >= SCALING_LIST_NUM, "Invalid scaling list");
#endif
const TCoeff *plSrcCoeff = pSrc.buf;
TCoeff *piDstCoeff = tu.getCoeffs(compID).buf;
double *pdCostCoeff = m_pdCostCoeff;
double *pdCostSig = m_pdCostSig;
double *pdCostCoeff0 = m_pdCostCoeff0;
#if HEVC_USE_SIGN_HIDING
int *rateIncUp = m_rateIncUp;
int *rateIncDown = m_rateIncDown;
int *sigRateDelta = m_sigRateDelta;
TCoeff *deltaU = m_deltaU;
#endif
memset(piDstCoeff, 0, sizeof(*piDstCoeff) * uiMaxNumCoeff);

Karsten Suehring
committed
memset( m_pdCostCoeff, 0, sizeof( double ) * uiMaxNumCoeff );
memset( m_pdCostSig, 0, sizeof( double ) * uiMaxNumCoeff );
#if HEVC_USE_SIGN_HIDING
memset( m_rateIncUp, 0, sizeof( int ) * uiMaxNumCoeff );
memset( m_rateIncDown, 0, sizeof( int ) * uiMaxNumCoeff );
memset( m_sigRateDelta, 0, sizeof( int ) * uiMaxNumCoeff );
memset( m_deltaU, 0, sizeof( TCoeff ) * uiMaxNumCoeff );
#endif
const int iQBits = QUANT_SHIFT + cQP.per + iTransformShift; // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits
#if HEVC_USE_SCALING_LISTS
const double *const pdErrScale = xGetErrScaleCoeff(scalingListType, (uiLog2BlockWidth-1), (uiLog2BlockHeight-1), cQP.rem);
const int *const piQCoef = getQuantCoeff(scalingListType, cQP.rem, (uiLog2BlockWidth-1), (uiLog2BlockHeight-1));
const bool enableScalingLists = getUseScalingList(uiWidth, uiHeight, tu.transformSkip[compID]);
#if HM_QTBT_AS_IN_JEM_QUANT
const int defaultQuantisationCoefficient = ( TU::needsSqrt2Scale( rect, tu.transformSkip[compID] ) ? ( g_quantScales[cQP.rem] * 181 ) >> 7 : g_quantScales[cQP.rem] );
const double defaultErrorScale = xGetErrScaleCoeffNoScalingList(scalingListType, (uiLog2BlockWidth-1), (uiLog2BlockHeight-1), cQP.rem);

Karsten Suehring
committed
#else
const double blkErrScale = ( TU::needsQP3Offset( tu, compID ) ? 2.0 : 1.0 );
const int defaultQuantisationCoefficient = g_quantScales[cQP.rem];
const double defaultErrorScale = blkErrScale * xGetErrScaleCoeffNoScalingList( scalingListType, ( uiLog2BlockWidth - 1 ), ( uiLog2BlockHeight - 1 ), cQP.rem );
#endif
#else //HEVC_USE_SCALING_LISTS
#if HM_QTBT_AS_IN_JEM_QUANT
const int quantisationCoefficient = ( TU::needsSqrt2Scale( tu, compID ) ? ( g_quantScales[cQP.rem] * 181 ) >> 7 : g_quantScales[cQP.rem] );
const double errorScale = xGetErrScaleCoeff( TU::needsSqrt2Scale( tu, compID ), uiWidth, uiHeight, cQP.rem, maxLog2TrDynamicRange, channelBitDepth );

Karsten Suehring
committed
#else
const double blkErrScale = ( TU::needsQP3Offset( tu, compID ) ? 2.0 : 1.0 );
const int quantisationCoefficient = g_quantScales[cQP.rem];
const double errorScale = blkErrScale * xGetErrScaleCoeff( uiWidth, uiHeight, cQP.rem, maxLog2TrDynamicRange, channelBitDepth );
#endif
#endif//HEVC_USE_SCALING_LISTS
#if HEVC_USE_SIGN_HIDING
const TCoeff entropyCodingMinimum = -(1 << maxLog2TrDynamicRange);
#endif
const TCoeff entropyCodingMaximum = (1 << maxLog2TrDynamicRange) - 1;
#if HEVC_USE_SIGN_HIDING
CoeffCodingContext cctx(tu, compID, tu.cs->slice->getSignDataHidingEnabledFlag());
#else
CoeffCodingContext cctx(tu, compID);
#endif
const int iCGSizeM1 = (1 << cctx.log2CGSize()) - 1;
int iCGLastScanPos = -1;
double d64BaseCost = 0;
int iLastScanPos = -1;
bool is2x2subblock = ( iCGSizeM1 == 3 );
int remGt2Bins = ( is2x2subblock ? MAX_NUM_GT2_BINS_2x2SUBBLOCK : MAX_NUM_GT2_BINS_4x4SUBBLOCK );
int remRegBins = ( is2x2subblock ? MAX_NUM_REG_BINS_2x2SUBBLOCK : MAX_NUM_REG_BINS_4x4SUBBLOCK );
uint32_t goRiceParam = 0;

Karsten Suehring
committed
double *pdCostCoeffGroupSig = m_pdCostCoeffGroupSig;
memset( pdCostCoeffGroupSig, 0, ( uiMaxNumCoeff >> cctx.log2CGSize() ) * sizeof( double ) );
const int iCGNum = std::min<int>(JVET_C0024_ZERO_OUT_TH, uiWidth) * std::min<int>(JVET_C0024_ZERO_OUT_TH, uiHeight) >> cctx.log2CGSize();

Karsten Suehring
committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
int iScanPos;
coeffGroupRDStats rdStats;
#if ENABLE_TRACING
DTRACE( g_trace_ctx, D_RDOQ, "%d: %3d, %3d, %dx%d, comp=%d\n", DTRACE_GET_COUNTER( g_trace_ctx, D_RDOQ ), rect.x, rect.y, rect.width, rect.height, compID );
#endif
for (int subSetId = iCGNum - 1; subSetId >= 0; subSetId--)
{
cctx.initSubblock( subSetId );
memset( &rdStats, 0, sizeof (coeffGroupRDStats));
for (int iScanPosinCG = iCGSizeM1; iScanPosinCG >= 0; iScanPosinCG--)
{
iScanPos = cctx.minSubPos() + iScanPosinCG;
//===== quantization =====
uint32_t uiBlkPos = cctx.blockPos(iScanPos);
// set coeff
#if HEVC_USE_SCALING_LISTS
const int quantisationCoefficient = (enableScalingLists) ? piQCoef [uiBlkPos] : defaultQuantisationCoefficient;
#if HM_QTBT_AS_IN_JEM_QUANT
const double errorScale = (enableScalingLists) ? pdErrScale[uiBlkPos] : defaultErrorScale;
#else
const double errorScale = (enableScalingLists) ? pdErrScale[uiBlkPos] * blkErrScale : defaultErrorScale;
#endif
#endif
const int64_t tmpLevel = int64_t(abs(plSrcCoeff[ uiBlkPos ])) * quantisationCoefficient;
const Intermediate_Int lLevelDouble = (Intermediate_Int)std::min<int64_t>(tmpLevel, std::numeric_limits<Intermediate_Int>::max() - (Intermediate_Int(1) << (iQBits - 1)));
uint32_t uiMaxAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), uint32_t((lLevelDouble + (Intermediate_Int(1) << (iQBits - 1))) >> iQBits));
const double dErr = double( lLevelDouble );
pdCostCoeff0[ iScanPos ] = dErr * dErr * errorScale;
d64BlockUncodedCost += pdCostCoeff0[ iScanPos ];
piDstCoeff[ uiBlkPos ] = uiMaxAbsLevel;
if ( uiMaxAbsLevel > 0 && iLastScanPos < 0 )
{
iLastScanPos = iScanPos;
iCGLastScanPos = cctx.subSetId();
}
if ( iLastScanPos >= 0 )
{
#if ENABLE_TRACING
uint32_t uiCGPosY = cctx.cgPosX();
uint32_t uiCGPosX = cctx.cgPosY();
uint32_t uiPosY = cctx.posY( iScanPos );
uint32_t uiPosX = cctx.posX( iScanPos );
DTRACE( g_trace_ctx, D_RDOQ, "%d [%d][%d][%2d:%2d][%2d:%2d]", DTRACE_GET_COUNTER( g_trace_ctx, D_RDOQ ), iScanPos, uiBlkPos, uiCGPosX, uiCGPosY, uiPosX, uiPosY );
#endif
//===== coefficient level estimation =====
unsigned ctxIdSig = 0;
if( iScanPos != iLastScanPos )
{
ctxIdSig = cctx.sigCtxIdAbs( iScanPos, piDstCoeff, 0 );
}
uint32_t uiLevel;
uint8_t ctxOffset = cctx.ctxOffsetAbs ();
uint32_t uiParCtx = cctx.parityCtxIdAbs ( ctxOffset );
uint32_t uiGt1Ctx = cctx.greater1CtxIdAbs ( ctxOffset );
uint32_t uiGt2Ctx = cctx.greater2CtxIdAbs ( ctxOffset );
uint32_t goRiceZero = 0;
if( remRegBins < 4 )
{
unsigned sumAbs = cctx.templateAbsSum( iScanPos, piDstCoeff );
goRiceParam = g_auiGoRiceParsCoeff [ sumAbs ];
goRiceZero = g_auiGoRicePosCoeff0[0][ sumAbs ];
}

Karsten Suehring
committed
const BinFracBits fracBitsPar = fracBits.getFracBitsArray( uiParCtx );
const BinFracBits fracBitsGt1 = fracBits.getFracBitsArray( uiGt1Ctx );
const BinFracBits fracBitsGt2 = fracBits.getFracBitsArray( uiGt2Ctx );
if( iScanPos == iLastScanPos )
{
uiLevel = xGetCodedLevel( pdCostCoeff[ iScanPos ], pdCostCoeff0[ iScanPos ], pdCostSig[ iScanPos ],
lLevelDouble, uiMaxAbsLevel, nullptr, fracBitsPar, fracBitsGt1, fracBitsGt2, remGt2Bins, remRegBins, goRiceZero, goRiceParam, iQBits, errorScale, 1, extendedPrecision, maxLog2TrDynamicRange );

Karsten Suehring
committed
}
else
{
DTRACE_COND( ( uiMaxAbsLevel != 0 ), g_trace_ctx, D_RDOQ_MORE, " uiCtxSig=%d", ctxIdSig );
const BinFracBits fracBitsSig = fracBits.getFracBitsArray( ctxIdSig );
uiLevel = xGetCodedLevel( pdCostCoeff[ iScanPos ], pdCostCoeff0[ iScanPos ], pdCostSig[ iScanPos ],
lLevelDouble, uiMaxAbsLevel, &fracBitsSig, fracBitsPar, fracBitsGt1, fracBitsGt2, remGt2Bins, remRegBins, goRiceZero, goRiceParam, iQBits, errorScale, 0, extendedPrecision, maxLog2TrDynamicRange );
#if HEVC_USE_SIGN_HIDING
sigRateDelta[ uiBlkPos ] = ( remRegBins < 4 ? 0 : fracBitsSig.intBits[1] - fracBitsSig.intBits[0] );

Karsten Suehring
committed
#endif
}
DTRACE( g_trace_ctx, D_RDOQ, " Lev=%d \n", uiLevel );
DTRACE_COND( ( uiMaxAbsLevel != 0 ), g_trace_ctx, D_RDOQ, " CostC0=%d\n", (int64_t)( pdCostCoeff0[iScanPos] ) );
DTRACE_COND( ( uiMaxAbsLevel != 0 ), g_trace_ctx, D_RDOQ, " CostC =%d\n", (int64_t)( pdCostCoeff[iScanPos] ) );
#if HEVC_USE_SIGN_HIDING
deltaU[ uiBlkPos ] = TCoeff((lLevelDouble - (Intermediate_Int(uiLevel) << iQBits)) >> (iQBits-8));
if( uiLevel > 0 )
{
int rateNow = xGetICRate( uiLevel, fracBitsPar, fracBitsGt1, fracBitsGt2, remGt2Bins, remRegBins, goRiceZero, goRiceParam, extendedPrecision, maxLog2TrDynamicRange );
rateIncUp [ uiBlkPos ] = xGetICRate( uiLevel+1, fracBitsPar, fracBitsGt1, fracBitsGt2, remGt2Bins, remRegBins, goRiceZero, goRiceParam, extendedPrecision, maxLog2TrDynamicRange ) - rateNow;
rateIncDown [ uiBlkPos ] = xGetICRate( uiLevel-1, fracBitsPar, fracBitsGt1, fracBitsGt2, remGt2Bins, remRegBins, goRiceZero, goRiceParam, extendedPrecision, maxLog2TrDynamicRange ) - rateNow;

Karsten Suehring
committed
}
else // uiLevel == 0
{
if( remRegBins < 4 )
{
int rateNow = xGetICRate( uiLevel, fracBitsPar, fracBitsGt1, fracBitsGt2, remGt2Bins, remRegBins, goRiceZero, goRiceParam, extendedPrecision, maxLog2TrDynamicRange );
rateIncUp [ uiBlkPos ] = xGetICRate( uiLevel+1, fracBitsPar, fracBitsGt1, fracBitsGt2, remGt2Bins, remRegBins, goRiceZero, goRiceParam, extendedPrecision, maxLog2TrDynamicRange ) - rateNow;
}
else
{
rateIncUp [ uiBlkPos ] = fracBitsGt1.intBits[ 0 ];
}

Karsten Suehring
committed
}
#endif
piDstCoeff[ uiBlkPos ] = uiLevel;
d64BaseCost += pdCostCoeff [ iScanPos ];
if( ( (iScanPos & iCGSizeM1) == 0 ) && ( iScanPos > 0 ) )
{
remGt2Bins = ( is2x2subblock ? MAX_NUM_GT2_BINS_2x2SUBBLOCK : MAX_NUM_GT2_BINS_4x4SUBBLOCK );
remRegBins = ( is2x2subblock ? MAX_NUM_REG_BINS_2x2SUBBLOCK : MAX_NUM_REG_BINS_4x4SUBBLOCK ) - remGt2Bins;
goRiceParam = 0;
}
else if( remRegBins >= 4 )
const uint32_t baseLevel = 4;
if( goRiceParam < 3 && ((uiLevel-baseLevel)>>1) > (3<<goRiceParam)-1 )
{
goRiceParam++;
}
remRegBins -= (uiLevel < 2 ? uiLevel : 3) + (iScanPos != iLastScanPos);

Karsten Suehring
committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
}
else
{
d64BaseCost += pdCostCoeff0[ iScanPos ];
}
rdStats.d64SigCost += pdCostSig[ iScanPos ];
if (iScanPosinCG == 0 )
{
rdStats.d64SigCost_0 = pdCostSig[ iScanPos ];
}
if (piDstCoeff[ uiBlkPos ] )
{
cctx.setSigGroup();
rdStats.d64CodedLevelandDist += pdCostCoeff[ iScanPos ] - pdCostSig[ iScanPos ];
rdStats.d64UncodedDist += pdCostCoeff0[ iScanPos ];
if ( iScanPosinCG != 0 )
{
rdStats.iNNZbeforePos0++;
}
}
} //end for (iScanPosinCG)
if (iCGLastScanPos >= 0)
{
if( cctx.subSetId() )
{
if( !cctx.isSigGroup() )
{
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray( cctx.sigGroupCtxId() );
d64BaseCost += xGetRateSigCoeffGroup(fracBitsSigGroup, 0) - rdStats.d64SigCost;
pdCostCoeffGroupSig[ cctx.subSetId() ] = xGetRateSigCoeffGroup(fracBitsSigGroup, 0);
}
else
{
if (cctx.subSetId() < iCGLastScanPos) //skip the last coefficient group, which will be handled together with last position below.
{
if ( rdStats.iNNZbeforePos0 == 0 )
{
d64BaseCost -= rdStats.d64SigCost_0;
rdStats.d64SigCost -= rdStats.d64SigCost_0;
}
// rd-cost if SigCoeffGroupFlag = 0, initialization
double d64CostZeroCG = d64BaseCost;
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray( cctx.sigGroupCtxId() );
if (cctx.subSetId() < iCGLastScanPos)
{
d64BaseCost += xGetRateSigCoeffGroup(fracBitsSigGroup,1);
d64CostZeroCG += xGetRateSigCoeffGroup(fracBitsSigGroup,0);
pdCostCoeffGroupSig[ cctx.subSetId() ] = xGetRateSigCoeffGroup(fracBitsSigGroup,1);
}
// try to convert the current coeff group from non-zero to all-zero
d64CostZeroCG += rdStats.d64UncodedDist; // distortion for resetting non-zero levels to zero levels
d64CostZeroCG -= rdStats.d64CodedLevelandDist; // distortion and level cost for keeping all non-zero levels
d64CostZeroCG -= rdStats.d64SigCost; // sig cost for all coeffs, including zero levels and non-zerl levels
// if we can save cost, change this block to all-zero block
if ( d64CostZeroCG < d64BaseCost )
{
cctx.resetSigGroup();
d64BaseCost = d64CostZeroCG;
if (cctx.subSetId() < iCGLastScanPos)
{
pdCostCoeffGroupSig[ cctx.subSetId() ] = xGetRateSigCoeffGroup(fracBitsSigGroup,0);
}
// reset coeffs to 0 in this block
for (int iScanPosinCG = iCGSizeM1; iScanPosinCG >= 0; iScanPosinCG--)
{
iScanPos = cctx.minSubPos() + iScanPosinCG;
uint32_t uiBlkPos = cctx.blockPos( iScanPos );
if (piDstCoeff[ uiBlkPos ])
{
piDstCoeff [ uiBlkPos ] = 0;
pdCostCoeff[ iScanPos ] = pdCostCoeff0[ iScanPos ];
pdCostSig [ iScanPos ] = 0;
}
}
} // end if ( d64CostAllZeros < d64BaseCost )
}
} // end if if (uiSigCoeffGroupFlag[ uiCGBlkPos ] == 0)
}
else
{
cctx.setSigGroup();
}
}
} //end for (cctx.subSetId)
//===== estimate last position =====
if ( iLastScanPos < 0 )
{
return;
}
double d64BestCost = 0;
int iBestLastIdxP1 = 0;
if( !CU::isIntra( *tu.cu ) && isLuma( compID ) && tu.depth == 0 )
{
const BinFracBits fracBitsQtRootCbf = fracBits.getFracBitsArray( Ctx::QtRootCbf() );
d64BestCost = d64BlockUncodedCost + xGetICost( fracBitsQtRootCbf.intBits[ 0 ] );
d64BaseCost += xGetICost( fracBitsQtRootCbf.intBits[ 1 ] );
}
else
{
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
bool previousCbf = tu.cbf[COMPONENT_Cb];
bool lastCbfIsInferred = false;
if( useIntraSubPartitions )
{
bool rootCbfSoFar = false;
bool isLastSubPartition = CU::isISPLast(*tu.cu, tu.Y(), compID);
uint32_t nTus = tu.cu->ispMode == HOR_INTRA_SUBPARTITIONS ? tu.cu->lheight() >> g_aucLog2[tu.lheight()] : tu.cu->lwidth() >> g_aucLog2[tu.lwidth()];
if( isLastSubPartition )
{
TransformUnit* tuPointer = tu.cu->firstTU;
for( int tuIdx = 0; tuIdx < nTus - 1; tuIdx++ )
{
rootCbfSoFar |= TU::getCbfAtDepth(*tuPointer, COMPONENT_Y, tu.depth);
tuPointer = tuPointer->next;
}
if( !rootCbfSoFar )
{
lastCbfIsInferred = true;
}
}
if( !lastCbfIsInferred )
{
previousCbf = TU::getPrevTuCbfAtDepth(tu, compID, tu.depth);
}
}
BinFracBits fracBitsQtCbf = fracBits.getFracBitsArray( Ctx::QtCbf[compID]( DeriveCtx::CtxQtCbf( rect.compID, tu.depth, previousCbf, useIntraSubPartitions ) ) );
if( !lastCbfIsInferred )
{
d64BestCost = d64BlockUncodedCost + xGetICost(fracBitsQtCbf.intBits[0]);
d64BaseCost += xGetICost(fracBitsQtCbf.intBits[1]);
}
else
{
d64BestCost = d64BlockUncodedCost;
}

Karsten Suehring
committed
}
int lastBitsX[LAST_SIGNIFICANT_GROUPS] = { 0 };
int lastBitsY[LAST_SIGNIFICANT_GROUPS] = { 0 };
{
#if HEVC_USE_MDCS
int dim1 = ( cctx.scanType() == SCAN_VER ? uiHeight : uiWidth );
int dim2 = ( cctx.scanType() == SCAN_VER ? uiWidth : uiHeight );
#else
int dim1 = std::min<int>(JVET_C0024_ZERO_OUT_TH, uiWidth);
int dim2 = std::min<int>(JVET_C0024_ZERO_OUT_TH, uiHeight);

Karsten Suehring
committed
#endif
int bitsX = 0;
int bitsY = 0;
int ctxId;
//X-coordinate
for ( ctxId = 0; ctxId < g_uiGroupIdx[dim1-1]; ctxId++)
{
const BinFracBits fB = fracBits.getFracBitsArray( cctx.lastXCtxId(ctxId) );