Newer
Older
}
pcYUVTemp = pcYuvSrc1;
pcPadTemp = pcPad1;
}
}
uint64_t InterPrediction::xDMVRCost(int bitDepth, Pel* pOrg, uint32_t refStride, const Pel* pRef, uint32_t orgStride, int width, int height)
{
DistParam cDistParam;
cDistParam.applyWeight = false;
cDistParam.useMR = false;
m_pcRdCost->setDistParam(cDistParam, pOrg, pRef, orgStride, refStride, bitDepth, COMPONENT_Y, width, height, 1);
uint64_t uiCost = cDistParam.distFunc(cDistParam);
void xDMVRSubPixelErrorSurface(bool notZeroCost, int16_t *totalDeltaMV, int16_t *deltaMV, uint64_t *pSADsArray)
int sadStride = (((2 * DMVR_NUM_ITERATION) + 1));
uint64_t sadbuffer[5];
if (notZeroCost && (abs(totalDeltaMV[0]) != (2 << MV_FRACTIONAL_BITS_INTERNAL))
&& (abs(totalDeltaMV[1]) != (2 << MV_FRACTIONAL_BITS_INTERNAL)))
sadbuffer[0] = pSADsArray[0];
sadbuffer[1] = pSADsArray[-1];
sadbuffer[2] = pSADsArray[-sadStride];
sadbuffer[3] = pSADsArray[1];
sadbuffer[4] = pSADsArray[sadStride];
xSubPelErrorSrfc(sadbuffer, tempDeltaMv);
totalDeltaMV[0] += tempDeltaMv[0];
totalDeltaMV[1] += tempDeltaMv[1];
}
}
void InterPrediction::xinitMC(PredictionUnit& pu, const ClpRngs &clpRngs)
{
const int refIdx0 = pu.refIdx[0];
const int refIdx1 = pu.refIdx[1];
/*use merge MV as starting MV*/
Mv mergeMVL0(pu.mv[REF_PIC_LIST_0]);
Mv mergeMVL1(pu.mv[REF_PIC_LIST_1]);
/*Clip the starting MVs*/
clipMv( mergeMVL0, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps, *pu.cs->pps );
clipMv( mergeMVL1, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps, *pu.cs->pps );
/*L0 MC for refinement*/
{
int offset;
int leftPixelExtra = (NTAPS_LUMA >> 1) - 1;
offset = (DMVR_NUM_ITERATION + leftPixelExtra) * (m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y].stride + 1);
offset += (-(int)DMVR_NUM_ITERATION)* (int)m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y].stride;
offset += (-(int)DMVR_NUM_ITERATION);
PelBuf srcBuf = m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y];
PelUnitBuf yuvPredTempL0 = PelUnitBuf(pu.chromaFormat, PelBuf(m_cYuvPredTempDMVRL0,
m_biLinearBufStride
, pu.lwidth() + (2 * DMVR_NUM_ITERATION), pu.lheight() + (2 * DMVR_NUM_ITERATION)));
xPredInterBlk( COMPONENT_Y, pu, pu.cu->slice->getRefPic( REF_PIC_LIST_0, refIdx0 )->unscaledPic, mergeMVL0, yuvPredTempL0, true, clpRngs.comp[COMPONENT_Y],
false, false, pu.cu->slice->getScalingRatio( REF_PIC_LIST_0, refIdx0 ), pu.lwidth() + ( 2 * DMVR_NUM_ITERATION ), pu.lheight() + ( 2 * DMVR_NUM_ITERATION ), true, ( (Pel *)srcBuf.buf ) + offset, srcBuf.stride );
}
/*L1 MC for refinement*/
{
int offset;
int leftPixelExtra = (NTAPS_LUMA >> 1) - 1;
offset = (DMVR_NUM_ITERATION + leftPixelExtra) * (m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y].stride + 1);
offset += (-(int)DMVR_NUM_ITERATION)* (int)m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y].stride;
offset += (-(int)DMVR_NUM_ITERATION);
PelBuf srcBuf = m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y];
PelUnitBuf yuvPredTempL1 = PelUnitBuf(pu.chromaFormat, PelBuf(m_cYuvPredTempDMVRL1,
m_biLinearBufStride
, pu.lwidth() + (2 * DMVR_NUM_ITERATION), pu.lheight() + (2 * DMVR_NUM_ITERATION)));
xPredInterBlk( COMPONENT_Y, pu, pu.cu->slice->getRefPic( REF_PIC_LIST_1, refIdx1 )->unscaledPic, mergeMVL1, yuvPredTempL1, true, clpRngs.comp[COMPONENT_Y],
false, false, pu.cu->slice->getScalingRatio( REF_PIC_LIST_1, refIdx1 ), pu.lwidth() + ( 2 * DMVR_NUM_ITERATION ), pu.lheight() + ( 2 * DMVR_NUM_ITERATION ), true, ( (Pel *)srcBuf.buf ) + offset, srcBuf.stride );
void InterPrediction::xProcessDMVR(PredictionUnit& pu, PelUnitBuf &pcYuvDst, const ClpRngs &clpRngs, const bool bioApplied)
/*Always High Precision*/
int mvShift = MV_FRACTIONAL_BITS_INTERNAL;
/*use merge MV as starting MV*/
Mv mergeMv[] = { pu.mv[REF_PIC_LIST_0] , pu.mv[REF_PIC_LIST_1] };
m_biLinearBufStride = (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION));
int dy = std::min<int>(pu.lumaSize().height, DMVR_SUBCU_HEIGHT);
int dx = std::min<int>(pu.lumaSize().width, DMVR_SUBCU_WIDTH);
Position puPos = pu.lumaPos();
int bd = pu.cs->slice->getClpRngs().comp[COMPONENT_Y].bd;
{
int num = 0;
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
int scaleX = getComponentScaleX(COMPONENT_Cb, pu.chromaFormat);
int scaleY = getComponentScaleY(COMPONENT_Cb, pu.chromaFormat);
m_biLinearBufStride = (dx + (2 * DMVR_NUM_ITERATION));
// point mc buffer to cetre point to avoid multiplication to reach each iteration to the begining
Pel *biLinearPredL0 = m_cYuvPredTempDMVRL0 + (DMVR_NUM_ITERATION * m_biLinearBufStride) + DMVR_NUM_ITERATION;
Pel *biLinearPredL1 = m_cYuvPredTempDMVRL1 + (DMVR_NUM_ITERATION * m_biLinearBufStride) + DMVR_NUM_ITERATION;
PredictionUnit subPu = pu;
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(puPos.x, puPos.y, dx, dy)));
m_cYuvRefBuffDMVRL0 = (pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL0[0], pcYuvDst.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL0[0], pcYuvDst.Y()),
PelBuf(m_cRefSamplesDMVRL0[1], pcYuvDst.Cb()), PelBuf(m_cRefSamplesDMVRL0[2], pcYuvDst.Cr())));
m_cYuvRefBuffDMVRL0 = m_cYuvRefBuffDMVRL0.subBuf(UnitAreaRelative(pu, subPu));
m_cYuvRefBuffDMVRL1 = (pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL1[0], pcYuvDst.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL1[0], pcYuvDst.Y()), PelBuf(m_cRefSamplesDMVRL1[1], pcYuvDst.Cb()),
PelBuf(m_cRefSamplesDMVRL1[2], pcYuvDst.Cr())));
m_cYuvRefBuffDMVRL1 = m_cYuvRefBuffDMVRL1.subBuf(UnitAreaRelative(pu, subPu));
PelUnitBuf srcPred0 = (pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvDst.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvDst.Y()), PelBuf(m_acYuvPred[0][1], pcYuvDst.Cb()), PelBuf(m_acYuvPred[0][2], pcYuvDst.Cr())));
PelUnitBuf srcPred1 = (pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvDst.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvDst.Y()), PelBuf(m_acYuvPred[1][1], pcYuvDst.Cb()), PelBuf(m_acYuvPred[1][2], pcYuvDst.Cr())));
srcPred0 = srcPred0.subBuf(UnitAreaRelative(pu, subPu));
srcPred1 = srcPred1.subBuf(UnitAreaRelative(pu, subPu));
int yStart = 0;
for (int y = puPos.y; y < (puPos.y + pu.lumaSize().height); y = y + dy, yStart = yStart + dy)
{
for (int x = puPos.x, xStart = 0; x < (puPos.x + pu.lumaSize().width); x = x + dx, xStart = xStart + dx)
PredictionUnit subPu = pu;
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
xPrefetch(subPu, m_cYuvRefBuffDMVRL0, REF_PIC_LIST_0, 1);
xPrefetch(subPu, m_cYuvRefBuffDMVRL1, REF_PIC_LIST_1, 1);
xinitMC(subPu, clpRngs);
uint64_t minCost = MAX_UINT64;
bool notZeroCost = true;
int16_t totalDeltaMV[2] = { 0,0 };
int16_t deltaMV[2] = { 0, 0 };
uint64_t *pSADsArray;
for (int i = 0; i < (((2 * DMVR_NUM_ITERATION) + 1) * ((2 * DMVR_NUM_ITERATION) + 1)); i++)
{
m_SADsArray[i] = MAX_UINT64;
}
pSADsArray = &m_SADsArray[(((2 * DMVR_NUM_ITERATION) + 1) * ((2 * DMVR_NUM_ITERATION) + 1)) >> 1];
for (int i = 0; i < iterationCount; i++)
{
deltaMV[0] = 0;
deltaMV[1] = 0;
Pel *addrL0 = biLinearPredL0 + totalDeltaMV[0] + (totalDeltaMV[1] * m_biLinearBufStride);
Pel *addrL1 = biLinearPredL1 - totalDeltaMV[0] - (totalDeltaMV[1] * m_biLinearBufStride);
if (i == 0)
{
minCost = xDMVRCost(clpRngs.comp[COMPONENT_Y].bd, addrL0, m_biLinearBufStride, addrL1, m_biLinearBufStride, dx, dy);
{
notZeroCost = false;
break;
}
pSADsArray[0] = minCost;
}
if (!minCost)
{
notZeroCost = false;
break;
}
xBIPMVRefine(bd, addrL0, addrL1, minCost, deltaMV, pSADsArray, dx, dy);
if (deltaMV[0] == 0 && deltaMV[1] == 0)
{
break;
}
totalDeltaMV[0] += deltaMV[0];
totalDeltaMV[1] += deltaMV[1];
pSADsArray += ((deltaMV[1] * (((2 * DMVR_NUM_ITERATION) + 1))) + deltaMV[0]);
bioAppliedType[num] = (minCost < bioEnabledThres) ? false : bioApplied;
totalDeltaMV[0] = (totalDeltaMV[0] << mvShift);
totalDeltaMV[1] = (totalDeltaMV[1] << mvShift);
xDMVRSubPixelErrorSurface(notZeroCost, totalDeltaMV, deltaMV, pSADsArray);
pu.mvdL0SubPu[num] = Mv(totalDeltaMV[0], totalDeltaMV[1]);
PelUnitBuf subPredBuf = pcYuvDst.subBuf(UnitAreaRelative(pu, subPu));
bool blockMoved = false;
if (pu.mvdL0SubPu[num] != Mv(0, 0))
{
blockMoved = true;
xPrefetch(subPu, m_cYuvRefBuffDMVRL0, REF_PIC_LIST_0, 0);
xPrefetch(subPu, m_cYuvRefBuffDMVRL1, REF_PIC_LIST_1, 0);
xPad(subPu, m_cYuvRefBuffDMVRL0, REF_PIC_LIST_0);
xPad(subPu, m_cYuvRefBuffDMVRL1, REF_PIC_LIST_1);
}
int dstStride[MAX_NUM_COMPONENT] = { pcYuvDst.bufs[COMPONENT_Y].stride, pcYuvDst.bufs[COMPONENT_Cb].stride, pcYuvDst.bufs[COMPONENT_Cr].stride };
subPu.mv[0] = mergeMv[REF_PIC_LIST_0] + pu.mvdL0SubPu[num];
subPu.mv[1] = mergeMv[REF_PIC_LIST_1] - pu.mvdL0SubPu[num];
subPu.mv[0].clipToStorageBitDepth();
subPu.mv[1].clipToStorageBitDepth();
xFinalPaddedMCForDMVR(subPu, srcPred0, srcPred1, m_cYuvRefBuffDMVRL0, m_cYuvRefBuffDMVRL1, bioAppliedType[num], mergeMv
, blockMoved
);
subPredBuf.bufs[COMPONENT_Y].buf = pcYuvDst.bufs[COMPONENT_Y].buf + xStart + yStart * dstStride[COMPONENT_Y];
subPredBuf.bufs[COMPONENT_Cb].buf = pcYuvDst.bufs[COMPONENT_Cb].buf + (xStart >> scaleX) + ((yStart >> scaleY) * dstStride[COMPONENT_Cb]);
subPredBuf.bufs[COMPONENT_Cr].buf = pcYuvDst.bufs[COMPONENT_Cr].buf + (xStart >> scaleX) + ((yStart >> scaleY) * dstStride[COMPONENT_Cr]);
xWeightedAverage(subPu, srcPred0, srcPred1, subPredBuf, subPu.cu->slice->getSPS()->getBitDepths(), subPu.cu->slice->clpRngs(), bioAppliedType[num]);
num++;
}
}
}
JVET_J0090_SET_CACHE_ENABLE(true);

Karsten Suehring
committed
#if JVET_J0090_MEMORY_BANDWITH_MEASURE
void InterPrediction::cacheAssign( CacheModel *cache )
{
m_cacheModel = cache;
m_if.cacheAssign( cache );
m_if.initInterpolationFilter( !cache->isCacheEnable() );
}
#endif
void InterPrediction::xFillIBCBuffer(CodingUnit &cu)
{
for (auto &currPU : CU::traverseTUs(cu))
{
for (const CompArea &area : currPU.blocks)
{
const unsigned int lcuWidth = cu.cs->slice->getSPS()->getMaxCUWidth();
const int shiftSampleHor = ::getComponentScaleX(area.compID, cu.chromaFormat);
const int shiftSampleVer = ::getComponentScaleY(area.compID, cu.chromaFormat);
const int ctuSizeLog2Ver = floorLog2(lcuWidth) - shiftSampleVer;
const int pux = area.x & ((m_IBCBufferWidth >> shiftSampleHor) - 1);
const int puy = area.y & (( 1 << ctuSizeLog2Ver ) - 1);
const CompArea dstArea = CompArea(area.compID, cu.chromaFormat, Position(pux, puy), Size(area.width, area.height));
CPelBuf srcBuf = cu.cs->getRecoBuf(area);
PelBuf dstBuf = m_IBCBuffer.getBuf(dstArea);
dstBuf.copyFrom(srcBuf);
}
}
}
void InterPrediction::xIntraBlockCopy(PredictionUnit &pu, PelUnitBuf &predBuf, const ComponentID compID)
{
const unsigned int lcuWidth = pu.cs->slice->getSPS()->getMaxCUWidth();
const int shiftSampleHor = ::getComponentScaleX(compID, pu.chromaFormat);
const int shiftSampleVer = ::getComponentScaleY(compID, pu.chromaFormat);
const int ctuSizeLog2Ver = floorLog2(lcuWidth) - shiftSampleVer;
pu.bv = pu.mv[REF_PIC_LIST_0];
pu.bv.changePrecision(MV_PRECISION_INTERNAL, MV_PRECISION_INT);
int refx, refy;
if (compID == COMPONENT_Y)
{
refx = pu.Y().x + pu.bv.hor;
refy = pu.Y().y + pu.bv.ver;
}
else
{//Cb or Cr
refx = pu.Cb().x + (pu.bv.hor >> shiftSampleHor);
refy = pu.Cb().y + (pu.bv.ver >> shiftSampleVer);
refx &= ((m_IBCBufferWidth >> shiftSampleHor) - 1);
refy &= ((1 << ctuSizeLog2Ver) - 1);
if (refx + predBuf.bufs[compID].width <= (m_IBCBufferWidth >> shiftSampleHor))
const CompArea srcArea = CompArea(compID, pu.chromaFormat, Position(refx, refy), Size(predBuf.bufs[compID].width, predBuf.bufs[compID].height));
const CPelBuf refBuf = m_IBCBuffer.getBuf(srcArea);
predBuf.bufs[compID].copyFrom(refBuf);
int width = (m_IBCBufferWidth >> shiftSampleHor) - refx;
CompArea srcArea = CompArea(compID, pu.chromaFormat, Position(refx, refy), Size(width, predBuf.bufs[compID].height));
CPelBuf srcBuf = m_IBCBuffer.getBuf(srcArea);
PelBuf dstBuf = PelBuf(predBuf.bufs[compID].bufAt(Position(0, 0)), predBuf.bufs[compID].stride, Size(width, predBuf.bufs[compID].height));
dstBuf.copyFrom(srcBuf);
width = refx + predBuf.bufs[compID].width - (m_IBCBufferWidth >> shiftSampleHor);
srcArea = CompArea(compID, pu.chromaFormat, Position(0, refy), Size(width, predBuf.bufs[compID].height));
srcBuf = m_IBCBuffer.getBuf(srcArea);
dstBuf = PelBuf(predBuf.bufs[compID].bufAt(Position((m_IBCBufferWidth >> shiftSampleHor) - refx, 0)), predBuf.bufs[compID].stride, Size(width, predBuf.bufs[compID].height));
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
}
}
void InterPrediction::resetIBCBuffer(const ChromaFormat chromaFormatIDC, const int ctuSize)
{
const UnitArea area = UnitArea(chromaFormatIDC, Area(0, 0, m_IBCBufferWidth, ctuSize));
m_IBCBuffer.getBuf(area).fill(-1);
}
void InterPrediction::resetVPDUforIBC(const ChromaFormat chromaFormatIDC, const int ctuSize, const int vSize, const int xPos, const int yPos)
{
const UnitArea area = UnitArea(chromaFormatIDC, Area(xPos & (m_IBCBufferWidth - 1), yPos & (ctuSize - 1), vSize, vSize));
m_IBCBuffer.getBuf(area).fill(-1);
}
bool InterPrediction::isLumaBvValid(const int ctuSize, const int xCb, const int yCb, const int width, const int height, const int xBv, const int yBv)
{
if(((yCb + yBv) & (ctuSize - 1)) + height > ctuSize)
{
return false;
}
int refTLx = xCb + xBv;
int refTLy = (yCb + yBv) & (ctuSize - 1);
PelBuf buf = m_IBCBuffer.Y();
for(int x = 0; x < width; x += 4)
{
for(int y = 0; y < height; y += 4)
{
if(buf.at((x + refTLx) & (m_IBCBufferWidth - 1), y + refTLy) == -1) return false;
if(buf.at((x + 3 + refTLx) & (m_IBCBufferWidth - 1), y + refTLy) == -1) return false;
if(buf.at((x + refTLx) & (m_IBCBufferWidth - 1), y + 3 + refTLy) == -1) return false;
if(buf.at((x + 3 + refTLx) & (m_IBCBufferWidth - 1), y + 3 + refTLy) == -1) return false;
}
}
return true;
}
bool InterPrediction::xPredInterBlkRPR( const std::pair<int, int>& scalingRatio, const PPS& pps, const CompArea &blk, const Picture* refPic, const Mv& mv, Pel* dst, const int dstStride, const bool bi, const bool wrapRef, const ClpRng& clpRng, const int filterIndex, const bool useAltHpelIf )
const ChromaFormat chFmt = blk.chromaFormat;
const ComponentID compID = blk.compID;
const bool rndRes = !bi;
int shiftHor = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleX( compID, chFmt );
int shiftVer = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleY( compID, chFmt );
int width = blk.width;
int height = blk.height;
CPelBuf refBuf;
const bool scaled = scalingRatio != SCALE_1X;
if( scaled )
{
int row, col;
int refPicWidth = refPic->getPicWidthInLumaSamples();
int refPicHeight = refPic->getPicHeightInLumaSamples();
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
#if JVET_P0088_P0353_RPR_FILTERS
int xFilter = filterIndex;
int yFilter = filterIndex;
const int rprThreshold1 = ( 1 << SCALE_RATIO_BITS ) * 5 / 4;
const int rprThreshold2 = ( 1 << SCALE_RATIO_BITS ) * 7 / 4;
if( filterIndex == 0 )
{
if( scalingRatio.first > rprThreshold2 )
{
xFilter = 4;
}
else if( scalingRatio.first > rprThreshold1 )
{
xFilter = 3;
}
if( scalingRatio.second > rprThreshold2 )
{
yFilter = 4;
}
else if( scalingRatio.second > rprThreshold1 )
{
yFilter = 3;
}
}
#endif
const int posShift = SCALE_RATIO_BITS - 4;
int stepX = ( scalingRatio.first + 8 ) >> 4;
int stepY = ( scalingRatio.second + 8 ) >> 4;
int64_t x0Int;
int64_t y0Int;
int offX = 1 << ( posShift - shiftHor - 1 );
int offY = 1 << ( posShift - shiftVer - 1 );
x0Int = ( ( blk.pos().x << ( 4 + ::getComponentScaleX( compID, chFmt ) ) ) + mv.getHor() )* (int64_t)scalingRatio.first;
x0Int = SIGN( x0Int ) * ( ( llabs( x0Int ) + ( (long long)1 << ( 7 + ::getComponentScaleX( compID, chFmt ) ) ) ) >> ( 8 + ::getComponentScaleX( compID, chFmt ) ) );
y0Int = ( ( blk.pos().y << ( 4 + ::getComponentScaleY( compID, chFmt ) ) ) + mv.getVer() )* (int64_t)scalingRatio.second;
y0Int = SIGN( y0Int ) * ( ( llabs( y0Int ) + ( (long long)1 << ( 7 + ::getComponentScaleY( compID, chFmt ) ) ) ) >> ( 8 + ::getComponentScaleY( compID, chFmt ) ) );
const int extSize = isLuma( compID ) ? 1 : 2;
int vFilterSize = isLuma( compID ) ? NTAPS_LUMA : NTAPS_CHROMA;
int yInt0 = ( (int32_t)y0Int + offY ) >> posShift;
yInt0 = std::min( std::max( -4, yInt0 ), ( refPicHeight >> ::getComponentScaleY( compID, chFmt ) ) + 4 );
int xInt0 = ( (int32_t)x0Int + offX ) >> posShift;
xInt0 = std::min( std::max( -4, xInt0 ), ( refPicWidth >> ::getComponentScaleX( compID, chFmt ) ) + 4 );
int refHeight = ((((int32_t)y0Int + (height-1) * stepY) + offY ) >> posShift) - ((((int32_t)y0Int + 0 * stepY) + offY ) >> posShift) + 1;
refHeight = std::max<int>( 1, refHeight );
CHECK( MAX_CU_SIZE * MAX_SCALING_RATIO < refHeight + vFilterSize - 1 + extSize, "Buffer size is not enough, increase MAX_SCALING_RATIO" );
Pel buffer[( MAX_CU_SIZE + 16 ) * ( MAX_CU_SIZE * MAX_SCALING_RATIO + 16 )];
int tmpStride = width;
int xInt = 0, yInt = 0;
for( col = 0; col < width; col++ )
{
int posX = (int32_t)x0Int + col * stepX;
xInt = ( posX + offX ) >> posShift;
xInt = std::min( std::max( -4, xInt ), ( refPicWidth >> ::getComponentScaleX( compID, chFmt ) ) + 4 );
int xFrac = ( ( posX + offX ) >> ( posShift - shiftHor ) ) & ( ( 1 << shiftHor ) - 1 );
CHECK( xInt0 > xInt, "Wrong horizontal starting point" );
Position offset = Position( xInt, yInt0 );
refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, offset, Size( 1, refHeight ) ), wrapRef );
Pel* tempBuf = buffer + col;
#if JVET_P0088_P0353_RPR_FILTERS
m_if.filterHor( compID, (Pel*)refBuf.buf - ( ( vFilterSize >> 1 ) - 1 ) * refBuf.stride, refBuf.stride, tempBuf, tmpStride, 1, refHeight + vFilterSize - 1 + extSize, xFrac, false, chFmt, clpRng, xFilter, false, useAltHpelIf );
#else
m_if.filterHor( compID, (Pel*)refBuf.buf - ( ( vFilterSize >> 1 ) - 1 ) * refBuf.stride, refBuf.stride, tempBuf, tmpStride, 1, refHeight + vFilterSize - 1 + extSize, xFrac, false, chFmt, clpRng, filterIndex, false, useAltHpelIf );
}
for( row = 0; row < height; row++ )
{
int posY = (int32_t)y0Int + row * stepY;
yInt = ( posY + offY ) >> posShift;
yInt = std::min( std::max( -4, yInt ), ( refPicHeight >> ::getComponentScaleY( compID, chFmt ) ) + 4 );
int yFrac = ( ( posY + offY ) >> ( posShift - shiftVer ) ) & ( ( 1 << shiftVer ) - 1 );
CHECK( yInt0 > yInt, "Wrong vertical starting point" );
Pel* tempBuf = buffer + ( yInt - yInt0 ) * tmpStride;
JVET_J0090_SET_CACHE_ENABLE( false );
#if JVET_P0088_P0353_RPR_FILTERS
m_if.filterVer( compID, tempBuf + ( ( vFilterSize >> 1 ) - 1 ) * tmpStride, tmpStride, dst + row * dstStride, dstStride, width, 1, yFrac, false, rndRes, chFmt, clpRng, yFilter, false, useAltHpelIf );
#else
m_if.filterVer( compID, tempBuf + ( ( vFilterSize >> 1 ) - 1 ) * tmpStride, tmpStride, dst + row * dstStride, dstStride, width, 1, yFrac, false, rndRes, chFmt, clpRng, filterIndex, false, useAltHpelIf );
JVET_J0090_SET_CACHE_ENABLE( true );
}
Position offset = Position( xInt, yInt );
refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, offset, Size( 1, 1 ) ), wrapRef );
}
return scaled;
}