Newer
Older
\\
\Option{IntraConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
For --profile=main-RExt, specifies the value of general_intra_constraint_flag to use for RExt profiles.
\\
\Option{OnePictureOnlyConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of general_one_picture_only_constraint_flag.
\\
\Option{LowerBitRateConstraintFlag} &
%\ShortOption{\None} &
\Default{true} &
Specifies the value of general_lower_bit_constraint_flag to use for RExt profiles.
\\
\Option{NoResChangeInClvsConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of no_res_change_in_clvs_constraint_flag
\\
\Option{SingleLayerConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of single_layer_constraint_flag
\\
\Option{AllLayersIndependentConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of all_layers_independent_constraint_flag
\\
\Option{OneTilePerPicConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of one_tile_per_pic_constraint_flag
\\
\Option{PicHeaderInSliceHeaderConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of pic_header_in_slice_header_constraint_flag
\\
\Option{OneSlicePerPicConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of one_slice_per_pic_constraint_flag
\\
\Option{OneSubpicPerPicConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of one_subpic_per_pic_constraint_flag
\\
\Option{ExplicitScaleListConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of gci_no_explicit_scaling_list_constraint_flag
\\
\Option{VirtualBoundaryConstraintFlag} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of gci_no_virtual_boundaries_constraint_flag
\\
\Option{FrameOnly} &
%\ShortOption{\None} &
\Default{false} &
Specifies the value of general_frame_only_constraint_flag
\\
\end{OptionTableNoShorthand}
\begin{OptionTableNoShorthand}{Layer parameters}{tab:layer}
\Option{MaxLayers} &
%\ShortOption{\None} &
\Default{1} &
Specifies the value to use to derive the vps_max_layers_minus1 for layered coding
\\
\Option{MaxSubLayers} &
%\ShortOption{\None} &

Karsten Suehring
committed
\Default{7} &
Specifies the maximum number of temporal sublayers to signal in the VPS
\\
\Option{AllLayersSameNumSublayersFlag} &
%\ShortOption{\None} &
\Default{true} &
Specifies the value of vps_all_layers_same_num_sublayers_flag in the VPS
\\
\Option{AllowablePredDirection} &
%\ShortOption{\None} &
\Default{""} &
Specifies a list of values of the allowable prediction directions for dependent layers. The number of entries is equal to the number of temporal layers.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Both inter-layer and intra-layer preditions are allowed for the speficied temporal layer. \\
1 & Only inter-layer predition is allowed for the speficied temporal layer. \\
2 & Only intra-layer predition is allowed for the speficied temporal layer. \\
\end{tabular}
\\
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
\Option{LayerId\emph{i}} &
%\ShortOption{\None} &
\Default{0} &
Specifies the nuh_layer_id of the i-th layer (with i an integer greater than 0)
\\
\Option{NumRefLayers\emph{i}} &
%\ShortOption{\None} &
\Default{0} &
Specifies the number of direct reference layers of the i-th layer (with i an integer greater than 0)
\\
\Option{RefLayerIdx\emph{i}} &
%\ShortOption{\None} &
\Default{""} &
Specifies a list of indexes of the reference layers of the i-th layer (with i an integer greater than 0)
\\
\Option{EachLayerIsAnOlsFlag} &
%\ShortOption{\None} &
\Default{true} &
Specifies the value of each_layer_is_an_ols_flag in the VPS
\\
\Option{OlsModeIdc} &
%\ShortOption{\None} &
\Default{0} &
Specifies the value of ols_mode_idc in the VPS
\\
\Option{NumOutputLayerSets} &
%\ShortOption{\None} &
\Default{1} &
Specifies the number of output layer sets (OLS) signalled in the VPS
\\
\Option{OlsOutputLayer\emph{i}} &
%\ShortOption{\None} &
\Default{""} &
Specifies a list of indexes of the output layers of the i-th OLS (with i an integer greater than 0)
\\
\Option{NumPTLsInVPS} &
%\ShortOption{\None} &
\Default{1} &
Specifies the number of profile_tier_level (PTL) syntax structures signalled in the VPS
\\
\Option{LevelPTL\emph{i}} &
%\ShortOption{\None} &
\Default{Level::NONE} &
Specifies the level to signal in the i-th PTL of the VPS (with i an integer greater than 0)
\\
\Option{OlsPTLIdx\emph{i}} &
%\ShortOption{\None} &
\Default{0} &
Specifies the index of the PTL that applies to the i-th OLS (with i an integer greater than 0)
\\

Karsten Suehring
committed
\Option{SamePicTimingInAllOLS} &
%\ShortOption{\None} &
\Default{1} &
Indicates that all OLSs are using the same (not nested) picture timing SEI message, i.e. picture timing SEI will not
be included in scalable nesting SEI messages (if scalable nesting SEI is enabled).
\\

Karsten Suehring
committed
\Option{MaxTidILRefPicsPlus1} &
%\ShortOption{\None} &
\Default{-1} &
Specifies the maximum temporal ID for inter-layer reference pictures plus 1. The value 0 allows only to use IRAP pictures for inter-layer prediction.
\\
\Option{AvoidIntraInDepLayer} &
%\ShortOption{\None} &
\Default{1} &
Replaces I slices in dependent layers with B slices, except for all-intra configuration (IntraPeriod=1).
\\
%%
%% Unit definition parameters
%%
\begin{OptionTableNoShorthand}{Unit definition parameters}{tab:unit}
\Option{CTUSize} &
%\ShortOption{\None} &
\Default{128} &
Defines the CTU size (width and height).
\Option{MaxCUWidth} &
%\ShortOption{\None} &
\Default{64} &
Defines the maximum CU width.
\\
\Option{MaxCUHeight} &
%\ShortOption{\None} &
\Default{64} &
Defines the maximum CU height.
\\
\Option{MaxCUSize (-s)} &
%\ShortOption{\None} &
\Default{64} &
Defines the maximum CU size.
\\
\Option{Log2MinCuSize} &
%\ShortOption{\None} &
\Default{2} &
Defines the minimum CU size in logarithm base 2.
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
\\
\Option{QuadtreeTULog2MaxSize} &
%\ShortOption{\None} &
\Default{6 \\ ($= \mathrm{log}_2(64)$)} &
Defines the Maximum TU size in logarithm base 2.
\\
\Option{QuadtreeTULog2MinSize} &
%\ShortOption{\None} &
\Default{2 \\ ($= \mathrm{log}_2(4)$)} &
Defines the Minimum TU size in logarithm base 2.
\\
\Option{QuadtreeTUMaxDepthIntra} &
%\ShortOption{\None} &
\Default{1} &
Defines the depth of the TU tree for intra CUs.
\\
\Option{QuadtreeTUMaxDepthInter} &
%\ShortOption{\None} &
\Default{2} &
Defines the depth of the TU tree for inter CUs.
\\
\Option{MaxMTTHierarchyDepth} &
%\ShortOption{\None} &
\Default{3} &
Defines the initial maximum depth of the multi-type tree for inter slices.
\\
\Option{MaxMTTHierarchyDepthI} &
%\ShortOption{\None} &
\Default{3} &
Defines the initial maximum depth of the multi-type tree for intra slices.
\\
\Option{MaxMTTHierarchyDepthISliceC} &
%\ShortOption{\None} &
\Default{3} &
Defines the initial maximum depth of the multi-type tree in dual tree for chroma components.
\\
\Option{MaxMTTHierarchyDepthISliceL} &
%\ShortOption{\None} &
\Default{3} &
Defines the initial maximum depth of the multi-type tree in dual tree for luma component.
Guichun
committed
\Option{MinQTChromaISliceInChromaSamples} &
Defines the initial minimum size of the quad tree in dual tree for chroma components.
Note: this size is defined in chroma sample unit in configuration, and it is converted
into luma sample unit according to the horizontal chroma subsampling ratio when applied
in the software. In chroma format 4:2:2 case, this value shall be set to the value of
the height of minimum chroma QT node in chroma samples.
\\
\Option{MinQTISlice} &
%\ShortOption{\None} &
\Default{8} &
Defines the initial minimum size of the quad tree for intra slices.
\\
\Option{MinQTLumaISlice} &
%\ShortOption{\None} &
\Default{8} &
Defines the initial minimum size of the quad tree in dual tree for luma component.
\\
\Option{MinQTNonISlice} &
%\ShortOption{\None} &
\Default{8} &
Defines the initial minimum size of the quad tree for inter slices.
Jie Chen
committed
\Option{MaxBTLumaISlice} &
%\ShortOption{\None} &
\Default{32} &
Defines the initial maximum size of the binary tree in dual tree for luma component.
Jie Chen
committed
\\
\Option{MaxBTChromaISlice} &
%\ShortOption{\None} &
\Default{64} &
Defines the initial maximum size of the binary tree in dual tree for chroma components.
Jie Chen
committed
\\
\Option{MaxBTNonISlice} &
%\ShortOption{\None} &
\Default{128} &
Defines the initial maximum size of the binary tree for inter slices.
Jie Chen
committed
\\
\Option{MaxTTLumaISlice} &
%\ShortOption{\None} &
\Default{32} &
Defines the initial maximum size of the tenary tree in dual tree for luma component.
Jie Chen
committed
\\
\Option{MaxTTChromaISlice} &
%\ShortOption{\None} &
\Default{32} &
Defines the initial maximum size of the tenary tree in dual tree for chroma components.
Jie Chen
committed
\\
\Option{MaxTTNonISlice} &
%\ShortOption{\None} &
\Default{64} &
Defines the initial maximum size of the tenary tree for inter slices.
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
\end{OptionTableNoShorthand}
%%
%% Coding structure parameters
%%
\begin{OptionTableNoShorthand}{Coding structure parameters}{tab:coding-structure}
\Option{IntraPeriod (-ip)} &
%\ShortOption{-ip} &
\Default{$-1$} &
Specifies the intra frame period.
A value of $-1$ implies an infinite period.
\\
\Option{DecodingRefreshType (-dr)} &
%\ShortOption{-dr} &
\Default{0} &
Specifies the type of decoding refresh to apply at the intra frame period
picture.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Applies an I picture (not a intra random access point). \\
1 & Applies a CRA intra random access point (open GOP). \\
2 & Applies an IDR intra random access point (closed GOP). \\
3 & Use recovery point SEI messages to indicate random access. \\
\end{tabular}
\\
\Option{DRAPPeriod} &
%\ShortOption{\None} &
\Default{0} &
Specifies the DRAP period in frames.
Dependent RAP indication SEI messages are disabled if DRAPPeriod is 0.
\\
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
\Option{GOPSize (-g)} &
%\ShortOption{-g} &
\Default{1} &
Specifies the size of the cyclic GOP structure.
\\
\Option{Frame\emph{N}} &
%\ShortOption{\None} &
\Default{\NotSet} &
Multiple options that define the cyclic GOP structure that will be used
repeatedly throughout the sequence. The table should contain GOPSize
elements.
\par
See section~\ref{sec:gop-structure} for further details.
\\
\Option{ReWriteParamSets} &
%\ShortOption{-ip} &
\Default{$0$} &
Enable writing of parameter sets (SPS, PPS, etc.) before every (intra) random access point to enable true random access.
\\
\end{OptionTableNoShorthand}
%%
%% Motion estimation parameters
%%
\begin{OptionTableNoShorthand}{Motion estimation parameters}{tab:motion-estimation}
\Option{FastSearch} &
%\ShortOption{\None} &
\Default{1} &
Enables or disables the use of a fast motion search.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Full search method \\
1 & Fast search method - TZSearch\\
2 & Predictive motion vector fast search method \\
3 & Extended TZSearch method \\
\end{tabular}
\\
\Option{SearchRange (-sr)} &
%\ShortOption{-sr} &
\Default{96} &
Specifies the search range used for motion estimation.
Note: the search range is defined around a predictor. Motion vectors
derived by the motion estimation may thus have values larger than the
search range.
\\
\Option{BipredSearchRange} &
%\ShortOption{\None} &
\Default{4} &
Specifies the search range used for bi-prediction refinement in motion
estimation.
\\
\Option{ClipForBiPredMEEnabled} &
%\ShortOption{\None} &
\Default{0} &
Enables clipping in the Bi-Pred ME, which prevents values over- or under-flowing. It is usually disabled to reduce encoder run-time.
\\
\Option{FastMEAssumingSmootherMVEnabled} &
%\ShortOption{\None} &
\Default{0} &
Enables fast ME assuming a smoother MV.
\\
\Option{HadamardME} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables the use of the Hadamard transform in fractional-pel motion
estimation.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & SAD for cost estimation \\
1 & Hadamard for cost estimation \\
\end{tabular}
\\
\Option{ASR} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables the use of adaptive search ranges, where the motion
search range is dynamically adjusted according to the POC difference
between the current and the reference pictures.
\begin{displaymath}
\resizebox{\hsize}{!}{$
\mathrm{SearchRange}’ = \mathrm{Round}\left(
\mathrm{SearchRange}
* \mathrm{ADAPT\_SR\_SCALE}
* \frac{\mathrm{abs}(
\mathrm{POCcur} - \mathrm{POCref} )}{
\mathrm{RateGOPSize}}\right)
$}
\end{displaymath}
\\
\Option{MaxNumMergeCand} &
%\ShortOption{\None} &
\Default{5} &
Specifies the maximum number of merge candidates to use.
\\
\Option{MaxNumGeoCand} &
Specifies the maximum number of geometric partitioning mode candidates to use.
\\
\Option{MaxNumIBCMergeCand} &
%\ShortOption{\None} &
\Default{6} &
Specifies the maximum number of IBC merge candidates to use.
\\
\Option{DisableIntraInInter} &
%\ShortOption{\None} &
\Default{0} &
Flag to disable intra PUs in inter slices.
\\
\Option{MMVD} &
%\ShortOption{\None} &
\Default{1} &
Enables or disables the merge mode with motion vector difference (MMVD).
\\
\Option{MmvdDisNum} &
%\ShortOption{\None} &
\Default{6} &
Specifies the number of MMVD distance entries used from the distance table at encoder.
\\
\Option{CIIP} &
%\ShortOption{\None} &
\Default{1} &
Enables or disables the merge mode with combined inter merge and intra prediction (CIIP).
\\
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
\end{OptionTableNoShorthand}
%%
%% Mode decision parameters
%%
\begin{OptionTableNoShorthand}{Mode decision parameters}{tab:mode-decision}
\Option{LambdaModifier$N$ (-LM$N$)} &
%\ShortOption{-LM$N$} &
\Default{1.0} &
Specifies a value that is multiplied with the Lagrange multiplier
$\lambda$, for use in the rate-distortion optimised cost calculation
when encoding temporal layer~$N$.
If LambdaModifierI is specified, then LambdaModifierI will be used for intra pictures.
\par
$N$ may be in the range 0 (inclusive) to 7 (exclusive).
\\
\Option{LambdaModifierI (-LMI)} &
%\ShortOption{-LMI} &
\Default{} &
Specifies one or more of the LambdaModifiers to use intra pictures at each of the temporal layers.
If not present, then the LambdaModifier$N$ settings are used instead. If the list of values
(comma or space separated) does not include enough values for each of the temporal layers,
the last value is repeated as required.
\\
\Option{IQPFactor (-IQF)} &
%\ShortOption{-IQF} &
\Default{-1} &
Specifies the QP factor to be used for intra pictures during the lambda computation.
(The values specified in the GOP structure are only used for inter pictures).
If negative (default), the following equation is used to derive the value:
\par
$IQP_{factor}=0.57*(1.0-Max(0.5, Min(0.0, 0.05*s)))$
\par
where $s = Int(isField ? (GS-1)/2 : GS-1)$ and
$GS$ is the gop size.
\\
\Option{ECU} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables the use of early CU determination. When enabled, skipped CUs will not be split further.
\\
\Option{CFM} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables the use of Cbf-based fast encoder mode. When enabled, once a 2Nx2N CU has been evaluated, if the RootCbf is 0, further PU splits will not be evaluated.
\\
\Option{ESD} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables the use of early skip detection. When enabled, the skip mode will be tested before any other.
\\
\Option{FEN} &
%\ShortOption{\None} &
\Default{0} &
Controls the use of different fast encoder coding tools. The following
tools are supported in different combinations:
\par
\begin{tabular}{cp{0.45\textwidth}}
a & In the SAD computation for blocks having size larger than 8, only
the lines of even rows in the block are considered. \\
b & The number of iterations used in the bi-directional motion vector
refinement in the motion estimation process is reduced from 4 to 1. \\
\end{tabular}
Depending on the value of the parameter, the following combinations are
supported:
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Disable all modes \\
1 & Use both a \& b tools\\
2 & Use only tool b \\
3 & Use only tool a \\
\end{tabular}
\\
\Option{FDM} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables the use of fast encoder decisions for 2Nx2N merge
mode. When enabled, the RD cost for the merge mode of the current
candidate is not evaluated if the merge skip mode was the best merge
mode for one of the previous candidates.
\\
Mohammed Golam Sarwer
committed
%\ShortOption{\None} &
\Default{1920} &
Picture width threshold for testing size-64 SBT in RDO (now for HD and above sequences).
Mohammed Golam Sarwer
committed
\\
\Option{RDpenalty} &
%\ShortOption{\None} &
\Default{0} &
RD-penalty for 32x32 TU for intra in non-intra slices.
Enabling this parameter can reduce the visibility of CU boundaries in the coded picture.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & No RD-penalty \\
1 & RD-penalty \\
2 & Maximum RD-penalty (no 32x32 TU)\\
\end{tabular}
\\
\Option{FastLocalDualTreeMode} &
%\ShortOption{\None} &
\Default{0} &
Controls intra coding speedup introducted with local dual tree mode.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Disabled\\
1 & Stop testing intra modes in inter slices, if best cost is more that 1.5 times inter cost.\\
2 & Test only one intra mode in inter slices\\
\end{tabular}
\\
\end{OptionTableNoShorthand}
%%
%% Quantization parameters
%%
\begin{OptionTableNoShorthand}{Quantization parameters}{tab:quantization}
\Option{QP (-q)} &
%\ShortOption{-q} &
\Default{30.0} &
Specifies the base value of the quantization parameter. If it is non-integer, the QP is switched once during encoding.
\\
\Option{IntraQPOffset} &
%\ShortOption{\None} &
\Default{0} &
Specifies a QP offset from the base QP value to be used for intra frames.
\\
\Option{DepQuant} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables the usage of dependent quantization.
\\
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
\Option{LambdaFromQpEnable} &
%\ShortOption{\None} &
\Default{false} &
When enabled, the $\lambda$, which is used to convert a cost in bits to a cost in distortion terms, is calculated as:
$\lambda=qpFactor \times 2^{qp+6*(bitDepthLuma-8)-12}$,
where $qp$ is the slice QP and $qpFactor$ is calculated as follows:
\begin{tabular}{lp{0.45\textwidth}}
$= IQF$ & if $IQF >= 0$ and slice is a periodic intra slice \\
$= 0.57 \times \lambda_{scale}$ & if slice is a non-periodic intra slice \\
$=$ value from GOP table & otherwise \\
\end{tabular}
where $IQF$ is the value specified using the IntraQPFactor option, and where $\lambda_{scale}$ is:
\begin{tabular}{lp{0.45\textwidth}}
$1$ & if LambdaFromQpEnable=true \\
$1.0 - max(0,min(0.5,0.05*B))$ & if LambdaFromQpEnable=false \\
\end{tabular}
where $B$ is the number of B frames.
If LambdaFromQpEnable=false, then the $\lambda$ is also subsequently scaled for non-top-level hiearchical depths, as follows:
$\lambda = \lambda_{base} \times max(2, min(4, (sliceQP-12)/6))$
In addition, independent on the IntraQPFactor, if HadamardME=false, then for an inter slice the final $\lambda$ is scaled by a factor of $0.95$.
\\
\Option{UseIdentityTableForNon420Chroma}&
\Default{1}&
Adarsh Krishnan Ramasubramonian
committed
Specifies whether identity chroma QP mapping tables are used for 4:2:2 and 4:4:4 content. When set to 1, the identity chroma QP mapping table is used for all the three chroma components for 4:2:2 or 4:4:4 content. When set to 0, chroma QP
mapping table may be specified by other parameters in the configuration.
\\
\Option{SameCQPTablesForAllChroma}&
\Default{1}&
Adarsh Krishnan Ramasubramonian
committed
Specifies that the Cb, Cr and joint Cb-Cr components all use the same
chroma mapping table. When set to 1, the values of QpInValCr,
QpOutValCr, QpInValCbCr and QpOutValCbCr are ignored. When set to 0, all
Cb, Cr and joint Cb-Cr components may have different chroma QP mapping tables specified in the configuration file. Note that
Adarsh Krishnan Ramasubramonian
committed
SameCQPTablesForAllChroma is ignored when UseIdentityTableForNon420Chroma is set to 1 for 4:2:2 and 4:4:4 content.
\\
\Option{QpInValCb}%
\Option{QpOutValCb}&
Adarsh Krishnan Ramasubramonian
committed
Specifies the input and coordinates of the pivot points used to specify the chroma QP mapping tables for the Cb component. Default values are as follows:
Adarsh Krishnan Ramasubramonian
committed
\begin{tabular}{cp{0.45\textwidth}}
QpInValCb & 25, 33, 43 \\
QpOutValCb & 25, 32, 37 \\
Adarsh Krishnan Ramasubramonian
committed
\end{tabular}
The values specify the pivot points for the chroma QP mapping table, the unspecified QP values are interpolated from the remaining values. E.g., the default values above specify that the pivot points for the chroma QP mapping table for the Cb component are (25, 25), (33, 32), (43, 37).
Note that that QpInValCr and QpOutValCr are ignored when UseIdentityTableForNon420Chroma is set to 1 for 4:2:2 and 4:4:4 content.
Adarsh Krishnan Ramasubramonian
committed
\\
\Option{QpInValCr}%
\Option{QpOutValCr}&
Adarsh Krishnan Ramasubramonian
committed
Specifies the input and coordinates of the pivot points used to specify the chroma QP mapping tables for the Cr component. Default values are as follows:
Adarsh Krishnan Ramasubramonian
committed
\begin{tabular}{cp{0.45\textwidth}}
QpInValCr & 0 \\
QpOutValCr & 0 \\
Adarsh Krishnan Ramasubramonian
committed
\end{tabular}
The default values specify a pivot point of (0,0) which corresponds to an identity chroma QP mapping table. Note that that QpInValCr and QpOutValCr are ignored
Adarsh Krishnan Ramasubramonian
committed
when SameCQPTablesForAllChroma is set to 1 or when UseIdentityTableForNon420Chroma is set to 1 for 4:2:2 and 4:4:4 content.
\\
\Option{QpInValCbCr}%
\Option{QpOutValCbCr}&
Adarsh Krishnan Ramasubramonian
committed
Specifies the input and coordinates of the pivot points used to specify the chroma QP mapping tables for the joint Cb-Cr component. Default values are as follows:
Adarsh Krishnan Ramasubramonian
committed
\begin{tabular}{cp{0.45\textwidth}}
QpInValrCr & 0 \\
QpOutValCbCr & 0 \\
Adarsh Krishnan Ramasubramonian
committed
\end{tabular}
Adarsh Krishnan Ramasubramonian
committed
The default values specify a pivot point of (0,0) which corresponds to a identity chroma QP mapping table. Note that that QpInValCbCr and QpOutVaCblCr are ignored
when SameCQPTablesForAllChroma is set to 1 or when UseIdentityTableForNon420Chroma is set to 1 for 4:2:2 and 4:4:4 content.
\\
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
\Option{CbQpOffset (-cbqpofs)}%
\Option{CrQpOffset (-crqpofs)} &
%\ShortOption{-cbqpofs}%
%\ShortOption{-crqpofs} &
\Default{0}%
\Default{0} &
Global offset to apply to the luma QP to derive the QP of Cb and Cr
respectively. These options correspond to the values of cb_qp_offset
and cr_qp_offset, that are transmitted in the PPS. Valid values are in
the range $[-12, 12]$.
\\
\Option{CbCrQpOffset (-cbcrqpofs)} &
\Default{-1} &
Global offset to apply to the luma QP to derive the QP for joint Cb-Cr
residual coding mode. This option corresponds to the value of cb_cr_qp_offset
transmitted in the PPS. Valid values are in the range $[-12, 12]$.
\\
\Option{CbCrQpOffsetDualTree} &
\Default{0} &
Tile group QP offset for joint Cb-Cr residual coding mode when separate luma and
chroma trees are used. This option corresponds to the value of tile_group_cb_cr_qp_offset
transmitted in the tile group header. Valid values are in the range $[-12, 12]$.
\\
\Option{LumaLevelToDeltaQPMode} &
\Default{0} &
Luma-level based Delta QP modulation.
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & not used \\
1 & Based on CTU average \\
2 & Based on Max luma in CTU\\
\end{tabular}
\\
\Option{LumaLevelToDeltaQPMaxValWeight} &
\Default{1.0} &
Weight of per block maximum luma value when LumaLevelToDeltaQPMode=2.
\\
\Option{LumaLevelToDeltaQPMappingLuma} &
\Default{\NotSet} &
Specify luma values to use for the luma to delta QP mapping instead of using default values. Default values are: 0, 301, 367, 434, 501, 567, 634, 701, 767, 834.
\\
\Option{LumaLevelToDeltaQPMappingDQP} &
\Default{\NotSet} &
Specify DQP values to use for the luma to delta QP mapping instead of using default values. Default values are: -3, -2, -1, 0, 1, 2, 3, 4, 5, 6.
\\
\Option{WCGPPSEnable} &
\Default{0} &
Enable the WCG PPS modulation of the chroma QP, rather than the slice,
which, unlike slice-level modulation, allows the deblocking process
to consider the adjustment.
To use, specify a fractional QP:
the first part of the sequence will use $qpc=floor(QP)$ in the following
calculation and PPS-0; the second part of the sequence will use $qpc=ceil(QP)$
and PPS-1. The $chromaQp$ that is then stored in the PPS is given as:
$clip(round(WCGPPSXXQpScale*baseCQp)+XXQpOffset)$ where $baseCQp=(WCGPPSChromaQpScale*qpc+WCGPPSChromaQpOffset)$.
Note that the slices will continue to have a delta QP applied.
\\
\Option{WCGPPSChromaQpScale} &
\Default{0.0} &
Scale parameter for the linear chroma QP offset mapping used for WCG content.
\\
\Option{WCGPPSChromaQpOffset} &
\Default{0.0} &
Offset parameter for the linear chroma QP offset mapping used for WCG content.
\\
\Option{WCGPPSCbQpScale}%
\Option{WCGPPSCrQpScale} &
\Default{1.0} &
Per chroma component QP scale factor depending on capture and representation color space.
For Cb component with BT.2020 container use 1.14; for BT.709 material and 1.04 for P3 material.
For Cr component with BT.2020 container use 1.79; for BT.709 material and 1.39 for P3 material.
\\
\Option{SliceChromaQPOffsetPeriodicity} &
\Default{0} &
Defines the periodicity for inter slices that use the slice-level chroma QP offsets, as defined by SliceCbQpOffsetIntraOrPeriodic and SliceCrQpOffsetIntraOrPeriodic. A value of 0 disables the periodicity. It is intended to be used in low-delay configurations where an regular intra period is not defined.
\\
\Option{SliceCbQpOffsetIntraOrPeriodic}%
\Option{SliceCrQpOffsetIntraOrPeriodic} &
\Default{0} &
Defines the slice-level QP offset to be used for intra slices, or once every 'SliceChromaQPOffsetPeriodicity' pictures.
\\
\Option{MaxCuDQPDepth (-dqd)} &
%\ShortOption{\None} &
\Default{0} &
Defines maximum depth of a minimum CuDQP for sub-LCU-level delta QP.
MaxCuDQPDepth shall be greater than or equal to SliceGranularity.
\\
\Option{RDOQ} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables rate-distortion-optimized quantization for transformed TUs.
\\
\Option{RDOQTS} &
%\ShortOption{\None} &
\Default{true} &
Enables or disables rate-distortion-optimized quantization for transform-skipped TUs.
\\
\Option{SelectiveRDOQ} &
%\ShortOption{\None} &
\Default{false} &
Enables or disables selective rate-distortion-optimized quantization.
A simple quantization is use to pre-analyze, whether to bypass the RDOQ process or not.
If all the coefficients are quantized to 0, the RDOQ process is bypassed.
Otherwise, the RDOQ process is performed as usual.
\\
\Option{DeltaQpRD (-dqr)} &
%\ShortOption{-dqr} &
\Default{0} &
Specifies the maximum QP offset at slice level for multi-pass slice
encoding. When encoding, each slice is tested multiple times by using
slice QP values in the range $[-\mathrm{DeltaQpRD}, \mathrm{DeptaQpRD}]$,
and the best QP value is chosen as the slice QP.
\\
\Option{MaxDeltaQP (-d)} &
%\ShortOption{-d} &
\Default{0} &
Specifies the maximum QP offset at the largest coding unit level for
the block-level adaptive QP assignment scheme. In the encoder, each
largest coding unit is tested multiple times by using the QP values in
the range $[-\mathrm{MaxDeltaQP}, \mathrm{MaxDeltaQP}]$, and the best QP
value is chosen as the QP value of the largest coding unit.
\\
\Option{dQPFile (-m)} &
%\ShortOption{-m} &
\Default{\NotSet} &
Specifies a file containing a list of QP deltas. The $n$-th line
(where $n$ is 0 for the first line) of this file corresponds to the QP
value delta for the picture with POC value $n$.
\\
\Option{PerceptQPA (-qpa)} &
%\ShortOption{-qpa} &
\Default{false} &
Enables or disables the perceptually optimized QP adaptation (QPA) method described in JVET-H0047, JVET-K0206, and JVET-M0091. Use this together with 'SliceChromaQPOffsetPeriodicity=1' and, in case of HDR input, 'LumaLevelToDeltaQPMode=1' for best subjective quality. Cannot be used together with 'SelectiveRDOQ' (see above) or 'AdaptiveQP' (see below).
Enables or disables the legacy QP adaptation method based upon a psycho-visual model.
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
\\
\Option{MaxQPAdaptationRange (-aqr)} &
%\ShortOption{-aqps} &
\Default{6} &
Specifies the maximum QP adaptation range.
\\
\Option{AdaptiveQpSelection (-aqps)} &
%\ShortOption{-aqps} &
\Default{false} &
Specifies whether QP values for non-I frames will be calculated on the
fly based on statistics of previously coded frames.
\\
\Option{RecalculateQP...} \Option{AccordingToLambda} &
%\ShortOption{\None} &
\Default{false} &
Recalculate QP values according to lambda values. Do not suggest to be enabled in all intra case.
\\
\Option{ScalingList} &
%\ShortOption{\None} &
\Default{0} &
Controls the specification of scaling lists:
\par
\begin{tabular}{cp{0.45\textwidth}}
0 & Scaling lists are disabled \\
1 & Use default scaling lists \\
2 & Scaling lists are specified in the file indicated by ScalingListFile \\
\end{tabular}
\\
\Option{ScalingListFile} &
%\ShortOption{\None} &
\Default{\NotSet} &
When ScalingList is set to 2, this parameter indicates the name of the file, which contains the defined scaling lists.
If ScalingList is set to 2 and this parameter is an empty string, information on the format of the scaling list file
is output and the encoder stops.
\\
Adarsh Krishnan Ramasubramonian
committed
\Option{DisableScalingMatrixForLFNST} &
%\ShortOption{\None} &
\Default{true} &
Specifies whether scaling matrices are to be applied to blocks coded with LFNST.
\\
\Option{DisableScalingMatrixForAlternativeColourSpace} &
%\ShortOption{\None} &
\Default{true} &
Specifies whether scaling matrices are disabled to blocks when the colour space is not equal to the designated colour space of scaling matrices.
\\
\Option{ScalingMatrixDesignatedColourSpace} &
%\ShortOption{\None} &
\Default{true} &
Indicates if the designated colour space of scaling matrices is equal to the original colour space.
\\
\Option{MaxCUChromaQpAdjustmentDepth} &
%\ShortOption{\None} &
\Default{-1} &
Specifies the maximum depth for CU chroma QP adjustment; if negative, CU chroma QP adjustment is disabled.
\\
\end{OptionTableNoShorthand}
%%
\begin{OptionTableNoShorthand}{Slice and tile coding parameters}{tab:slice-coding}
\Option{EnablePicPartitioning} &
Enable picture partitioning (0: single tile, single slice, 1: multiple tiles/slices can be used).
Tile column widths in units of CTUs. Last column width in list will be repeated uniformly to cover any remaining picture width.