Newer
Older

Karsten Suehring
committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
// get the MV in high precision
int xFrac, yFrac, xInt, yInt;
if (!iScaleX)
{
xInt = iMvScaleTmpHor >> 4;
xFrac = iMvScaleTmpHor & 15;
}
else
{
xInt = iMvScaleTmpHor >> 5;
xFrac = iMvScaleTmpHor & 31;
}
if (!iScaleY)
{
yInt = iMvScaleTmpVer >> 4;
yFrac = iMvScaleTmpVer & 15;
}
else
{
yInt = iMvScaleTmpVer >> 5;
yFrac = iMvScaleTmpVer & 31;
}
const CPelBuf refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, pu.blocks[compID].offset(xInt + w, yInt + h), pu.blocks[compID] ), wrapRef );
Pel* ref = (Pel*) refBuf.buf;
Pel* dst = dstBuf.buf + w + h * dstBuf.stride;
int refStride = refBuf.stride;
int dstStride = dstBuf.stride;
int bw = blockWidth;
int bh = blockHeight;
if (enablePROF)
{
dst = dstExtBuf.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
dstStride = dstExtBuf.stride;
}

Karsten Suehring
committed
if ( yFrac == 0 )
{
m_if.filterHor( compID, (Pel*) ref, refStride, dst, dstStride, bw, bh, xFrac, isLast, chFmt, clpRng);

Karsten Suehring
committed
}
else if ( xFrac == 0 )
{
m_if.filterVer( compID, (Pel*) ref, refStride, dst, dstStride, bw, bh, yFrac, true, isLast, chFmt, clpRng);

Karsten Suehring
committed
}
else
{
m_if.filterHor( compID, (Pel*)ref - ((vFilterSize>>1) -1)*refStride, refStride, tmpBuf.buf, tmpBuf.stride, bw, bh+vFilterSize-1, xFrac, false, chFmt, clpRng);

Karsten Suehring
committed
JVET_J0090_SET_CACHE_ENABLE( false );
m_if.filterVer( compID, tmpBuf.buf + ((vFilterSize>>1) -1)*tmpBuf.stride, tmpBuf.stride, dst, dstStride, bw, bh, yFrac, false, isLast, chFmt, clpRng);

Karsten Suehring
committed
JVET_J0090_SET_CACHE_ENABLE( true );
}
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
if (enablePROF)
{
const int shift = std::max<int>(2, (IF_INTERNAL_PREC - clpRng.bd));
const int xOffset = xFrac >> 3;
const int yOffset = yFrac >> 3;
const int refOffset = (blockHeight + 1) * refStride;
const int dstOffset = (blockHeight + 1)* dstStride;
const Pel* refPel = ref - (1 - yOffset) * refStride + xOffset - 1;
Pel* dstPel = dst - dstStride - 1;
for (int pw = 0; pw < blockWidth + 2; pw++)
{
dstPel[pw] = leftShift_round(refPel[pw], shift) - (Pel)IF_INTERNAL_OFFS;
dstPel[pw+dstOffset] = leftShift_round(refPel[pw+refOffset], shift) - (Pel)IF_INTERNAL_OFFS;
}
refPel = ref + yOffset * refBuf.stride + xOffset;
dstPel = dst;
for (int ph = 0; ph < blockHeight; ph++, refPel += refStride, dstPel += dstStride)
{
dstPel[-1] = leftShift_round(refPel[-1], shift) - (Pel)IF_INTERNAL_OFFS;
dstPel[blockWidth] = leftShift_round(refPel[blockWidth], shift) - (Pel)IF_INTERNAL_OFFS;
}
PelBuf gradXBuf = gradXExt.subBuf(w, h, blockWidth + 2, blockHeight + 2);
PelBuf gradYBuf = gradYExt.subBuf(w, h, blockWidth + 2, blockHeight + 2);
g_pelBufOP.profGradFilter(dstExtBuf.buf, dstExtBuf.stride, blockWidth + 2, blockHeight + 2, gradXBuf.stride, gradXBuf.buf, gradYBuf.buf, clpRng.bd);
const int shiftNum = std::max<int>(2, (IF_INTERNAL_PREC - clpRng.bd));
const Pel offset = (1 << (shiftNum - 1)) + IF_INTERNAL_OFFS;
Pel* src = dstExtBuf.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel* gX = gradXBuf.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel* gY = gradYBuf.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel * dstY = dstBuf.bufAt(w, h);
if (!bi)
{
g_pelBufOP.applyPROF(dstY, dstBuf.stride, src, dstExtBuf.stride, blockWidth, blockHeight, gX, gY, gradXBuf.stride, dMvScaleHor, dMvScaleVer, blockWidth, shiftNum, offset, clpRng);
}
else
{
PelBuf srcExtBuf(src, dstExtBuf.stride, Size(blockWidth, blockHeight));
PelBuf destBuf(dstY, dstBuf.stride, Size(blockWidth, blockHeight));
destBuf.copyFrom(srcExtBuf);
}
}

Karsten Suehring
committed
}
}
}
void InterPrediction::applyBiOptFlow(const PredictionUnit &pu, const CPelUnitBuf &yuvSrc0, const CPelUnitBuf &yuvSrc1, const int &refIdx0, const int &refIdx1, PelUnitBuf &yuvDst, const BitDepths &clipBitDepths)
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
const int height = yuvDst.Y().height;
const int width = yuvDst.Y().width;
int heightG = height + 2 * BIO_EXTEND_SIZE;
int widthG = width + 2 * BIO_EXTEND_SIZE;
int offsetPos = widthG*BIO_EXTEND_SIZE + BIO_EXTEND_SIZE;
Pel* gradX0 = m_gradX0;
Pel* gradX1 = m_gradX1;
Pel* gradY0 = m_gradY0;
Pel* gradY1 = m_gradY1;
int stridePredMC = widthG + 2;
const Pel* srcY0 = m_filteredBlockTmp[2][COMPONENT_Y] + stridePredMC + 1;
const Pel* srcY1 = m_filteredBlockTmp[3][COMPONENT_Y] + stridePredMC + 1;
const int src0Stride = stridePredMC;
const int src1Stride = stridePredMC;
Pel* dstY = yuvDst.Y().buf;
const int dstStride = yuvDst.Y().stride;
const Pel* srcY0Temp = srcY0;
const Pel* srcY1Temp = srcY1;
for (int refList = 0; refList < NUM_REF_PIC_LIST_01; refList++)
{
Pel* dstTempPtr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + stridePredMC + 1;
Pel* gradY = (refList == 0) ? m_gradY0 : m_gradY1;
Pel* gradX = (refList == 0) ? m_gradX0 : m_gradX1;
xBioGradFilter(dstTempPtr, stridePredMC, widthG, heightG, widthG, gradX, gradY, clipBitDepths.recon[toChannelType(COMPONENT_Y)]);
Pel* padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 2;
for (int y = 0; y< height; y++)
padStr[-1] = padStr[0];
padStr[width] = padStr[width - 1];
padStr += stridePredMC;
padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 1;
::memcpy(padStr - stridePredMC, padStr, sizeof(Pel)*(widthG));
::memcpy(padStr + height*stridePredMC, padStr + (height - 1)*stridePredMC, sizeof(Pel)*(widthG));
}
const ClpRng& clpRng = pu.cu->cs->slice->clpRng(COMPONENT_Y);
const int bitDepth = clipBitDepths.recon[toChannelType(COMPONENT_Y)];
const int shiftNum = IF_INTERNAL_PREC + 1 - bitDepth;
const int offset = (1 << (shiftNum - 1)) + 2 * IF_INTERNAL_OFFS;
const int limit = (1<<(std::max<int>(5, bitDepth - 7)));
int xUnit = (width >> 2);
int yUnit = (height >> 2);
Pel *dstY0 = dstY;
gradX0 = m_gradX0; gradX1 = m_gradX1;
gradY0 = m_gradY0; gradY1 = m_gradY1;
for (int yu = 0; yu < yUnit; yu++)
{
for (int xu = 0; xu < xUnit; xu++)
{
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
int tmpx = 0, tmpy = 0;
int sumAbsGX = 0, sumAbsGY = 0, sumDIX = 0, sumDIY = 0;
int sumSignGY_GX = 0;
Pel* pGradX0Tmp = m_gradX0 + (xu << 2) + (yu << 2) * widthG;
Pel* pGradX1Tmp = m_gradX1 + (xu << 2) + (yu << 2) * widthG;
Pel* pGradY0Tmp = m_gradY0 + (xu << 2) + (yu << 2) * widthG;
Pel* pGradY1Tmp = m_gradY1 + (xu << 2) + (yu << 2) * widthG;
const Pel* SrcY1Tmp = srcY1 + (xu << 2) + (yu << 2) * src1Stride;
const Pel* SrcY0Tmp = srcY0 + (xu << 2) + (yu << 2) * src0Stride;
g_pelBufOP.calcBIOSums(SrcY0Tmp, SrcY1Tmp, pGradX0Tmp, pGradX1Tmp, pGradY0Tmp, pGradY1Tmp, xu, yu, src0Stride, src1Stride, widthG, bitDepth, &sumAbsGX, &sumAbsGY, &sumDIX, &sumDIY, &sumSignGY_GX);
tmpx = (sumAbsGX == 0 ? 0 : rightShiftMSB(sumDIX << 3, sumAbsGX));
tmpx = Clip3(-limit, limit, tmpx);
int mainsGxGy = sumSignGY_GX >> 12;
int secsGxGy = sumSignGY_GX & ((1 << 12) - 1);
int tmpData = tmpx * mainsGxGy;
tmpData = ((tmpData << 12) + tmpx*secsGxGy) >> 1;
tmpy = (sumAbsGY == 0 ? 0 : rightShiftMSB(((sumDIY << 3) - tmpData), sumAbsGY));
tmpy = Clip3(-limit, limit, tmpy);
srcY0Temp = srcY0 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2);
srcY1Temp = srcY1 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2);
gradX0 = m_gradX0 + offsetPos + ((yu*widthG + xu) << 2);
gradX1 = m_gradX1 + offsetPos + ((yu*widthG + xu) << 2);
gradY0 = m_gradY0 + offsetPos + ((yu*widthG + xu) << 2);
gradY1 = m_gradY1 + offsetPos + ((yu*widthG + xu) << 2);
dstY0 = dstY + ((yu*dstStride + xu) << 2);
xAddBIOAvg4(srcY0Temp, src0Stride, srcY1Temp, src1Stride, dstY0, dstStride, gradX0, gradX1, gradY0, gradY1, widthG, (1 << 2), (1 << 2), (int)tmpx, (int)tmpy, shiftNum, offset, clpRng);
} // xu
} // yu
}
void InterPrediction::xAddBIOAvg4(const Pel* src0, int src0Stride, const Pel* src1, int src1Stride, Pel *dst, int dstStride, const Pel *gradX0, const Pel *gradX1, const Pel *gradY0, const Pel*gradY1, int gradStride, int width, int height, int tmpx, int tmpy, int shift, int offset, const ClpRng& clpRng)
{
g_pelBufOP.addBIOAvg4(src0, src0Stride, src1, src1Stride, dst, dstStride, gradX0, gradX1, gradY0, gradY1, gradStride, width, height, tmpx, tmpy, shift, offset, clpRng);
}
void InterPrediction::xBioGradFilter(Pel* pSrc, int srcStride, int width, int height, int gradStride, Pel* gradX, Pel* gradY, int bitDepth)
{
g_pelBufOP.bioGradFilter(pSrc, srcStride, width, height, gradStride, gradX, gradY, bitDepth);
}
void InterPrediction::xCalcBIOPar(const Pel* srcY0Temp, const Pel* srcY1Temp, const Pel* gradX0, const Pel* gradX1, const Pel* gradY0, const Pel* gradY1, int* dotProductTemp1, int* dotProductTemp2, int* dotProductTemp3, int* dotProductTemp5, int* dotProductTemp6, const int src0Stride, const int src1Stride, const int gradStride, const int widthG, const int heightG, int bitDepth)
{
g_pelBufOP.calcBIOPar(srcY0Temp, srcY1Temp, gradX0, gradX1, gradY0, gradY1, dotProductTemp1, dotProductTemp2, dotProductTemp3, dotProductTemp5, dotProductTemp6, src0Stride, src1Stride, gradStride, widthG, heightG, bitDepth);
}
void InterPrediction::xCalcBlkGradient(int sx, int sy, int *arraysGx2, int *arraysGxGy, int *arraysGxdI, int *arraysGy2, int *arraysGydI, int &sGx2, int &sGy2, int &sGxGy, int &sGxdI, int &sGydI, int width, int height, int unitSize)
{
g_pelBufOP.calcBlkGradient(sx, sy, arraysGx2, arraysGxGy, arraysGxdI, arraysGy2, arraysGydI, sGx2, sGy2, sGxGy, sGxdI, sGydI, width, height, unitSize);
}
void InterPrediction::xWeightedAverage(const PredictionUnit& pu, const CPelUnitBuf& pcYuvSrc0, const CPelUnitBuf& pcYuvSrc1, PelUnitBuf& pcYuvDst, const BitDepths& clipBitDepths, const ClpRngs& clpRngs, const bool& bioApplied, PelUnitBuf* yuvDstTmp /*= NULL*/)

Karsten Suehring
committed
{
const int iRefIdx0 = pu.refIdx[0];
const int iRefIdx1 = pu.refIdx[1];
if( iRefIdx0 >= 0 && iRefIdx1 >= 0 )
{
if (pu.cu->affine && (m_applyPROF[0] || m_applyPROF[1]))
{
xApplyBiPROF(pu, pcYuvSrc0.bufs[COMPONENT_Y], pcYuvSrc1.bufs[COMPONENT_Y], pcYuvDst.bufs[COMPONENT_Y], clpRngs.comp[COMPONENT_Y]);
pcYuvDst.addWeightedAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, pu.cu->GBiIdx, true);
CHECK(yuvDstTmp, "yuvDstTmp is disallowed with PROF");
return;
}
if( pu.cu->GBiIdx != GBI_DEFAULT && (yuvDstTmp || !pu.mhIntraFlag) )
CHECK(bioApplied, "GBi is disallowed with BIO");
pcYuvDst.addWeightedAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, pu.cu->GBiIdx);
yuvDstTmp->addAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, false);
if (bioApplied)
const int src0Stride = pu.lwidth() + 2 * BIO_EXTEND_SIZE + 2;
const int src1Stride = pu.lwidth() + 2 * BIO_EXTEND_SIZE + 2;
const Pel* pSrcY0 = m_filteredBlockTmp[2][COMPONENT_Y] + 2 * src0Stride + 2;
const Pel* pSrcY1 = m_filteredBlockTmp[3][COMPONENT_Y] + 2 * src1Stride + 2;
bool bioEnabled = true;
if (bioEnabled)
{
applyBiOptFlow(pu, pcYuvSrc0, pcYuvSrc1, iRefIdx0, iRefIdx1, pcYuvDst, clipBitDepths);
if (yuvDstTmp)
yuvDstTmp->bufs[0].addAvg(CPelBuf(pSrcY0, src0Stride, pu.lumaSize()), CPelBuf(pSrcY1, src1Stride, pu.lumaSize()), clpRngs.comp[0]);
}
else
{
pcYuvDst.bufs[0].addAvg(CPelBuf(pSrcY0, src0Stride, pu.lumaSize()), CPelBuf(pSrcY1, src1Stride, pu.lumaSize()), clpRngs.comp[0]);
if (yuvDstTmp)
yuvDstTmp->bufs[0].copyFrom(pcYuvDst.bufs[0]);
Takeshi Chujoh
committed
if (pu.cs->pps->getWPBiPred())
{
const int iRefIdx0 = pu.refIdx[0];
const int iRefIdx1 = pu.refIdx[1];
WPScalingParam *pwp0;
WPScalingParam *pwp1;
getWpScaling(pu.cu->slice, iRefIdx0, iRefIdx1, pwp0, pwp1);
if (!bioApplied)
{
addWeightBiComponent(pcYuvSrc0, pcYuvSrc1, pu.cu->slice->clpRngs(), pwp0, pwp1, pcYuvDst, true, COMPONENT_Y);
}
addWeightBiComponent(pcYuvSrc0, pcYuvSrc1, pu.cu->slice->clpRngs(), pwp0, pwp1, pcYuvDst, true, COMPONENT_Cb);
addWeightBiComponent(pcYuvSrc0, pcYuvSrc1, pu.cu->slice->clpRngs(), pwp0, pwp1, pcYuvDst, true, COMPONENT_Cr);
}
else
{
pcYuvDst.addAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, bioApplied);
}
if (yuvDstTmp)
{
if (bioApplied)
{
yuvDstTmp->bufs[1].copyFrom(pcYuvDst.bufs[1]);
yuvDstTmp->bufs[2].copyFrom(pcYuvDst.bufs[2]);
}
else
yuvDstTmp->copyFrom(pcYuvDst);
}

Karsten Suehring
committed
}
else if( iRefIdx0 >= 0 && iRefIdx1 < 0 )
{
if( pu.cu->triangle )
{
pcYuvDst.copyFrom( pcYuvSrc0 );
}
else

Karsten Suehring
committed
pcYuvDst.copyClip( pcYuvSrc0, clpRngs );
if (yuvDstTmp)
yuvDstTmp->copyFrom(pcYuvDst);

Karsten Suehring
committed
}
else if( iRefIdx0 < 0 && iRefIdx1 >= 0 )
{
if( pu.cu->triangle )
{
pcYuvDst.copyFrom( pcYuvSrc1 );
}
else

Karsten Suehring
committed
pcYuvDst.copyClip( pcYuvSrc1, clpRngs );
if (yuvDstTmp)
yuvDstTmp->copyFrom(pcYuvDst);

Karsten Suehring
committed
}
}
void InterPrediction::xApplyBiPROF(const PredictionUnit &pu, const CPelBuf& pcYuvSrc0, const CPelBuf& pcYuvSrc1, PelBuf& pcYuvDst, const ClpRng& clpRng)
{
int blockWidth = AFFINE_MIN_BLOCK_SIZE;
int blockHeight = AFFINE_MIN_BLOCK_SIZE;
CHECK(!m_applyPROF[0] && !m_applyPROF[1], "xApplyBiPROF() applies PROF for at least one list.");
const int width = pu.Y().width;
const int height = pu.Y().height;
const int bit = MAX_CU_DEPTH;
const int shift = bit - 4 + MV_FRACTIONAL_BITS_INTERNAL;
const int bdlimit = std::max<int>(6, clpRng.bd - 6);
const int dmvLimit = 1 << bdlimit;
for (int list = 0; list < 2; list++)
{
if (m_applyPROF[list])
{
Mv mvLT = pu.mvAffi[list][0];
Mv mvRT = pu.mvAffi[list][1];
Mv mvLB = pu.mvAffi[list][2];
dMvHorX = (mvRT - mvLT).getHor() << (bit - floorLog2(width));
dMvHorY = (mvRT - mvLT).getVer() << (bit - floorLog2(width));
if (pu.cu->affineType == AFFINEMODEL_6PARAM)
{
dMvVerX = (mvLB - mvLT).getHor() << (bit - floorLog2(height));
dMvVerY = (mvLB - mvLT).getVer() << (bit - floorLog2(height));
}
else
{
}
int *dMvScaleHor = m_dMvBuf[list];
int *dMvScaleVer = m_dMvBuf[list] + 16;
int* dMvH = dMvScaleHor;
int* dMvV = dMvScaleVer;
int quadHorX = dMvHorX << 2;
int quadHorY = dMvHorY << 2;
int quadVerX = dMvVerX << 2;
int quadVerY = dMvVerY << 2;
dMvH[0] = ((dMvHorX + dMvVerX) << 1) - ((quadHorX + quadVerX) << 1);
dMvV[0] = ((dMvHorY + dMvVerY) << 1) - ((quadHorY + quadVerY) << 1);
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
for (int w = 1; w < blockWidth; w++)
{
dMvH[w] = dMvH[w - 1] + quadHorX;
dMvV[w] = dMvV[w - 1] + quadHorY;
}
dMvH += blockWidth;
dMvV += blockWidth;
for (int h = 1; h < blockHeight; h++)
{
for (int w = 0; w < blockWidth; w++)
{
dMvH[w] = dMvH[w - blockWidth] + quadVerX;
dMvV[w] = dMvV[w - blockWidth] + quadVerY;
}
dMvH += blockWidth;
dMvV += blockWidth;
}
if (!g_pelBufOP.roundIntVector)
{
for (int idx = 0; idx < blockWidth * blockHeight; idx++)
{
roundAffineMv(dMvScaleHor[idx], dMvScaleVer[idx], shift);
dMvScaleHor[idx] = Clip3(-dmvLimit, dmvLimit - 1, dMvScaleHor[idx]);
dMvScaleVer[idx] = Clip3(-dmvLimit, dmvLimit - 1, dMvScaleVer[idx]);
}
}
else
{
int sz = blockWidth * blockHeight;
g_pelBufOP.roundIntVector(dMvScaleHor, sz, shift, dmvLimit);
g_pelBufOP.roundIntVector(dMvScaleVer, sz, shift, dmvLimit);
}
}
}
const int cuExtW = width + PROF_BORDER_EXT_W * 2;
const int cuExtH = height + PROF_BORDER_EXT_H * 2;
PelBuf gradXExt0 = PelBuf(m_gradBuf[REF_PIC_LIST_0][0], cuExtW, cuExtH);
PelBuf gradYExt0 = PelBuf(m_gradBuf[REF_PIC_LIST_0][1], cuExtW, cuExtH);
PelBuf gradXExt1 = PelBuf(m_gradBuf[REF_PIC_LIST_1][0], cuExtW, cuExtH);
PelBuf gradYExt1 = PelBuf(m_gradBuf[REF_PIC_LIST_1][1], cuExtW, cuExtH);
Pel* gX0 = gradXExt0.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel* gY0 = gradYExt0.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel* gX1 = gradXExt1.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel* gY1 = gradYExt1.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
int *dMvX0 = m_dMvBuf[REF_PIC_LIST_0];
int *dMvY0 = m_dMvBuf[REF_PIC_LIST_0] + 16;
int *dMvX1 = m_dMvBuf[REF_PIC_LIST_1];
int *dMvY1 = m_dMvBuf[REF_PIC_LIST_1] + 16;
const Pel* srcY0 = pcYuvSrc0.bufAt(0, 0);
const Pel* srcY1 = pcYuvSrc1.bufAt(0, 0);
Pel* dstY = pcYuvDst.bufAt(0, 0);
if(m_applyPROF[0] && m_applyPROF[1])
g_pelBufOP.applyBiPROF[1](dstY, pcYuvDst.stride, srcY0, srcY1, pcYuvSrc0.stride, width, height, gX0, gY0, gX1, gY1, gradXExt0.stride, dMvX0, dMvY0, dMvX1, dMvY1, blockWidth, getGbiWeight(pu.cu->GBiIdx, REF_PIC_LIST_0), clpRng);
else if (m_applyPROF[0])
g_pelBufOP.applyBiPROF[0](dstY, pcYuvDst.stride, srcY0, srcY1, pcYuvSrc0.stride, width, height, gX0, gY0, gX1, gY1, gradXExt0.stride, dMvX0, dMvY0, dMvX1, dMvY1, blockWidth, getGbiWeight(pu.cu->GBiIdx, REF_PIC_LIST_0), clpRng);
else
g_pelBufOP.applyBiPROF[0](dstY, pcYuvDst.stride, srcY1, srcY0, pcYuvSrc0.stride, width, height, gX1, gY1, gX0, gY0, gradXExt0.stride, dMvX1, dMvY1, dMvX0, dMvY0, blockWidth, getGbiWeight(pu.cu->GBiIdx, REF_PIC_LIST_1), clpRng);
}
void InterPrediction::motionCompensation( PredictionUnit &pu, PelUnitBuf &predBuf, const RefPicList &eRefPicList
, PelUnitBuf* predBufWOBIO /*= NULL*/

Karsten Suehring
committed
{
CHECK(predBufWOBIO && pu.mhIntraFlag, "the case should not happen!");
if (!pu.cs->pcv->isEncoder)
{
if (CU::isIBC(*pu.cu))
{
CHECK(!luma, "IBC only for Chroma is not allowed.");
xIntraBlockCopy(pu, predBuf, COMPONENT_Y);
if (chroma)
{
xIntraBlockCopy(pu, predBuf, COMPONENT_Cb);
xIntraBlockCopy(pu, predBuf, COMPONENT_Cr);
}
return;
}
}
if ((!luma || !chroma) && eRefPicList == REF_PIC_LIST_0)
{
xPredInterUni(pu, eRefPicList, predBuf, false
, false
, luma, chroma);
return;
}
// else, go with regular MC below

Karsten Suehring
committed
CodingStructure &cs = *pu.cs;
const PPS &pps = *cs.pps;
const SliceType sliceType = cs.slice->getSliceType();
if( eRefPicList != REF_PIC_LIST_X )
{
CHECK(predBufWOBIO != NULL, "the case should not happen!");

Karsten Suehring
committed
if( ( ( sliceType == P_SLICE && pps.getUseWP() ) || ( sliceType == B_SLICE && pps.getWPBiPred() ) ) )
{
xPredInterUni ( pu, eRefPicList, predBuf, true
, false
, true, true
);

Karsten Suehring
committed
xWeightedPredictionUni( pu, predBuf, eRefPicList, predBuf, -1, m_maxCompIDToPred );
}
else
{
xPredInterUni( pu, eRefPicList, predBuf, false
, false
, true, true
);

Karsten Suehring
committed
}
}
else
{
CHECK( !pu.cu->affine && pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 && ( pu.lwidth() + pu.lheight() == 12 ), "invalid 4x8/8x4 bi-predicted blocks" );
WPScalingParam *wp0;
WPScalingParam *wp1;
int refIdx0 = pu.refIdx[REF_PIC_LIST_0];
int refIdx1 = pu.refIdx[REF_PIC_LIST_1];
pu.cs->slice->getWpScaling(REF_PIC_LIST_0, refIdx0, wp0);
pu.cs->slice->getWpScaling(REF_PIC_LIST_1, refIdx1, wp1);
bool bioApplied = false;
const Slice &slice = *pu.cs->slice;
if (pu.cs->sps->getBDOFEnabledFlag() && (!pu.cs->slice->getDisBdofDmvrFlag()))
{
if (pu.cu->affine || m_subPuMC)
{
bioApplied = false;
}
else
{
const bool biocheck0 = !((wp0[COMPONENT_Y].bPresentFlag || wp1[COMPONENT_Y].bPresentFlag) && slice.getSliceType() == B_SLICE);
const bool biocheck1 = !(pps.getUseWP() && slice.getSliceType() == P_SLICE);
if (biocheck0
&& biocheck1
#if JVET_P1023_DMVR_BDOF_RP_CONDITION
&& PU::isBiPredFromDifferentDirEqDistPoc(pu)
#else
&& (pu.Y().height >= 8)
&& (pu.Y().width >= 8)
&& ((pu.Y().height * pu.Y().width) >= 128)
)
{
bioApplied = true;
}
}
if (bioApplied && pu.mhIntraFlag)
{
bioApplied = false;
}
if (pu.cu->cs->sps->getUseGBi() && bioApplied && pu.cu->GBiIdx != GBI_DEFAULT)
if (pu.mmvdEncOptMode == 2 && pu.mmvdMergeFlag)
bioApplied = false;
}
}
bool dmvrApplied = false;
dmvrApplied = (pu.mvRefine) && PU::checkDMVRCondition(pu);
if ((pu.lumaSize().width > MAX_BDOF_APPLICATION_REGION || pu.lumaSize().height > MAX_BDOF_APPLICATION_REGION) && pu.mergeType != MRG_TYPE_SUBPU_ATMVP && (bioApplied && !dmvrApplied))
{
xSubPuBio(pu, predBuf, eRefPicList, predBufWOBIO);
if (pu.mergeType != MRG_TYPE_DEFAULT_N && pu.mergeType != MRG_TYPE_IBC)

Karsten Suehring
committed
{
CHECK(predBufWOBIO != NULL, "the case should not happen!");

Karsten Suehring
committed
xSubPuMC( pu, predBuf, eRefPicList );
}
else if( xCheckIdenticalMotion( pu ) )
{
xPredInterUni( pu, REF_PIC_LIST_0, predBuf, false
, false
, true, true
);
if (predBufWOBIO)
predBufWOBIO->copyFrom(predBuf);

Karsten Suehring
committed
}
else
{
xPredInterBi(pu, predBuf, predBufWOBIO);

Karsten Suehring
committed
}
}
return;
}
void InterPrediction::motionCompensation( CodingUnit &cu, const RefPicList &eRefPicList

Karsten Suehring
committed
{
for( auto &pu : CU::traversePUs( cu ) )
{
PelUnitBuf predBuf = cu.cs->getPredBuf( pu );
pu.mvRefine = true;
motionCompensation( pu, predBuf, eRefPicList
pu.mvRefine = false;

Karsten Suehring
committed
}
}
void InterPrediction::motionCompensation( PredictionUnit &pu, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/

Karsten Suehring
committed
{
PelUnitBuf predBuf = pu.cs->getPredBuf( pu );
motionCompensation( pu, predBuf, eRefPicList

Karsten Suehring
committed
}
int InterPrediction::rightShiftMSB(int numer, int denom)
{
return numer >> floorLog2(denom);

Karsten Suehring
committed
void InterPrediction::motionCompensation4Triangle( CodingUnit &cu, MergeCtx &triangleMrgCtx, const bool splitDir, const uint8_t candIdx0, const uint8_t candIdx1 )
{
for( auto &pu : CU::traversePUs( cu ) )
{
const UnitArea localUnitArea( cu.cs->area.chromaFormat, Area( 0, 0, pu.lwidth(), pu.lheight() ) );
PelUnitBuf tmpTriangleBuf = m_triangleBuf.getBuf( localUnitArea );
PelUnitBuf predBuf = cu.cs->getPredBuf( pu );
PU::spanMotionInfo( pu );
motionCompensation( pu, tmpTriangleBuf );
{
if( g_mctsDecCheckEnabled && !MCTSHelper::checkMvBufferForMCTSConstraint( pu, true ) )
{
printf( "DECODER_TRIANGLE_PU: pu motion vector across tile boundaries (%d,%d,%d,%d)\n", pu.lx(), pu.ly(), pu.lwidth(), pu.lheight() );
}
}
PU::spanMotionInfo( pu );
motionCompensation( pu, predBuf );
{
if( g_mctsDecCheckEnabled && !MCTSHelper::checkMvBufferForMCTSConstraint( pu, true ) )
{
printf( "DECODER_TRIANGLE_PU: pu motion vector across tile boundaries (%d,%d,%d,%d)\n", pu.lx(), pu.ly(), pu.lwidth(), pu.lheight() );
}
}
weightedTriangleBlk( pu, splitDir, MAX_NUM_CHANNEL_TYPE, predBuf, tmpTriangleBuf, predBuf );
void InterPrediction::weightedTriangleBlk( PredictionUnit &pu, const bool splitDir, int32_t channel, PelUnitBuf& predDst, PelUnitBuf& predSrc0, PelUnitBuf& predSrc1 )
if( channel == CHANNEL_TYPE_LUMA )
{
Yuling Hsiao
committed
m_if.weightedTriangleBlk( pu, pu.lumaSize().width, pu.lumaSize().height, COMPONENT_Y, splitDir, predDst, predSrc0, predSrc1 );
}
else if( channel == CHANNEL_TYPE_CHROMA )
{
Yuling Hsiao
committed
m_if.weightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cb, splitDir, predDst, predSrc0, predSrc1 );
m_if.weightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cr, splitDir, predDst, predSrc0, predSrc1 );
Yuling Hsiao
committed
m_if.weightedTriangleBlk( pu, pu.lumaSize().width, pu.lumaSize().height, COMPONENT_Y, splitDir, predDst, predSrc0, predSrc1 );
m_if.weightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cb, splitDir, predDst, predSrc0, predSrc1 );
m_if.weightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cr, splitDir, predDst, predSrc0, predSrc1 );
void InterPrediction::xPrefetch(PredictionUnit& pu, PelUnitBuf &pcPad, RefPicList refId, bool forLuma)
{
int offset, width, height;
Mv cMv;
const Picture* refPic = pu.cu->slice->getRefPic( refId, pu.refIdx[refId] )->unscaledPic;
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
int mvShift = (MV_FRACTIONAL_BITS_INTERNAL);
int start = 0;
int end = MAX_NUM_COMPONENT;
start = forLuma ? 0 : 1;
end = forLuma ? 1 : MAX_NUM_COMPONENT;
for (int compID = start; compID < end; compID++)
{
cMv = Mv(pu.mv[refId].getHor(), pu.mv[refId].getVer());
pcPad.bufs[compID].stride = (pcPad.bufs[compID].width + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA);
int filtersize = (compID == (COMPONENT_Y)) ? NTAPS_LUMA : NTAPS_CHROMA;
width = pcPad.bufs[compID].width;
height = pcPad.bufs[compID].height;
offset = (DMVR_NUM_ITERATION) * (pcPad.bufs[compID].stride + 1);
int mvshiftTemp = mvShift + getComponentScaleX((ComponentID)compID, pu.chromaFormat);
width += (filtersize - 1);
height += (filtersize - 1);
cMv += Mv(-(((filtersize >> 1) - 1) << mvshiftTemp),
-(((filtersize >> 1) - 1) << mvshiftTemp));
if( pu.cs->sps->getWrapAroundEnabledFlag() )
wrapRef = wrapClipMv( cMv, pu.blocks[0].pos(), pu.blocks[0].size(), pu.cs->sps, pu.cs->pps );
}
else
{
clipMv( cMv, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps, *pu.cs->pps );
}
/* Pre-fetch similar to HEVC*/
{
CPelBuf refBuf;
Position Rec_offset = pu.blocks[compID].pos().offset(cMv.getHor() >> mvshiftTemp, cMv.getVer() >> mvshiftTemp);
refBuf = refPic->getRecoBuf(CompArea((ComponentID)compID, pu.chromaFormat, Rec_offset, pu.blocks[compID].size()), wrapRef);
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
PelBuf &dstBuf = pcPad.bufs[compID];
g_pelBufOP.copyBuffer((Pel *)refBuf.buf, refBuf.stride, ((Pel *)dstBuf.buf) + offset, dstBuf.stride, width, height);
}
}
}
void InterPrediction::xPad(PredictionUnit& pu, PelUnitBuf &pcPad, RefPicList refId)
{
int offset = 0, width, height;
int padsize;
Mv cMv;
for (int compID = 0; compID < MAX_NUM_COMPONENT; compID++)
{
int filtersize = (compID == (COMPONENT_Y)) ? NTAPS_LUMA : NTAPS_CHROMA;
width = pcPad.bufs[compID].width;
height = pcPad.bufs[compID].height;
offset = (DMVR_NUM_ITERATION) * (pcPad.bufs[compID].stride + 1);
padsize = (DMVR_NUM_ITERATION) >> getComponentScaleX((ComponentID)compID, pu.chromaFormat);
width += (filtersize - 1);
height += (filtersize - 1);
/*padding on all side of size DMVR_PAD_LENGTH*/
{
g_pelBufOP.padding(pcPad.bufs[compID].buf + offset, pcPad.bufs[compID].stride, width, height, padsize);
}
}
}
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
inline int32_t div_for_maxq7(int64_t N, int64_t D)
{
int32_t sign, q;
sign = 0;
if (N < 0)
{
sign = 1;
N = -N;
}
q = 0;
D = (D << 3);
if (N >= D)
{
N -= D;
q++;
}
q = (q << 1);
D = (D >> 1);
if (N >= D)
{
N -= D;
q++;
}
q = (q << 1);
if (N >= (D >> 1))
q++;
if (sign)
return (-q);
return(q);
}
void xSubPelErrorSrfc(uint64_t *sadBuffer, int32_t *deltaMv)
{
int64_t numerator, denominator;
int32_t mvDeltaSubPel;
int32_t mvSubPelLvl = 4;/*1: half pel, 2: Qpel, 3:1/8, 4: 1/16*/
numerator = (int64_t)((sadBuffer[1] - sadBuffer[3]) << mvSubPelLvl);
denominator = (int64_t)((sadBuffer[1] + sadBuffer[3] - (sadBuffer[0] << 1)));
{
if ((sadBuffer[1] != sadBuffer[0]) && (sadBuffer[3] != sadBuffer[0]))
{
mvDeltaSubPel = div_for_maxq7(numerator, denominator);
deltaMv[0] = (mvDeltaSubPel);
}
else
{
if (sadBuffer[1] == sadBuffer[0])
{
deltaMv[0] = -8;// half pel
}
else
{
deltaMv[0] = 8;// half pel
}
}
}
/*vertical*/
numerator = (int64_t)((sadBuffer[2] - sadBuffer[4]) << mvSubPelLvl);
denominator = (int64_t)((sadBuffer[2] + sadBuffer[4] - (sadBuffer[0] << 1)));
if (0 != denominator)
{
if ((sadBuffer[2] != sadBuffer[0]) && (sadBuffer[4] != sadBuffer[0]))
{
mvDeltaSubPel = div_for_maxq7(numerator, denominator);
deltaMv[1] = (mvDeltaSubPel);
}
else
{
if (sadBuffer[2] == sadBuffer[0])
{
deltaMv[1] = -8;// half pel
}
else
{
deltaMv[1] = 8;// half pel
}
}
}
return;
}
void InterPrediction::xBIPMVRefine(int bd, Pel *pRefL0, Pel *pRefL1, uint64_t& minCost, int16_t *deltaMV, uint64_t *pSADsArray, int width, int height)
{
const int32_t refStrideL0 = m_biLinearBufStride;
const int32_t refStrideL1 = m_biLinearBufStride;
Pel *pRefL0Orig = pRefL0;
Pel *pRefL1Orig = pRefL1;
int32_t sadOffset = ((m_pSearchOffset[nIdx].getVer() * ((2 * DMVR_NUM_ITERATION) + 1)) + m_pSearchOffset[nIdx].getHor());
pRefL0 = pRefL0Orig + m_pSearchOffset[nIdx].hor + (m_pSearchOffset[nIdx].ver * refStrideL0);
pRefL1 = pRefL1Orig - m_pSearchOffset[nIdx].hor - (m_pSearchOffset[nIdx].ver * refStrideL1);
if (*(pSADsArray + sadOffset) == MAX_UINT64)
{
const uint64_t cost = xDMVRCost(bd, pRefL0, refStrideL0, pRefL1, refStrideL1, width, height);
minCost = *(pSADsArray + sadOffset);
deltaMV[0] = m_pSearchOffset[nIdx].getHor();
deltaMV[1] = m_pSearchOffset[nIdx].getVer();
}
}
}
void InterPrediction::xFinalPaddedMCForDMVR(PredictionUnit& pu, PelUnitBuf &pcYuvSrc0, PelUnitBuf &pcYuvSrc1, PelUnitBuf &pcPad0, PelUnitBuf &pcPad1, const bool bioApplied
, const Mv mergeMV[NUM_REF_PIC_LIST_01]
)
{
int offset, deltaIntMvX, deltaIntMvY;
PelUnitBuf pcYUVTemp = pcYuvSrc0;
PelUnitBuf pcPadTemp = pcPad0;
/*always high precision MVs are used*/
for (int k = 0; k < NUM_REF_PIC_LIST_01; k++)
{
RefPicList refId = (RefPicList)k;
Mv cMv = pu.mv[refId];
m_iRefListIdx = refId;
const Picture* refPic = pu.cu->slice->getRefPic( refId, pu.refIdx[refId] )->unscaledPic;
clipMv( cMvClipped, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps, *pu.cs->pps );
Mv startMv = mergeMV[refId];
if( g_mctsDecCheckEnabled && !MCTSHelper::checkMvForMCTSConstraint( pu, startMv, MV_PRECISION_INTERNAL ) )
{
const Area& tileArea = pu.cs->picture->mctsInfo.getTileArea();
printf( "Attempt an access over tile boundary at block %d,%d %d,%d with MV %d,%d (in Tile TL: %d,%d BR: %d,%d)\n",
pu.lx(), pu.ly(), pu.lwidth(), pu.lheight(), startMv.getHor(), startMv.getVer(), tileArea.topLeft().x, tileArea.topLeft().y, tileArea.bottomRight().x, tileArea.bottomRight().y );
THROW( "MCTS constraint failed!" );
}
for (int compID = 0; compID < MAX_NUM_COMPONENT; compID++)
{
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
Pel *srcBufPelPtr = NULL;
int pcPadstride = 0;
if (blockMoved || (compID == 0))
{
pcPadstride = pcPadTemp.bufs[compID].stride;
int mvshiftTemp = mvShift + getComponentScaleX((ComponentID)compID, pu.chromaFormat);
int leftPixelExtra;
if (compID == COMPONENT_Y)
{
leftPixelExtra = (NTAPS_LUMA >> 1) - 1;
}
else
{
leftPixelExtra = (NTAPS_CHROMA >> 1) - 1;
}
PelBuf &srcBuf = pcPadTemp.bufs[compID];
deltaIntMvX = (cMv.getHor() >> mvshiftTemp) -
(startMv.getHor() >> mvshiftTemp);
deltaIntMvY = (cMv.getVer() >> mvshiftTemp) -
(startMv.getVer() >> mvshiftTemp);
CHECK((abs(deltaIntMvX) > DMVR_NUM_ITERATION) || (abs(deltaIntMvY) > DMVR_NUM_ITERATION), "not expected DMVR movement");
offset = (DMVR_NUM_ITERATION + leftPixelExtra) * (pcPadTemp.bufs[compID].stride + 1);
offset += (deltaIntMvY)* pcPadTemp.bufs[compID].stride;
offset += (deltaIntMvX);
srcBufPelPtr = (srcBuf.buf + offset);
}
xPredInterBlk( (ComponentID)compID, pu, refPic, cMvClipped, pcYUVTemp, true, pu.cs->slice->getClpRngs().comp[compID],
bioApplied, false, pu.cu->slice->getScalingRatio( refId, pu.refIdx[refId] ), 0, 0, 0, srcBufPelPtr, pcPadstride );
}
pcYUVTemp = pcYuvSrc1;
pcPadTemp = pcPad1;
}
}
uint64_t InterPrediction::xDMVRCost(int bitDepth, Pel* pOrg, uint32_t refStride, const Pel* pRef, uint32_t orgStride, int width, int height)
{
DistParam cDistParam;
cDistParam.applyWeight = false;
cDistParam.useMR = false;
m_pcRdCost->setDistParam(cDistParam, pOrg, pRef, orgStride, refStride, bitDepth, COMPONENT_Y, width, height, 1);
uint64_t uiCost = cDistParam.distFunc(cDistParam);
void xDMVRSubPixelErrorSurface(bool notZeroCost, int16_t *totalDeltaMV, int16_t *deltaMV, uint64_t *pSADsArray)
int sadStride = (((2 * DMVR_NUM_ITERATION) + 1));
uint64_t sadbuffer[5];
if (notZeroCost && (abs(totalDeltaMV[0]) != (2 << MV_FRACTIONAL_BITS_INTERNAL))
&& (abs(totalDeltaMV[1]) != (2 << MV_FRACTIONAL_BITS_INTERNAL)))
sadbuffer[0] = pSADsArray[0];
sadbuffer[1] = pSADsArray[-1];
sadbuffer[2] = pSADsArray[-sadStride];
sadbuffer[3] = pSADsArray[1];
sadbuffer[4] = pSADsArray[sadStride];
xSubPelErrorSrfc(sadbuffer, tempDeltaMv);
totalDeltaMV[0] += tempDeltaMv[0];
totalDeltaMV[1] += tempDeltaMv[1];
}
}
void InterPrediction::xinitMC(PredictionUnit& pu, const ClpRngs &clpRngs)
{
const int refIdx0 = pu.refIdx[0];
const int refIdx1 = pu.refIdx[1];
/*use merge MV as starting MV*/
Mv mergeMVL0(pu.mv[REF_PIC_LIST_0]);
Mv mergeMVL1(pu.mv[REF_PIC_LIST_1]);
/*Clip the starting MVs*/
clipMv( mergeMVL0, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps, *pu.cs->pps );
clipMv( mergeMVL1, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps, *pu.cs->pps );
/*L0 MC for refinement*/
{
int offset;
int leftPixelExtra = (NTAPS_LUMA >> 1) - 1;
offset = (DMVR_NUM_ITERATION + leftPixelExtra) * (m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y].stride + 1);
offset += (-(int)DMVR_NUM_ITERATION)* (int)m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y].stride;
offset += (-(int)DMVR_NUM_ITERATION);
PelBuf srcBuf = m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y];
PelUnitBuf yuvPredTempL0 = PelUnitBuf(pu.chromaFormat, PelBuf(m_cYuvPredTempDMVRL0,
m_biLinearBufStride
, pu.lwidth() + (2 * DMVR_NUM_ITERATION), pu.lheight() + (2 * DMVR_NUM_ITERATION)));
xPredInterBlk( COMPONENT_Y, pu, pu.cu->slice->getRefPic( REF_PIC_LIST_0, refIdx0 )->unscaledPic, mergeMVL0, yuvPredTempL0, true, clpRngs.comp[COMPONENT_Y],
false, false, pu.cu->slice->getScalingRatio( REF_PIC_LIST_0, refIdx0 ), pu.lwidth() + ( 2 * DMVR_NUM_ITERATION ), pu.lheight() + ( 2 * DMVR_NUM_ITERATION ), true, ( (Pel *)srcBuf.buf ) + offset, srcBuf.stride );
}
/*L1 MC for refinement*/
{
int offset;
int leftPixelExtra = (NTAPS_LUMA >> 1) - 1;
offset = (DMVR_NUM_ITERATION + leftPixelExtra) * (m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y].stride + 1);
offset += (-(int)DMVR_NUM_ITERATION)* (int)m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y].stride;
offset += (-(int)DMVR_NUM_ITERATION);
PelBuf srcBuf = m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y];
PelUnitBuf yuvPredTempL1 = PelUnitBuf(pu.chromaFormat, PelBuf(m_cYuvPredTempDMVRL1,
m_biLinearBufStride
, pu.lwidth() + (2 * DMVR_NUM_ITERATION), pu.lheight() + (2 * DMVR_NUM_ITERATION)));
xPredInterBlk( COMPONENT_Y, pu, pu.cu->slice->getRefPic( REF_PIC_LIST_1, refIdx1 )->unscaledPic, mergeMVL1, yuvPredTempL1, true, clpRngs.comp[COMPONENT_Y],
false, false, pu.cu->slice->getScalingRatio( REF_PIC_LIST_1, refIdx1 ), pu.lwidth() + ( 2 * DMVR_NUM_ITERATION ), pu.lheight() + ( 2 * DMVR_NUM_ITERATION ), true, ( (Pel *)srcBuf.buf ) + offset, srcBuf.stride );
void InterPrediction::xProcessDMVR(PredictionUnit& pu, PelUnitBuf &pcYuvDst, const ClpRngs &clpRngs, const bool bioApplied)
/*Always High Precision*/
int mvShift = MV_FRACTIONAL_BITS_INTERNAL;
/*use merge MV as starting MV*/
Mv mergeMv[] = { pu.mv[REF_PIC_LIST_0] , pu.mv[REF_PIC_LIST_1] };
m_biLinearBufStride = (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION));
int dy = std::min<int>(pu.lumaSize().height, DMVR_SUBCU_HEIGHT);
int dx = std::min<int>(pu.lumaSize().width, DMVR_SUBCU_WIDTH);
Position puPos = pu.lumaPos();
int bd = pu.cs->slice->getClpRngs().comp[COMPONENT_Y].bd;