Skip to content
Snippets Groups Projects
DepQuant.cpp 67 KiB
Newer Older
/* The copyright in this software is being made available under the BSD
 * License, included below. This software may be subject to other third party
 * and contributor rights, including patent rights, and no such rights are
 * granted under this license.
 *
 * Copyright (c) 2010-2018, ITU/ISO/IEC
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *  * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
 *    be used to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "DepQuant.h"
#include "TrQuant.h"
#include "CodingStructure.h"
#include "UnitTools.h"

#include <bitset>






namespace DQIntern
{
  /*================================================================================*/
  /*=====                                                                      =====*/
  /*=====   R A T E   E S T I M A T O R                                        =====*/
  /*=====                                                                      =====*/
  /*================================================================================*/

  struct NbInfoSbb
  {
    uint8_t   num;
    uint8_t   inPos[5];
  };
  struct NbInfoOut
  {
    uint16_t  maxDist;
    uint16_t  num;
    uint16_t  outPos[5];
  };
  struct CoeffFracBits
  {
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
  };


  class Rom
  {
  public:
    Rom() : m_scansInitialized(false) {}
    ~Rom() { xUninitScanArrays(); }
    void              init        ()                                  { xInitScanArrays(); }
    const NbInfoSbb*  getNbInfoSbb( int sId, int hId, int vId ) const { return m_scanId2NbInfoSbbArray[sId][hId][vId]; }
    const NbInfoOut*  getNbInfoOut( int sId, int hId, int vId ) const { return m_scanId2NbInfoOutArray[sId][hId][vId]; }
  private:
    void  xInitScanArrays   ();
    void  xUninitScanArrays ();
  private:
    bool       m_scansInitialized;
    NbInfoSbb* m_scanId2NbInfoSbbArray[ SCAN_NUMBER_OF_TYPES ][ MAX_CU_SIZE/2+1 ][ MAX_CU_SIZE/2+1 ];
    NbInfoOut* m_scanId2NbInfoOutArray[ SCAN_NUMBER_OF_TYPES ][ MAX_CU_SIZE/2+1 ][ MAX_CU_SIZE/2+1 ];
  };

  void Rom::xInitScanArrays()
  {
    if( m_scansInitialized )
    {
      return;
    }
    ::memset( m_scanId2NbInfoSbbArray, 0, sizeof(m_scanId2NbInfoSbbArray) );
    ::memset( m_scanId2NbInfoOutArray, 0, sizeof(m_scanId2NbInfoOutArray) );

    SizeIndexInfoLog2 sizeInfo;
    sizeInfo.init ( MAX_CU_SIZE );
    uint32_t raster2id[ MAX_CU_SIZE * MAX_CU_SIZE ];

    for( uint32_t blockHeightIdx = 0; blockHeightIdx < sizeInfo.numHeights(); blockHeightIdx++ )
    {
      for( uint32_t blockWidthIdx = 0; blockWidthIdx < sizeInfo.numWidths(); blockWidthIdx++ )
      {
        const uint32_t blockWidth   = sizeInfo.sizeFrom( blockWidthIdx  );
        const uint32_t blockHeight  = sizeInfo.sizeFrom( blockHeightIdx );
        const uint32_t totalValues  = blockWidth * blockHeight;
        const uint32_t log2CGWidth  = (blockWidth & 3) + (blockHeight & 3) > 0 ? 1 : 2;
        const uint32_t log2CGHeight = (blockWidth & 3) + (blockHeight & 3) > 0 ? 1 : 2;
        const uint32_t groupWidth   = 1 << log2CGWidth;
        const uint32_t groupHeight  = 1 << log2CGHeight;
        const uint32_t groupSize    = groupWidth * groupHeight;
        if( ((blockWidth>>log2CGWidth)<<log2CGWidth)!=blockWidth || ((blockHeight>>log2CGHeight)<<log2CGHeight)!=blockHeight )
        {
          continue;
        }
        for( uint32_t scanTypeIdx = 0; scanTypeIdx < SCAN_NUMBER_OF_TYPES; scanTypeIdx++ )
        {
          const CoeffScanType scanType  = CoeffScanType(scanTypeIdx);
          const uint32_t*         scanId2RP = g_scanOrder     [SCAN_GROUPED_4x4][scanType][blockWidthIdx][blockHeightIdx];
          const uint32_t*         scanId2X  = g_scanOrderPosXY[SCAN_GROUPED_4x4][scanType][blockWidthIdx][blockHeightIdx][0];
          const uint32_t*         scanId2Y  = g_scanOrderPosXY[SCAN_GROUPED_4x4][scanType][blockWidthIdx][blockHeightIdx][1];
          NbInfoSbb*&         sId2NbSbb = m_scanId2NbInfoSbbArray           [scanType][blockWidthIdx][blockHeightIdx];
          NbInfoOut*&         sId2NbOut = m_scanId2NbInfoOutArray           [scanType][blockWidthIdx][blockHeightIdx];

          sId2NbSbb = new NbInfoSbb[ totalValues ];
          sId2NbOut = new NbInfoOut[ totalValues ];

          for( uint32_t scanId = 0; scanId < totalValues; scanId++ )
          {
            raster2id[ scanId2RP[ scanId ] ] = scanId;
          }

          for( unsigned scanId = 0; scanId < totalValues; scanId++ )
          {
            const int posX = scanId2X [ scanId ];
            const int posY = scanId2Y [ scanId ];
            const int rpos = scanId2RP[ scanId ];
            {
              //===== inside subband neighbours =====
              NbInfoSbb&     nbSbb  = sId2NbSbb[ scanId ];
              const int      begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
              int            cpos[5];
              cpos[0] = ( posX < blockWidth -1                         ? ( raster2id[rpos+1           ] - begSbb < groupSize ? raster2id[rpos+1           ] - begSbb : 0 ) : 0 );
              cpos[1] = ( posX < blockWidth -2                         ? ( raster2id[rpos+2           ] - begSbb < groupSize ? raster2id[rpos+2           ] - begSbb : 0 ) : 0 );
              cpos[2] = ( posX < blockWidth -1 && posY < blockHeight-1 ? ( raster2id[rpos+1+blockWidth] - begSbb < groupSize ? raster2id[rpos+1+blockWidth] - begSbb : 0 ) : 0 );
              cpos[3] = ( posY < blockHeight-1                         ? ( raster2id[rpos+  blockWidth] - begSbb < groupSize ? raster2id[rpos+  blockWidth] - begSbb : 0 ) : 0 );
              cpos[4] = ( posY < blockHeight-2                         ? ( raster2id[rpos+2*blockWidth] - begSbb < groupSize ? raster2id[rpos+2*blockWidth] - begSbb : 0 ) : 0 );
              for( nbSbb.num = 0; true; )
              {
                int nk = -1;
                for( int k = 0; k < 5; k++ )
                {
                  if( cpos[k] != 0 && ( nk < 0 || cpos[k] < cpos[nk] ) )
                  {
                    nk = k;
                  }
                }
                if( nk < 0 )
                {
                  break;
                }
                nbSbb.inPos[ nbSbb.num++ ] = uint8_t( cpos[nk] );
                cpos[nk] = 0;
              }
              for( int k = nbSbb.num; k < 5; k++ )
              {
                nbSbb.inPos[k] = 0;
              }
            }
            {
              //===== outside subband neighbours =====
              NbInfoOut&     nbOut  = sId2NbOut[ scanId ];
              const int      begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
              int            cpos[5];
              cpos[0] = ( posX < blockWidth -1                         ? ( raster2id[rpos+1           ] - begSbb >= groupSize ? raster2id[rpos+1           ] : 0 ) : 0 );
              cpos[1] = ( posX < blockWidth -2                         ? ( raster2id[rpos+2           ] - begSbb >= groupSize ? raster2id[rpos+2           ] : 0 ) : 0 );
              cpos[2] = ( posX < blockWidth -1 && posY < blockHeight-1 ? ( raster2id[rpos+1+blockWidth] - begSbb >= groupSize ? raster2id[rpos+1+blockWidth] : 0 ) : 0 );
              cpos[3] = ( posY < blockHeight-1                         ? ( raster2id[rpos+  blockWidth] - begSbb >= groupSize ? raster2id[rpos+  blockWidth] : 0 ) : 0 );
              cpos[4] = ( posY < blockHeight-2                         ? ( raster2id[rpos+2*blockWidth] - begSbb >= groupSize ? raster2id[rpos+2*blockWidth] : 0 ) : 0 );
              for( nbOut.num = 0; true; )
              {
                int nk = -1;
                for( int k = 0; k < 5; k++ )
                {
                  if( cpos[k] != 0 && ( nk < 0 || cpos[k] < cpos[nk] ) )
                  {
                    nk = k;
                  }
                }
                if( nk < 0 )
                {
                  break;
                }
                nbOut.outPos[ nbOut.num++ ] = uint16_t( cpos[nk] );
                cpos[nk] = 0;
              }
              for( int k = nbOut.num; k < 5; k++ )
              {
                nbOut.outPos[k] = 0;
              }
              nbOut.maxDist = ( scanId == 0 ? 0 : sId2NbOut[scanId-1].maxDist );
              for( int k = 0; k < nbOut.num; k++ )
              {
                if( nbOut.outPos[k] > nbOut.maxDist )
                {
                  nbOut.maxDist = nbOut.outPos[k];
                }
              }
            }
          }

          // make it relative
          for( unsigned scanId = 0; scanId < totalValues; scanId++ )
          {
            NbInfoOut& nbOut  = sId2NbOut[scanId];
            const int  begSbb = scanId - ( scanId & (groupSize-1) ); // first pos in current subblock
            for( int k = 0; k < nbOut.num; k++ )
            {
              nbOut.outPos[k] -= begSbb;
            }
            nbOut.maxDist -= scanId;
          }
        }
      }
    }
    m_scansInitialized = true;
  }

  void Rom::xUninitScanArrays()
  {
    if( !m_scansInitialized )
    {
      return;
    }
    for( uint32_t blockHeightIdx = 0; blockHeightIdx <= MAX_CU_SIZE/2; blockHeightIdx++ )
    {
      for( uint32_t blockWidthIdx = 0; blockWidthIdx <= MAX_CU_SIZE/2; blockWidthIdx++ )
      {
        for( uint32_t scanTypeIdx = 0; scanTypeIdx < SCAN_NUMBER_OF_TYPES; scanTypeIdx++ )
        {
          NbInfoSbb*& sId2NbSbb = m_scanId2NbInfoSbbArray[scanTypeIdx][blockWidthIdx][blockHeightIdx];
          NbInfoOut*& sId2NbOut = m_scanId2NbInfoOutArray[scanTypeIdx][blockWidthIdx][blockHeightIdx];
          if( sId2NbSbb )
          {
            delete [] sId2NbSbb;
          }
          if( sId2NbOut )
          {
            delete [] sId2NbOut;
          }
        }
      }
    }
    m_scansInitialized = false;
  }


  static Rom g_Rom;


  class RateEstimator
  {
  public:
    RateEstimator () {}
    ~RateEstimator() {}
    void initBlock( const TransformUnit& tu, const ComponentID     compID );
    void initCtx  ( const TransformUnit& tu, const FracBitsAccess& fracBitsAccess );

    inline bool               luma() const { return m_compID == COMPONENT_Y; }
    inline int32_t            widthInSbb() const { return m_widthInSbb; }
    inline int32_t            heightInSbb() const { return m_heightInSbb; }
    inline int32_t            numCoeff() const { return m_numCoeff; }
    inline int32_t            numSbb() const { return m_numSbb; }
    inline int32_t            sbbSize() const { return m_sbbSize; }
    inline int32_t            sbbPos(unsigned scanIdx) const { return m_scanSbbId2SbbPos[scanIdx >> m_log2SbbSize]; }
    inline int32_t            rasterPos(unsigned scanIdx) const { return m_scanId2BlkPos[scanIdx]; }
    inline int32_t            posX(unsigned scanIdx) const { return m_scanId2PosX[scanIdx]; }
    inline int32_t            posY(unsigned scanIdx) const { return m_scanId2PosY[scanIdx]; }
    inline const NbInfoSbb &  nbInfoSbb(unsigned scanIdx) const { return m_scanId2NbInfoSbb[scanIdx]; }
    inline const NbInfoOut *  nbInfoOut() const { return m_scanId2NbInfoOut; }
    inline const BinFracBits *sigSbbFracBits() const { return m_sigSbbFracBits; }
    inline const BinFracBits *sigFlagBits(unsigned stateId) const
    {
      return m_sigFracBits[std::max(((int) stateId) - 1, 0)];
    }
    inline const CoeffFracBits *gtxFracBits(unsigned stateId) const { return m_gtxFracBits; }
    inline int32_t              lastOffset(unsigned scanIdx) const
    {
      return m_lastBitsX[m_scanId2PosX[scanIdx]] + m_lastBitsY[m_scanId2PosY[scanIdx]];
    }

  private:
    void  xSetLastCoeffOffset ( const FracBitsAccess& fracBitsAccess, const TransformUnit& tu );
    void  xSetSigSbbFracBits  ( const FracBitsAccess& fracBitsAccess );
    void  xSetSigFlagBits     ( const FracBitsAccess& fracBitsAccess );
    void  xSetGtxFlagBits     ( const FracBitsAccess& fracBitsAccess );

  private:
    static const unsigned sm_numCtxSetsSig    = 3;
    static const unsigned sm_numCtxSetsGtx    = 2;
    static const unsigned sm_maxNumSigSbbCtx  = 2;
    static const unsigned sm_maxNumSigCtx     = 18;
    static const unsigned sm_maxNumGtxCtx     = 21;

  private:
    ComponentID       m_compID;
    ChannelType       m_chType;
    unsigned          m_width;
    unsigned          m_height;
    unsigned          m_numCoeff;
    unsigned          m_numSbb;
    unsigned          m_log2SbbWidth;
    unsigned          m_log2SbbHeight;
    unsigned          m_log2SbbSize;
    unsigned          m_sbbSize;
    unsigned          m_sbbMask;
    unsigned          m_widthInSbb;
    unsigned          m_heightInSbb;
    CoeffScanType     m_scanType;
    const unsigned*   m_scanSbbId2SbbPos;
    const unsigned*   m_scanId2BlkPos;
    const unsigned*   m_scanId2PosX;
    const unsigned*   m_scanId2PosY;
    const NbInfoSbb*  m_scanId2NbInfoSbb;
    const NbInfoOut*  m_scanId2NbInfoOut;
    int32_t           m_lastBitsX      [ MAX_TU_SIZE ];
    int32_t           m_lastBitsY      [ MAX_TU_SIZE ];
    BinFracBits       m_sigSbbFracBits [ sm_maxNumSigSbbCtx ];
    BinFracBits       m_sigFracBits    [ sm_numCtxSetsSig   ][ sm_maxNumSigCtx ];
    CoeffFracBits     m_gtxFracBits                          [ sm_maxNumGtxCtx ];
  };

  void RateEstimator::initBlock( const TransformUnit& tu, const ComponentID compID )
  {
    CHECKD( tu.cs->sps->getSpsRangeExtension().getExtendedPrecisionProcessingFlag(), "ext precision is not supported" );

    const CompArea& area  = tu.blocks[ compID ];
    m_compID              = compID;
    m_chType              = toChannelType( m_compID );
    m_width               = area.width;
    m_height              = area.height;
    m_numCoeff            = m_width * m_height;
    const bool      no4x4 = ( ( m_width & 3 ) != 0 || ( m_height & 3 ) != 0 );
    m_log2SbbWidth        = ( no4x4 ? 1 : 2 );
    m_log2SbbHeight       = ( no4x4 ? 1 : 2 );
    m_log2SbbSize         = m_log2SbbWidth + m_log2SbbHeight;
    m_sbbSize             = ( 1 << m_log2SbbSize );
    m_sbbMask             = m_sbbSize - 1;
    m_widthInSbb          = m_width  >> m_log2SbbWidth;
    m_heightInSbb         = m_height >> m_log2SbbHeight;
    m_numSbb              = m_widthInSbb * m_heightInSbb;
#if HEVC_USE_MDCS
    m_scanType            = CoeffScanType( TU::getCoefScanIdx( tu, m_compID ) );
#else
    m_scanType            = SCAN_DIAG;
#endif
    SizeType        hsbb  = gp_sizeIdxInfo->idxFrom( m_widthInSbb  );
    SizeType        vsbb  = gp_sizeIdxInfo->idxFrom( m_heightInSbb );
    SizeType        hsId  = gp_sizeIdxInfo->idxFrom( m_width  );
    SizeType        vsId  = gp_sizeIdxInfo->idxFrom( m_height );
    m_scanSbbId2SbbPos    = g_scanOrder     [ SCAN_UNGROUPED   ][ m_scanType ][ hsbb ][ vsbb ];
    m_scanId2BlkPos       = g_scanOrder     [ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ];
    m_scanId2PosX         = g_scanOrderPosXY[ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 0 ];
    m_scanId2PosY         = g_scanOrderPosXY[ SCAN_GROUPED_4x4 ][ m_scanType ][ hsId ][ vsId ][ 1 ];
    m_scanId2NbInfoSbb    = g_Rom.getNbInfoSbb( m_scanType, hsId, vsId );
    m_scanId2NbInfoOut    = g_Rom.getNbInfoOut( m_scanType, hsId, vsId );
  }

  void RateEstimator::initCtx( const TransformUnit& tu, const FracBitsAccess& fracBitsAccess )
  {
    xSetSigSbbFracBits  ( fracBitsAccess );
    xSetSigFlagBits     ( fracBitsAccess );
    xSetGtxFlagBits     ( fracBitsAccess );
    xSetLastCoeffOffset ( fracBitsAccess, tu );
  }

  void RateEstimator::xSetLastCoeffOffset( const FracBitsAccess& fracBitsAccess, const TransformUnit& tu )
  {
    int32_t cbfDeltaBits = 0;
    if( m_compID == COMPONENT_Y && !CU::isIntra(*tu.cu) && !tu.depth )
    {
      const BinFracBits bits  = fracBitsAccess.getFracBitsArray( Ctx::QtRootCbf() );
      cbfDeltaBits            = int32_t( bits.intBits[1] ) - int32_t( bits.intBits[0] );
    }
    else
    {
#if ENABLE_BMS
      BinFracBits bits = fracBitsAccess.getFracBitsArray( Ctx::QtCbf[m_compID]( DeriveCtx::CtxQtCbf( m_compID, tu.depth, tu.cbf[COMPONENT_Cb] ) ) );
#else
      BinFracBits bits = fracBitsAccess.getFracBitsArray( Ctx::QtCbf[m_compID]( DeriveCtx::CtxQtCbf( m_compID, tu.cbf[COMPONENT_Cb] ) ) );
#endif
      cbfDeltaBits = int32_t( bits.intBits[1] ) - int32_t( bits.intBits[0] );
    }

    static const unsigned prefixCtx[] = { 0, 0, 0, 3, 6, 10, 15, 21 };
    uint32_t              ctxBits  [ LAST_SIGNIFICANT_GROUPS ];
    for( unsigned xy = 0; xy < 2; xy++ )
    {
      int32_t             bitOffset   = ( xy ? cbfDeltaBits : 0 );
      int32_t*            lastBits    = ( xy ? m_lastBitsY : m_lastBitsX );
      const unsigned      size        = ( xy ? m_height : m_width );
      const unsigned      log2Size    = g_aucNextLog2[ size ];
#if HEVC_USE_MDCS
      const bool          useYCtx     = ( m_scanType == SCAN_VER ? ( xy == 0 ) : ( xy != 0 ) );
#else
      const bool          useYCtx     = ( xy != 0 );
#endif
      const CtxSet&       ctxSetLast  = ( useYCtx ? Ctx::LastY : Ctx::LastX )[ m_chType ];
      const unsigned      lastShift   = ( m_compID == COMPONENT_Y ? (log2Size+1)>>2 : ( tu.cs->pcv->rectCUs ? Clip3<unsigned>(0,2,size>>3) : log2Size-2 ) );
      const unsigned      lastOffset  = ( m_compID == COMPONENT_Y ? ( tu.cs->pcv->rectCUs ? prefixCtx[log2Size] : 3*(log2Size-2)+((log2Size-1)>>2) ) : 0 );
      uint32_t            sumFBits    = 0;
      unsigned            maxCtxId    = g_uiGroupIdx[ size - 1 ];
      for( unsigned ctxId = 0; ctxId < maxCtxId; ctxId++ )
      {
        const BinFracBits bits  = fracBitsAccess.getFracBitsArray( ctxSetLast( lastOffset + ( ctxId >> lastShift ) ) );
        ctxBits[ ctxId ]        = sumFBits + bits.intBits[0] + ( ctxId>3 ? ((ctxId-2)>>1)<<SCALE_BITS : 0 ) + bitOffset;
        sumFBits               +=            bits.intBits[1];
      }
      ctxBits  [ maxCtxId ]     = sumFBits + ( maxCtxId>3 ? ((maxCtxId-2)>>1)<<SCALE_BITS : 0 ) + bitOffset;
      for( unsigned pos = 0; pos < size; pos++ )
      {
        lastBits[ pos ]         = ctxBits[ g_uiGroupIdx[ pos ] ];
      }
    }
  }

  void RateEstimator::xSetSigSbbFracBits( const FracBitsAccess& fracBitsAccess )
  {
    const CtxSet& ctxSet = Ctx::SigCoeffGroup[ m_chType ];
    for( unsigned ctxId = 0; ctxId < sm_maxNumSigSbbCtx; ctxId++ )
    {
      m_sigSbbFracBits[ ctxId ] = fracBitsAccess.getFracBitsArray( ctxSet( ctxId ) );
    }
  }

  void RateEstimator::xSetSigFlagBits( const FracBitsAccess& fracBitsAccess )
  {
    for( unsigned ctxSetId = 0; ctxSetId < sm_numCtxSetsSig; ctxSetId++ )
    {
      BinFracBits*    bits    = m_sigFracBits [ ctxSetId ];
      const CtxSet&   ctxSet  = Ctx::SigFlag  [ m_chType + 2*ctxSetId ];
      const unsigned  numCtx  = ( m_compID == COMPONENT_Y ? 18 : 12 );
      for( unsigned ctxId = 0; ctxId < numCtx; ctxId++ )
      {
        bits[ ctxId ] = fracBitsAccess.getFracBitsArray( ctxSet( ctxId ) );
      }
    }
  }

  void RateEstimator::xSetGtxFlagBits( const FracBitsAccess& fracBitsAccess )
  {
    const CtxSet&   ctxSetPar   = Ctx::ParFlag [     m_chType ];
    const CtxSet&   ctxSetGt1   = Ctx::GtxFlag [ 2 + m_chType ];
    const CtxSet&   ctxSetGt2   = Ctx::GtxFlag [     m_chType ];
    const unsigned  numCtx      = ( m_compID == COMPONENT_Y ? 21 : 11 );
    for( unsigned ctxId = 0; ctxId < numCtx; ctxId++ )
    {
      BinFracBits     fbPar = fracBitsAccess.getFracBitsArray( ctxSetPar( ctxId ) );
      BinFracBits     fbGt1 = fracBitsAccess.getFracBitsArray( ctxSetGt1( ctxId ) );
      BinFracBits     fbGt2 = fracBitsAccess.getFracBitsArray( ctxSetGt2( ctxId ) );
      CoeffFracBits&  cb    = m_gtxFracBits[ ctxId ];
      int32_t         par0  = (1<<SCALE_BITS) + int32_t(fbPar.intBits[0]);
      int32_t         par1  = (1<<SCALE_BITS) + int32_t(fbPar.intBits[1]);
      cb.bits[0]  = 0;
#if JVET_L0274
      cb.bits[1]  = fbGt1.intBits[0] + (1 << SCALE_BITS);
      cb.bits[2]  = fbGt1.intBits[1] + par0 + fbGt2.intBits[0];
      cb.bits[3]  = fbGt1.intBits[1] + par1 + fbGt2.intBits[0];
      cb.bits[4]  = fbGt1.intBits[1] + par0 + fbGt2.intBits[1];
      cb.bits[5]  = fbGt1.intBits[1] + par1 + fbGt2.intBits[1];
#else
      cb.bits[1]  = par0 + fbGt1.intBits[0];
      cb.bits[2]  = par1 + fbGt1.intBits[0];
      cb.bits[3]  = par0 + fbGt1.intBits[1] + fbGt2.intBits[0];
      cb.bits[4]  = par1 + fbGt1.intBits[1] + fbGt2.intBits[0];
      cb.bits[5]  = par0 + fbGt1.intBits[1] + fbGt2.intBits[1];
      cb.bits[6]  = par1 + fbGt1.intBits[1] + fbGt2.intBits[1];
    }
  }





  /*================================================================================*/
  /*=====                                                                      =====*/
  /*=====   D A T A   S T R U C T U R E S                                      =====*/
  /*=====                                                                      =====*/
  /*================================================================================*/

  enum ScanPosType { SCAN_ISCSBB = 0, SCAN_SOCSBB = 1, SCAN_EOCSBB = 2 };

  struct ScanInfo
  {
    const int     sbbSize;
    const int     numSbb;
    int           scanIdx;
    int           rasterPos;
    int           lastOffset;
    unsigned      sigCtxOffsetNext;
    unsigned      gtxCtxOffsetNext;
    int           insidePos;
    int           nextInsidePos;
    NbInfoSbb     nextNbInfoSbb;
#if JVET_L0274
    bool          eosbb;
    ScanPosType   spt;
#else
    int           sbbPos;
    int           nextSbbRight;
    int           nextSbbBelow;
  protected:
    ScanInfo( int _sbbSize, int _numSbb ) : sbbSize( _sbbSize ), numSbb( _numSbb ) {}
  };

  class ScanData : public ScanInfo
  {
  public:
    ScanData( const RateEstimator& rateEst, int firstPos )
      : ScanInfo          ( rateEst.sbbSize(), rateEst.numSbb() )
      , m_rateEst         ( rateEst )
      , m_luma            ( m_rateEst.luma() )
      , m_sbbMask         ( sbbSize - 1 )
      , m_widthInSbb      ( m_rateEst.widthInSbb() )
      , m_heightInSbb     ( m_rateEst.heightInSbb() )
      , m_numCoeffMinus1  ( m_rateEst.numCoeff() - 1 )
      , m_numCoeffMinusSbb( m_rateEst.numCoeff() - sbbSize )
    {
      xSet( firstPos );
    }
    inline bool    valid() const { return scanIdx >= 0; }
    void           next  ()               { xSet( scanIdx-1 ); }
    void           set   ( int id )       { xSet(id); }

  private:
    inline void xSet(int _scanIdx)
    {
      scanIdx = _scanIdx;
      if( scanIdx >= 0 )
      {
        rasterPos               = m_rateEst.rasterPos   ( scanIdx );
        sbbPos                  = m_rateEst.sbbPos      ( scanIdx );
        lastOffset              = m_rateEst.lastOffset  ( scanIdx );
        insidePos               = scanIdx & m_sbbMask;
#if JVET_L0274
        eosbb                   = ( insidePos == 0 );
        spt                     = SCAN_ISCSBB;
        if( insidePos == m_sbbMask && scanIdx > sbbSize && scanIdx < m_numCoeffMinus1 )
          spt                   = SCAN_SOCSBB;
        else if( eosbb && scanIdx > 0 && scanIdx < m_numCoeffMinusSbb )
          spt                   = SCAN_EOCSBB;
#else
        sosbb                   = ( insidePos == m_sbbMask );
        eosbb                   = ( insidePos == 0 );
        socsbb                  = ( sosbb && scanIdx > sbbSize && scanIdx < m_numCoeffMinus1   );
        eocsbb                  = ( eosbb && scanIdx > 0       && scanIdx < m_numCoeffMinusSbb );
        if( scanIdx )
        {
          const int nextScanIdx = scanIdx - 1;
          const int diag        = m_rateEst.posX( nextScanIdx ) + m_rateEst.posY( nextScanIdx );
          if( m_luma )
          {
            sigCtxOffsetNext    = ( diag < 2 ? 12 : diag < 5 ?  6 : 0 );
            gtxCtxOffsetNext    = ( diag < 1 ? 16 : diag < 3 ? 11 : diag < 10 ? 6 : 1 );
          }
          else
          {
            sigCtxOffsetNext    = ( diag < 2 ? 6 : 0 );
            gtxCtxOffsetNext    = ( diag < 1 ? 6 : 1 );
          }
          nextInsidePos         = nextScanIdx & m_sbbMask;
          nextNbInfoSbb         = m_rateEst.nbInfoSbb( nextScanIdx );
          if( eosbb )
          {
            const int nextSbbPos  = m_rateEst.sbbPos( nextScanIdx );
            const int nextSbbPosY = nextSbbPos               / m_widthInSbb;
            const int nextSbbPosX = nextSbbPos - nextSbbPosY * m_widthInSbb;
            nextSbbRight          = ( nextSbbPosX < m_widthInSbb  - 1 ? nextSbbPos + 1            : 0 );
            nextSbbBelow          = ( nextSbbPosY < m_heightInSbb - 1 ? nextSbbPos + m_widthInSbb : 0 );
          }
        }
      }
    }
  private:
    const RateEstimator& m_rateEst;
    const bool           m_luma;
    const int            m_sbbMask;
    const int            m_widthInSbb;
    const int            m_heightInSbb;
    const int            m_numCoeffMinus1;
    const int            m_numCoeffMinusSbb;
  };


  struct PQData
  {
    TCoeff  absLevel;
    int64_t deltaDist;
  };


  struct Decision
  {
    int64_t rdCost;
    TCoeff  absLevel;
    int     prevId;
  };




  /*================================================================================*/
  /*=====                                                                      =====*/
  /*=====   P R E - Q U A N T I Z E R                                          =====*/
  /*=====                                                                      =====*/
  /*================================================================================*/

  class Quantizer
  {
  public:
    Quantizer() {}

    void  dequantBlock  ( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, CoeffBuf& recCoeff   ) const;
    void  initQuantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, const double lambda  );

    inline void   preQuantCoeff(const TCoeff absCoeff, PQData *pqData) const;
    inline TCoeff getLastThreshold() const { return m_thresLast; }
    inline TCoeff getSSbbThreshold() const { return m_thresSSbb; }

  private:
    // quantization
    int               m_QShift;
    int64_t           m_QAdd;
    int64_t           m_QScale;
    TCoeff            m_maxQIdx;
    TCoeff            m_thresLast;
    TCoeff            m_thresSSbb;
    // distortion normalization
    int               m_DistShift;
    int64_t           m_DistAdd;
    int64_t           m_DistStepAdd;
    int64_t           m_DistOrgFact;
  };

  inline int ceil_log2(uint64_t x)
  {
    static const uint64_t t[6] = { 0xFFFFFFFF00000000ull, 0x00000000FFFF0000ull, 0x000000000000FF00ull, 0x00000000000000F0ull, 0x000000000000000Cull, 0x0000000000000002ull };
    int y = (((x & (x - 1)) == 0) ? 0 : 1);
    int j = 32;
    for( int i = 0; i < 6; i++)
    {
      int k = (((x & t[i]) == 0) ? 0 : j);
      y += k;
      x >>= k;
      j >>= 1;
    }
    return y;
  }

  void Quantizer::initQuantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, const double lambda )
  {
#if HEVC_USE_SCALING_LISTS
    CHECK ( tu.cs->sps->getScalingListFlag(), "Scaling lists not supported" );
#endif
    CHECKD( lambda <= 0.0, "Lambda must be greater than 0" );

    const int         qpDQ                  = cQP.Qp + 1;
    const int         qpPer                 = qpDQ / 6;
    const int         qpRem                 = qpDQ - 6 * qpPer;
    const SPS&        sps                   = *tu.cs->sps;
    const CompArea&   area                  = tu.blocks[ compID ];
    const ChannelType chType                = toChannelType( compID );
    const int         channelBitDepth       = sps.getBitDepth( chType );
    const int         maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange( chType );
    const int         nomTransformShift     = getTransformShift( channelBitDepth, area.size(), maxLog2TrDynamicRange );
    const bool        clipTransformShift    = ( tu.transformSkip[ compID ] && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );
    const int         transformShift        = ( clipTransformShift ? std::max<int>( 0, nomTransformShift ) : nomTransformShift );

    // quant parameters
    m_QShift                    = QUANT_SHIFT  - 1 + qpPer + transformShift;
    m_QAdd                      = -( ( 3 << m_QShift ) >> 1 );
#if HM_QTBT_AS_IN_JEM_QUANT
    Intermediate_Int  invShift  = IQUANT_SHIFT + 1 - qpPer - transformShift + ( TU::needsBlockSizeTrafoScale( area ) ? ADJ_DEQUANT_SHIFT : 0 );
    m_QScale                    = ( TU::needsSqrt2Scale( area ) ? ( g_quantScales[ qpRem ] * 181 ) >> 7 : g_quantScales[ qpRem ] );
#else
    Intermediate_Int  invShift  = IQUANT_SHIFT + 1 - qpPer - transformShift;
    m_QScale                    = g_quantScales   [ qpRem ];
#endif
    const unsigned    qIdxBD    = std::min<unsigned>( maxLog2TrDynamicRange + 1, 8*sizeof(Intermediate_Int) + invShift - IQUANT_SHIFT - 1 );
    m_maxQIdx                   = ( 1 << (qIdxBD-1) ) - 4;
    m_thresLast                 = TCoeff( ( int64_t(3) << m_QShift ) / ( 4 * m_QScale ) );
    m_thresSSbb                 = TCoeff( ( int64_t(3) << m_QShift ) / ( 4 * m_QScale ) );

    // distortion calculation parameters
    const int64_t qScale        = g_quantScales[ qpRem ];
#if HM_QTBT_AS_IN_JEM_QUANT
    const int nomDShift =
      SCALE_BITS - 2 * (nomTransformShift + DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth)) + m_QShift;
#else
    const int nomDShift = SCALE_BITS - 2 * (nomTransformShift + DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth))
                          + m_QShift + (TU::needsQP3Offset(tu, compID) ? 1 : 0);
#endif
    const double  qScale2       = double( qScale * qScale );
    const double  nomDistFactor = ( nomDShift < 0 ? 1.0/(double(int64_t(1)<<(-nomDShift))*qScale2*lambda) : double(int64_t(1)<<nomDShift)/(qScale2*lambda) );
    const int64_t pow2dfShift   = (int64_t)( nomDistFactor * qScale2 ) + 1;
    const int     dfShift       = ceil_log2( pow2dfShift );
    m_DistShift                 = 62 + m_QShift - 2*maxLog2TrDynamicRange - dfShift;
    m_DistAdd                   = (int64_t(1) << m_DistShift) >> 1;
    m_DistStepAdd               = (int64_t)( nomDistFactor * double(int64_t(1)<<(m_DistShift+m_QShift)) + .5 );
    m_DistOrgFact               = (int64_t)( nomDistFactor * double(int64_t(1)<<(m_DistShift+1       )) + .5 );
  }

  void Quantizer::dequantBlock( const TransformUnit& tu, const ComponentID compID, const QpParam& cQP, CoeffBuf& recCoeff ) const
  {
#if HEVC_USE_SCALING_LISTS
    CHECK ( tu.cs->sps->getScalingListFlag(), "Scaling lists not supported" );
#endif

    //----- set basic parameters -----
    const CompArea&     area      = tu.blocks[ compID ];
    const int           numCoeff  = area.area();
    const SizeType      hsId      = gp_sizeIdxInfo->idxFrom( area.width  );
    const SizeType      vsId      = gp_sizeIdxInfo->idxFrom( area.height );
#if HEVC_USE_MDCS
    const CoeffScanType scanType  = CoeffScanType( TU::getCoefScanIdx( tu, compID ) );
#else
    const CoeffScanType scanType  = SCAN_DIAG;
#endif
    const unsigned*     scan      = g_scanOrder[ SCAN_GROUPED_4x4 ][ scanType ][ hsId ][ vsId ];
    const TCoeff*       qCoeff    = tu.getCoeffs( compID ).buf;
          TCoeff*       tCoeff    = recCoeff.buf;

    //----- reset coefficients and get last scan index -----
    ::memset( tCoeff, 0, numCoeff * sizeof(TCoeff) );
    int lastScanIdx = -1;
    for( int scanIdx = numCoeff - 1; scanIdx >= 0; scanIdx-- )
    {
      if( qCoeff[ scan[ scanIdx ] ] )
      {
        lastScanIdx = scanIdx;
        break;
      }
    }
    if( lastScanIdx < 0 )
    {
      return;
    }

    //----- set dequant parameters -----
    const int         qpDQ                  = cQP.Qp + 1;
    const int         qpPer                 = qpDQ / 6;
    const int         qpRem                 = qpDQ - 6 * qpPer;
    const SPS&        sps                   = *tu.cs->sps;
    const ChannelType chType                = toChannelType( compID );
    const int         channelBitDepth       = sps.getBitDepth( chType );
    const int         maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange( chType );
    const TCoeff      minTCoeff             = -( 1 << maxLog2TrDynamicRange );
    const TCoeff      maxTCoeff             =  ( 1 << maxLog2TrDynamicRange ) - 1;
    const int         nomTransformShift     = getTransformShift( channelBitDepth, area.size(), maxLog2TrDynamicRange );
    const bool        clipTransformShift    = ( tu.transformSkip[ compID ] && sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() );
    const int         transformShift        = ( clipTransformShift ? std::max<int>( 0, nomTransformShift ) : nomTransformShift );
#if HM_QTBT_AS_IN_JEM_QUANT
    Intermediate_Int  shift                 = IQUANT_SHIFT + 1 - qpPer - transformShift + ( TU::needsBlockSizeTrafoScale( area ) ? ADJ_DEQUANT_SHIFT : 0 );
    Intermediate_Int  invQScale             = g_invQuantScales[ qpRem ] * ( TU::needsSqrt2Scale( area ) ? 181 : 1 );
#else
    Intermediate_Int  shift                 = IQUANT_SHIFT + 1 - qpPer - transformShift;
    Intermediate_Int  invQScale             = g_invQuantScales[ qpRem ];
#endif
    if( shift < 0 )
    {
      invQScale <<= -shift;
      shift       = 0;
    }
    Intermediate_Int  add       = ( 1 << shift ) >> 1;

    //----- dequant coefficients -----
    for( int state = 0, scanIdx = lastScanIdx; scanIdx >= 0; scanIdx-- )
    {
      const unsigned  rasterPos = scan  [ scanIdx   ];
      const TCoeff&   level     = qCoeff[ rasterPos ];
      if( level )
      {
        Intermediate_Int  qIdx      = ( level << 1 ) + ( level > 0 ? -(state>>1) : (state>>1) );
        Intermediate_Int  nomTCoeff = ( qIdx * invQScale + add ) >> shift;
        tCoeff[ rasterPos ]         = (TCoeff)Clip3<Intermediate_Int>( minTCoeff, maxTCoeff, nomTCoeff );
      }
      state = ( 32040 >> ((state<<2)+((level&1)<<1)) ) & 3;   // the 16-bit value "32040" represent the state transition table
    }
  }

  inline void Quantizer::preQuantCoeff(const TCoeff absCoeff, PQData *pqData) const
  {
    int64_t scaledOrg = int64_t( absCoeff ) * m_QScale;
    TCoeff  qIdx      = std::max<TCoeff>( 1, std::min<TCoeff>( m_maxQIdx, TCoeff( ( scaledOrg + m_QAdd ) >> m_QShift ) ) );
    int64_t scaledAdd = qIdx * m_DistStepAdd - scaledOrg * m_DistOrgFact;
    PQData& pq_a      = pqData[ qIdx & 3 ];
    pq_a.deltaDist    = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
    pq_a.absLevel     = ( ++qIdx ) >> 1;
    scaledAdd        += m_DistStepAdd;
    PQData& pq_b      = pqData[ qIdx & 3 ];
    pq_b.deltaDist    = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
    pq_b.absLevel     = ( ++qIdx ) >> 1;
    scaledAdd        += m_DistStepAdd;
    PQData& pq_c      = pqData[ qIdx & 3 ];
    pq_c.deltaDist    = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
    pq_c.absLevel     = ( ++qIdx ) >> 1;
    scaledAdd        += m_DistStepAdd;
    PQData& pq_d      = pqData[ qIdx & 3 ];
    pq_d.deltaDist    = ( scaledAdd * qIdx + m_DistAdd ) >> m_DistShift;
    pq_d.absLevel     = ( ++qIdx ) >> 1;
  }







  /*================================================================================*/
  /*=====                                                                      =====*/
  /*=====   T C Q   S T A T E                                                  =====*/
  /*=====                                                                      =====*/
  /*================================================================================*/

  class State;

  struct SbbCtx
  {
    uint8_t*  sbbFlags;
    uint8_t*  levels;
  };

  class CommonCtx
  {
  public:
    CommonCtx() : m_currSbbCtx( m_allSbbCtx ), m_prevSbbCtx( m_currSbbCtx + 4 ) {}

    inline void swap() { std::swap(m_currSbbCtx, m_prevSbbCtx); }

    inline void reset(const RateEstimator &rateEst)
    {
      m_nbInfo = rateEst.nbInfoOut();
      ::memcpy( m_sbbFlagBits, rateEst.sigSbbFracBits(), 2*sizeof(BinFracBits) );
      const int numSbb    = rateEst.numSbb();
      const int chunkSize = numSbb + rateEst.numCoeff();
      uint8_t*  nextMem   = m_memory;
      for( int k = 0; k < 8; k++, nextMem += chunkSize )
      {
        m_allSbbCtx[k].sbbFlags = nextMem;
        m_allSbbCtx[k].levels   = nextMem + numSbb;
      }
    }

    inline void update(const ScanInfo &scanInfo, const State *prevState, State &currState);

  private:
    const NbInfoOut*            m_nbInfo;
    BinFracBits                 m_sbbFlagBits[2];
    SbbCtx                      m_allSbbCtx  [8];
    SbbCtx*                     m_currSbbCtx;
    SbbCtx*                     m_prevSbbCtx;
    uint8_t                     m_memory[ 8 * ( MAX_TU_SIZE * MAX_TU_SIZE + MLS_GRP_NUM ) ];
  };

#if JVET_L0274
#define RICEMAX 32
  const int32_t g_goRiceBits[4][RICEMAX] =
  {
    {  32768,  65536,  98304, 131072, 163840, 196608, 229376, 294912, 294912, 360448, 360448, 360448, 360448, 425984, 425984, 425984, 425984, 425984, 425984, 425984, 425984, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520, 491520 },
    {  65536,  65536,  98304,  98304, 131072, 131072, 163840, 163840, 196608, 196608, 229376, 229376, 294912, 294912, 294912, 294912, 360448, 360448, 360448, 360448, 360448, 360448, 360448, 360448, 425984, 425984, 425984, 425984, 425984, 425984, 425984, 425984 },
    {  98304,  98304,  98304,  98304, 131072, 131072, 131072, 131072, 163840, 163840, 163840, 163840, 196608, 196608, 196608, 196608, 229376, 229376, 229376, 229376, 262144, 262144, 262144, 262144, 294912, 294912, 294912, 294912, 360448, 360448, 360448, 360448 },
    { 131072, 131072, 131072, 131072, 131072, 131072, 131072, 131072, 163840, 163840, 163840, 163840, 163840, 163840, 163840, 163840, 196608, 196608, 196608, 196608, 196608, 196608, 196608, 196608, 229376, 229376, 229376, 229376, 229376, 229376, 229376, 229376 }
  };
#endif

  class State
  {
    friend class CommonCtx;
  public:
    State( const RateEstimator& rateEst, CommonCtx& commonCtx, const int stateId );

    template<uint8_t numIPos>
    inline void updateState(const ScanInfo &scanInfo, const State *prevStates, const Decision &decision);
    inline void updateStateEOS(const ScanInfo &scanInfo, const State *prevStates, const State *skipStates,
                               const Decision &decision);

    inline void init()
    {
      m_rdCost        = std::numeric_limits<int64_t>::max()>>1;
      m_numSigSbb     = 0;
#if JVET_L0274
      m_remRegBins    = 3;  // just large enough for last scan pos
#endif
      m_refSbbCtxId   = -1;
      m_sigFracBits   = m_sigFracBitsArray[ 0 ];
      m_coeffFracBits = m_gtxFracBitsArray[ 0 ];
      m_goRicePar     = 0;
#if JVET_L0274
    void checkRdCosts( const ScanPosType spt, const PQData& pqDataA, const PQData& pqDataB, Decision& decisionA, Decision& decisionB) const
    {
      const int32_t*  goRiceTab = g_goRiceBits[m_goRicePar];
      int64_t         rdCostA   = m_rdCost + pqDataA.deltaDist;
      int64_t         rdCostB   = m_rdCost + pqDataB.deltaDist;
      int64_t         rdCostZ   = m_rdCost;
      if( m_remRegBins >= 3 )
      {
        if( pqDataA.absLevel < 4 )
          rdCostA += m_coeffFracBits.bits[pqDataA.absLevel];
        else
        {
          const unsigned value = (pqDataA.absLevel - 4) >> 1;
          rdCostA += m_coeffFracBits.bits[pqDataA.absLevel - (value << 1)] + goRiceTab[value<RICEMAX ? value : RICEMAX-1];
        }
        if( pqDataB.absLevel < 4 )
          rdCostB += m_coeffFracBits.bits[pqDataB.absLevel];
        else
        {
          const unsigned value = (pqDataB.absLevel - 4) >> 1;
          rdCostB += m_coeffFracBits.bits[pqDataB.absLevel - (value << 1)] + goRiceTab[value<RICEMAX ? value : RICEMAX-1];
        }
        if( spt == SCAN_ISCSBB )
        {
          rdCostA += m_sigFracBits.intBits[1];
          rdCostB += m_sigFracBits.intBits[1];
          rdCostZ += m_sigFracBits.intBits[0];
        }
        else if( spt == SCAN_SOCSBB )
        {
          rdCostA += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[1];
          rdCostB += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[1];
          rdCostZ += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[0];
        }
        else if( m_numSigSbb )
        {
          rdCostA += m_sigFracBits.intBits[1];
          rdCostB += m_sigFracBits.intBits[1];
          rdCostZ += m_sigFracBits.intBits[0];
        }
        else
        {
          rdCostZ = decisionA.rdCost;
        }
      }
      else
      {
        rdCostA += (1 << SCALE_BITS) + goRiceTab[pqDataA.absLevel <= m_goRiceZero ? pqDataA.absLevel - 1 : (pqDataA.absLevel<RICEMAX ? pqDataA.absLevel : RICEMAX-1)];
        rdCostB += (1 << SCALE_BITS) + goRiceTab[pqDataB.absLevel <= m_goRiceZero ? pqDataB.absLevel - 1 : (pqDataB.absLevel<RICEMAX ? pqDataB.absLevel : RICEMAX-1)];
        rdCostZ += goRiceTab[m_goRiceZero];
      }
      if( rdCostA < decisionA.rdCost )
      {
        decisionA.rdCost   = rdCostA;
        decisionA.absLevel = pqDataA.absLevel;
        decisionA.prevId   = m_stateId;
      }
      if( rdCostZ < decisionA.rdCost )
      {
        decisionA.rdCost   = rdCostZ;
        decisionA.absLevel = 0;
        decisionA.prevId   = m_stateId;
      }
      if( rdCostB < decisionB.rdCost )
      {
        decisionB.rdCost   = rdCostB;
        decisionB.absLevel = pqDataB.absLevel;
        decisionB.prevId   = m_stateId;
      }
    }
#else
    template<ScanPosType spt> inline void checkRdCostZero(Decision &decision) const
    {
      int64_t rdCost = m_rdCost;
      if( spt == SCAN_ISCSBB )
      {
        rdCost += m_sigFracBits.intBits[0];
      }
      else if( spt == SCAN_SOCSBB )
      {
        rdCost += m_sbbFracBits.intBits[1] + m_sigFracBits.intBits[0];
      }
      else if( m_numSigSbb )
      {