Newer
Older

Karsten Suehring
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2018, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file Prediction.cpp
\brief prediction class
*/
#include "InterPrediction.h"
#include "Buffer.h"
#include "UnitTools.h"
#include <memory.h>
#include <algorithm>
//! \ingroup CommonLib
//! \{
// ====================================================================================================================
// Constructor / destructor / initialize
// ====================================================================================================================
InterPrediction::InterPrediction()
:
m_currChromaFormat( NUM_CHROMA_FORMAT )
, m_maxCompIDToPred ( MAX_NUM_COMPONENT )
, m_pcRdCost ( nullptr )
#if JVET_L0265_AFF_MINIMUM4X4
, m_storedMv ( nullptr )
#endif
, m_gradX0(nullptr)
, m_gradY0(nullptr)
, m_gradX1(nullptr)
, m_gradY1(nullptr)

Karsten Suehring
committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
{
for( uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++ )
{
for( uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++ )
{
m_acYuvPred[refList][ch] = nullptr;
}
}
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; i++ )
{
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; j++ )
{
m_filteredBlock[i][j][c] = nullptr;
}
m_filteredBlockTmp[i][c] = nullptr;
}
}
}
InterPrediction::~InterPrediction()
{
destroy();
}
void InterPrediction::destroy()
{
for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
xFree( m_acYuvPred[i][c] );
m_acYuvPred[i][c] = nullptr;
}
}
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; i++ )
{
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; j++ )
{
xFree( m_filteredBlock[i][j][c] );
m_filteredBlock[i][j][c] = nullptr;
}
xFree( m_filteredBlockTmp[i][c] );
m_filteredBlockTmp[i][c] = nullptr;
}
}
#if JVET_L0265_AFF_MINIMUM4X4
if (m_storedMv != nullptr)
{
delete[]m_storedMv;
}
#endif
xFree(m_gradX0); m_gradX0 = nullptr;
xFree(m_gradY0); m_gradY0 = nullptr;
xFree(m_gradX1); m_gradX1 = nullptr;
xFree(m_gradY1); m_gradY1 = nullptr;

Karsten Suehring
committed
}
void InterPrediction::init( RdCost* pcRdCost, ChromaFormat chromaFormatIDC )
{
m_pcRdCost = pcRdCost;
// if it has been initialised before, but the chroma format has changed, release the memory and start again.
if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] != nullptr && m_currChromaFormat != chromaFormatIDC )
{
destroy();
}
m_currChromaFormat = chromaFormatIDC;
if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] == nullptr ) // check if first is null (in which case, nothing initialised yet)
{
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
int extWidth = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 16;
int extHeight = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 1;

Karsten Suehring
committed
int extWidth = MAX_CU_SIZE + 16;
int extHeight = MAX_CU_SIZE + 1;

Karsten Suehring
committed
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; i++ )
{
m_filteredBlockTmp[i][c] = ( Pel* ) xMalloc( Pel, ( extWidth + 4 ) * ( extHeight + 7 + 4 ) );
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS; j++ )
{
m_filteredBlock[i][j][c] = ( Pel* ) xMalloc( Pel, extWidth * extHeight );
}
}
// new structure
for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
m_acYuvPred[i][c] = ( Pel* ) xMalloc( Pel, MAX_CU_SIZE * MAX_CU_SIZE );
}
}

Karsten Suehring
committed
m_iRefListIdx = -1;
m_gradX0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradY0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradX1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradY1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);

Karsten Suehring
committed
}
#if !JVET_J0090_MEMORY_BANDWITH_MEASURE
m_if.initInterpolationFilter( true );
#endif
#if JVET_L0265_AFF_MINIMUM4X4
const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE;
m_storedMv = new Mv [MVBUFFER_SIZE*MVBUFFER_SIZE];
#endif

Karsten Suehring
committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
}
bool checkIdenticalMotion( const PredictionUnit &pu, bool checkAffine )
{
const Slice &slice = *pu.cs->slice;
if( slice.isInterB() && !pu.cs->pps->getWPBiPred() )
{
if( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 )
{
int RefPOCL0 = slice.getRefPic( REF_PIC_LIST_0, pu.refIdx[0] )->getPOC();
int RefPOCL1 = slice.getRefPic( REF_PIC_LIST_1, pu.refIdx[1] )->getPOC();
if( RefPOCL0 == RefPOCL1 )
{
if( !pu.cu->affine )
{
if( pu.mv[0] == pu.mv[1] )
{
return true;
}
}
else
{
CHECK( !checkAffine, "In this case, checkAffine should be on." );
const CMotionBuf &mb = pu.getMotionBuf();
if ( (pu.cu->affineType == AFFINEMODEL_4PARAM && (mb.at( 0, 0 ).mv[0] == mb.at( 0, 0 ).mv[1]) && (mb.at( mb.width - 1, 0 ).mv[0] == mb.at( mb.width - 1, 0 ).mv[1]))
|| (pu.cu->affineType == AFFINEMODEL_6PARAM && (mb.at( 0, 0 ).mv[0] == mb.at( 0, 0 ).mv[1]) && (mb.at( mb.width - 1, 0 ).mv[0] == mb.at( mb.width - 1, 0 ).mv[1]) && (mb.at( 0, mb.height - 1 ).mv[0] == mb.at( 0, mb.height - 1 ).mv[1])) )
{
return true;
}
}
}
}
}
return false;
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
bool InterPrediction::xCheckIdenticalMotion( const PredictionUnit &pu )
{
const Slice &slice = *pu.cs->slice;
if( slice.isInterB() && !pu.cs->pps->getWPBiPred() )
{
if( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 )
{
int RefPOCL0 = slice.getRefPic( REF_PIC_LIST_0, pu.refIdx[0] )->getPOC();
int RefPOCL1 = slice.getRefPic( REF_PIC_LIST_1, pu.refIdx[1] )->getPOC();
if( RefPOCL0 == RefPOCL1 )
{
if( !pu.cu->affine )
{
if( pu.mv[0] == pu.mv[1] )
{
return true;
}
}
else
{
const CMotionBuf &mb = pu.getMotionBuf();
if ( (pu.cu->affineType == AFFINEMODEL_4PARAM && (mb.at( 0, 0 ).mv[0] == mb.at( 0, 0 ).mv[1]) && (mb.at( mb.width - 1, 0 ).mv[0] == mb.at( mb.width - 1, 0 ).mv[1]))
|| (pu.cu->affineType == AFFINEMODEL_6PARAM && (mb.at( 0, 0 ).mv[0] == mb.at( 0, 0 ).mv[1]) && (mb.at( mb.width - 1, 0 ).mv[0] == mb.at( mb.width - 1, 0 ).mv[1]) && (mb.at( 0, mb.height - 1 ).mv[0] == mb.at( 0, mb.height - 1 ).mv[1])) )
{
return true;
}
}
}
}
}
return false;
}
void InterPrediction::xSubPuMC( PredictionUnit& pu, PelUnitBuf& predBuf, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/ )
{
// compute the location of the current PU
Position puPos = pu.lumaPos();
Size puSize = pu.lumaSize();
int numPartLine, numPartCol, puHeight, puWidth;
{
const Slice& slice = *pu.cs->slice;
numPartLine = std::max(puSize.width >> slice.getSubPuMvpSubblkLog2Size(), 1u);
numPartCol = std::max(puSize.height >> slice.getSubPuMvpSubblkLog2Size(), 1u);
puHeight = numPartCol == 1 ? puSize.height : 1 << slice.getSubPuMvpSubblkLog2Size();
puWidth = numPartLine == 1 ? puSize.width : 1 << slice.getSubPuMvpSubblkLog2Size();
}
PredictionUnit subPu;
subPu.cs = pu.cs;
subPu.cu = pu.cu;
subPu.mergeType = MRG_TYPE_DEFAULT_N;
#if JVET_L0369_SUBBLOCK_MERGE
bool isAffine = pu.cu->affine;
subPu.cu->affine = false;
#endif

Karsten Suehring
committed
// join sub-pus containing the same motion
bool verMC = puSize.height > puSize.width;
int fstStart = (!verMC ? puPos.y : puPos.x);
int secStart = (!verMC ? puPos.x : puPos.y);
int fstEnd = (!verMC ? puPos.y + puSize.height : puPos.x + puSize.width);
int secEnd = (!verMC ? puPos.x + puSize.width : puPos.y + puSize.height);
int fstStep = (!verMC ? puHeight : puWidth);
int secStep = (!verMC ? puWidth : puHeight);
#if JVET_L0256_BIO
m_subPuMC = true;
#endif

Karsten Suehring
committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
for (int fstDim = fstStart; fstDim < fstEnd; fstDim += fstStep)
{
for (int secDim = secStart; secDim < secEnd; secDim += secStep)
{
int x = !verMC ? secDim : fstDim;
int y = !verMC ? fstDim : secDim;
const MotionInfo &curMi = pu.getMotionInfo(Position{ x, y });
int length = secStep;
int later = secDim + secStep;
while (later < secEnd)
{
const MotionInfo &laterMi = !verMC ? pu.getMotionInfo(Position{ later, fstDim }) : pu.getMotionInfo(Position{ fstDim, later });
if (laterMi == curMi)
{
length += secStep;
}
else
{
break;
}
later += secStep;
}
int dx = !verMC ? length : puWidth;
int dy = !verMC ? puHeight : length;
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
subPu = curMi;
PelUnitBuf subPredBuf = predBuf.subBuf(UnitAreaRelative(pu, subPu));
motionCompensation(subPu, subPredBuf, eRefPicList);
secDim = later - secStep;
}
}
#if JVET_L0256_BIO
m_subPuMC = false;
#endif
#if JVET_L0369_SUBBLOCK_MERGE
pu.cu->affine = isAffine;

Karsten Suehring
committed
}
void InterPrediction::xPredInterUni(const PredictionUnit& pu, const RefPicList& eRefPicList, PelUnitBuf& pcYuvPred, const bool& bi
,const bool& bioApplied /*=false*/

Karsten Suehring
committed
{
const SPS &sps = *pu.cs->sps;
int iRefIdx = pu.refIdx[eRefPicList];
Mv mv[3];
if( pu.cu->affine )
{
CHECK( iRefIdx < 0, "iRefIdx incorrect." );
#if JVET_L0694_AFFINE_LINEBUFFER_CLEANUP
mv[0] = pu.mvAffi[eRefPicList][0];
mv[1] = pu.mvAffi[eRefPicList][1];
mv[2] = pu.mvAffi[eRefPicList][2];
#else

Karsten Suehring
committed
const CMotionBuf &mb = pu.getMotionBuf();
mv[0] = mb.at( 0, 0 ).mv[eRefPicList];
mv[1] = mb.at( mb.width - 1, 0 ).mv[eRefPicList];
mv[2] = mb.at( 0, mb.height - 1 ).mv[eRefPicList];

Karsten Suehring
committed
}
else
{
mv[0] = pu.mv[eRefPicList];
}
if ( !pu.cu->affine )
clipMv(mv[0], pu.cu->lumaPos(), sps);
for( uint32_t comp = COMPONENT_Y; comp < pcYuvPred.bufs.size() && comp <= m_maxCompIDToPred; comp++ )
{
const ComponentID compID = ComponentID( comp );
if ( pu.cu->affine )
{
CHECK( bioApplied, "BIO is not allowed with affine" );

Karsten Suehring
committed
xPredAffineBlk( compID, pu, pu.cu->slice->getRefPic( eRefPicList, iRefIdx ), mv, pcYuvPred, bi, pu.cu->slice->clpRng( compID ) );
}
else
{
xPredInterBlk( compID, pu, pu.cu->slice->getRefPic( eRefPicList, iRefIdx ), mv[0], pcYuvPred, bi, pu.cu->slice->clpRng( compID )

Karsten Suehring
committed
}
}
}
void InterPrediction::xPredInterBi(PredictionUnit& pu, PelUnitBuf &pcYuvPred)
{
const PPS &pps = *pu.cs->pps;
const Slice &slice = *pu.cs->slice;
bool bioApplied = false;
if (pu.cs->sps->getSpsNext().getUseBIO())
{
if (pu.cu->affine || m_subPuMC)
{
bioApplied = false;
const bool biocheck0 = !(pps.getWPBiPred() && slice.getSliceType() == B_SLICE);
const bool biocheck1 = !(pps.getUseWP() && slice.getSliceType() == P_SLICE);
if (biocheck0
&& biocheck1
&& PU::isBiPredFromDifferentDir(pu)
&& !(pu.Y().height == 4 || (pu.Y().width == 4 && pu.Y().height == 8))
)
{
bioApplied = true;
}
}
#if JVET_L0646_GBI
if (pu.cu->cs->sps->getSpsNext().getUseGBi() && bioApplied && pu.cu->GBiIdx != GBI_DEFAULT)
bioApplied = false;

Karsten Suehring
committed
for (uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++)
{
if( pu.refIdx[refList] < 0)
{
continue;
}
RefPicList eRefPicList = (refList ? REF_PIC_LIST_1 : REF_PIC_LIST_0);
CHECK( pu.refIdx[refList] >= slice.getNumRefIdx( eRefPicList ), "Invalid reference index" );
m_iRefListIdx = refList;
PelUnitBuf pcMbBuf = ( pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[refList][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[refList][2], pcYuvPred.Cr())) );
if (pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0)
{
xPredInterUni ( pu, eRefPicList, pcMbBuf, true

Karsten Suehring
committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
);
}
else
{
if( ( (pps.getUseWP() && slice.getSliceType() == P_SLICE) || (pps.getWPBiPred() && slice.getSliceType() == B_SLICE) ) )
{
xPredInterUni ( pu, eRefPicList, pcMbBuf, true );
}
else
{
xPredInterUni ( pu, eRefPicList, pcMbBuf, false );
}
}
}
CPelUnitBuf srcPred0 = ( pu.chromaFormat == CHROMA_400 ?
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y())) :
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[0][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[0][2], pcYuvPred.Cr())) );
CPelUnitBuf srcPred1 = ( pu.chromaFormat == CHROMA_400 ?
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y())) :
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[1][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[1][2], pcYuvPred.Cr())) );
if( pps.getWPBiPred() && slice.getSliceType() == B_SLICE )
{
xWeightedPredictionBi( pu, srcPred0, srcPred1, pcYuvPred, m_maxCompIDToPred );
}
else if( pps.getUseWP() && slice.getSliceType() == P_SLICE )
{
xWeightedPredictionUni( pu, srcPred0, REF_PIC_LIST_0, pcYuvPred, -1, m_maxCompIDToPred );
}
else
{
xWeightedAverage( pu, srcPred0, srcPred1, pcYuvPred, slice.getSPS()->getBitDepths(), slice.clpRngs(), bioApplied );

Karsten Suehring
committed
xWeightedAverage( pu, srcPred0, srcPred1, pcYuvPred, slice.getSPS()->getBitDepths(), slice.clpRngs() );

Karsten Suehring
committed
}
}
void InterPrediction::xPredInterBlk ( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv& _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng
,const bool& bioApplied /*=false*/

Karsten Suehring
committed
{
JVET_J0090_SET_REF_PICTURE( refPic, compID );
const ChromaFormat chFmt = pu.chromaFormat;
const bool rndRes = !bi;
int iAddPrecShift = 0;

Karsten Suehring
committed
if (_mv.highPrec)
{
CHECKD(!pu.cs->sps->getSpsNext().getUseHighPrecMv(), "Found a high-precision motion vector, but the high-precision MV extension is disabled!");

Karsten Suehring
committed
iAddPrecShift = VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE;

Karsten Suehring
committed
}

Karsten Suehring
committed
int shiftHor = 2 + iAddPrecShift + ::getComponentScaleX(compID, chFmt);
int shiftVer = 2 + iAddPrecShift + ::getComponentScaleY(compID, chFmt);
int xFrac = _mv.hor & ((1 << shiftHor) - 1);
int yFrac = _mv.ver & ((1 << shiftVer) - 1);
xFrac <<= VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE - iAddPrecShift;
yFrac <<= VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE - iAddPrecShift;

Karsten Suehring
committed
CHECKD(!pu.cs->sps->getSpsNext().getUseHighPrecMv() && ((xFrac & 3) != 0), "Invalid fraction");
CHECKD(!pu.cs->sps->getSpsNext().getUseHighPrecMv() && ((yFrac & 3) != 0), "Invalid fraction");

Karsten Suehring
committed
PelBuf &dstBuf = dstPic.bufs[compID];
unsigned width = dstBuf.width;
unsigned height = dstBuf.height;
CPelBuf refBuf;
{
Position offset = pu.blocks[compID].pos().offset( _mv.getHor() >> shiftHor, _mv.getVer() >> shiftVer );
refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, offset, pu.blocks[compID].size() ) );
}
#if JVET_L0256_BIO
// backup data
int backupWidth = width;
int backupHeight = height;
Pel *backupDstBufPtr = dstBuf.buf;
int backupDstBufStride = dstBuf.stride;
if (bioApplied && compID == COMPONENT_Y)
width = width + 2 * BIO_EXTEND_SIZE + 2;
height = height + 2 * BIO_EXTEND_SIZE + 2;
// change MC output
dstBuf.stride = width;
dstBuf.buf = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + 2 * dstBuf.stride + 2;
}
#endif

Karsten Suehring
committed
if( yFrac == 0 )
{
#if JVET_L0256_BIO
m_if.filterHor(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, xFrac, rndRes, chFmt, clpRng);
#else

Karsten Suehring
committed
m_if.filterHor(compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, width, height, xFrac, rndRes, chFmt, clpRng);

Karsten Suehring
committed
}
else if( xFrac == 0 )
{
#if JVET_L0256_BIO
m_if.filterVer(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, true, rndRes, chFmt, clpRng);
#else

Karsten Suehring
committed
m_if.filterVer(compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, width, height, yFrac, true, rndRes, chFmt, clpRng);

Karsten Suehring
committed
}
else
{
PelBuf tmpBuf = PelBuf(m_filteredBlockTmp[0][compID], pu.blocks[compID]);
#if JVET_L0256_BIO
tmpBuf.stride = dstBuf.stride;
#endif

Karsten Suehring
committed
int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA;
#if JVET_L0256_BIO
m_if.filterHor(compID, (Pel*)refBuf.buf - ((vFilterSize >> 1) - 1) * refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, backupWidth, backupHeight + vFilterSize - 1, xFrac, false, chFmt, clpRng);
#else

Karsten Suehring
committed
m_if.filterHor(compID, (Pel*) refBuf.buf - ((vFilterSize >> 1) - 1) * refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, width, height + vFilterSize - 1, xFrac, false, chFmt, clpRng);

Karsten Suehring
committed
JVET_J0090_SET_CACHE_ENABLE( false );
#if JVET_L0256_BIO
m_if.filterVer(compID, (Pel*)tmpBuf.buf + ((vFilterSize >> 1) - 1) * tmpBuf.stride, tmpBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, false, rndRes, chFmt, clpRng);
#else

Karsten Suehring
committed
m_if.filterVer(compID, (Pel*) tmpBuf.buf + ((vFilterSize >> 1) - 1) * tmpBuf.stride, tmpBuf.stride, dstBuf.buf, dstBuf.stride, width, height, yFrac, false, rndRes, chFmt, clpRng);

Karsten Suehring
committed
JVET_J0090_SET_CACHE_ENABLE( true );
}
if (bioApplied && compID == COMPONENT_Y)
{
refBuf.buf = refBuf.buf - refBuf.stride - 1;
dstBuf.buf = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + dstBuf.stride + 1;
bioSampleExtendBilinearFilter(refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, width - 2, height - 2, 1, xFrac, yFrac, rndRes, chFmt, clpRng);
// restore data
width = backupWidth;
height = backupHeight;
dstBuf.buf = backupDstBufPtr;
dstBuf.stride = backupDstBufStride;
}
#endif

Karsten Suehring
committed
}
void InterPrediction::xPredAffineBlk( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv* _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng )
{
if ( (pu.cu->affineType == AFFINEMODEL_6PARAM && _mv[0] == _mv[1] && _mv[0] == _mv[2])
|| (pu.cu->affineType == AFFINEMODEL_4PARAM && _mv[0] == _mv[1])
)
{
Mv mvTemp = _mv[0];
clipMv( mvTemp, pu.cu->lumaPos(), *pu.cs->sps );
xPredInterBlk( compID, pu, refPic, mvTemp, dstPic, bi, clpRng );
return;
}
JVET_J0090_SET_REF_PICTURE( refPic, compID );
const ChromaFormat chFmt = pu.chromaFormat;
int iScaleX = ::getComponentScaleX( compID, chFmt );
int iScaleY = ::getComponentScaleY( compID, chFmt );
Mv mvLT =_mv[0];
Mv mvRT =_mv[1];
Mv mvLB =_mv[2];

Karsten Suehring
committed
mvLT.setHighPrec();
mvRT.setHighPrec();
mvLB.setHighPrec();

Karsten Suehring
committed
// get affine sub-block width and height
const int width = pu.Y().width;
const int height = pu.Y().height;
int blockWidth = AFFINE_MIN_BLOCK_SIZE;
int blockHeight = AFFINE_MIN_BLOCK_SIZE;
blockWidth >>= iScaleX;
blockHeight >>= iScaleY;
#if JVET_L0265_AFF_MINIMUM4X4
blockWidth = std::max(blockWidth, AFFINE_MIN_BLOCK_SIZE);
blockHeight = std::max(blockHeight, AFFINE_MIN_BLOCK_SIZE);
CHECK(blockWidth > (width >> iScaleX ), "Sub Block width > Block width");
CHECK(blockHeight > (height >> iScaleX), "Sub Block height > Block height");
const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE;

Karsten Suehring
committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
const int cxWidth = width >> iScaleX;
const int cxHeight = height >> iScaleY;
const int iHalfBW = blockWidth >> 1;
const int iHalfBH = blockHeight >> 1;
const int iBit = MAX_CU_DEPTH;
int iDMvHorX, iDMvHorY, iDMvVerX, iDMvVerY;
iDMvHorX = (mvRT - mvLT).getHor() << (iBit - g_aucLog2[cxWidth]);
iDMvHorY = (mvRT - mvLT).getVer() << (iBit - g_aucLog2[cxWidth]);
if ( pu.cu->affineType == AFFINEMODEL_6PARAM )
{
iDMvVerX = (mvLB - mvLT).getHor() << (iBit - g_aucLog2[cxHeight]);
iDMvVerY = (mvLB - mvLT).getVer() << (iBit - g_aucLog2[cxHeight]);
}
else
{
iDMvVerX = -iDMvHorY;
iDMvVerY = iDMvHorX;
}
int iMvScaleHor = mvLT.getHor() << iBit;
int iMvScaleVer = mvLT.getVer() << iBit;
const SPS &sps = *pu.cs->sps;
const int iMvShift = 4;
const int iOffset = 8;
const int iHorMax = ( sps.getPicWidthInLumaSamples() + iOffset - pu.Y().x - 1 ) << iMvShift;
const int iHorMin = ( -(int)pu.cs->pcv->maxCUWidth - iOffset - (int)pu.Y().x + 1 ) << iMvShift;
const int iVerMax = ( sps.getPicHeightInLumaSamples() + iOffset - pu.Y().y - 1 ) << iMvShift;
const int iVerMin = ( -(int)pu.cs->pcv->maxCUHeight - iOffset - (int)pu.Y().y + 1 ) << iMvShift;
PelBuf tmpBuf = PelBuf(m_filteredBlockTmp[0][compID], pu.blocks[compID]);
const int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA;
const int shift = iBit - 4 + VCEG_AZ07_MV_ADD_PRECISION_BIT_FOR_STORE + 2;
// get prediction block by block
for ( int h = 0; h < cxHeight; h += blockHeight )
{
for ( int w = 0; w < cxWidth; w += blockWidth )
{
int iMvScaleTmpHor, iMvScaleTmpVer;
if(compID == COMPONENT_Y)
{
iMvScaleTmpHor = iMvScaleHor + iDMvHorX * (iHalfBW + w) + iDMvVerX * (iHalfBH + h);
iMvScaleTmpVer = iMvScaleVer + iDMvHorY * (iHalfBW + w) + iDMvVerY * (iHalfBH + h);
roundAffineMv(iMvScaleTmpHor, iMvScaleTmpVer, shift);
// clip and scale
iMvScaleTmpHor = std::min<int>(iHorMax, std::max<int>(iHorMin, iMvScaleTmpHor));
iMvScaleTmpVer = std::min<int>(iVerMax, std::max<int>(iVerMin, iMvScaleTmpVer));
m_storedMv[h / AFFINE_MIN_BLOCK_SIZE * MVBUFFER_SIZE + w / AFFINE_MIN_BLOCK_SIZE].set(iMvScaleTmpHor, iMvScaleTmpVer);
}
else
{
Mv curMv = (m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE) * MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE)] +
m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE + 1)* MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE)] +
m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE)* MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE + 1)] +
m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE + 1)* MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE + 1)] +
Mv(2, 2));
curMv.set(curMv.getHor() >> 2, curMv.getVer() >> 2);
iMvScaleTmpHor = curMv.hor;
iMvScaleTmpVer = curMv.ver;
}

Karsten Suehring
committed
int iMvScaleTmpHor = iMvScaleHor + iDMvHorX * (iHalfBW + w) + iDMvVerX * (iHalfBH + h);
int iMvScaleTmpVer = iMvScaleVer + iDMvHorY * (iHalfBW + w) + iDMvVerY * (iHalfBH + h);
roundAffineMv( iMvScaleTmpHor, iMvScaleTmpVer, shift );
// clip and scale
iMvScaleTmpHor = std::min<int>( iHorMax, std::max<int>( iHorMin, iMvScaleTmpHor ) );
iMvScaleTmpVer = std::min<int>( iVerMax, std::max<int>( iVerMin, iMvScaleTmpVer ) );

Karsten Suehring
committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
// get the MV in high precision
int xFrac, yFrac, xInt, yInt;
if (!iScaleX)
{
xInt = iMvScaleTmpHor >> 4;
xFrac = iMvScaleTmpHor & 15;
}
else
{
xInt = iMvScaleTmpHor >> 5;
xFrac = iMvScaleTmpHor & 31;
}
if (!iScaleY)
{
yInt = iMvScaleTmpVer >> 4;
yFrac = iMvScaleTmpVer & 15;
}
else
{
yInt = iMvScaleTmpVer >> 5;
yFrac = iMvScaleTmpVer & 31;
}
const CPelBuf refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, pu.blocks[compID].offset(xInt + w, yInt + h), pu.blocks[compID] ) );
PelBuf &dstBuf = dstPic.bufs[compID];
if ( yFrac == 0 )
{
m_if.filterHor( compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, xFrac, !bi, chFmt, clpRng );
}
else if ( xFrac == 0 )
{
m_if.filterVer( compID, (Pel*) refBuf.buf, refBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, yFrac, true, !bi, chFmt, clpRng );
}
else
{
m_if.filterHor( compID, (Pel*) refBuf.buf - ((vFilterSize>>1) -1)*refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, blockWidth, blockHeight+vFilterSize-1, xFrac, false, chFmt, clpRng);
JVET_J0090_SET_CACHE_ENABLE( false );
m_if.filterVer( compID, tmpBuf.buf + ((vFilterSize>>1) -1)*tmpBuf.stride, tmpBuf.stride, dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, blockWidth, blockHeight, yFrac, false, !bi, chFmt, clpRng);
JVET_J0090_SET_CACHE_ENABLE( true );
}
}
}
}
int getMSB( unsigned x )
{
int msb = 0, bits = ( sizeof(int) << 3 ), y = 1;
while( x > 1u )
{
bits >>= 1;
y = x >> bits;
if( y )
{
x = y;
msb += bits;
}
}
msb += y;
return msb;
}
void InterPrediction::applyBiOptFlow(const PredictionUnit &pu, const CPelUnitBuf &yuvSrc0, const CPelUnitBuf &yuvSrc1, const int &refIdx0, const int &refIdx1, PelUnitBuf &yuvDst, const BitDepths &clipBitDepths)
const int height = yuvDst.Y().height;
const int width = yuvDst.Y().width;
int heightG = height + 2 * BIO_EXTEND_SIZE;
int widthG = width + 2 * BIO_EXTEND_SIZE;
int offsetPos = widthG*BIO_EXTEND_SIZE + BIO_EXTEND_SIZE;
Pel* gradX0 = m_gradX0;
Pel* gradX1 = m_gradX1;
Pel* gradY0 = m_gradY0;
Pel* gradY1 = m_gradY1;
int stridePredMC = widthG + 2;
const Pel* srcY0 = m_filteredBlockTmp[2][COMPONENT_Y] + stridePredMC + 1;
const Pel* srcY1 = m_filteredBlockTmp[3][COMPONENT_Y] + stridePredMC + 1;
const int src0Stride = stridePredMC;
const int src1Stride = stridePredMC;
Pel* dstY = yuvDst.Y().buf;
const int dstStride = yuvDst.Y().stride;
const Pel* srcY0Temp = srcY0;
const Pel* srcY1Temp = srcY1;
for (int refList = 0; refList < NUM_REF_PIC_LIST_01; refList++)
{
Pel* dstTempPtr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + stridePredMC + 1;
Pel* gradY = (refList == 0) ? m_gradY0 : m_gradY1;
Pel* gradX = (refList == 0) ? m_gradX0 : m_gradX1;
g_pelBufOP.bioGradFilter(dstTempPtr, stridePredMC, widthG, heightG, widthG, gradX, gradY);
Pel* padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 2;
for (int y = 0; y< height; y++)
padStr[-1] = padStr[0];
padStr[width] = padStr[width - 1];
padStr += stridePredMC;
padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 1;
::memcpy(padStr - stridePredMC, padStr, sizeof(Pel)*(widthG));
::memcpy(padStr + height*stridePredMC, padStr + (height - 1)*stridePredMC, sizeof(Pel)*(widthG));
}
const ClpRng& clpRng = pu.cu->cs->slice->clpRng(COMPONENT_Y);
const int bitDepth = clipBitDepths.recon[toChannelType(COMPONENT_Y)];
const int shiftNum = IF_INTERNAL_PREC + 1 - bitDepth;
const int offset = (1 << (shiftNum - 1)) + 2 * IF_INTERNAL_OFFS;
const int limit = ((int)1 << (4 + IF_INTERNAL_PREC - bitDepth - 5));

Karsten Suehring
committed
int* dotProductTemp1 = m_dotProduct1;
int* dotProductTemp2 = m_dotProduct2;
int* dotProductTemp3 = m_dotProduct3;
int* dotProductTemp5 = m_dotProduct5;
int* dotProductTemp6 = m_dotProduct6;
g_pelBufOP.calcBIOPar(srcY0Temp, srcY1Temp, gradX0, gradX1, gradY0, gradY1, dotProductTemp1, dotProductTemp2, dotProductTemp3, dotProductTemp5, dotProductTemp6, src0Stride, src1Stride, widthG, widthG, heightG);
int xUnit = (width >> 2);
int yUnit = (height >> 2);
Pel *dstY0 = dstY;
gradX0 = m_gradX0; gradX1 = m_gradX1;
gradY0 = m_gradY0; gradY1 = m_gradY1;
for (int yu = 0; yu < yUnit; yu++)
{
for (int xu = 0; xu < xUnit; xu++)
{
if (m_bioPredSubBlkDist[yu*xUnit + xu] < m_bioSubBlkDistThres)
{
srcY0Temp = srcY0 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2);
srcY1Temp = srcY1 + (stridePredMC + 1) + ((yu*src1Stride + xu) << 2);
dstY0 = dstY + ((yu*dstStride + xu) << 2);
g_pelBufOP.addAvg4(srcY0Temp, src0Stride, srcY1Temp, src1Stride, dstY0, dstStride, (1 << 2), (1 << 2), shiftNum, offset, clpRng);
continue;
}
int sGxdI = 0, sGydI = 0, sGxGy = 0, sGx2 = 0, sGy2 = 0;
int tmpx = 0, tmpy = 0;

Karsten Suehring
committed
dotProductTemp1 = m_dotProduct1 + offsetPos + ((yu*widthG + xu) << 2);
dotProductTemp2 = m_dotProduct2 + offsetPos + ((yu*widthG + xu) << 2);
dotProductTemp3 = m_dotProduct3 + offsetPos + ((yu*widthG + xu) << 2);
dotProductTemp5 = m_dotProduct5 + offsetPos + ((yu*widthG + xu) << 2);
dotProductTemp6 = m_dotProduct6 + offsetPos + ((yu*widthG + xu) << 2);
g_pelBufOP.calcBlkGradient(xu << 2, yu << 2, dotProductTemp1, dotProductTemp2, dotProductTemp3, dotProductTemp5, dotProductTemp6, sGx2, sGy2, sGxGy, sGxdI, sGydI, widthG, heightG, (1 << 2));
if (sGx2 > 0)
{
tmpx = rightShiftMSB(sGxdI << 3, sGx2);
tmpx = Clip3(-limit, limit, tmpx);
}
if (sGy2 > 0)
{
int mainsGxGy = sGxGy >> 12;
int secsGxGy = sGxGy & ((1 << 12) - 1);
int tmpData = tmpx * mainsGxGy;
tmpData = ((tmpData << 12) + tmpx*secsGxGy) >> 1;
tmpy = rightShiftMSB(((sGydI << 3) - tmpData), sGy2);
tmpy = Clip3(-limit, limit, tmpy);
}
srcY0Temp = srcY0 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2);
srcY1Temp = srcY1 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2);
gradX0 = m_gradX0 + offsetPos + ((yu*widthG + xu) << 2);
gradX1 = m_gradX1 + offsetPos + ((yu*widthG + xu) << 2);
gradY0 = m_gradY0 + offsetPos + ((yu*widthG + xu) << 2);
gradY1 = m_gradY1 + offsetPos + ((yu*widthG + xu) << 2);
dstY0 = dstY + ((yu*dstStride + xu) << 2);
g_pelBufOP.addBIOAvg4(srcY0Temp, src0Stride, srcY1Temp, src1Stride, dstY0, dstStride, gradX0, gradX1, gradY0, gradY1, widthG, (1 << 2), (1 << 2), (int)tmpx, (int)tmpy, shiftNum, offset, clpRng);
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
} // xu
} // yu
}
void InterPrediction::bioSampleExtendBilinearFilter(Pel const* src, int srcStride, Pel *dst, int dstStride, int width, int height, int dim, int fracX, int fracY, bool isLast, const ChromaFormat fmt, const ClpRng& clpRng)
{
Pel const* pSrc = NULL;
Pel* pDst = NULL;
int vFilterSize = NTAPS_LUMA;
int widthTmp = 0;
int heightTmp = 0;
for (int cand = 0; cand < 4; cand++) // top, left, bottom and right
{
if (cand == 0) // top
{
pSrc = src;
pDst = dst;
widthTmp = width;
heightTmp = dim;
}
else if (cand == 1) // left
{
pSrc = src + dim*srcStride;
pDst = dst + dim*dstStride;
widthTmp = dim;
heightTmp = height - 2 * dim;
}
else if (cand == 2) // bottom
{
pSrc = src + (height - dim)*srcStride;
pDst = dst + (height - dim)*dstStride;
widthTmp = width;
heightTmp = dim;
}
else if (cand == 3) // right
{
pSrc = src + dim*srcStride + width - dim;
pDst = dst + dim*dstStride + width - dim;
widthTmp = dim;
heightTmp = height - 2 * dim;
}
if (fracY == 0)
{
m_if.filterHor(COMPONENT_Y, pSrc, srcStride, pDst, dstStride, widthTmp, heightTmp, fracX, isLast, fmt, clpRng, 1);
}
else if (fracX == 0)
{
m_if.filterVer(COMPONENT_Y, pSrc, srcStride, pDst, dstStride, widthTmp, heightTmp, fracY, true, isLast, fmt, clpRng, 1);
}
else
{
PelBuf tmpBuf = PelBuf(m_filteredBlockTmp[0][COMPONENT_Y], Size(width, height));
tmpBuf.stride = width;
m_if.filterHor(COMPONENT_Y, pSrc - ((vFilterSize >> 1) - 1) * srcStride, srcStride, tmpBuf.buf, tmpBuf.stride, widthTmp, heightTmp + vFilterSize - 1, fracX, false, fmt, clpRng, 1);
m_if.filterVer(COMPONENT_Y, tmpBuf.buf + ((vFilterSize >> 1) - 1) * tmpBuf.stride, tmpBuf.stride, pDst, dstStride, widthTmp, heightTmp, fracY, false, isLast, fmt, clpRng, 1);
}
}
}
bool InterPrediction::xCalcBiPredSubBlkDist(const PredictionUnit &pu, const Pel* pYuvSrc0, const int src0Stride, const Pel* pYuvSrc1, const int src1Stride, const BitDepths &clipBitDepths)
{
const int width = pu.lwidth();
const int height = pu.lheight();
const int clipbd = clipBitDepths.recon[toChannelType(COMPONENT_Y)];
const uint32_t distortionShift = DISTORTION_PRECISION_ADJUSTMENT(clipbd);
const int shift = std::max<int>(2, (IF_INTERNAL_PREC - clipbd));
const int xUnit = (width >> 2);
const int yUnit = (height >> 2);