Newer
Older

Karsten Suehring
committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
int ctxId;
//X-coordinate
for ( ctxId = 0; ctxId < g_uiGroupIdx[dim1-1]; ctxId++)
{
const BinFracBits fB = fracBits.getFracBitsArray( cctx.lastXCtxId(ctxId) );
lastBitsX[ ctxId ] = bitsX + fB.intBits[ 0 ];
bitsX += fB.intBits[ 1 ];
}
lastBitsX[ctxId] = bitsX;
//Y-coordinate
for ( ctxId = 0; ctxId < g_uiGroupIdx[dim2-1]; ctxId++)
{
const BinFracBits fB = fracBits.getFracBitsArray( cctx.lastYCtxId(ctxId) );
lastBitsY[ ctxId ] = bitsY + fB.intBits[ 0 ];
bitsY += fB.intBits[ 1 ];
}
lastBitsY[ctxId] = bitsY;
}
bool bFoundLast = false;
for (int iCGScanPos = iCGLastScanPos; iCGScanPos >= 0; iCGScanPos--)
{
d64BaseCost -= pdCostCoeffGroupSig [ iCGScanPos ];
if (cctx.isSigGroup( iCGScanPos ) )
{
uint32_t maxNonZeroPosInCG = iCGSizeM1;
if( lfnstIdx > 0 && ( ( uiWidth == 4 && uiHeight == 4 ) || ( uiWidth == 8 && uiHeight == 8 && cctx.cgPosX() == 0 && cctx.cgPosY() == 0 ) ) )
{
maxNonZeroPosInCG = 7;
}
for( int iScanPosinCG = maxNonZeroPosInCG; iScanPosinCG >= 0; iScanPosinCG-- )

Karsten Suehring
committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
{
iScanPos = iCGScanPos * (iCGSizeM1 + 1) + iScanPosinCG;
if (iScanPos > iLastScanPos)
{
continue;
}
uint32_t uiBlkPos = cctx.blockPos( iScanPos );
if( piDstCoeff[ uiBlkPos ] )
{
uint32_t uiPosY = uiBlkPos >> uiLog2BlockWidth;
uint32_t uiPosX = uiBlkPos - ( uiPosY << uiLog2BlockWidth );
double d64CostLast = xGetRateLast( lastBitsX, lastBitsY, uiPosX, uiPosY );
double totalCost = d64BaseCost + d64CostLast - pdCostSig[ iScanPos ];
if( totalCost < d64BestCost )
{
iBestLastIdxP1 = iScanPos + 1;
d64BestCost = totalCost;
}
if( piDstCoeff[ uiBlkPos ] > 1 )
{
bFoundLast = true;
break;
}
d64BaseCost -= pdCostCoeff[ iScanPos ];
d64BaseCost += pdCostCoeff0[ iScanPos ];
}
else
{
d64BaseCost -= pdCostSig[ iScanPos ];
}
} //end for
if (bFoundLast)
{
break;
}
} // end if (uiSigCoeffGroupFlag[ uiCGBlkPos ])
DTRACE( g_trace_ctx, D_RDOQ_COST, "%d: %3d, %3d, %dx%d, comp=%d\n", DTRACE_GET_COUNTER( g_trace_ctx, D_RDOQ_COST ), rect.x, rect.y, rect.width, rect.height, compID );
DTRACE( g_trace_ctx, D_RDOQ_COST, "Uncoded=%d\n", (int64_t)( d64BlockUncodedCost ) );
DTRACE( g_trace_ctx, D_RDOQ_COST, "Coded =%d\n", (int64_t)( d64BaseCost ) );
} // end for
for ( int scanPos = 0; scanPos < iBestLastIdxP1; scanPos++ )
{
int blkPos = cctx.blockPos( scanPos );
TCoeff level = piDstCoeff[ blkPos ];
uiAbsSum += level;
piDstCoeff[ blkPos ] = ( plSrcCoeff[ blkPos ] < 0 ) ? -level : level;
}
//===== clean uncoded coefficients =====
for ( int scanPos = iBestLastIdxP1; scanPos <= iLastScanPos; scanPos++ )
{
piDstCoeff[ cctx.blockPos( scanPos ) ] = 0;
}
if( cctx.signHiding() && uiAbsSum>=2)
{
#if JVET_O0919_TS_MIN_QP
const double inverseQuantScale = double(g_invQuantScales[0][cQP.rem(isTransformSkip)]);
#else
const double inverseQuantScale = double(g_invQuantScales[0][cQP.rem]);
#endif
#if JVET_O0919_TS_MIN_QP
int64_t rdFactor = (int64_t)(inverseQuantScale * inverseQuantScale * (1 << (2 * cQP.per(isTransformSkip))) / m_dLambda / 16
/ (1 << (2 * DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth)))
#else

Karsten Suehring
committed
int64_t rdFactor = (int64_t)(inverseQuantScale * inverseQuantScale * (1 << (2 * cQP.per)) / m_dLambda / 16
/ (1 << (2 * DISTORTION_PRECISION_ADJUSTMENT(channelBitDepth)))

Karsten Suehring
committed
+ 0.5);
int lastCG = -1;
int absSum = 0 ;
int n ;
for (int subSet = iCGNum - 1; subSet >= 0; subSet--)

Karsten Suehring
committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
{
int subPos = subSet << cctx.log2CGSize();
int firstNZPosInCG = iCGSizeM1 + 1, lastNZPosInCG = -1;
absSum = 0 ;
for( n = iCGSizeM1; n >= 0; --n )
{
if( piDstCoeff[ cctx.blockPos( n + subPos )] )
{
lastNZPosInCG = n;
break;
}
}
for( n = 0; n <= iCGSizeM1; n++ )
{
if( piDstCoeff[ cctx.blockPos( n + subPos )] )
{
firstNZPosInCG = n;
break;
}
}
for( n = firstNZPosInCG; n <= lastNZPosInCG; n++ )
{
absSum += int(piDstCoeff[ cctx.blockPos( n + subPos )]);
}
if(lastNZPosInCG>=0 && lastCG==-1)
{
lastCG = 1;
}
if( lastNZPosInCG-firstNZPosInCG>=SBH_THRESHOLD )
{
uint32_t signbit = (piDstCoeff[cctx.blockPos(subPos+firstNZPosInCG)]>0?0:1);
if( signbit!=(absSum&0x1) ) // hide but need tune
{
// calculate the cost
int64_t minCostInc = std::numeric_limits<int64_t>::max(), curCost = std::numeric_limits<int64_t>::max();
int minPos = -1, finalChange = 0, curChange = 0;
for( n = (lastCG == 1 ? lastNZPosInCG : iCGSizeM1); n >= 0; --n )
{
uint32_t uiBlkPos = cctx.blockPos( n + subPos );
if(piDstCoeff[ uiBlkPos ] != 0 )
{
int64_t costUp = rdFactor * ( - deltaU[uiBlkPos] ) + rateIncUp[uiBlkPos];
int64_t costDown = rdFactor * ( deltaU[uiBlkPos] ) + rateIncDown[uiBlkPos]
- ((abs(piDstCoeff[uiBlkPos]) == 1) ? sigRateDelta[uiBlkPos] : 0);
if(lastCG==1 && lastNZPosInCG==n && abs(piDstCoeff[uiBlkPos])==1)
{
costDown -= (4<<SCALE_BITS);
}
if(costUp<costDown)
{
curCost = costUp;
curChange = 1;
}
else
{
curChange = -1;
if(n==firstNZPosInCG && abs(piDstCoeff[uiBlkPos])==1)
{
curCost = std::numeric_limits<int64_t>::max();
}
else
{
curCost = costDown;
}
}
}
else
{
curCost = rdFactor * ( - (abs(deltaU[uiBlkPos])) ) + (1<<SCALE_BITS) + rateIncUp[uiBlkPos] + sigRateDelta[uiBlkPos] ;
curChange = 1 ;
if(n<firstNZPosInCG)
{
uint32_t thissignbit = (plSrcCoeff[uiBlkPos]>=0?0:1);
if(thissignbit != signbit )
{
curCost = std::numeric_limits<int64_t>::max();
}
}
}
if( curCost<minCostInc)
{
minCostInc = curCost;
finalChange = curChange;
minPos = uiBlkPos;
}
}
if(piDstCoeff[minPos] == entropyCodingMaximum || piDstCoeff[minPos] == entropyCodingMinimum)
{
finalChange = -1;
}
if(plSrcCoeff[minPos]>=0)
{
piDstCoeff[minPos] += finalChange ;
}
else
{
piDstCoeff[minPos] -= finalChange ;
}
}
}
if(lastCG==1)
{
lastCG=0 ;
}
}
}
}
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
void QuantRDOQ::xRateDistOptQuantTS( TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &coeffs, TCoeff &absSum, const QpParam &qp, const Ctx &ctx )
{
const FracBitsAccess& fracBits = ctx.getFracBitsAcess();
const SPS &sps = *tu.cs->sps;
const CompArea &rect = tu.blocks[compID];
const uint32_t width = rect.width;
const uint32_t height = rect.height;
const ChannelType chType = toChannelType(compID);
const int channelBitDepth = sps.getBitDepth( chType );
const bool extendedPrecision = sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag();
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange(chType);
int transformShift = getTransformShift( channelBitDepth, rect.size(), maxLog2TrDynamicRange );
if( extendedPrecision )
{
transformShift = std::max<int>( 0, transformShift );
}
double blockUncodedCost = 0;
const uint32_t maxNumCoeff = rect.area();
CHECK( compID >= MAX_NUM_TBLOCKS, "Invalid component ID" );
int scalingListType = getScalingListType( tu.cu->predMode, compID );
CHECK( scalingListType >= SCALING_LIST_NUM, "Invalid scaling list" );
const TCoeff *srcCoeff = coeffs.buf;
TCoeff *dstCoeff = tu.getCoeffs( compID ).buf;
double *costCoeff = m_pdCostCoeff;
double *costSig = m_pdCostSig;
double *costCoeff0 = m_pdCostCoeff0;
memset( m_pdCostCoeff, 0, sizeof( double ) * maxNumCoeff );
memset( m_pdCostSig, 0, sizeof( double ) * maxNumCoeff );
#if JVET_O0122_TS_SIGN_LEVEL
m_bdpcm = 0;
#endif
const bool needsSqrt2Scale = TU::needsSqrt2Scale( tu, compID ); // should always be false - transform-skipped blocks don't require sqrt(2) compensation.
#if JVET_O0919_TS_MIN_QP
const bool isTransformSkip = tu.mtsIdx==MTS_SKIP && isLuma(compID);
const int qBits = QUANT_SHIFT + qp.per(isTransformSkip) + transformShift + ( needsSqrt2Scale ? -1 : 0 ); // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits
const int quantisationCoefficient = g_quantScales[needsSqrt2Scale?1:0][qp.rem(isTransformSkip)];
const double errorScale = xGetErrScaleCoeff( TU::needsSqrt2Scale( tu, compID ), width, height, qp.rem(isTransformSkip), maxLog2TrDynamicRange, channelBitDepth );
#else
const int qBits = QUANT_SHIFT + qp.per + transformShift + (needsSqrt2Scale?-1:0); // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits
const int quantisationCoefficient = g_quantScales[needsSqrt2Scale?1:0][qp.rem];
const double errorScale = xGetErrScaleCoeff( TU::needsSqrt2Scale( tu, compID ), width, height, qp.rem, maxLog2TrDynamicRange, channelBitDepth );
const TCoeff entropyCodingMaximum = ( 1 << maxLog2TrDynamicRange ) - 1;
#if JVET_O0122_TS_SIGN_LEVEL
uint32_t coeffLevels[3];
double coeffLevelError[4];
#endif
CoeffCodingContext cctx( tu, compID, tu.cs->slice->getSignDataHidingEnabledFlag() );
const int sbSizeM1 = ( 1 << cctx.log2CGSize() ) - 1;
double baseCost = 0;
uint32_t goRiceParam = 0;
double *costSigSubBlock = m_pdCostCoeffGroupSig;
memset( costSigSubBlock, 0, ( maxNumCoeff >> cctx.log2CGSize() ) * sizeof( double ) );
const int sbNum = width * height >> cctx.log2CGSize();
int scanPos;
coeffGroupRDStats rdStats;
bool anySigCG = false;
for( int sbId = 0; sbId < sbNum; sbId++ )
{
cctx.initSubblock( sbId );
memset( &rdStats, 0, sizeof (coeffGroupRDStats));
for( int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++ )
{
scanPos = cctx.minSubPos() + scanPosInSB;
//===== quantization =====
uint32_t blkPos = cctx.blockPos( scanPos );
// set coeff
const int64_t tmpLevel = int64_t( abs( srcCoeff[blkPos] ) ) * quantisationCoefficient;
const Intermediate_Int levelDouble = (Intermediate_Int)std::min<int64_t>( tmpLevel, std::numeric_limits<Intermediate_Int>::max() - ( Intermediate_Int( 1 ) << ( qBits - 1 ) ) );
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
#if JVET_O0122_TS_SIGN_LEVEL
uint32_t roundAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), uint32_t((levelDouble + (Intermediate_Int(1) << (qBits - 1))) >> qBits));
uint32_t minAbsLevel = (roundAbsLevel > 1 ? roundAbsLevel - 1 : 1);
uint32_t downAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), uint32_t(levelDouble >> qBits));
uint32_t upAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), downAbsLevel + 1);
m_testedLevels = 0;
coeffLevels[m_testedLevels++] = roundAbsLevel;
if (minAbsLevel != roundAbsLevel)
coeffLevels[m_testedLevels++] = minAbsLevel;
int rightPixel, belowPixel, predPixel;
cctx.neighTS(rightPixel, belowPixel, scanPos, dstCoeff);
predPixel = cctx.deriveModCoeff(rightPixel, belowPixel, upAbsLevel, 0);
if (upAbsLevel != roundAbsLevel && upAbsLevel != minAbsLevel && predPixel == 1)
coeffLevels[m_testedLevels++] = upAbsLevel;
double dErr = double(levelDouble);
coeffLevelError[0] = dErr * dErr * errorScale;
costCoeff0[scanPos] = coeffLevelError[0];
blockUncodedCost += costCoeff0[ scanPos ];
dstCoeff[blkPos] = coeffLevels[0];
#else
uint32_t maxAbsLevel = std::min<uint32_t>( uint32_t( entropyCodingMaximum ), uint32_t( ( levelDouble + ( Intermediate_Int( 1 ) << ( qBits - 1 ) ) ) >> qBits ) );
const double err = double( levelDouble );
costCoeff0[ scanPos ] = err * err * errorScale;
blockUncodedCost += costCoeff0[ scanPos ];
dstCoeff[ blkPos ] = maxAbsLevel;
#endif
//===== coefficient level estimation =====
unsigned ctxIdSig = cctx.sigCtxIdAbsTS( scanPos, dstCoeff );
uint32_t cLevel;
const BinFracBits fracBitsPar = fracBits.getFracBitsArray( cctx.parityCtxIdAbsTS() );
goRiceParam = cctx.templateAbsSumTS( scanPos, dstCoeff );
#if JVET_O0122_TS_SIGN_LEVEL
unsigned ctxIdSign = cctx.signCtxIdAbsTS(scanPos, dstCoeff, 0);
const BinFracBits fracBitsSign = fracBits.getFracBitsArray(ctxIdSign);
#else
const BinFracBits fracBitsSign = fracBits.getFracBitsArray( Ctx::TsResidualSign( toChannelType(compID) ) );
#endif
const uint8_t sign = srcCoeff[ blkPos ] < 0 ? 1 : 0;
#if JVET_O0122_TS_SIGN_LEVEL
DTRACE_COND( ( coeffLevels[0] != 0 ), g_trace_ctx, D_RDOQ_MORE, " uiCtxSig=%d", ctxIdSig );
#else
DTRACE_COND( ( maxAbsLevel != 0 ), g_trace_ctx, D_RDOQ_MORE, " uiCtxSig=%d", ctxIdSig );
#endif
#if JVET_O0122_TS_SIGN_LEVEL
unsigned gt1CtxId = cctx.lrg1CtxIdAbsTS(scanPos, dstCoeff, 0);
const BinFracBits fracBitsGr1 = fracBits.getFracBitsArray(gt1CtxId);
#endif
const BinFracBits fracBitsSig = fracBits.getFracBitsArray( ctxIdSig );
bool lastCoeff = false; //
if (scanPosInSB == lastPosCoded && noCoeffCoded == 0)
{
lastCoeff = true;
}
#if JVET_O0122_TS_SIGN_LEVEL
cLevel = xGetCodedLevelTSPred( costCoeff[ scanPos ], costCoeff0[ scanPos ], costSig[ scanPos ], levelDouble, qBits, errorScale, coeffLevels, coeffLevelError,
&fracBitsSig, fracBitsPar, cctx, fracBits, fracBitsSign, fracBitsGr1, sign, rightPixel, belowPixel, goRiceParam, lastCoeff, extendedPrecision, maxLog2TrDynamicRange);
#else
cLevel = xGetCodedLevelTS( costCoeff[ scanPos ], costCoeff0[ scanPos ], costSig[ scanPos ],
levelDouble, maxAbsLevel, &fracBitsSig, fracBitsPar, cctx, fracBits, fracBitsSign, sign, goRiceParam, qBits, errorScale, lastCoeff, extendedPrecision, maxLog2TrDynamicRange );
#endif
#if JVET_O0122_TS_SIGN_LEVEL
TCoeff level = cLevel;
dstCoeff[blkPos] = (level != 0 && srcCoeff[blkPos] < 0) ? -level : level;
#else
dstCoeff[ blkPos ] = cLevel;
#endif
baseCost += costCoeff[ scanPos ];
rdStats.d64SigCost += costSig[ scanPos ];
if( dstCoeff[ blkPos ] )
{
cctx.setSigGroup();
rdStats.d64CodedLevelandDist += costCoeff [ scanPos ] - costSig[ scanPos ];
rdStats.d64UncodedDist += costCoeff0[ scanPos ];
}
} //end for (iScanPosinCG)
if( !cctx.isSigGroup() )
{
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray( cctx.sigGroupCtxId( true ) );
baseCost += xGetRateSigCoeffGroup( fracBitsSigGroup, 0 ) - rdStats.d64SigCost;
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup( fracBitsSigGroup, 0 );
}
{
// rd-cost if SigCoeffGroupFlag = 0, initialization
double costZeroSB = baseCost;
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray( cctx.sigGroupCtxId( true ) );
baseCost += xGetRateSigCoeffGroup( fracBitsSigGroup, 1 );
costZeroSB += xGetRateSigCoeffGroup( fracBitsSigGroup, 0 );
costSigSubBlock[ cctx.subSetId() ] = xGetRateSigCoeffGroup( fracBitsSigGroup, 1 );
costZeroSB += rdStats.d64UncodedDist; // distortion for resetting non-zero levels to zero levels
costZeroSB -= rdStats.d64CodedLevelandDist; // distortion and level cost for keeping all non-zero levels
costZeroSB -= rdStats.d64SigCost; // sig cost for all coeffs, including zero levels and non-zerl levels
if( costZeroSB < baseCost )
{
cctx.resetSigGroup();
baseCost = costZeroSB;
costSigSubBlock[ cctx.subSetId() ] = xGetRateSigCoeffGroup( fracBitsSigGroup, 0 );
for( int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++ )
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
{
scanPos = cctx.minSubPos() + scanPosInSB;
uint32_t blkPos = cctx.blockPos( scanPos );
if( dstCoeff[ blkPos ] )
{
dstCoeff[ blkPos ] = 0;
costCoeff[ scanPos ] = costCoeff0[ scanPos ];
costSig[ scanPos] = 0;
}
}
}
else
{
anySigCG = true;
}
}
}
//===== estimate last position =====
for( int scanPos = 0; scanPos < maxNumCoeff; scanPos++ )
{
int blkPos = cctx.blockPos( scanPos );
TCoeff level = dstCoeff[ blkPos ];
#if !JVET_O0122_TS_SIGN_LEVEL
absSum += level;
dstCoeff[ blkPos ] = ( level != 0 && srcCoeff[ blkPos ] < 0 ) ? -level : level;
#else
absSum += abs(level);
#endif
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
void QuantRDOQ::forwardRDPCM( TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &coeffs, TCoeff &absSum, const QpParam &qp, const Ctx &ctx )
{
const FracBitsAccess& fracBits = ctx.getFracBitsAcess();
const SPS &sps = *tu.cs->sps;
const CompArea &rect = tu.blocks[compID];
const uint32_t width = rect.width;
const uint32_t height = rect.height;
const ChannelType chType = toChannelType(compID);
const int channelBitDepth = sps.getBitDepth(chType);
const bool extendedPrecision = sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag();
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange(chType);
const int dirMode = tu.cu->bdpcmMode;
int transformShift = getTransformShift(channelBitDepth, rect.size(), maxLog2TrDynamicRange);
if (extendedPrecision)
{
transformShift = std::max<int>(0, transformShift);
}
double blockUncodedCost = 0;
const uint32_t maxNumCoeff = rect.area();
CHECK(compID >= MAX_NUM_TBLOCKS, "Invalid component ID");
int scalingListType = getScalingListType(tu.cu->predMode, compID);
CHECK(scalingListType >= SCALING_LIST_NUM, "Invalid scaling list");
const TCoeff *srcCoeff = coeffs.buf;
TCoeff *dstCoeff = tu.getCoeffs(compID).buf;
double *costCoeff = m_pdCostCoeff;
double *costSig = m_pdCostSig;
double *costCoeff0 = m_pdCostCoeff0;
memset(m_pdCostCoeff, 0, sizeof(double) * maxNumCoeff);
memset(m_pdCostSig, 0, sizeof(double) * maxNumCoeff);
memset(m_fullCoeff, 0, sizeof(TCoeff) * maxNumCoeff);
#if JVET_O0122_TS_SIGN_LEVEL
m_bdpcm = dirMode;
#endif
const bool needsSqrt2Scale = TU::needsSqrt2Scale(tu, compID); // should always be false - transform-skipped blocks don't require sqrt(2) compensation.
#if JVET_O0919_TS_MIN_QP
const bool isTransformSkip = tu.mtsIdx==MTS_SKIP && isLuma(compID);
const int qBits = QUANT_SHIFT + qp.per(isTransformSkip) + transformShift + ( needsSqrt2Scale ? -1 : 0 ); // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits
const int quantisationCoefficient = g_quantScales[needsSqrt2Scale ? 1 : 0][qp.rem(isTransformSkip)];
const double errorScale = xGetErrScaleCoeff(TU::needsSqrt2Scale(tu, compID), width, height, qp.rem(isTransformSkip), maxLog2TrDynamicRange, channelBitDepth);
#else
const int qBits = QUANT_SHIFT + qp.per + transformShift + (needsSqrt2Scale ? -1 : 0); // Right shift of non-RDOQ quantizer; level = (coeff*uiQ + offset)>>q_bits
const int quantisationCoefficient = g_quantScales[needsSqrt2Scale ? 1 : 0][qp.rem];
const double errorScale = xGetErrScaleCoeff(TU::needsSqrt2Scale(tu, compID), width, height, qp.rem, maxLog2TrDynamicRange, channelBitDepth);
#if JVET_O0919_TS_MIN_QP
trQuantParams.rightShift = (IQUANT_SHIFT - (transformShift + qp.per(isTransformSkip)));
trQuantParams.qScale = g_invQuantScales[needsSqrt2Scale ? 1 : 0][qp.rem(isTransformSkip)];
#else
trQuantParams.rightShift = (IQUANT_SHIFT - (transformShift + qp.per));
trQuantParams.qScale = g_invQuantScales[needsSqrt2Scale ? 1 : 0][qp.rem];
const TCoeff entropyCodingMaximum = (1 << maxLog2TrDynamicRange) - 1;
#if JVET_O0122_TS_SIGN_LEVEL
uint32_t coeffLevels[3];
double coeffLevelError[4];
#endif
CoeffCodingContext cctx(tu, compID, tu.cs->slice->getSignDataHidingEnabledFlag());
const int sbSizeM1 = (1 << cctx.log2CGSize()) - 1;
double baseCost = 0;
uint32_t goRiceParam = 0;
double *costSigSubBlock = m_pdCostCoeffGroupSig;
memset(costSigSubBlock, 0, (maxNumCoeff >> cctx.log2CGSize()) * sizeof(double));
const int sbNum = width * height >> cctx.log2CGSize();
int scanPos;
coeffGroupRDStats rdStats;
bool anySigCG = false;
for (int sbId = 0; sbId < sbNum; sbId++)
{
cctx.initSubblock(sbId);
memset(&rdStats, 0, sizeof(coeffGroupRDStats));
for (int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++)
{
scanPos = cctx.minSubPos() + scanPosInSB;
//===== quantization =====
uint32_t blkPos = cctx.blockPos(scanPos);
const int posX = cctx.posX(scanPos);
const int posY = cctx.posY(scanPos);
const int posS = (1 == dirMode) ? posX : posY;
const int posNb = (1 == dirMode) ? (posX - 1) + posY * coeffs.stride : posX + (posY - 1) * coeffs.stride;
TCoeff predCoeff = (0 != posS) ? m_fullCoeff[posNb] : 0;
// set coeff
const int64_t tmpLevel = int64_t(abs(srcCoeff[blkPos] - predCoeff)) * quantisationCoefficient;
const Intermediate_Int levelDouble = (Intermediate_Int)std::min<int64_t>(tmpLevel, std::numeric_limits<Intermediate_Int>::max() - (Intermediate_Int(1) << (qBits - 1)));
#if JVET_O0122_TS_SIGN_LEVEL
uint32_t roundAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), uint32_t((levelDouble + (Intermediate_Int(1) << (qBits - 1))) >> qBits));
uint32_t minAbsLevel = (roundAbsLevel > 1 ? roundAbsLevel - 1 : 1);
m_testedLevels = 0;
coeffLevels[m_testedLevels++] = roundAbsLevel;
if (minAbsLevel != roundAbsLevel)
coeffLevels[m_testedLevels++] = minAbsLevel;
double dErr = double(levelDouble);
coeffLevelError[0] = dErr * dErr * errorScale;
costCoeff0[scanPos] = coeffLevelError[0];
blockUncodedCost += costCoeff0[scanPos];
dstCoeff[blkPos] = coeffLevels[0];
#else
uint32_t maxAbsLevel = std::min<uint32_t>(uint32_t(entropyCodingMaximum), uint32_t((levelDouble + (Intermediate_Int(1) << (qBits - 1))) >> qBits));
const double err = double(levelDouble);
costCoeff0[scanPos] = err * err * errorScale;
blockUncodedCost += costCoeff0[scanPos];
dstCoeff[blkPos] = maxAbsLevel;
#endif
//===== coefficient level estimation =====
unsigned ctxIdSig = cctx.sigCtxIdAbsTS(scanPos, dstCoeff);
uint32_t cLevel;
const BinFracBits fracBitsPar = fracBits.getFracBitsArray(cctx.parityCtxIdAbsTS());
goRiceParam = cctx.templateAbsSumTS(scanPos, dstCoeff);
#if JVET_O0122_TS_SIGN_LEVEL
unsigned ctxIdSign = cctx.signCtxIdAbsTS(scanPos, dstCoeff, dirMode);
const BinFracBits fracBitsSign = fracBits.getFracBitsArray(ctxIdSign);
#else
const BinFracBits fracBitsSign = fracBits.getFracBitsArray(Ctx::TsResidualSign(1));
#endif
const uint8_t sign = srcCoeff[blkPos] - predCoeff < 0 ? 1 : 0;
#if JVET_O0122_TS_SIGN_LEVEL
unsigned gt1CtxId = cctx.lrg1CtxIdAbsTS(scanPos, dstCoeff, dirMode);
const BinFracBits fracBitsGr1 = fracBits.getFracBitsArray(gt1CtxId);
#endif
#if JVET_O0122_TS_SIGN_LEVEL
DTRACE_COND((dstCoeff[blkPos] != 0), g_trace_ctx, D_RDOQ_MORE, " uiCtxSig=%d", ctxIdSig);
#else
DTRACE_COND((maxAbsLevel != 0), g_trace_ctx, D_RDOQ_MORE, " uiCtxSig=%d", ctxIdSig);
#endif
const BinFracBits fracBitsSig = fracBits.getFracBitsArray(ctxIdSig);
bool lastCoeff = false; //
if (scanPosInSB == lastPosCoded && noCoeffCoded == 0)
{
lastCoeff = true;
}
#if JVET_O0122_TS_SIGN_LEVEL
int rightPixel, belowPixel;
cctx.neighTS(rightPixel, belowPixel, scanPos, dstCoeff);
cLevel = xGetCodedLevelTSPred(costCoeff[scanPos], costCoeff0[scanPos], costSig[scanPos], levelDouble, qBits, errorScale, coeffLevels, coeffLevelError,
&fracBitsSig, fracBitsPar, cctx, fracBits, fracBitsSign, fracBitsGr1, sign, rightPixel, belowPixel, goRiceParam, lastCoeff, extendedPrecision, maxLog2TrDynamicRange);
#else
cLevel = xGetCodedLevelTS(costCoeff[scanPos], costCoeff0[scanPos], costSig[scanPos],
levelDouble, maxAbsLevel, &fracBitsSig, fracBitsPar, cctx, fracBits, fracBitsSign, sign, goRiceParam, qBits, errorScale, lastCoeff, extendedPrecision, maxLog2TrDynamicRange);
#endif
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
dstCoeff[blkPos] = cLevel;
if (sign)
{
dstCoeff[blkPos] = -dstCoeff[blkPos];
}
xDequantSample( m_fullCoeff[blkPos], dstCoeff[blkPos], trQuantParams );
m_fullCoeff[blkPos] += predCoeff;
baseCost += costCoeff[scanPos];
rdStats.d64SigCost += costSig[scanPos];
if (dstCoeff[blkPos])
{
cctx.setSigGroup();
rdStats.d64CodedLevelandDist += costCoeff[scanPos] - costSig[scanPos];
rdStats.d64UncodedDist += costCoeff0[scanPos];
}
} //end for (iScanPosinCG)
if (!cctx.isSigGroup())
{
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray(cctx.sigGroupCtxId(true));
baseCost += xGetRateSigCoeffGroup(fracBitsSigGroup, 0) - rdStats.d64SigCost;
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup(fracBitsSigGroup, 0);
}
{
// rd-cost if SigCoeffGroupFlag = 0, initialization
double costZeroSB = baseCost;
const BinFracBits fracBitsSigGroup = fracBits.getFracBitsArray(cctx.sigGroupCtxId(true));
baseCost += xGetRateSigCoeffGroup(fracBitsSigGroup, 1);
costZeroSB += xGetRateSigCoeffGroup(fracBitsSigGroup, 0);
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup(fracBitsSigGroup, 1);
costZeroSB += rdStats.d64UncodedDist; // distortion for resetting non-zero levels to zero levels
costZeroSB -= rdStats.d64CodedLevelandDist; // distortion and level cost for keeping all non-zero levels
costZeroSB -= rdStats.d64SigCost; // sig cost for all coeffs, including zero levels and non-zerl levels
if (costZeroSB < baseCost)
{
cctx.resetSigGroup();
baseCost = costZeroSB;
costSigSubBlock[cctx.subSetId()] = xGetRateSigCoeffGroup(fracBitsSigGroup, 0);
for (int scanPosInSB = 0; scanPosInSB <= sbSizeM1; scanPosInSB++)
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
{
scanPos = cctx.minSubPos() + scanPosInSB;
uint32_t blkPos = cctx.blockPos(scanPos);
const int posX = cctx.posX(scanPos);
const int posY = cctx.posY(scanPos);
const int posS = (1 == dirMode) ? posX : posY;
const int posNb = (1 == dirMode) ? (posX - 1) + posY * coeffs.stride : posX + (posY - 1) * coeffs.stride;
m_fullCoeff[scanPos] = (0 != posS) ? m_fullCoeff[posNb] : 0;
if (dstCoeff[blkPos])
{
dstCoeff[blkPos] = 0;
costCoeff[scanPos] = costCoeff0[scanPos];
costSig[scanPos] = 0;
}
}
}
else
{
anySigCG = true;
}
}
}
//===== estimate last position =====
for (int scanPos = 0; scanPos < maxNumCoeff; scanPos++)
{
int blkPos = cctx.blockPos(scanPos);
TCoeff level = dstCoeff[blkPos];
absSum += abs(level);
}
}
void QuantRDOQ::xDequantSample(TCoeff& pRes, TCoeff& coeff, const TrQuantParams& trQuantParams)
{
// xDequant
if (trQuantParams.rightShift > 0)
{
const Intermediate_Int qAdd = Intermediate_Int(1) << (trQuantParams.rightShift - 1);
pRes = TCoeff((Intermediate_Int(coeff) * trQuantParams.qScale + qAdd) >> trQuantParams.rightShift);
}
else
{
pRes = TCoeff((Intermediate_Int(coeff) * trQuantParams.qScale) << -trQuantParams.rightShift);
}
}
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
#if JVET_O0122_TS_SIGN_LEVEL
inline uint32_t QuantRDOQ::xGetCodedLevelTSPred(double& rd64CodedCost,
double& rd64CodedCost0,
double& rd64CodedCostSig,
Intermediate_Int levelDouble,
int qBits,
double errorScale,
uint32_t coeffLevels[],
double coeffLevelError[],
const BinFracBits* fracBitsSig,
const BinFracBits& fracBitsPar,
CoeffCodingContext& cctx,
const FracBitsAccess& fracBitsAccess,
const BinFracBits& fracBitsSign,
const BinFracBits& fracBitsGt1,
const uint8_t sign,
int rightPixel,
int belowPixel,
uint16_t ricePar,
bool isLast,
bool useLimitedPrefixLength,
const int maxLog2TrDynamicRange
) const
{
double currCostSig = 0;
uint32_t bestAbsLevel = 0;
if (!isLast && coeffLevels[0] < 3)
{
rd64CodedCostSig = xGetRateSigCoef(*fracBitsSig, 0);
rd64CodedCost = rd64CodedCost0 + rd64CodedCostSig;
if (coeffLevels[0] == 0)
{
return bestAbsLevel;
}
}
else
{
rd64CodedCost = MAX_DOUBLE;
}
if (!isLast)
{
currCostSig = xGetRateSigCoef(*fracBitsSig, 1);
}
for (int errorInd = 1; errorInd <= m_testedLevels; errorInd++)
{
int absLevel = coeffLevels[errorInd - 1];
double dErr = 0.0;
dErr = double(levelDouble - (Intermediate_Int(absLevel) << qBits));
coeffLevelError[errorInd] = dErr * dErr * errorScale;
int modAbsLevel = cctx.deriveModCoeff(rightPixel, belowPixel, absLevel, m_bdpcm);
double dCurrCost = coeffLevelError[errorInd] + xGetICost(xGetICRateTS(modAbsLevel, fracBitsPar, cctx, fracBitsAccess, fracBitsSign, fracBitsGt1, sign, ricePar, useLimitedPrefixLength, maxLog2TrDynamicRange));
dCurrCost += currCostSig;
if (dCurrCost < rd64CodedCost)
{
bestAbsLevel = absLevel;
rd64CodedCost = dCurrCost;
rd64CodedCostSig = currCostSig;
}
}
return bestAbsLevel;
}
#else
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
inline uint32_t QuantRDOQ::xGetCodedLevelTS( double& codedCost,
double& codedCost0,
double& codedCostSig,
Intermediate_Int levelDouble,
uint32_t maxAbsLevel,
const BinFracBits* fracBitsSig,
const BinFracBits& fracBitsPar,
const CoeffCodingContext& cctx,
const FracBitsAccess& fracBitsAccess,
const BinFracBits& fracBitsSign,
const uint8_t sign,
uint16_t ricePar,
int qBits,
double errorScale,
bool isLast,
bool useLimitedPrefixLength,
const int maxLog2TrDynamicRange
) const
{
double currCostSig = 0;
uint32_t bestAbsLevel = 0;
if( !isLast && maxAbsLevel < 3 )
{
codedCostSig = xGetRateSigCoef( *fracBitsSig, 0 );
codedCost = codedCost0 + codedCostSig;
if( maxAbsLevel == 0 )
{
return bestAbsLevel;
}
}
else
{
codedCost = MAX_DOUBLE;
}
if( !isLast )
{
currCostSig = xGetRateSigCoef( *fracBitsSig, 1 );
}
uint32_t minAbsLevel = ( maxAbsLevel > 1 ? maxAbsLevel - 1 : 1 );
for( int absLevel = maxAbsLevel; absLevel >= minAbsLevel ; absLevel-- )
{
double err = double( levelDouble - ( Intermediate_Int( absLevel ) << qBits ) );
double currCost = err * err * errorScale + xGetICost( xGetICRateTS( absLevel, fracBitsPar, cctx, fracBitsAccess, fracBitsSign, sign, ricePar, useLimitedPrefixLength, maxLog2TrDynamicRange ) );
currCost += currCostSig;
if( currCost < codedCost )
{
bestAbsLevel = absLevel;
codedCost = currCost;
codedCostSig = currCostSig;
}
}
return bestAbsLevel;
}
#endif
inline int QuantRDOQ::xGetICRateTS( const uint32_t absLevel,
const BinFracBits& fracBitsPar,
const CoeffCodingContext& cctx,
const FracBitsAccess& fracBitsAccess,
const BinFracBits& fracBitsSign,
#if JVET_O0122_TS_SIGN_LEVEL
const BinFracBits& fracBitsGt1,
#endif
const uint8_t sign,
const uint16_t ricePar,
const bool useLimitedPrefixLength,
const int maxLog2TrDynamicRange ) const
{
int rate = fracBitsSign.intBits[sign];
#if !JVET_O0122_TS_SIGN_LEVEL
const uint16_t ctxGt1 = cctx.greaterXCtxIdAbsTS( 0 );
const BinFracBits &fracBitsGt1 = fracBitsAccess.getFracBitsArray( ctxGt1 );
#endif
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
if( absLevel > 1 )
{
rate += fracBitsGt1.intBits[1];
rate += fracBitsPar.intBits[( absLevel - 2 ) & 1];
int cutoffVal = 2;
const int numGtBins = 4;
for( int i = 0; i < numGtBins; i++ )
{
if( absLevel >= cutoffVal )
{
const uint16_t ctxGtX = cctx.greaterXCtxIdAbsTS( cutoffVal>>1 );
const BinFracBits &fracBitsGtX = fracBitsAccess.getFracBitsArray( ctxGtX );
unsigned gtX = ( absLevel >= ( cutoffVal + 2 ) );
rate += fracBitsGtX.intBits[gtX];
}
cutoffVal += 2;
}
if( absLevel >= cutoffVal )
{
uint32_t symbol = ( absLevel - cutoffVal ) >> 1;
uint32_t length;
const int threshold = COEF_REMAIN_BIN_REDUCTION;
if( symbol < ( threshold << ricePar ) )
{
length = symbol >> ricePar;
rate += ( length + 1 + ricePar ) << SCALE_BITS;
}
else if( useLimitedPrefixLength )
{
const uint32_t maximumPrefixLength = ( 32 - ( COEF_REMAIN_BIN_REDUCTION + maxLog2TrDynamicRange ) );
uint32_t prefixLength = 0;
uint32_t suffix = ( symbol >> ricePar ) - COEF_REMAIN_BIN_REDUCTION;
while( ( prefixLength < maximumPrefixLength ) && ( suffix > ( ( 2 << prefixLength ) - 2 ) ) )
{
prefixLength++;
}
const uint32_t suffixLength = ( prefixLength == maximumPrefixLength ) ? ( maxLog2TrDynamicRange - ricePar ) : ( prefixLength + 1/*separator*/ );
rate += ( COEF_REMAIN_BIN_REDUCTION + prefixLength + suffixLength + ricePar ) << SCALE_BITS;
}
else
{
length = ricePar;
symbol = symbol - ( threshold << ricePar );
while( symbol >= ( 1 << length ) )
{
symbol -= ( 1 << ( length++ ) );
}
rate += ( threshold + length + 1 - ricePar + length ) << SCALE_BITS;
}
}
}
else if( absLevel == 1 )
{
rate += fracBitsGt1.intBits[0];
}
else
{
rate = 0;
}
return rate;
}