Newer
Older

Karsten Suehring
committed
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC

Karsten Suehring
committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file TrQuant.cpp
\brief transform and quantization class
*/
#include "TrQuant.h"
#include "TrQuant_EMT.h"
#include "UnitTools.h"
#include "ContextModelling.h"
#include "CodingStructure.h"
#include "CrossCompPrediction.h"
#include "dtrace_buffer.h"
#include <stdlib.h>
#include <limits>
#include <memory.h>
#include "QuantRDOQ.h"
#include "DepQuant.h"
#if RExt__DECODER_DEBUG_TOOL_STATISTICS
#include "CommonLib/CodingStatistics.h"
#endif
struct coeffGroupRDStats
{
int iNNZbeforePos0;
double d64CodedLevelandDist; // distortion and level cost only
double d64UncodedDist; // all zero coded block distortion
double d64SigCost;
double d64SigCost_0;
};
FwdTrans *fastFwdTrans[NUM_TRANS_TYPE][g_numTransformMatrixSizes] =
{
{ fastForwardDCT2_B2, fastForwardDCT2_B4, fastForwardDCT2_B8, fastForwardDCT2_B16, fastForwardDCT2_B32, fastForwardDCT2_B64 },
{ nullptr, fastForwardDCT8_B4, fastForwardDCT8_B8, fastForwardDCT8_B16, fastForwardDCT8_B32, nullptr },
{ nullptr, fastForwardDST7_B4, fastForwardDST7_B8, fastForwardDST7_B16, fastForwardDST7_B32, nullptr },
};
InvTrans *fastInvTrans[NUM_TRANS_TYPE][g_numTransformMatrixSizes] =
{
{ fastInverseDCT2_B2, fastInverseDCT2_B4, fastInverseDCT2_B8, fastInverseDCT2_B16, fastInverseDCT2_B32, fastInverseDCT2_B64 },
{ nullptr, fastInverseDCT8_B4, fastInverseDCT8_B8, fastInverseDCT8_B16, fastInverseDCT8_B32, nullptr },
{ nullptr, fastInverseDST7_B4, fastInverseDST7_B8, fastInverseDST7_B16, fastInverseDST7_B32, nullptr },
};
//! \ingroup CommonLib
//! \{
// ====================================================================================================================
// TrQuant class member functions
// ====================================================================================================================
TrQuant::TrQuant() : m_quant( nullptr )
{
// allocate temporary buffers
m_plTempCoeff = (TCoeff*) xMalloc( TCoeff, MAX_CU_SIZE * MAX_CU_SIZE );
#if JVET_M0464_UNI_MTS
m_mtsCoeffs = new TCoeff*[ NUM_TRAFO_MODES_MTS ];
for( int i = 0; i < NUM_TRAFO_MODES_MTS; i++ )
{
m_mtsCoeffs[i] = (TCoeff*) xMalloc( TCoeff, MAX_CU_SIZE * MAX_CU_SIZE );
}
#endif

Karsten Suehring
committed
}
TrQuant::~TrQuant()
{
if( m_quant )
{
delete m_quant;
m_quant = nullptr;
}
// delete temporary buffers
if ( m_plTempCoeff )
{
xFree( m_plTempCoeff );
m_plTempCoeff = nullptr;
}
#if JVET_M0464_UNI_MTS
if( m_mtsCoeffs )
{
for( int i = 0; i < NUM_TRAFO_MODES_MTS; i++ )
{
xFree( m_mtsCoeffs[i] );
m_mtsCoeffs[i] = nullptr;
}
m_mtsCoeffs = nullptr;
}
#endif

Karsten Suehring
committed
}
#if ENABLE_SPLIT_PARALLELISM
void TrQuant::copyState( const TrQuant& other )
{
m_quant->copyState( *other.m_quant );
}
#endif
void TrQuant::xDeQuant(const TransformUnit &tu,
CoeffBuf &dstCoeff,
const ComponentID &compID,
const QpParam &cQP)
{
m_quant->dequant( tu, dstCoeff, compID, cQP );
}
void TrQuant::init( const Quant* otherQuant,
const uint32_t uiMaxTrSize,
const bool bUseRDOQ,
const bool bUseRDOQTS,
#if T0196_SELECTIVE_RDOQ
const bool useSelectiveRDOQ,
#endif
const bool bEnc,

Karsten Suehring
committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
)
{
m_uiMaxTrSize = uiMaxTrSize;
m_bEnc = bEnc;
m_useTransformSkipFast = useTransformSkipFast;
delete m_quant;
m_quant = nullptr;
if( bUseRDOQ || !bEnc )
{
m_quant = new DepQuant( otherQuant, bEnc );
}
else
m_quant = new Quant( otherQuant );
if( m_quant )
{
m_quant->init( uiMaxTrSize, bUseRDOQ, bUseRDOQTS, useSelectiveRDOQ );
}
}
void TrQuant::invTransformNxN( TransformUnit &tu, const ComponentID &compID, PelBuf &pResi, const QpParam &cQP )
{
const CompArea &area = tu.blocks[compID];
const uint32_t uiWidth = area.width;
const uint32_t uiHeight = area.height;
CHECK( uiWidth > tu.cs->sps->getMaxTrSize() || uiHeight > tu.cs->sps->getMaxTrSize(), "Maximal allowed transformation size exceeded!" );
if (tu.cu->transQuantBypass)
{
// where should this logic go?
const bool rotateResidual = TU::isNonTransformedResidualRotated(tu, compID);
const CCoeffBuf pCoeff = tu.getCoeffs(compID);
for (uint32_t y = 0, coefficientIndex = 0; y < uiHeight; y++)
{
for (uint32_t x = 0; x < uiWidth; x++, coefficientIndex++)
{
pResi.at(x, y) = rotateResidual ? pCoeff.at(pCoeff.width - x - 1, pCoeff.height - y - 1) : pCoeff.at(x, y);
}
}
}
else
{
CoeffBuf tempCoeff = CoeffBuf( m_plTempCoeff, area );
xDeQuant( tu, tempCoeff, compID, cQP );
DTRACE_COEFF_BUF( D_TCOEFF, tempCoeff, tu, tu.cu->predMode, compID );

Karsten Suehring
committed
if( tu.transformSkip[compID] )

Karsten Suehring
committed
{
xITransformSkip( tempCoeff, pResi, tu, compID );
}
else
{
xIT( tu, compID, tempCoeff, pResi );
}
}
//DTRACE_BLOCK_COEFF(tu.getCoeffs(compID), tu, tu.cu->predMode, compID);
DTRACE_PEL_BUF( D_RESIDUALS, pResi, tu, tu.cu->predMode, compID);
invRdpcmNxN(tu, compID, pResi);
}
void TrQuant::invRdpcmNxN(TransformUnit& tu, const ComponentID &compID, PelBuf &pcResidual)
{
const CompArea &area = tu.blocks[compID];
#if JVET_M0464_UNI_MTS
if (CU::isRDPCMEnabled(*tu.cu) && (tu.mtsIdx==1 || tu.cu->transQuantBypass))
#else

Karsten Suehring
committed
if (CU::isRDPCMEnabled(*tu.cu) && ((tu.transformSkip[compID] != 0) || tu.cu->transQuantBypass))

Karsten Suehring
committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
{
const uint32_t uiWidth = area.width;
const uint32_t uiHeight = area.height;
RDPCMMode rdpcmMode = RDPCM_OFF;
if (tu.cu->predMode == MODE_INTRA)
{
const ChannelType chType = toChannelType(compID);
const uint32_t uiChFinalMode = PU::getFinalIntraMode(*tu.cs->getPU(area.pos(), chType), chType);
if (uiChFinalMode == VER_IDX || uiChFinalMode == HOR_IDX)
{
rdpcmMode = (uiChFinalMode == VER_IDX) ? RDPCM_VER : RDPCM_HOR;
}
}
else // not intra case
{
rdpcmMode = RDPCMMode(tu.rdpcm[compID]);
}
const TCoeff pelMin = (TCoeff) std::numeric_limits<Pel>::min();
const TCoeff pelMax = (TCoeff) std::numeric_limits<Pel>::max();
if (rdpcmMode == RDPCM_VER)
{
for (uint32_t uiX = 0; uiX < uiWidth; uiX++)
{
TCoeff accumulator = pcResidual.at(uiX, 0); // 32-bit accumulator
for (uint32_t uiY = 1; uiY < uiHeight; uiY++)
{
accumulator += pcResidual.at(uiX, uiY);
pcResidual.at(uiX, uiY) = (Pel) Clip3<TCoeff>(pelMin, pelMax, accumulator);
}
}
}
else if (rdpcmMode == RDPCM_HOR)
{
for (uint32_t uiY = 0; uiY < uiHeight; uiY++)
{
TCoeff accumulator = pcResidual.at(0, uiY);
for (uint32_t uiX = 1; uiX < uiWidth; uiX++)
{
accumulator += pcResidual.at(uiX, uiY);
pcResidual.at(uiX, uiY) = (Pel) Clip3<TCoeff>(pelMin, pelMax, accumulator);
}
}
}
}
}
// ------------------------------------------------------------------------------------------------
// Logical transform
// ------------------------------------------------------------------------------------------------
void TrQuant::getTrTypes ( TransformUnit tu, const ComponentID compID, int &trTypeHor, int &trTypeVer )

Karsten Suehring
committed
{
#if JVET_M0464_UNI_MTS
bool mtsActivated = CU::isIntra( *tu.cu ) ? tu.cs->sps->getSpsNext().getUseIntraMTS() : tu.cs->sps->getSpsNext().getUseInterMTS();
#else
bool emtActivated = CU::isIntra( *tu.cu ) ? tu.cs->sps->getSpsNext().getUseIntraEMT() : tu.cs->sps->getSpsNext().getUseInterEMT();
trTypeHor = DCT2;
trTypeVer = DCT2;
{
if( compID == COMPONENT_Y )
{
#if JVET_M0464_UNI_MTS
if ( tu.mtsIdx > 1 )
{
int indHor = ( tu.mtsIdx - 2 ) & 1;
int indVer = ( tu.mtsIdx - 2 ) >> 1;
#else
if ( tu.cu->emtFlag )
{
int indHor = tu.emtIdx & 1;
int indVer = tu.emtIdx >> 1;
trTypeHor = indHor ? DCT8 : DST7;
trTypeVer = indVer ? DCT8 : DST7;
}
}
}
}

Karsten Suehring
committed
Jani Lainema
committed
void TrQuant::xT( const TransformUnit &tu, const ComponentID &compID, const CPelBuf &resi, CoeffBuf &dstCoeff, const int width, const int height )
{
const unsigned maxLog2TrDynamicRange = tu.cs->sps->getMaxLog2TrDynamicRange( toChannelType( compID ) );
const unsigned bitDepth = tu.cs->sps->getBitDepth( toChannelType( compID ) );
const int TRANSFORM_MATRIX_SHIFT = g_transformMatrixShift[TRANSFORM_FORWARD];
Jani Lainema
committed
const int shift_1st = ((g_aucLog2[width ]) + bitDepth + TRANSFORM_MATRIX_SHIFT) - maxLog2TrDynamicRange + COM16_C806_TRANS_PREC;
const int shift_2nd = (g_aucLog2[height]) + TRANSFORM_MATRIX_SHIFT + COM16_C806_TRANS_PREC;
const uint32_t transformWidthIndex = g_aucLog2[width ] - 1; // nLog2WidthMinus1, since transform start from 2-point
const uint32_t transformHeightIndex = g_aucLog2[height] - 1; // nLog2HeightMinus1, since transform start from 2-point
const int skipWidth = width > JVET_C0024_ZERO_OUT_TH ? width - JVET_C0024_ZERO_OUT_TH : 0;
const int skipHeight = height > JVET_C0024_ZERO_OUT_TH ? height - JVET_C0024_ZERO_OUT_TH : 0;
CHECK( shift_1st < 0, "Negative shift" );
CHECK( shift_2nd < 0, "Negative shift" );
int trTypeHor = DCT2;
int trTypeVer = DCT2;
getTrTypes ( tu, compID, trTypeHor, trTypeVer );
#if RExt__DECODER_DEBUG_TOOL_STATISTICS
Jani Lainema
committed
CodingStatistics::IncrementStatisticTool( CodingStatisticsClassType{ STATS__TOOL_EMT, uint32_t( width ), uint32_t( height ), compID } );

Karsten Suehring
committed
#endif
ALIGN_DATA( MEMORY_ALIGN_DEF_SIZE, TCoeff block[MAX_TU_SIZE * MAX_TU_SIZE] );
const Pel *resiBuf = resi.buf;
const int resiStride = resi.stride;
Jani Lainema
committed
for( int y = 0; y < height; y++ )
Jani Lainema
committed
for( int x = 0; x < width; x++ )
Jani Lainema
committed
block[( y * width ) + x] = resiBuf[( y * resiStride ) + x];
Jani Lainema
committed
TCoeff *tmp = ( TCoeff * ) alloca( width * height * sizeof( TCoeff ) );
Jani Lainema
committed
fastFwdTrans[trTypeHor][transformWidthIndex ](block, tmp, shift_1st, height, 0, skipWidth);
fastFwdTrans[trTypeVer][transformHeightIndex](tmp, dstCoeff.buf, shift_2nd, width, skipWidth, skipHeight);

Karsten Suehring
committed
}
void TrQuant::xIT( const TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &pCoeff, PelBuf &pResidual )
{
Jani Lainema
committed
const int width = pCoeff.width;
const int height = pCoeff.height;
const unsigned maxLog2TrDynamicRange = tu.cs->sps->getMaxLog2TrDynamicRange( toChannelType( compID ) );
const unsigned bitDepth = tu.cs->sps->getBitDepth( toChannelType( compID ) );
const int TRANSFORM_MATRIX_SHIFT = g_transformMatrixShift[TRANSFORM_INVERSE];
const TCoeff clipMinimum = -( 1 << maxLog2TrDynamicRange );
const TCoeff clipMaximum = ( 1 << maxLog2TrDynamicRange ) - 1;
const int shift_1st = TRANSFORM_MATRIX_SHIFT + 1 + COM16_C806_TRANS_PREC; // 1 has been added to shift_1st at the expense of shift_2nd
const int shift_2nd = ( TRANSFORM_MATRIX_SHIFT + maxLog2TrDynamicRange - 1 ) - bitDepth + COM16_C806_TRANS_PREC;
Jani Lainema
committed
const uint32_t transformWidthIndex = g_aucLog2[width ] - 1; // nLog2WidthMinus1, since transform start from 2-point
const uint32_t transformHeightIndex = g_aucLog2[height] - 1; // nLog2HeightMinus1, since transform start from 2-point
const int skipWidth = width > JVET_C0024_ZERO_OUT_TH ? width - JVET_C0024_ZERO_OUT_TH : 0;
const int skipHeight = height > JVET_C0024_ZERO_OUT_TH ? height - JVET_C0024_ZERO_OUT_TH : 0;
CHECK( shift_1st < 0, "Negative shift" );
CHECK( shift_2nd < 0, "Negative shift" );
int trTypeHor = DCT2;
int trTypeVer = DCT2;
getTrTypes ( tu, compID, trTypeHor, trTypeVer );
Jani Lainema
committed
TCoeff *tmp = ( TCoeff * ) alloca( width * height * sizeof( TCoeff ) );
TCoeff *block = ( TCoeff * ) alloca( width * height * sizeof( TCoeff ) );
Jani Lainema
committed
fastInvTrans[trTypeVer][transformHeightIndex](pCoeff.buf, tmp, shift_1st, width, skipWidth, skipHeight, clipMinimum, clipMaximum);
fastInvTrans[trTypeHor][transformWidthIndex] (tmp, block, shift_2nd, height, 0, skipWidth, clipMinimum, clipMaximum);
Pel *resiBuf = pResidual.buf;
int resiStride = pResidual.stride;
Jani Lainema
committed
for( int y = 0; y < height; y++ )

Karsten Suehring
committed
{
Jani Lainema
committed
for( int x = 0; x < width; x++ )
Jani Lainema
committed
resiBuf[( y * resiStride ) + x] = Pel( block[( y * width ) + x] );

Karsten Suehring
committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
}
}
/** Wrapper function between HM interface and core NxN transform skipping
*/
void TrQuant::xITransformSkip(const CCoeffBuf &pCoeff,
PelBuf &pResidual,
const TransformUnit &tu,
const ComponentID &compID)
{
const CompArea &area = tu.blocks[compID];
const int width = area.width;
const int height = area.height;
const int maxLog2TrDynamicRange = tu.cs->sps->getMaxLog2TrDynamicRange(toChannelType(compID));
const int channelBitDepth = tu.cs->sps->getBitDepth(toChannelType(compID));
int iTransformShift = getTransformShift(channelBitDepth, area.size(), maxLog2TrDynamicRange);
if( tu.cs->sps->getSpsRangeExtension().getExtendedPrecisionProcessingFlag() )
{
iTransformShift = std::max<int>( 0, iTransformShift );
}
int iWHScale = 1;
#if HM_QTBT_AS_IN_JEM_QUANT
if( TU::needsBlockSizeTrafoScale( area ) )
{
iTransformShift += ADJ_QUANT_SHIFT;
iWHScale = 181;
}
#endif
const bool rotateResidual = TU::isNonTransformedResidualRotated( tu, compID );
if( iTransformShift >= 0 )
{
const TCoeff offset = iTransformShift == 0 ? 0 : ( 1 << ( iTransformShift - 1 ) );
for( uint32_t y = 0; y < height; y++ )
{
for( uint32_t x = 0; x < width; x++ )
{
pResidual.at( x, y ) = Pel( ( ( rotateResidual ? pCoeff.at( pCoeff.width - x - 1, pCoeff.height - y - 1 ) : pCoeff.at( x, y ) ) * iWHScale + offset ) >> iTransformShift );
}
}
}
else //for very high bit depths
{
iTransformShift = -iTransformShift;
for( uint32_t y = 0; y < height; y++ )
{
for( uint32_t x = 0; x < width; x++ )
{
pResidual.at( x, y ) = Pel( ( rotateResidual ? pCoeff.at( pCoeff.width - x - 1, pCoeff.height - y - 1 ) : pCoeff.at( x, y ) ) * iWHScale << iTransformShift );
}
}
}
}
void TrQuant::xQuant(TransformUnit &tu, const ComponentID &compID, const CCoeffBuf &pSrc, TCoeff &uiAbsSum, const QpParam &cQP, const Ctx& ctx)
{
m_quant->quant( tu, compID, pSrc, uiAbsSum, cQP, ctx );
}
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
#if JVET_M0464_UNI_MTS
void TrQuant::transformNxN(TransformUnit &tu, const ComponentID &compID, const QpParam &cQP, std::vector<TrMode>* trModes, const int maxCand)
{
CodingStructure &cs = *tu.cs;
const SPS &sps = *cs.sps;
const CompArea &rect = tu.blocks[compID];
const uint32_t width = rect.width;
const uint32_t height = rect.height;
const CPelBuf resiBuf = cs.getResiBuf(rect);
CHECK( sps.getMaxTrSize() < width, "Unsupported transformation size" );
int pos = 0;
std::vector<TrCost> trCosts;
std::vector<TrMode>::iterator it = trModes->begin();
const double facBB[] = { 1.2, 1.3, 1.3, 1.4, 1.5 };
while( it != trModes->end() )
{
tu.mtsIdx = it->first;
CoeffBuf tempCoeff( m_mtsCoeffs[tu.mtsIdx], rect );
if( tu.mtsIdx == 1 )
{
xTransformSkip( tu, compID, resiBuf, tempCoeff.buf );
}
else
{
xT( tu, compID, resiBuf, tempCoeff, width, height );
}
int sumAbs = 0;
for( int pos = 0; pos < width*height; pos++ )
{
sumAbs += abs( tempCoeff.buf[pos] );
}
trCosts.push_back( TrCost( sumAbs, pos++ ) );
it++;
}
int numTests = 0;
std::vector<TrCost>::iterator itC = trCosts.begin();
const double fac = facBB[g_aucLog2[std::max(width, height)]-2];
const double thr = fac * trCosts.begin()->first;
const double thrTS = trCosts.begin()->first;
while( itC != trCosts.end() )
{
const bool testTr = itC->first <= ( itC->second == 1 ? thrTS : thr ) && numTests <= maxCand;
trModes->at( itC->second ).second = testTr;
numTests += testTr;
itC++;
}
}
#endif
#if JVET_M0464_UNI_MTS
void TrQuant::transformNxN(TransformUnit &tu, const ComponentID &compID, const QpParam &cQP, TCoeff &uiAbsSum, const Ctx &ctx, const bool loadTr)
#else

Karsten Suehring
committed
void TrQuant::transformNxN(TransformUnit &tu, const ComponentID &compID, const QpParam &cQP, TCoeff &uiAbsSum, const Ctx &ctx)

Karsten Suehring
committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
{
CodingStructure &cs = *tu.cs;
const SPS &sps = *cs.sps;
const CompArea &rect = tu.blocks[compID];
const uint32_t uiWidth = rect.width;
const uint32_t uiHeight = rect.height;
const CPelBuf resiBuf = cs.getResiBuf(rect);
CoeffBuf rpcCoeff = tu.getCoeffs(compID);
RDPCMMode rdpcmMode = RDPCM_OFF;
rdpcmNxN(tu, compID, cQP, uiAbsSum, rdpcmMode);
if (rdpcmMode == RDPCM_OFF)
{
uiAbsSum = 0;
// transform and quantize
if (CU::isLosslessCoded(*tu.cu))
{
const bool rotateResidual = TU::isNonTransformedResidualRotated( tu, compID );
for( uint32_t y = 0; y < uiHeight; y++ )
{
for( uint32_t x = 0; x < uiWidth; x++ )
{
const Pel currentSample = resiBuf.at( x, y );
if( rotateResidual )
{
rpcCoeff.at( uiWidth - x - 1, uiHeight - y - 1 ) = currentSample;
}
else
{
rpcCoeff.at( x, y ) = currentSample;
}
uiAbsSum += TCoeff( abs( currentSample ) );
}
}
}
else
{
CHECK( sps.getMaxTrSize() < uiWidth, "Unsupported transformation size" );
#if JVET_M0464_UNI_MTS
CoeffBuf tempCoeff( loadTr ? m_mtsCoeffs[tu.mtsIdx] : m_plTempCoeff, rect );
#else

Karsten Suehring
committed
CoeffBuf tempCoeff( m_plTempCoeff, rect );

Karsten Suehring
committed
DTRACE_PEL_BUF( D_RESIDUALS, resiBuf, tu, tu.cu->predMode, compID );
#if JVET_M0464_UNI_MTS
if( !loadTr )
{
if( tu.mtsIdx == 1 )
#else

Karsten Suehring
committed
if( tu.transformSkip[compID] )

Karsten Suehring
committed
{
xTransformSkip( tu, compID, resiBuf, tempCoeff.buf );
}
else
{
xT( tu, compID, resiBuf, tempCoeff, uiWidth, uiHeight );
}

Karsten Suehring
committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
DTRACE_COEFF_BUF( D_TCOEFF, tempCoeff, tu, tu.cu->predMode, compID );
xQuant( tu, compID, tempCoeff, uiAbsSum, cQP, ctx );
DTRACE_COEFF_BUF( D_TCOEFF, tu.getCoeffs( compID ), tu, tu.cu->predMode, compID );
}
}
// set coded block flag (CBF)
TU::setCbfAtDepth (tu, compID, tu.depth, uiAbsSum > 0);
}
void TrQuant::applyForwardRDPCM(TransformUnit &tu, const ComponentID &compID, const QpParam &cQP, TCoeff &uiAbsSum, const RDPCMMode &mode)
{
const bool bLossless = tu.cu->transQuantBypass;
const uint32_t uiWidth = tu.blocks[compID].width;
const uint32_t uiHeight = tu.blocks[compID].height;
const bool rotateResidual = TU::isNonTransformedResidualRotated(tu, compID);
const uint32_t uiSizeMinus1 = (uiWidth * uiHeight) - 1;
const CPelBuf pcResidual = tu.cs->getResiBuf(tu.blocks[compID]);
const CoeffBuf pcCoeff = tu.getCoeffs(compID);
uint32_t uiX = 0;
uint32_t uiY = 0;
uint32_t &majorAxis = (mode == RDPCM_VER) ? uiX : uiY;
uint32_t &minorAxis = (mode == RDPCM_VER) ? uiY : uiX;
const uint32_t majorAxisLimit = (mode == RDPCM_VER) ? uiWidth : uiHeight;
const uint32_t minorAxisLimit = (mode == RDPCM_VER) ? uiHeight : uiWidth;
const bool bUseHalfRoundingPoint = (mode != RDPCM_OFF);
uiAbsSum = 0;
for (majorAxis = 0; majorAxis < majorAxisLimit; majorAxis++)
{
TCoeff accumulatorValue = 0; // 32-bit accumulator
for (minorAxis = 0; minorAxis < minorAxisLimit; minorAxis++)
{
const uint32_t sampleIndex = (uiY * uiWidth) + uiX;
const uint32_t coefficientIndex = (rotateResidual ? (uiSizeMinus1-sampleIndex) : sampleIndex);
const Pel currentSample = pcResidual.at(uiX, uiY);
const TCoeff encoderSideDelta = TCoeff(currentSample) - accumulatorValue;
Pel reconstructedDelta;
if (bLossless)
{
pcCoeff.buf[coefficientIndex] = encoderSideDelta;
reconstructedDelta = (Pel) encoderSideDelta;
}
else
{
m_quant->transformSkipQuantOneSample(tu, compID, encoderSideDelta, pcCoeff.buf[coefficientIndex], coefficientIndex, cQP, bUseHalfRoundingPoint);
m_quant->invTrSkipDeQuantOneSample (tu, compID, pcCoeff.buf[coefficientIndex], reconstructedDelta, coefficientIndex, cQP);
}
uiAbsSum += abs(pcCoeff.buf[coefficientIndex]);
if (mode != RDPCM_OFF)
{
accumulatorValue += reconstructedDelta;
}
}
}
}
void TrQuant::rdpcmNxN(TransformUnit &tu, const ComponentID &compID, const QpParam &cQP, TCoeff &uiAbsSum, RDPCMMode &rdpcmMode)
{
#if JVET_M0464_UNI_MTS
if (!CU::isRDPCMEnabled(*tu.cu) || (tu.mtsIdx!=1 && !tu.cu->transQuantBypass))
#else

Karsten Suehring
committed
if (!CU::isRDPCMEnabled(*tu.cu) || (!tu.transformSkip[compID] && !tu.cu->transQuantBypass))

Karsten Suehring
committed
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
{
rdpcmMode = RDPCM_OFF;
}
else if (CU::isIntra(*tu.cu))
{
const ChannelType chType = toChannelType(compID);
const uint32_t uiChFinalMode = PU::getFinalIntraMode(*tu.cs->getPU(tu.blocks[compID].pos(), chType), chType);
if (uiChFinalMode == VER_IDX || uiChFinalMode == HOR_IDX)
{
rdpcmMode = (uiChFinalMode == VER_IDX) ? RDPCM_VER : RDPCM_HOR;
applyForwardRDPCM(tu, compID, cQP, uiAbsSum, rdpcmMode);
}
else
{
rdpcmMode = RDPCM_OFF;
}
}
else // not intra, need to select the best mode
{
const CompArea &area = tu.blocks[compID];
const uint32_t uiWidth = area.width;
const uint32_t uiHeight = area.height;
RDPCMMode bestMode = NUMBER_OF_RDPCM_MODES;
TCoeff bestAbsSum = std::numeric_limits<TCoeff>::max();
TCoeff bestCoefficients[MAX_TU_SIZE * MAX_TU_SIZE];
for (uint32_t modeIndex = 0; modeIndex < NUMBER_OF_RDPCM_MODES; modeIndex++)
{
const RDPCMMode mode = RDPCMMode(modeIndex);
TCoeff currAbsSum = 0;
applyForwardRDPCM(tu, compID, cQP, uiAbsSum, rdpcmMode);
if (currAbsSum < bestAbsSum)
{
bestMode = mode;
bestAbsSum = currAbsSum;
if (mode != RDPCM_OFF)
{
CoeffBuf(bestCoefficients, uiWidth, uiHeight).copyFrom(tu.getCoeffs(compID));
}
}
}
rdpcmMode = bestMode;
uiAbsSum = bestAbsSum;
if (rdpcmMode != RDPCM_OFF) //the TU is re-transformed and quantized if DPCM_OFF is returned, so there is no need to preserve it here
{
tu.getCoeffs(compID).copyFrom(CoeffBuf(bestCoefficients, uiWidth, uiHeight));
}
}
tu.rdpcm[compID] = rdpcmMode;
}
void TrQuant::xTransformSkip(const TransformUnit &tu, const ComponentID &compID, const CPelBuf &resi, TCoeff* psCoeff)
{
const SPS &sps = *tu.cs->sps;
const CompArea &rect = tu.blocks[compID];
const uint32_t width = rect.width;
const uint32_t height = rect.height;
const ChannelType chType = toChannelType(compID);
const int channelBitDepth = sps.getBitDepth(chType);
const int maxLog2TrDynamicRange = sps.getMaxLog2TrDynamicRange(chType);
int iTransformShift = getTransformShift(channelBitDepth, rect.size(), maxLog2TrDynamicRange);
if( sps.getSpsRangeExtension().getExtendedPrecisionProcessingFlag() )
{
iTransformShift = std::max<int>( 0, iTransformShift );
}
int iWHScale = 1;
#if HM_QTBT_AS_IN_JEM_QUANT
if( TU::needsBlockSizeTrafoScale( rect ) )
{
iTransformShift -= ADJ_DEQUANT_SHIFT;
iWHScale = 181;
}
#endif
const bool rotateResidual = TU::isNonTransformedResidualRotated( tu, compID );
const uint32_t uiSizeMinus1 = ( width * height ) - 1;
if( iTransformShift >= 0 )
{
for( uint32_t y = 0, coefficientIndex = 0; y < height; y++ )
{
for( uint32_t x = 0; x < width; x++, coefficientIndex++ )
{
psCoeff[rotateResidual ? uiSizeMinus1 - coefficientIndex : coefficientIndex] = ( TCoeff( resi.at( x, y ) ) * iWHScale ) << iTransformShift;
}
}
}
else //for very high bit depths
{
iTransformShift = -iTransformShift;
const TCoeff offset = 1 << ( iTransformShift - 1 );
for( uint32_t y = 0, coefficientIndex = 0; y < height; y++ )
{
for( uint32_t x = 0; x < width; x++, coefficientIndex++ )
{
psCoeff[rotateResidual ? uiSizeMinus1 - coefficientIndex : coefficientIndex] = ( TCoeff( resi.at( x, y ) ) * iWHScale + offset ) >> iTransformShift;
}
}
}
}
//! \}