-
Brian Heng authored
- Code cleanup.
Brian Heng authored- Code cleanup.
InterPrediction.cpp 92.24 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file Prediction.cpp
\brief prediction class
*/
#include "InterPrediction.h"
#include "Buffer.h"
#include "UnitTools.h"
#include "MCTS.h"
#include <memory.h>
#include <algorithm>
//! \ingroup CommonLib
//! \{
// ====================================================================================================================
// Constructor / destructor / initialize
// ====================================================================================================================
InterPrediction::InterPrediction()
:
m_currChromaFormat( NUM_CHROMA_FORMAT )
, m_maxCompIDToPred ( MAX_NUM_COMPONENT )
, m_pcRdCost ( nullptr )
, m_storedMv ( nullptr )
, m_skipPROF (false)
, m_encOnly (false)
, m_isBi (false)
, m_gradX0(nullptr)
, m_gradY0(nullptr)
, m_gradX1(nullptr)
, m_gradY1(nullptr)
, m_subPuMC(false)
{
for( uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++ )
{
for( uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++ )
{
m_acYuvPred[refList][ch] = nullptr;
}
}
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ )
{
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ )
{
m_filteredBlock[i][j][c] = nullptr;
}
m_filteredBlockTmp[i][c] = nullptr;
}
}
m_cYuvPredTempDMVRL1 = nullptr;
m_cYuvPredTempDMVRL0 = nullptr;
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
m_cRefSamplesDMVRL0[ch] = nullptr;
m_cRefSamplesDMVRL1[ch] = nullptr;
}
}
InterPrediction::~InterPrediction()
{
destroy();
}
void InterPrediction::destroy()
{
for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
xFree( m_acYuvPred[i][c] );
m_acYuvPred[i][c] = nullptr;
}
}
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ )
{
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ )
{
xFree( m_filteredBlock[i][j][c] );
m_filteredBlock[i][j][c] = nullptr;
}
xFree( m_filteredBlockTmp[i][c] );
m_filteredBlockTmp[i][c] = nullptr;
}
}
m_triangleBuf.destroy();
if (m_storedMv != nullptr)
{
delete[]m_storedMv;
m_storedMv = nullptr;
}
xFree(m_gradX0); m_gradX0 = nullptr;
xFree(m_gradY0); m_gradY0 = nullptr;
xFree(m_gradX1); m_gradX1 = nullptr;
xFree(m_gradY1); m_gradY1 = nullptr;
xFree(m_cYuvPredTempDMVRL0);
m_cYuvPredTempDMVRL0 = nullptr;
xFree(m_cYuvPredTempDMVRL1);
m_cYuvPredTempDMVRL1 = nullptr;
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
xFree(m_cRefSamplesDMVRL0[ch]);
m_cRefSamplesDMVRL0[ch] = nullptr;
xFree(m_cRefSamplesDMVRL1[ch]);
m_cRefSamplesDMVRL1[ch] = nullptr;
}
m_IBCBuffer.destroy();
}
void InterPrediction::init( RdCost* pcRdCost, ChromaFormat chromaFormatIDC, const int ctuSize )
{
m_pcRdCost = pcRdCost;
// if it has been initialised before, but the chroma format has changed, release the memory and start again.
if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] != nullptr && m_currChromaFormat != chromaFormatIDC )
{
destroy();
}
m_currChromaFormat = chromaFormatIDC;
if( m_acYuvPred[REF_PIC_LIST_0][COMPONENT_Y] == nullptr ) // check if first is null (in which case, nothing initialised yet)
{
for( uint32_t c = 0; c < MAX_NUM_COMPONENT; c++ )
{
int extWidth = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 16;
int extHeight = MAX_CU_SIZE + (2 * BIO_EXTEND_SIZE + 2) + 1;
extWidth = extWidth > (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 16) ? extWidth : MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 16;
extHeight = extHeight > (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 1) ? extHeight : MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + 1;
for( uint32_t i = 0; i < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; i++ )
{
m_filteredBlockTmp[i][c] = ( Pel* ) xMalloc( Pel, ( extWidth + 4 ) * ( extHeight + 7 + 4 ) );
for( uint32_t j = 0; j < LUMA_INTERPOLATION_FILTER_SUB_SAMPLE_POSITIONS_SIGNAL; j++ )
{
m_filteredBlock[i][j][c] = ( Pel* ) xMalloc( Pel, extWidth * extHeight );
}
}
// new structure
for( uint32_t i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
m_acYuvPred[i][c] = ( Pel* ) xMalloc( Pel, MAX_CU_SIZE * MAX_CU_SIZE );
}
}
m_triangleBuf.create(UnitArea(chromaFormatIDC, Area(0, 0, MAX_CU_SIZE, MAX_CU_SIZE)));
m_iRefListIdx = -1;
m_gradX0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradY0 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradX1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
m_gradY1 = (Pel*)xMalloc(Pel, BIO_TEMP_BUFFER_SIZE);
}
if (m_cYuvPredTempDMVRL0 == nullptr && m_cYuvPredTempDMVRL1 == nullptr)
{
m_cYuvPredTempDMVRL0 = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)));
m_cYuvPredTempDMVRL1 = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION)));
for (uint32_t ch = 0; ch < MAX_NUM_COMPONENT; ch++)
{
m_cRefSamplesDMVRL0[ch] = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA));
m_cRefSamplesDMVRL1[ch] = (Pel*)xMalloc(Pel, (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA) * (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA));
}
}
#if !JVET_J0090_MEMORY_BANDWITH_MEASURE
m_if.initInterpolationFilter( true );
#endif
if (m_storedMv == nullptr)
{
const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE;
m_storedMv = new Mv[MVBUFFER_SIZE*MVBUFFER_SIZE];
}
if (m_IBCBuffer.bufs.empty())
{
m_IBCBufferWidth = 128 * 128 / ctuSize;
m_IBCBuffer.create(UnitArea(chromaFormatIDC, Area(0, 0, m_IBCBufferWidth, ctuSize)));
}
}
// ====================================================================================================================
// Public member functions
// ====================================================================================================================
bool InterPrediction::xCheckIdenticalMotion( const PredictionUnit &pu )
{
const Slice &slice = *pu.cs->slice;
if( slice.isInterB() && !pu.cs->pps->getWPBiPred() )
{
if( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 )
{
int RefPOCL0 = slice.getRefPic( REF_PIC_LIST_0, pu.refIdx[0] )->getPOC();
int RefPOCL1 = slice.getRefPic( REF_PIC_LIST_1, pu.refIdx[1] )->getPOC();
if( RefPOCL0 == RefPOCL1 )
{
if( !pu.cu->affine )
{
if( pu.mv[0] == pu.mv[1] )
{
return true;
}
}
else
{
if ( (pu.cu->affineType == AFFINEMODEL_4PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]))
|| (pu.cu->affineType == AFFINEMODEL_6PARAM && (pu.mvAffi[0][0] == pu.mvAffi[1][0]) && (pu.mvAffi[0][1] == pu.mvAffi[1][1]) && (pu.mvAffi[0][2] == pu.mvAffi[1][2])) )
{
return true;
}
}
}
}
}
return false;
}
void InterPrediction::xSubPuMC( PredictionUnit& pu, PelUnitBuf& predBuf, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/ )
{
// compute the location of the current PU
Position puPos = pu.lumaPos();
Size puSize = pu.lumaSize();
int numPartLine, numPartCol, puHeight, puWidth;
{
numPartLine = std::max(puSize.width >> ATMVP_SUB_BLOCK_SIZE, 1u);
numPartCol = std::max(puSize.height >> ATMVP_SUB_BLOCK_SIZE, 1u);
puHeight = numPartCol == 1 ? puSize.height : 1 << ATMVP_SUB_BLOCK_SIZE;
puWidth = numPartLine == 1 ? puSize.width : 1 << ATMVP_SUB_BLOCK_SIZE;
}
PredictionUnit subPu;
subPu.cs = pu.cs;
subPu.cu = pu.cu;
subPu.mergeType = MRG_TYPE_DEFAULT_N;
bool isAffine = pu.cu->affine;
subPu.cu->affine = false;
// join sub-pus containing the same motion
bool verMC = puSize.height > puSize.width;
int fstStart = (!verMC ? puPos.y : puPos.x);
int secStart = (!verMC ? puPos.x : puPos.y);
int fstEnd = (!verMC ? puPos.y + puSize.height : puPos.x + puSize.width);
int secEnd = (!verMC ? puPos.x + puSize.width : puPos.y + puSize.height);
int fstStep = (!verMC ? puHeight : puWidth);
int secStep = (!verMC ? puWidth : puHeight);
pu.refIdx[0] = 0; pu.refIdx[1] = pu.cs->slice->getSliceType() == B_SLICE ? 0 : -1;
bool scaled = !PU::isRefPicSameSize( pu );
m_subPuMC = true;
for (int fstDim = fstStart; fstDim < fstEnd; fstDim += fstStep)
{
for (int secDim = secStart; secDim < secEnd; secDim += secStep)
{
int x = !verMC ? secDim : fstDim;
int y = !verMC ? fstDim : secDim;
const MotionInfo &curMi = pu.getMotionInfo(Position{ x, y });
int length = secStep;
int later = secDim + secStep;
while (later < secEnd)
{
const MotionInfo &laterMi = !verMC ? pu.getMotionInfo(Position{ later, fstDim }) : pu.getMotionInfo(Position{ fstDim, later });
if (!scaled && laterMi == curMi)
{
length += secStep;
}
else
{
break;
}
later += secStep;
}
int dx = !verMC ? length : puWidth;
int dy = !verMC ? puHeight : length;
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
subPu = curMi;
PelUnitBuf subPredBuf = predBuf.subBuf(UnitAreaRelative(pu, subPu));
subPu.mmvdEncOptMode = 0;
subPu.mvRefine = false;
motionCompensation(subPu, subPredBuf, eRefPicList);
secDim = later - secStep;
}
}
m_subPuMC = false;
pu.cu->affine = isAffine;
}
void InterPrediction::xSubPuBio(PredictionUnit& pu, PelUnitBuf& predBuf, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/, PelUnitBuf* yuvDstTmp /*= NULL*/)
{
// compute the location of the current PU
Position puPos = pu.lumaPos();
Size puSize = pu.lumaSize();
PredictionUnit subPu;
subPu.cs = pu.cs;
subPu.cu = pu.cu;
subPu.mergeType = pu.mergeType;
subPu.mmvdMergeFlag = pu.mmvdMergeFlag;
subPu.mmvdEncOptMode = pu.mmvdEncOptMode;
subPu.mergeFlag = pu.mergeFlag;
subPu.mhIntraFlag = pu.mhIntraFlag;
subPu.mvRefine = pu.mvRefine;
subPu.refIdx[0] = pu.refIdx[0];
subPu.refIdx[1] = pu.refIdx[1];
int fstStart = puPos.y;
int secStart = puPos.x;
int fstEnd = puPos.y + puSize.height;
int secEnd = puPos.x + puSize.width;
int fstStep = std::min((int)MAX_BDOF_APPLICATION_REGION, (int)puSize.height);
int secStep = std::min((int)MAX_BDOF_APPLICATION_REGION, (int)puSize.width);
for (int fstDim = fstStart; fstDim < fstEnd; fstDim += fstStep)
{
for (int secDim = secStart; secDim < secEnd; secDim += secStep)
{
int x = secDim;
int y = fstDim;
int dx = secStep;
int dy = fstStep;
const MotionInfo &curMi = pu.getMotionInfo(Position{ x, y });
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
subPu = curMi;
PelUnitBuf subPredBuf = predBuf.subBuf(UnitAreaRelative(pu, subPu));
if (yuvDstTmp)
{
PelUnitBuf subPredBufTmp = yuvDstTmp->subBuf(UnitAreaRelative(pu, subPu));
motionCompensation(subPu, subPredBuf, eRefPicList, true, true, &subPredBufTmp);
}
else
motionCompensation(subPu, subPredBuf, eRefPicList);
}
}
}
void InterPrediction::xPredInterUni(const PredictionUnit& pu, const RefPicList& eRefPicList, PelUnitBuf& pcYuvPred, const bool& bi
, const bool& bioApplied
, const bool luma, const bool chroma
)
{
const SPS &sps = *pu.cs->sps;
int iRefIdx = pu.refIdx[eRefPicList];
Mv mv[3];
bool isIBC = false;
CHECK( !CU::isIBC( *pu.cu ) && pu.lwidth() == 4 && pu.lheight() == 4, "invalid 4x4 inter blocks" );
if (CU::isIBC(*pu.cu))
{
isIBC = true;
}
if( pu.cu->affine )
{
CHECK( iRefIdx < 0, "iRefIdx incorrect." );
mv[0] = pu.mvAffi[eRefPicList][0];
mv[1] = pu.mvAffi[eRefPicList][1];
mv[2] = pu.mvAffi[eRefPicList][2];
}
else
{
mv[0] = pu.mv[eRefPicList];
}
if( !pu.cu->affine )
{
if( pu.cu->slice->getScalingRatio( eRefPicList, iRefIdx ) == SCALE_1X )
{
clipMv( mv[0], pu.cu->lumaPos(), pu.cu->lumaSize(), sps, *pu.cs->pps );
}
}
for( uint32_t comp = COMPONENT_Y; comp < pcYuvPred.bufs.size() && comp <= m_maxCompIDToPred; comp++ )
{
const ComponentID compID = ComponentID( comp );
if (compID == COMPONENT_Y && !luma)
continue;
if (compID != COMPONENT_Y && !chroma)
continue;
if ( pu.cu->affine )
{
CHECK( bioApplied, "BIO is not allowed with affine" );
m_iRefListIdx = eRefPicList;
xPredAffineBlk( compID, pu, pu.cu->slice->getRefPic( eRefPicList, iRefIdx )->unscaledPic, mv, pcYuvPred, bi, pu.cu->slice->clpRng( compID ), pu.cu->slice->getScalingRatio( eRefPicList, iRefIdx ));
}
else
{
if (isIBC)
{
xPredInterBlk(compID, pu, pu.cu->slice->getPic(), mv[0], pcYuvPred, bi, pu.cu->slice->clpRng(compID)
, bioApplied
, isIBC
);
}
else
{
xPredInterBlk( compID, pu, pu.cu->slice->getRefPic( eRefPicList, iRefIdx )->unscaledPic, mv[0], pcYuvPred, bi, pu.cu->slice->clpRng( compID ), bioApplied, isIBC, pu.cu->slice->getScalingRatio( eRefPicList, iRefIdx ) );
}
}
}
}
void InterPrediction::xPredInterBi(PredictionUnit& pu, PelUnitBuf &pcYuvPred, PelUnitBuf* yuvPredTmp /*= NULL*/)
{
const PPS &pps = *pu.cs->pps;
const Slice &slice = *pu.cs->slice;
CHECK( !pu.cu->affine && pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 && ( pu.lwidth() + pu.lheight() == 12 ), "invalid 4x8/8x4 bi-predicted blocks" );
WPScalingParam *wp0;
WPScalingParam *wp1;
int refIdx0 = pu.refIdx[REF_PIC_LIST_0];
int refIdx1 = pu.refIdx[REF_PIC_LIST_1];
pu.cs->slice->getWpScaling(REF_PIC_LIST_0, refIdx0, wp0);
pu.cs->slice->getWpScaling(REF_PIC_LIST_1, refIdx1, wp1);
bool bioApplied = false;
if (pu.cs->sps->getBDOFEnabledFlag() && (!pu.cs->slice->getDisBdofDmvrFlag()))
{
if (pu.cu->affine || m_subPuMC)
{
bioApplied = false;
}
else
{
const bool biocheck0 = !((wp0[COMPONENT_Y].bPresentFlag || wp1[COMPONENT_Y].bPresentFlag) && slice.getSliceType() == B_SLICE);
const bool biocheck1 = !(pps.getUseWP() && slice.getSliceType() == P_SLICE);
if (biocheck0
&& biocheck1
#if JVET_P1023_DMVR_BDOF_RP_CONDITION
&& PU::isBiPredFromDifferentDirEqDistPoc(pu)
#else
&& PU::isBiPredFromDifferentDir(pu)
#endif
&& (pu.Y().height >= 8)
&& (pu.Y().width >= 8)
&& ((pu.Y().height * pu.Y().width) >= 128)
)
{
bioApplied = true;
}
}
if (bioApplied && pu.mhIntraFlag)
bioApplied = false;
if (bioApplied && pu.cu->smvdMode)
{
bioApplied = false;
}
if (pu.cu->cs->sps->getUseGBi() && bioApplied && pu.cu->GBiIdx != GBI_DEFAULT)
{
bioApplied = false;
}
}
if (pu.mmvdEncOptMode == 2 && pu.mmvdMergeFlag) {
bioApplied = false;
}
bool dmvrApplied = false;
dmvrApplied = (pu.mvRefine) && PU::checkDMVRCondition(pu);
bool samePicSize = PU::isRefPicSameSize( pu );
dmvrApplied = dmvrApplied && samePicSize;
bioApplied = bioApplied && samePicSize;
for (uint32_t refList = 0; refList < NUM_REF_PIC_LIST_01; refList++)
{
if( pu.refIdx[refList] < 0)
{
continue;
}
RefPicList eRefPicList = (refList ? REF_PIC_LIST_1 : REF_PIC_LIST_0);
CHECK(CU::isIBC(*pu.cu) && eRefPicList != REF_PIC_LIST_0, "Invalid interdir for ibc mode");
CHECK(CU::isIBC(*pu.cu) && pu.refIdx[refList] != MAX_NUM_REF, "Invalid reference index for ibc mode");
CHECK((CU::isInter(*pu.cu) && pu.refIdx[refList] >= slice.getNumRefIdx(eRefPicList)), "Invalid reference index");
m_iRefListIdx = refList;
PelUnitBuf pcMbBuf = ( pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[refList][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[refList][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[refList][2], pcYuvPred.Cr())) );
if (pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0)
{
if (dmvrApplied)
{
if (yuvPredTmp)
xPredInterUni(pu, eRefPicList, pcMbBuf, true, false, true, true);
continue;
}
xPredInterUni ( pu, eRefPicList, pcMbBuf, true
, bioApplied
, true, true
);
}
else
{
if( ( (pps.getUseWP() && slice.getSliceType() == P_SLICE) || (pps.getWPBiPred() && slice.getSliceType() == B_SLICE) ) )
{
xPredInterUni ( pu, eRefPicList, pcMbBuf, true
, bioApplied
, true, true
);
}
else
{
xPredInterUni( pu, eRefPicList, pcMbBuf, pu.cu->triangle
, bioApplied
, true, true
);
}
}
}
CPelUnitBuf srcPred0 = ( pu.chromaFormat == CHROMA_400 ?
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y())) :
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[0][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[0][2], pcYuvPred.Cr())) );
CPelUnitBuf srcPred1 = ( pu.chromaFormat == CHROMA_400 ?
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y())) :
CPelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvPred.Y()), PelBuf(m_acYuvPred[1][1], pcYuvPred.Cb()), PelBuf(m_acYuvPred[1][2], pcYuvPred.Cr())) );
if( !pu.cu->triangle && (!dmvrApplied) && (!bioApplied) && pps.getWPBiPred() && slice.getSliceType() == B_SLICE && pu.cu->GBiIdx==GBI_DEFAULT)
{
xWeightedPredictionBi( pu, srcPred0, srcPred1, pcYuvPred, m_maxCompIDToPred );
if (yuvPredTmp)
yuvPredTmp->copyFrom(pcYuvPred);
}
else if( !pu.cu->triangle && pps.getUseWP() && slice.getSliceType() == P_SLICE )
{
xWeightedPredictionUni( pu, srcPred0, REF_PIC_LIST_0, pcYuvPred, -1, m_maxCompIDToPred );
if (yuvPredTmp)
yuvPredTmp->copyFrom(pcYuvPred);
}
else
{
if (dmvrApplied)
{
if (yuvPredTmp)
{
yuvPredTmp->addAvg(srcPred0, srcPred1, slice.clpRngs(), false);
}
xProcessDMVR(pu, pcYuvPred, slice.clpRngs(), bioApplied);
}
else
{
xWeightedAverage( pu, srcPred0, srcPred1, pcYuvPred, slice.getSPS()->getBitDepths(), slice.clpRngs(), bioApplied, yuvPredTmp);
}
}
}
void InterPrediction::xPredInterBlk ( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv& _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng
, const bool& bioApplied
, bool isIBC
, const std::pair<int, int> scalingRatio
, SizeType dmvrWidth
, SizeType dmvrHeight
, bool bilinearMC
, Pel *srcPadBuf
, int32_t srcPadStride
)
{
JVET_J0090_SET_REF_PICTURE( refPic, compID );
const ChromaFormat chFmt = pu.chromaFormat;
const bool rndRes = !bi;
int shiftHor = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleX(compID, chFmt);
int shiftVer = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleY(compID, chFmt);
bool wrapRef = false;
Mv mv(_mv);
if( !isIBC && pu.cs->sps->getWrapAroundEnabledFlag() )
{
wrapRef = wrapClipMv( mv, pu.blocks[0].pos(), pu.blocks[0].size(), pu.cs->sps, pu.cs->pps );
}
bool useAltHpelIf = pu.cu->imv == IMV_HPEL;
if( !isIBC && xPredInterBlkRPR( scalingRatio, *pu.cs->pps, CompArea( compID, chFmt, pu.blocks[compID], Size( dstPic.bufs[compID].width, dstPic.bufs[compID].height ) ), refPic, mv, dstPic.bufs[compID].buf, dstPic.bufs[compID].stride, bi, wrapRef, clpRng, 0, useAltHpelIf ) )
{
CHECK( bilinearMC, "DMVR should be disabled with RPR" );
CHECK( bioApplied, "BDOF should be disabled with RPR" );
}
else
{
int xFrac = mv.hor & ((1 << shiftHor) - 1);
int yFrac = mv.ver & ((1 << shiftVer) - 1);
if (isIBC)
{
xFrac = yFrac = 0;
JVET_J0090_SET_CACHE_ENABLE( false );
}
PelBuf &dstBuf = dstPic.bufs[compID];
unsigned width = dstBuf.width;
unsigned height = dstBuf.height;
CPelBuf refBuf;
{
Position offset = pu.blocks[compID].pos().offset( mv.getHor() >> shiftHor, mv.getVer() >> shiftVer );
if (dmvrWidth)
{
refBuf = refPic->getRecoBuf(CompArea(compID, chFmt, offset, Size(dmvrWidth, dmvrHeight)), wrapRef);
}
else
refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, offset, pu.blocks[compID].size() ), wrapRef);
}
if (NULL != srcPadBuf)
{
refBuf.buf = srcPadBuf;
refBuf.stride = srcPadStride;
}
if (dmvrWidth)
{
width = dmvrWidth;
height = dmvrHeight;
}
// backup data
int backupWidth = width;
int backupHeight = height;
Pel *backupDstBufPtr = dstBuf.buf;
int backupDstBufStride = dstBuf.stride;
if (bioApplied && compID == COMPONENT_Y)
{
width = width + 2 * BIO_EXTEND_SIZE + 2;
height = height + 2 * BIO_EXTEND_SIZE + 2;
// change MC output
dstBuf.stride = width;
dstBuf.buf = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + 2 * dstBuf.stride + 2;
}
if( yFrac == 0 )
{
m_if.filterHor(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, xFrac, rndRes, chFmt, clpRng, bilinearMC, bilinearMC, useAltHpelIf);
}
else if( xFrac == 0 )
{
m_if.filterVer(compID, (Pel*)refBuf.buf, refBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, true, rndRes, chFmt, clpRng, bilinearMC, bilinearMC, useAltHpelIf);
}
else
{
PelBuf tmpBuf = dmvrWidth ? PelBuf(m_filteredBlockTmp[0][compID], Size(dmvrWidth, dmvrHeight)) : PelBuf(m_filteredBlockTmp[0][compID], pu.blocks[compID]);
if (dmvrWidth == 0)
tmpBuf.stride = dstBuf.stride;
int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA;
if (bilinearMC)
{
vFilterSize = NTAPS_BILINEAR;
}
m_if.filterHor(compID, (Pel*)refBuf.buf - ((vFilterSize >> 1) - 1) * refBuf.stride, refBuf.stride, tmpBuf.buf, tmpBuf.stride, backupWidth, backupHeight + vFilterSize - 1, xFrac, false, chFmt, clpRng, bilinearMC, bilinearMC, useAltHpelIf);
JVET_J0090_SET_CACHE_ENABLE( false );
m_if.filterVer(compID, (Pel*)tmpBuf.buf + ((vFilterSize >> 1) - 1) * tmpBuf.stride, tmpBuf.stride, dstBuf.buf, dstBuf.stride, backupWidth, backupHeight, yFrac, false, rndRes, chFmt, clpRng, bilinearMC, bilinearMC, useAltHpelIf);
}
JVET_J0090_SET_CACHE_ENABLE( srcPadStride == 0 ); // Enabled only in non-DMVR process, In DMVR process, srcPadStride is always non-zero
if (bioApplied && compID == COMPONENT_Y)
{
const int shift = std::max<int>(2, (IF_INTERNAL_PREC - clpRng.bd));
int xOffset = (xFrac < 8) ? 1 : 0;
int yOffset = (yFrac < 8) ? 1 : 0;
const Pel* refPel = refBuf.buf - yOffset * refBuf.stride - xOffset;
Pel* dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + dstBuf.stride + 1;
for (int w = 0; w < (width - 2 * BIO_EXTEND_SIZE); w++)
{
Pel val = leftShift_round(refPel[w], shift);
dstPel[w] = val - (Pel)IF_INTERNAL_OFFS;
}
refPel = refBuf.buf + (1 - yOffset)*refBuf.stride - xOffset;
dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + 2 * dstBuf.stride + 1;
for (int h = 0; h < (height - 2 * BIO_EXTEND_SIZE - 2); h++)
{
Pel val = leftShift_round(refPel[0], shift);
dstPel[0] = val - (Pel)IF_INTERNAL_OFFS;
val = leftShift_round(refPel[width - 3], shift);
dstPel[width - 3] = val - (Pel)IF_INTERNAL_OFFS;
refPel += refBuf.stride;
dstPel += dstBuf.stride;
}
refPel = refBuf.buf + (height - 2 * BIO_EXTEND_SIZE - 2 + 1 - yOffset)*refBuf.stride - xOffset;
dstPel = m_filteredBlockTmp[2 + m_iRefListIdx][compID] + (height - 2 * BIO_EXTEND_SIZE)*dstBuf.stride + 1;
for (int w = 0; w < (width - 2 * BIO_EXTEND_SIZE); w++)
{
Pel val = leftShift_round(refPel[w], shift);
dstPel[w] = val - (Pel)IF_INTERNAL_OFFS;
}
// restore data
width = backupWidth;
height = backupHeight;
dstBuf.buf = backupDstBufPtr;
dstBuf.stride = backupDstBufStride;
}
}
}
bool InterPrediction::isSubblockVectorSpreadOverLimit( int a, int b, int c, int d, int predType )
{
int s4 = ( 4 << 11 );
int filterTap = 6;
if ( predType == 3 )
{
int refBlkWidth = std::max( std::max( 0, 4 * a + s4 ), std::max( 4 * c, 4 * a + 4 * c + s4 ) ) - std::min( std::min( 0, 4 * a + s4 ), std::min( 4 * c, 4 * a + 4 * c + s4 ) );
int refBlkHeight = std::max( std::max( 0, 4 * b ), std::max( 4 * d + s4, 4 * b + 4 * d + s4 ) ) - std::min( std::min( 0, 4 * b ), std::min( 4 * d + s4, 4 * b + 4 * d + s4 ) );
refBlkWidth = ( refBlkWidth >> 11 ) + filterTap + 3;
refBlkHeight = ( refBlkHeight >> 11 ) + filterTap + 3;
if ( refBlkWidth * refBlkHeight > ( filterTap + 9 ) * ( filterTap + 9 ) )
{
return true;
}
}
else
{
int refBlkWidth = std::max( 0, 4 * a + s4 ) - std::min( 0, 4 * a + s4 );
int refBlkHeight = std::max( 0, 4 * b ) - std::min( 0, 4 * b );
refBlkWidth = ( refBlkWidth >> 11 ) + filterTap + 3;
refBlkHeight = ( refBlkHeight >> 11 ) + filterTap + 3;
if ( refBlkWidth * refBlkHeight > ( filterTap + 9 ) * ( filterTap + 5 ) )
{
return true;
}
refBlkWidth = std::max( 0, 4 * c ) - std::min( 0, 4 * c );
refBlkHeight = std::max( 0, 4 * d + s4 ) - std::min( 0, 4 * d + s4 );
refBlkWidth = ( refBlkWidth >> 11 ) + filterTap + 3;
refBlkHeight = ( refBlkHeight >> 11 ) + filterTap + 3;
if ( refBlkWidth * refBlkHeight > ( filterTap + 5 ) * ( filterTap + 9 ) )
{
return true;
}
}
return false;
}
void InterPrediction::xPredAffineBlk( const ComponentID& compID, const PredictionUnit& pu, const Picture* refPic, const Mv* _mv, PelUnitBuf& dstPic, const bool& bi, const ClpRng& clpRng, const std::pair<int, int> scalingRatio )
{
JVET_J0090_SET_REF_PICTURE( refPic, compID );
const ChromaFormat chFmt = pu.chromaFormat;
int iScaleX = ::getComponentScaleX( compID, chFmt );
int iScaleY = ::getComponentScaleY( compID, chFmt );
Mv mvLT =_mv[0];
Mv mvRT =_mv[1];
Mv mvLB =_mv[2];
// get affine sub-block width and height
const int width = pu.Y().width;
const int height = pu.Y().height;
int blockWidth = AFFINE_MIN_BLOCK_SIZE;
int blockHeight = AFFINE_MIN_BLOCK_SIZE;
CHECK(blockWidth > (width >> iScaleX ), "Sub Block width > Block width");
CHECK(blockHeight > (height >> iScaleY), "Sub Block height > Block height");
const int MVBUFFER_SIZE = MAX_CU_SIZE / MIN_PU_SIZE;
const int cxWidth = width >> iScaleX;
const int cxHeight = height >> iScaleY;
const int iHalfBW = blockWidth >> 1;
const int iHalfBH = blockHeight >> 1;
const int iBit = MAX_CU_DEPTH;
int iDMvHorX, iDMvHorY, iDMvVerX, iDMvVerY;
iDMvHorX = (mvRT - mvLT).getHor() << (iBit - floorLog2(cxWidth));
iDMvHorY = (mvRT - mvLT).getVer() << (iBit - floorLog2(cxWidth));
if ( pu.cu->affineType == AFFINEMODEL_6PARAM )
{
iDMvVerX = (mvLB - mvLT).getHor() << (iBit - floorLog2(cxHeight));
iDMvVerY = (mvLB - mvLT).getVer() << (iBit - floorLog2(cxHeight));
}
else
{
iDMvVerX = -iDMvHorY;
iDMvVerY = iDMvHorX;
}
int iMvScaleHor = mvLT.getHor() << iBit;
int iMvScaleVer = mvLT.getVer() << iBit;
const SPS &sps = *pu.cs->sps;
const int iMvShift = 4;
const int iOffset = 8;
const int iHorMax = ( pu.cs->pps->getPicWidthInLumaSamples() + iOffset - pu.Y().x - 1 ) << iMvShift;
const int iHorMin = ( -(int)pu.cs->pcv->maxCUWidth - iOffset - (int)pu.Y().x + 1 ) << iMvShift;
const int iVerMax = ( pu.cs->pps->getPicHeightInLumaSamples() + iOffset - pu.Y().y - 1 ) << iMvShift;
const int iVerMin = ( -(int)pu.cs->pcv->maxCUHeight - iOffset - (int)pu.Y().y + 1 ) << iMvShift;
const int vFilterSize = isLuma(compID) ? NTAPS_LUMA : NTAPS_CHROMA;
const int shift = iBit - 4 + MV_FRACTIONAL_BITS_INTERNAL;
bool wrapRef = false;
const bool subblkMVSpreadOverLimit = isSubblockVectorSpreadOverLimit( iDMvHorX, iDMvHorY, iDMvVerX, iDMvVerY, pu.interDir );
bool enablePROF = (sps.getUsePROF()) && (!m_skipPROF) && (compID == COMPONENT_Y);
enablePROF &= !((pu.cu->affineType == AFFINEMODEL_6PARAM && _mv[0] == _mv[1] && _mv[0] == _mv[2]) || (pu.cu->affineType == AFFINEMODEL_4PARAM && _mv[0] == _mv[1]));
enablePROF &= !subblkMVSpreadOverLimit;
const int profThres = 1 << (iBit + (m_isBi ? 1 : 0));
enablePROF &= !m_encOnly || pu.cu->slice->getCheckLDC() || iDMvHorX > profThres || iDMvHorY > profThres || iDMvVerX > profThres || iDMvVerY > profThres || iDMvHorX < -profThres || iDMvHorY < -profThres || iDMvVerX < -profThres || iDMvVerY < -profThres;
enablePROF &= pu.cs->pps->getPicWidthInLumaSamples() == refPic->getPicWidthInLumaSamples() && pu.cs->pps->getPicHeightInLumaSamples() == refPic->getPicHeightInLumaSamples();
if (compID == COMPONENT_Y)
{
m_applyPROF[m_iRefListIdx] = enablePROF;
}
bool isLast = enablePROF ? false : !bi;
const int cuExtW = pu.blocks[compID].width + PROF_BORDER_EXT_W * 2;
const int cuExtH = pu.blocks[compID].height + PROF_BORDER_EXT_H * 2;
PelBuf gradXExt(m_gradBuf[m_iRefListIdx][0], cuExtW, cuExtH);
PelBuf gradYExt(m_gradBuf[m_iRefListIdx][1], cuExtW, cuExtH);
const int MAX_FILTER_SIZE = std::max<int>(NTAPS_LUMA, NTAPS_CHROMA);
const int dstExtW = ((blockWidth + PROF_BORDER_EXT_W * 2 + 7) >> 3) << 3;
const int dstExtH = blockHeight + PROF_BORDER_EXT_H * 2;
PelBuf dstExtBuf(m_filteredBlockTmp[1][compID], dstExtW, dstExtH);
const int refExtH = dstExtH + MAX_FILTER_SIZE - 1;
PelBuf tmpBuf = PelBuf(m_filteredBlockTmp[0][compID], dstExtW, refExtH);
PelBuf &dstBuf = dstPic.bufs[compID];
int *dMvScaleHor = m_dMvBuf[m_iRefListIdx];
int *dMvScaleVer = m_dMvBuf[m_iRefListIdx] + 16;
if (enablePROF && !bi)
{
int* dMvH = dMvScaleHor;
int* dMvV = dMvScaleVer;
int quadHorX = iDMvHorX << 2;
int quadHorY = iDMvHorY << 2;
int quadVerX = iDMvVerX << 2;
int quadVerY = iDMvVerY << 2;
dMvH[0] = ((iDMvHorX + iDMvVerX) << 1) - ((quadHorX + quadVerX) << 1);
dMvV[0] = ((iDMvHorY + iDMvVerY) << 1) - ((quadHorY + quadVerY) << 1);
for (int w = 1; w < blockWidth; w++)
{
dMvH[w] = dMvH[w - 1] + quadHorX;
dMvV[w] = dMvV[w - 1] + quadHorY;
}
dMvH += blockWidth;
dMvV += blockWidth;
for (int h = 1; h < blockHeight; h++)
{
for (int w = 0; w < blockWidth; w++)
{
dMvH[w] = dMvH[w - blockWidth] + quadVerX;
dMvV[w] = dMvV[w - blockWidth] + quadVerY;
}
dMvH += blockWidth;
dMvV += blockWidth;
}
#if JVET_P0653_BDOF_PROF_PARA_DEV
const int mvShift = 8;
#if JVET_P0491_BDOFPROF_MVD_RANGE
const int dmvLimit = ( 1 << 5 ) - 1;
#else
const int dmvLimit = (1 << 5);
#endif
#else
#if JVET_P0057_BDOF_PROF_HARMONIZATION
const int mvShift = shift + MV_FRACTIONAL_BITS_INTERNAL + 2 - std::max<int>(5, clpRng.bd - 7);
const int dmvLimit = (1 << (std::max<int>(5, clpRng.bd - 7)));
#else
const int bdlimit = std::max<int>(6, clpRng.bd - 6);
const int dmvLimit = 1 << bdlimit;
#endif
#endif
if (!g_pelBufOP.roundIntVector)
{
for (int idx = 0; idx < blockWidth * blockHeight; idx++)
{
#if JVET_P0057_BDOF_PROF_HARMONIZATION
roundAffineMv(dMvScaleHor[idx], dMvScaleVer[idx], mvShift);
#else
roundAffineMv(dMvScaleHor[idx], dMvScaleVer[idx], shift);
#endif
#if JVET_P0491_BDOFPROF_MVD_RANGE
dMvScaleHor[idx] = Clip3( -dmvLimit, dmvLimit, dMvScaleHor[idx] );
dMvScaleVer[idx] = Clip3( -dmvLimit, dmvLimit, dMvScaleVer[idx] );
#else
dMvScaleHor[idx] = Clip3(-dmvLimit, dmvLimit - 1, dMvScaleHor[idx]);
dMvScaleVer[idx] = Clip3(-dmvLimit, dmvLimit - 1, dMvScaleVer[idx]);
#endif
}
}
else
{
int sz = blockWidth * blockHeight;
#if JVET_P0057_BDOF_PROF_HARMONIZATION
g_pelBufOP.roundIntVector(dMvScaleHor, sz, mvShift, dmvLimit);
g_pelBufOP.roundIntVector(dMvScaleVer, sz, mvShift, dmvLimit);
#else
g_pelBufOP.roundIntVector(dMvScaleHor, sz, shift, dmvLimit);
g_pelBufOP.roundIntVector(dMvScaleVer, sz, shift, dmvLimit);
#endif
}
}
// get prediction block by block
for ( int h = 0; h < cxHeight; h += blockHeight )
{
for ( int w = 0; w < cxWidth; w += blockWidth )
{
int iMvScaleTmpHor, iMvScaleTmpVer;
if (compID == COMPONENT_Y || pu.chromaFormat == CHROMA_444)
{
if ( !subblkMVSpreadOverLimit )
{
iMvScaleTmpHor = iMvScaleHor + iDMvHorX * (iHalfBW + w) + iDMvVerX * (iHalfBH + h);
iMvScaleTmpVer = iMvScaleVer + iDMvHorY * (iHalfBW + w) + iDMvVerY * (iHalfBH + h);
}
else
{
iMvScaleTmpHor = iMvScaleHor + iDMvHorX * ( cxWidth >> 1 ) + iDMvVerX * ( cxHeight >> 1 );
iMvScaleTmpVer = iMvScaleVer + iDMvHorY * ( cxWidth >> 1 ) + iDMvVerY * ( cxHeight >> 1 );
}
roundAffineMv(iMvScaleTmpHor, iMvScaleTmpVer, shift);
Mv tmpMv(iMvScaleTmpHor, iMvScaleTmpVer);
tmpMv.clipToStorageBitDepth();
iMvScaleTmpHor = tmpMv.getHor();
iMvScaleTmpVer = tmpMv.getVer();
// clip and scale
if (sps.getWrapAroundEnabledFlag())
{
m_storedMv[h / AFFINE_MIN_BLOCK_SIZE * MVBUFFER_SIZE + w / AFFINE_MIN_BLOCK_SIZE].set(iMvScaleTmpHor, iMvScaleTmpVer);
Mv tmpMv(iMvScaleTmpHor, iMvScaleTmpVer);
wrapRef = wrapClipMv( tmpMv, Position( pu.Y().x + w, pu.Y().y + h ), Size( blockWidth, blockHeight ), &sps, pu.cs->pps );
iMvScaleTmpHor = tmpMv.getHor();
iMvScaleTmpVer = tmpMv.getVer();
}
else
{
wrapRef = false;
m_storedMv[h / AFFINE_MIN_BLOCK_SIZE * MVBUFFER_SIZE + w / AFFINE_MIN_BLOCK_SIZE].set(iMvScaleTmpHor, iMvScaleTmpVer);
if( scalingRatio == SCALE_1X )
{
iMvScaleTmpHor = std::min<int>(iHorMax, std::max<int>(iHorMin, iMvScaleTmpHor));
iMvScaleTmpVer = std::min<int>(iVerMax, std::max<int>(iVerMin, iMvScaleTmpVer));
}
}
}
else
{
Mv curMv = m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE) * MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE)] +
m_storedMv[((h << iScaleY) / AFFINE_MIN_BLOCK_SIZE + iScaleY)* MVBUFFER_SIZE + ((w << iScaleX) / AFFINE_MIN_BLOCK_SIZE + iScaleX)];
roundAffineMv(curMv.hor, curMv.ver, 1);
if (sps.getWrapAroundEnabledFlag())
{
wrapRef = wrapClipMv( curMv, Position( pu.Y().x + ( w << iScaleX ), pu.Y().y + ( h << iScaleY ) ), Size( blockWidth << iScaleX, blockHeight << iScaleY ), &sps, pu.cs->pps );
}
else
{
wrapRef = false;
if( scalingRatio == SCALE_1X )
{
curMv.hor = std::min<int>(iHorMax, std::max<int>(iHorMin, curMv.hor));
curMv.ver = std::min<int>(iVerMax, std::max<int>(iVerMin, curMv.ver));
}
}
iMvScaleTmpHor = curMv.hor;
iMvScaleTmpVer = curMv.ver;
}
if( xPredInterBlkRPR( scalingRatio, *pu.cs->pps, CompArea( compID, chFmt, pu.blocks[compID].offset( w, h ), Size( blockWidth, blockHeight ) ), refPic, Mv( iMvScaleTmpHor, iMvScaleTmpVer ), dstBuf.buf + w + h * dstBuf.stride, dstBuf.stride, bi, wrapRef, clpRng, 2 ) )
{
CHECK( enablePROF, "PROF should be disabled with RPR" );
}
else
{
// get the MV in high precision
int xFrac, yFrac, xInt, yInt;
if (!iScaleX)
{
xInt = iMvScaleTmpHor >> 4;
xFrac = iMvScaleTmpHor & 15;
}
else
{
xInt = iMvScaleTmpHor >> 5;
xFrac = iMvScaleTmpHor & 31;
}
if (!iScaleY)
{
yInt = iMvScaleTmpVer >> 4;
yFrac = iMvScaleTmpVer & 15;
}
else
{
yInt = iMvScaleTmpVer >> 5;
yFrac = iMvScaleTmpVer & 31;
}
const CPelBuf refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, pu.blocks[compID].offset(xInt + w, yInt + h), pu.blocks[compID] ), wrapRef );
Pel* ref = (Pel*) refBuf.buf;
Pel* dst = dstBuf.buf + w + h * dstBuf.stride;
int refStride = refBuf.stride;
int dstStride = dstBuf.stride;
int bw = blockWidth;
int bh = blockHeight;
if (enablePROF)
{
dst = dstExtBuf.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
dstStride = dstExtBuf.stride;
}
if ( yFrac == 0 )
{
m_if.filterHor( compID, (Pel*) ref, refStride, dst, dstStride, bw, bh, xFrac, isLast, chFmt, clpRng);
}
else if ( xFrac == 0 )
{
m_if.filterVer( compID, (Pel*) ref, refStride, dst, dstStride, bw, bh, yFrac, true, isLast, chFmt, clpRng);
}
else
{
m_if.filterHor( compID, (Pel*)ref - ((vFilterSize>>1) -1)*refStride, refStride, tmpBuf.buf, tmpBuf.stride, bw, bh+vFilterSize-1, xFrac, false, chFmt, clpRng);
JVET_J0090_SET_CACHE_ENABLE( false );
m_if.filterVer( compID, tmpBuf.buf + ((vFilterSize>>1) -1)*tmpBuf.stride, tmpBuf.stride, dst, dstStride, bw, bh, yFrac, false, isLast, chFmt, clpRng);
JVET_J0090_SET_CACHE_ENABLE( true );
}
if (enablePROF)
{
const int shift = std::max<int>(2, (IF_INTERNAL_PREC - clpRng.bd));
const int xOffset = xFrac >> 3;
const int yOffset = yFrac >> 3;
const int refOffset = (blockHeight + 1) * refStride;
const int dstOffset = (blockHeight + 1)* dstStride;
const Pel* refPel = ref - (1 - yOffset) * refStride + xOffset - 1;
Pel* dstPel = dst - dstStride - 1;
for (int pw = 0; pw < blockWidth + 2; pw++)
{
dstPel[pw] = leftShift_round(refPel[pw], shift) - (Pel)IF_INTERNAL_OFFS;
dstPel[pw+dstOffset] = leftShift_round(refPel[pw+refOffset], shift) - (Pel)IF_INTERNAL_OFFS;
}
refPel = ref + yOffset * refBuf.stride + xOffset;
dstPel = dst;
for (int ph = 0; ph < blockHeight; ph++, refPel += refStride, dstPel += dstStride)
{
dstPel[-1] = leftShift_round(refPel[-1], shift) - (Pel)IF_INTERNAL_OFFS;
dstPel[blockWidth] = leftShift_round(refPel[blockWidth], shift) - (Pel)IF_INTERNAL_OFFS;
}
PelBuf gradXBuf = gradXExt.subBuf(w, h, blockWidth + 2, blockHeight + 2);
PelBuf gradYBuf = gradYExt.subBuf(w, h, blockWidth + 2, blockHeight + 2);
g_pelBufOP.profGradFilter(dstExtBuf.buf, dstExtBuf.stride, blockWidth + 2, blockHeight + 2, gradXBuf.stride, gradXBuf.buf, gradYBuf.buf, clpRng.bd);
const int shiftNum = std::max<int>(2, (IF_INTERNAL_PREC - clpRng.bd));
const Pel offset = (1 << (shiftNum - 1)) + IF_INTERNAL_OFFS;
Pel* src = dstExtBuf.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel* gX = gradXBuf.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel* gY = gradYBuf.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel * dstY = dstBuf.bufAt(w, h);
if (!bi)
{
g_pelBufOP.applyPROF(dstY, dstBuf.stride, src, dstExtBuf.stride, blockWidth, blockHeight, gX, gY, gradXBuf.stride, dMvScaleHor, dMvScaleVer, blockWidth, shiftNum, offset, clpRng);
}
else
{
PelBuf srcExtBuf(src, dstExtBuf.stride, Size(blockWidth, blockHeight));
PelBuf destBuf(dstY, dstBuf.stride, Size(blockWidth, blockHeight));
destBuf.copyFrom(srcExtBuf);
}
}
}
}
}
}
void InterPrediction::applyBiOptFlow(const PredictionUnit &pu, const CPelUnitBuf &yuvSrc0, const CPelUnitBuf &yuvSrc1, const int &refIdx0, const int &refIdx1, PelUnitBuf &yuvDst, const BitDepths &clipBitDepths)
{
const int height = yuvDst.Y().height;
const int width = yuvDst.Y().width;
int heightG = height + 2 * BIO_EXTEND_SIZE;
int widthG = width + 2 * BIO_EXTEND_SIZE;
int offsetPos = widthG*BIO_EXTEND_SIZE + BIO_EXTEND_SIZE;
Pel* gradX0 = m_gradX0;
Pel* gradX1 = m_gradX1;
Pel* gradY0 = m_gradY0;
Pel* gradY1 = m_gradY1;
int stridePredMC = widthG + 2;
const Pel* srcY0 = m_filteredBlockTmp[2][COMPONENT_Y] + stridePredMC + 1;
const Pel* srcY1 = m_filteredBlockTmp[3][COMPONENT_Y] + stridePredMC + 1;
const int src0Stride = stridePredMC;
const int src1Stride = stridePredMC;
Pel* dstY = yuvDst.Y().buf;
const int dstStride = yuvDst.Y().stride;
const Pel* srcY0Temp = srcY0;
const Pel* srcY1Temp = srcY1;
for (int refList = 0; refList < NUM_REF_PIC_LIST_01; refList++)
{
Pel* dstTempPtr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + stridePredMC + 1;
Pel* gradY = (refList == 0) ? m_gradY0 : m_gradY1;
Pel* gradX = (refList == 0) ? m_gradX0 : m_gradX1;
xBioGradFilter(dstTempPtr, stridePredMC, widthG, heightG, widthG, gradX, gradY, clipBitDepths.recon[toChannelType(COMPONENT_Y)]);
Pel* padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 2;
for (int y = 0; y< height; y++)
{
padStr[-1] = padStr[0];
padStr[width] = padStr[width - 1];
padStr += stridePredMC;
}
padStr = m_filteredBlockTmp[2 + refList][COMPONENT_Y] + 2 * stridePredMC + 1;
::memcpy(padStr - stridePredMC, padStr, sizeof(Pel)*(widthG));
::memcpy(padStr + height*stridePredMC, padStr + (height - 1)*stridePredMC, sizeof(Pel)*(widthG));
}
const ClpRng& clpRng = pu.cu->cs->slice->clpRng(COMPONENT_Y);
const int bitDepth = clipBitDepths.recon[toChannelType(COMPONENT_Y)];
const int shiftNum = IF_INTERNAL_PREC + 1 - bitDepth;
const int offset = (1 << (shiftNum - 1)) + 2 * IF_INTERNAL_OFFS;
#if JVET_P0653_BDOF_PROF_PARA_DEV
#if JVET_P0491_BDOFPROF_MVD_RANGE
#if JVET_P0091_REMOVE_BDOF_OFFSET_SHIFT
const int limit = ( 1 << 4 ) - 1;
#else
const int limit = ( 1 << 5 ) - 1;
#endif
#else
const int limit = (1 << 5);
#endif
#else
const int limit = (1<<(std::max<int>(5, bitDepth - 7)));
#endif
int xUnit = (width >> 2);
int yUnit = (height >> 2);
Pel *dstY0 = dstY;
gradX0 = m_gradX0; gradX1 = m_gradX1;
gradY0 = m_gradY0; gradY1 = m_gradY1;
for (int yu = 0; yu < yUnit; yu++)
{
for (int xu = 0; xu < xUnit; xu++)
{
int tmpx = 0, tmpy = 0;
int sumAbsGX = 0, sumAbsGY = 0, sumDIX = 0, sumDIY = 0;
int sumSignGY_GX = 0;
Pel* pGradX0Tmp = m_gradX0 + (xu << 2) + (yu << 2) * widthG;
Pel* pGradX1Tmp = m_gradX1 + (xu << 2) + (yu << 2) * widthG;
Pel* pGradY0Tmp = m_gradY0 + (xu << 2) + (yu << 2) * widthG;
Pel* pGradY1Tmp = m_gradY1 + (xu << 2) + (yu << 2) * widthG;
const Pel* SrcY1Tmp = srcY1 + (xu << 2) + (yu << 2) * src1Stride;
const Pel* SrcY0Tmp = srcY0 + (xu << 2) + (yu << 2) * src0Stride;
g_pelBufOP.calcBIOSums(SrcY0Tmp, SrcY1Tmp, pGradX0Tmp, pGradX1Tmp, pGradY0Tmp, pGradY1Tmp, xu, yu, src0Stride, src1Stride, widthG, bitDepth, &sumAbsGX, &sumAbsGY, &sumDIX, &sumDIY, &sumSignGY_GX);
#if JVET_P0091_REMOVE_BDOF_OFFSET_SHIFT
tmpx = (sumAbsGX == 0 ? 0 : rightShiftMSB(sumDIX << 2, sumAbsGX));
#else
tmpx = (sumAbsGX == 0 ? 0 : rightShiftMSB(sumDIX << 3, sumAbsGX));
#endif
#if JVET_P0057_BDOF_PROF_HARMONIZATION && !JVET_P0491_BDOFPROF_MVD_RANGE
tmpx = Clip3(-limit, limit - 1, tmpx);
#else
tmpx = Clip3(-limit, limit, tmpx);
#endif
int mainsGxGy = sumSignGY_GX >> 12;
int secsGxGy = sumSignGY_GX & ((1 << 12) - 1);
int tmpData = tmpx * mainsGxGy;
tmpData = ((tmpData << 12) + tmpx*secsGxGy) >> 1;
#if JVET_P0091_REMOVE_BDOF_OFFSET_SHIFT
tmpy = (sumAbsGY == 0 ? 0 : rightShiftMSB(((sumDIY << 2) - tmpData), sumAbsGY));
#else
tmpy = (sumAbsGY == 0 ? 0 : rightShiftMSB(((sumDIY << 3) - tmpData), sumAbsGY));
#endif
#if JVET_P0057_BDOF_PROF_HARMONIZATION && !JVET_P0491_BDOFPROF_MVD_RANGE
tmpy = Clip3(-limit, limit - 1, tmpy);
#else
tmpy = Clip3(-limit, limit, tmpy);
#endif
srcY0Temp = srcY0 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2);
srcY1Temp = srcY1 + (stridePredMC + 1) + ((yu*src0Stride + xu) << 2);
gradX0 = m_gradX0 + offsetPos + ((yu*widthG + xu) << 2);
gradX1 = m_gradX1 + offsetPos + ((yu*widthG + xu) << 2);
gradY0 = m_gradY0 + offsetPos + ((yu*widthG + xu) << 2);
gradY1 = m_gradY1 + offsetPos + ((yu*widthG + xu) << 2);
dstY0 = dstY + ((yu*dstStride + xu) << 2);
xAddBIOAvg4(srcY0Temp, src0Stride, srcY1Temp, src1Stride, dstY0, dstStride, gradX0, gradX1, gradY0, gradY1, widthG, (1 << 2), (1 << 2), (int)tmpx, (int)tmpy, shiftNum, offset, clpRng);
} // xu
} // yu
}
void InterPrediction::xAddBIOAvg4(const Pel* src0, int src0Stride, const Pel* src1, int src1Stride, Pel *dst, int dstStride, const Pel *gradX0, const Pel *gradX1, const Pel *gradY0, const Pel*gradY1, int gradStride, int width, int height, int tmpx, int tmpy, int shift, int offset, const ClpRng& clpRng)
{
g_pelBufOP.addBIOAvg4(src0, src0Stride, src1, src1Stride, dst, dstStride, gradX0, gradX1, gradY0, gradY1, gradStride, width, height, tmpx, tmpy, shift, offset, clpRng);
}
void InterPrediction::xBioGradFilter(Pel* pSrc, int srcStride, int width, int height, int gradStride, Pel* gradX, Pel* gradY, int bitDepth)
{
g_pelBufOP.bioGradFilter(pSrc, srcStride, width, height, gradStride, gradX, gradY, bitDepth);
}
void InterPrediction::xCalcBIOPar(const Pel* srcY0Temp, const Pel* srcY1Temp, const Pel* gradX0, const Pel* gradX1, const Pel* gradY0, const Pel* gradY1, int* dotProductTemp1, int* dotProductTemp2, int* dotProductTemp3, int* dotProductTemp5, int* dotProductTemp6, const int src0Stride, const int src1Stride, const int gradStride, const int widthG, const int heightG, int bitDepth)
{
g_pelBufOP.calcBIOPar(srcY0Temp, srcY1Temp, gradX0, gradX1, gradY0, gradY1, dotProductTemp1, dotProductTemp2, dotProductTemp3, dotProductTemp5, dotProductTemp6, src0Stride, src1Stride, gradStride, widthG, heightG, bitDepth);
}
void InterPrediction::xCalcBlkGradient(int sx, int sy, int *arraysGx2, int *arraysGxGy, int *arraysGxdI, int *arraysGy2, int *arraysGydI, int &sGx2, int &sGy2, int &sGxGy, int &sGxdI, int &sGydI, int width, int height, int unitSize)
{
g_pelBufOP.calcBlkGradient(sx, sy, arraysGx2, arraysGxGy, arraysGxdI, arraysGy2, arraysGydI, sGx2, sGy2, sGxGy, sGxdI, sGydI, width, height, unitSize);
}
void InterPrediction::xWeightedAverage(const PredictionUnit& pu, const CPelUnitBuf& pcYuvSrc0, const CPelUnitBuf& pcYuvSrc1, PelUnitBuf& pcYuvDst, const BitDepths& clipBitDepths, const ClpRngs& clpRngs, const bool& bioApplied, PelUnitBuf* yuvDstTmp /*= NULL*/)
{
const int iRefIdx0 = pu.refIdx[0];
const int iRefIdx1 = pu.refIdx[1];
if( iRefIdx0 >= 0 && iRefIdx1 >= 0 )
{
if (pu.cu->affine && (m_applyPROF[0] || m_applyPROF[1]))
{
xApplyBiPROF(pu, pcYuvSrc0.bufs[COMPONENT_Y], pcYuvSrc1.bufs[COMPONENT_Y], pcYuvDst.bufs[COMPONENT_Y], clpRngs.comp[COMPONENT_Y]);
pcYuvDst.addWeightedAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, pu.cu->GBiIdx, true);
CHECK(yuvDstTmp, "yuvDstTmp is disallowed with PROF");
return;
}
if( pu.cu->GBiIdx != GBI_DEFAULT && (yuvDstTmp || !pu.mhIntraFlag) )
{
CHECK(bioApplied, "GBi is disallowed with BIO");
pcYuvDst.addWeightedAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, pu.cu->GBiIdx);
if (yuvDstTmp)
yuvDstTmp->addAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, false);
return;
}
if (bioApplied)
{
const int src0Stride = pu.lwidth() + 2 * BIO_EXTEND_SIZE + 2;
const int src1Stride = pu.lwidth() + 2 * BIO_EXTEND_SIZE + 2;
const Pel* pSrcY0 = m_filteredBlockTmp[2][COMPONENT_Y] + 2 * src0Stride + 2;
const Pel* pSrcY1 = m_filteredBlockTmp[3][COMPONENT_Y] + 2 * src1Stride + 2;
bool bioEnabled = true;
if (bioEnabled)
{
applyBiOptFlow(pu, pcYuvSrc0, pcYuvSrc1, iRefIdx0, iRefIdx1, pcYuvDst, clipBitDepths);
if (yuvDstTmp)
yuvDstTmp->bufs[0].addAvg(CPelBuf(pSrcY0, src0Stride, pu.lumaSize()), CPelBuf(pSrcY1, src1Stride, pu.lumaSize()), clpRngs.comp[0]);
}
else
{
pcYuvDst.bufs[0].addAvg(CPelBuf(pSrcY0, src0Stride, pu.lumaSize()), CPelBuf(pSrcY1, src1Stride, pu.lumaSize()), clpRngs.comp[0]);
if (yuvDstTmp)
yuvDstTmp->bufs[0].copyFrom(pcYuvDst.bufs[0]);
}
}
if (pu.cs->pps->getWPBiPred())
{
const int iRefIdx0 = pu.refIdx[0];
const int iRefIdx1 = pu.refIdx[1];
WPScalingParam *pwp0;
WPScalingParam *pwp1;
getWpScaling(pu.cu->slice, iRefIdx0, iRefIdx1, pwp0, pwp1);
if (!bioApplied)
{
addWeightBiComponent(pcYuvSrc0, pcYuvSrc1, pu.cu->slice->clpRngs(), pwp0, pwp1, pcYuvDst, true, COMPONENT_Y);
}
addWeightBiComponent(pcYuvSrc0, pcYuvSrc1, pu.cu->slice->clpRngs(), pwp0, pwp1, pcYuvDst, true, COMPONENT_Cb);
addWeightBiComponent(pcYuvSrc0, pcYuvSrc1, pu.cu->slice->clpRngs(), pwp0, pwp1, pcYuvDst, true, COMPONENT_Cr);
}
else
{
pcYuvDst.addAvg(pcYuvSrc0, pcYuvSrc1, clpRngs, bioApplied);
}
if (yuvDstTmp)
{
if (bioApplied)
{
yuvDstTmp->bufs[1].copyFrom(pcYuvDst.bufs[1]);
yuvDstTmp->bufs[2].copyFrom(pcYuvDst.bufs[2]);
}
else
yuvDstTmp->copyFrom(pcYuvDst);
}
}
else if( iRefIdx0 >= 0 && iRefIdx1 < 0 )
{
if( pu.cu->triangle )
{
pcYuvDst.copyFrom( pcYuvSrc0 );
}
else
pcYuvDst.copyClip( pcYuvSrc0, clpRngs );
if (yuvDstTmp)
yuvDstTmp->copyFrom(pcYuvDst);
}
else if( iRefIdx0 < 0 && iRefIdx1 >= 0 )
{
if( pu.cu->triangle )
{
pcYuvDst.copyFrom( pcYuvSrc1 );
}
else
pcYuvDst.copyClip( pcYuvSrc1, clpRngs );
if (yuvDstTmp)
yuvDstTmp->copyFrom(pcYuvDst);
}
}
void InterPrediction::xApplyBiPROF(const PredictionUnit &pu, const CPelBuf& pcYuvSrc0, const CPelBuf& pcYuvSrc1, PelBuf& pcYuvDst, const ClpRng& clpRng)
{
int blockWidth = AFFINE_MIN_BLOCK_SIZE;
int blockHeight = AFFINE_MIN_BLOCK_SIZE;
CHECK(!m_applyPROF[0] && !m_applyPROF[1], "xApplyBiPROF() applies PROF for at least one list.");
const int width = pu.Y().width;
const int height = pu.Y().height;
const int bit = MAX_CU_DEPTH;
#if JVET_P0653_BDOF_PROF_PARA_DEV
const int mvShift = 8;
#if JVET_P0491_BDOFPROF_MVD_RANGE
const int dmvLimit = ( 1 << 5 ) - 1;
#else
const int dmvLimit = (1 << 5);
#endif
#else
const int shift = bit - 4 + MV_FRACTIONAL_BITS_INTERNAL;
#if JVET_P0057_BDOF_PROF_HARMONIZATION
const int mvShift = shift + MV_FRACTIONAL_BITS_INTERNAL + 2 - std::max<int>(5, clpRng.bd - 7);
const int dmvLimit = (1 << (std::max<int>(5, clpRng.bd - 7)));
#else
const int bdlimit = std::max<int>(6, clpRng.bd - 6);
const int dmvLimit = 1 << bdlimit;
#endif
#endif
for (int list = 0; list < 2; list++)
{
if (m_applyPROF[list])
{
Mv mvLT = pu.mvAffi[list][0];
Mv mvRT = pu.mvAffi[list][1];
Mv mvLB = pu.mvAffi[list][2];
int dMvHorX, dMvHorY, dMvVerX, dMvVerY;
dMvHorX = (mvRT - mvLT).getHor() << (bit - floorLog2(width));
dMvHorY = (mvRT - mvLT).getVer() << (bit - floorLog2(width));
if (pu.cu->affineType == AFFINEMODEL_6PARAM)
{
dMvVerX = (mvLB - mvLT).getHor() << (bit - floorLog2(height));
dMvVerY = (mvLB - mvLT).getVer() << (bit - floorLog2(height));
}
else
{
dMvVerX = -dMvHorY;
dMvVerY = dMvHorX;
}
int *dMvScaleHor = m_dMvBuf[list];
int *dMvScaleVer = m_dMvBuf[list] + 16;
int* dMvH = dMvScaleHor;
int* dMvV = dMvScaleVer;
int quadHorX = dMvHorX << 2;
int quadHorY = dMvHorY << 2;
int quadVerX = dMvVerX << 2;
int quadVerY = dMvVerY << 2;
dMvH[0] = ((dMvHorX + dMvVerX) << 1) - ((quadHorX + quadVerX) << 1);
dMvV[0] = ((dMvHorY + dMvVerY) << 1) - ((quadHorY + quadVerY) << 1);
for (int w = 1; w < blockWidth; w++)
{
dMvH[w] = dMvH[w - 1] + quadHorX;
dMvV[w] = dMvV[w - 1] + quadHorY;
}
dMvH += blockWidth;
dMvV += blockWidth;
for (int h = 1; h < blockHeight; h++)
{
for (int w = 0; w < blockWidth; w++)
{
dMvH[w] = dMvH[w - blockWidth] + quadVerX;
dMvV[w] = dMvV[w - blockWidth] + quadVerY;
}
dMvH += blockWidth;
dMvV += blockWidth;
}
if (!g_pelBufOP.roundIntVector)
{
for (int idx = 0; idx < blockWidth * blockHeight; idx++)
{
#if JVET_P0057_BDOF_PROF_HARMONIZATION
roundAffineMv(dMvScaleHor[idx], dMvScaleVer[idx], mvShift);
#else
roundAffineMv(dMvScaleHor[idx], dMvScaleVer[idx], shift);
#endif
#if JVET_P0491_BDOFPROF_MVD_RANGE
dMvScaleHor[idx] = Clip3( -dmvLimit, dmvLimit, dMvScaleHor[idx] );
dMvScaleVer[idx] = Clip3( -dmvLimit, dmvLimit, dMvScaleVer[idx] );
#else
dMvScaleHor[idx] = Clip3(-dmvLimit, dmvLimit - 1, dMvScaleHor[idx]);
dMvScaleVer[idx] = Clip3(-dmvLimit, dmvLimit - 1, dMvScaleVer[idx]);
#endif
}
}
else
{
int sz = blockWidth * blockHeight;
#if JVET_P0057_BDOF_PROF_HARMONIZATION
g_pelBufOP.roundIntVector(dMvScaleHor, sz, mvShift, dmvLimit);
g_pelBufOP.roundIntVector(dMvScaleVer, sz, mvShift, dmvLimit);
#else
g_pelBufOP.roundIntVector(dMvScaleHor, sz, shift, dmvLimit);
g_pelBufOP.roundIntVector(dMvScaleVer, sz, shift, dmvLimit);
#endif
}
}
}
const int cuExtW = width + PROF_BORDER_EXT_W * 2;
const int cuExtH = height + PROF_BORDER_EXT_H * 2;
PelBuf gradXExt0 = PelBuf(m_gradBuf[REF_PIC_LIST_0][0], cuExtW, cuExtH);
PelBuf gradYExt0 = PelBuf(m_gradBuf[REF_PIC_LIST_0][1], cuExtW, cuExtH);
PelBuf gradXExt1 = PelBuf(m_gradBuf[REF_PIC_LIST_1][0], cuExtW, cuExtH);
PelBuf gradYExt1 = PelBuf(m_gradBuf[REF_PIC_LIST_1][1], cuExtW, cuExtH);
Pel* gX0 = gradXExt0.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel* gY0 = gradYExt0.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel* gX1 = gradXExt1.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
Pel* gY1 = gradYExt1.bufAt(PROF_BORDER_EXT_W, PROF_BORDER_EXT_H);
int *dMvX0 = m_dMvBuf[REF_PIC_LIST_0];
int *dMvY0 = m_dMvBuf[REF_PIC_LIST_0] + 16;
int *dMvX1 = m_dMvBuf[REF_PIC_LIST_1];
int *dMvY1 = m_dMvBuf[REF_PIC_LIST_1] + 16;
const Pel* srcY0 = pcYuvSrc0.bufAt(0, 0);
const Pel* srcY1 = pcYuvSrc1.bufAt(0, 0);
Pel* dstY = pcYuvDst.bufAt(0, 0);
if(m_applyPROF[0] && m_applyPROF[1])
g_pelBufOP.applyBiPROF[1](dstY, pcYuvDst.stride, srcY0, srcY1, pcYuvSrc0.stride, width, height, gX0, gY0, gX1, gY1, gradXExt0.stride, dMvX0, dMvY0, dMvX1, dMvY1, blockWidth, getGbiWeight(pu.cu->GBiIdx, REF_PIC_LIST_0), clpRng);
else if (m_applyPROF[0])
g_pelBufOP.applyBiPROF[0](dstY, pcYuvDst.stride, srcY0, srcY1, pcYuvSrc0.stride, width, height, gX0, gY0, gX1, gY1, gradXExt0.stride, dMvX0, dMvY0, dMvX1, dMvY1, blockWidth, getGbiWeight(pu.cu->GBiIdx, REF_PIC_LIST_0), clpRng);
else
g_pelBufOP.applyBiPROF[0](dstY, pcYuvDst.stride, srcY1, srcY0, pcYuvSrc0.stride, width, height, gX1, gY1, gX0, gY0, gradXExt0.stride, dMvX1, dMvY1, dMvX0, dMvY0, blockWidth, getGbiWeight(pu.cu->GBiIdx, REF_PIC_LIST_1), clpRng);
}
void InterPrediction::motionCompensation( PredictionUnit &pu, PelUnitBuf &predBuf, const RefPicList &eRefPicList
, const bool luma, const bool chroma
, PelUnitBuf* predBufWOBIO /*= NULL*/
)
{
CHECK(predBufWOBIO && pu.mhIntraFlag, "the case should not happen!");
if (!pu.cs->pcv->isEncoder)
{
if (CU::isIBC(*pu.cu))
{
CHECK(!luma, "IBC only for Chroma is not allowed.");
xIntraBlockCopy(pu, predBuf, COMPONENT_Y);
if (chroma)
{
xIntraBlockCopy(pu, predBuf, COMPONENT_Cb);
xIntraBlockCopy(pu, predBuf, COMPONENT_Cr);
}
return;
}
}
// dual tree handling for IBC as the only ref
if ((!luma || !chroma) && eRefPicList == REF_PIC_LIST_0)
{
xPredInterUni(pu, eRefPicList, predBuf, false
, false
, luma, chroma);
return;
}
// else, go with regular MC below
CodingStructure &cs = *pu.cs;
const PPS &pps = *cs.pps;
const SliceType sliceType = cs.slice->getSliceType();
if( eRefPicList != REF_PIC_LIST_X )
{
CHECK(predBufWOBIO != NULL, "the case should not happen!");
if( ( ( sliceType == P_SLICE && pps.getUseWP() ) || ( sliceType == B_SLICE && pps.getWPBiPred() ) ) )
{
xPredInterUni ( pu, eRefPicList, predBuf, true
, false
, true, true
);
xWeightedPredictionUni( pu, predBuf, eRefPicList, predBuf, -1, m_maxCompIDToPred );
}
else
{
xPredInterUni( pu, eRefPicList, predBuf, false
, false
, true, true
);
}
}
else
{
CHECK( !pu.cu->affine && pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 && ( pu.lwidth() + pu.lheight() == 12 ), "invalid 4x8/8x4 bi-predicted blocks" );
WPScalingParam *wp0;
WPScalingParam *wp1;
int refIdx0 = pu.refIdx[REF_PIC_LIST_0];
int refIdx1 = pu.refIdx[REF_PIC_LIST_1];
pu.cs->slice->getWpScaling(REF_PIC_LIST_0, refIdx0, wp0);
pu.cs->slice->getWpScaling(REF_PIC_LIST_1, refIdx1, wp1);
bool bioApplied = false;
const Slice &slice = *pu.cs->slice;
if (pu.cs->sps->getBDOFEnabledFlag() && (!pu.cs->slice->getDisBdofDmvrFlag()))
{
if (pu.cu->affine || m_subPuMC)
{
bioApplied = false;
}
else
{
const bool biocheck0 = !((wp0[COMPONENT_Y].bPresentFlag || wp1[COMPONENT_Y].bPresentFlag) && slice.getSliceType() == B_SLICE);
const bool biocheck1 = !(pps.getUseWP() && slice.getSliceType() == P_SLICE);
if (biocheck0
&& biocheck1
#if JVET_P1023_DMVR_BDOF_RP_CONDITION
&& PU::isBiPredFromDifferentDirEqDistPoc(pu)
#else
&& PU::isBiPredFromDifferentDir(pu)
#endif
&& (pu.Y().height >= 8)
&& (pu.Y().width >= 8)
&& ((pu.Y().height * pu.Y().width) >= 128)
)
{
bioApplied = true;
}
}
if (bioApplied && pu.mhIntraFlag)
{
bioApplied = false;
}
if (bioApplied && pu.cu->smvdMode)
{
bioApplied = false;
}
if (pu.cu->cs->sps->getUseGBi() && bioApplied && pu.cu->GBiIdx != GBI_DEFAULT)
{
bioApplied = false;
}
if (pu.mmvdEncOptMode == 2 && pu.mmvdMergeFlag)
{
bioApplied = false;
}
}
bioApplied = PU::isRefPicSameSize( pu ) ? bioApplied : false;
bool dmvrApplied = false;
dmvrApplied = (pu.mvRefine) && PU::checkDMVRCondition(pu);
if ((pu.lumaSize().width > MAX_BDOF_APPLICATION_REGION || pu.lumaSize().height > MAX_BDOF_APPLICATION_REGION) && pu.mergeType != MRG_TYPE_SUBPU_ATMVP && (bioApplied && !dmvrApplied))
{
xSubPuBio(pu, predBuf, eRefPicList, predBufWOBIO);
}
else
if (pu.mergeType != MRG_TYPE_DEFAULT_N && pu.mergeType != MRG_TYPE_IBC)
{
CHECK(predBufWOBIO != NULL, "the case should not happen!");
xSubPuMC( pu, predBuf, eRefPicList );
}
else if( xCheckIdenticalMotion( pu ) )
{
xPredInterUni( pu, REF_PIC_LIST_0, predBuf, false
, false
, true, true
);
if (predBufWOBIO)
predBufWOBIO->copyFrom(predBuf);
}
else
{
xPredInterBi(pu, predBuf, predBufWOBIO);
}
}
return;
}
void InterPrediction::motionCompensation( CodingUnit &cu, const RefPicList &eRefPicList
, const bool luma, const bool chroma
)
{
for( auto &pu : CU::traversePUs( cu ) )
{
PelUnitBuf predBuf = cu.cs->getPredBuf( pu );
pu.mvRefine = true;
motionCompensation( pu, predBuf, eRefPicList
, luma, chroma
);
pu.mvRefine = false;
}
}
void InterPrediction::motionCompensation( PredictionUnit &pu, const RefPicList &eRefPicList /*= REF_PIC_LIST_X*/
, const bool luma, const bool chroma
)
{
PelUnitBuf predBuf = pu.cs->getPredBuf( pu );
motionCompensation( pu, predBuf, eRefPicList
, luma, chroma
);
}
int InterPrediction::rightShiftMSB(int numer, int denom)
{
return numer >> floorLog2(denom);
}
void InterPrediction::motionCompensation4Triangle( CodingUnit &cu, MergeCtx &triangleMrgCtx, const bool splitDir, const uint8_t candIdx0, const uint8_t candIdx1 )
{
for( auto &pu : CU::traversePUs( cu ) )
{
const UnitArea localUnitArea( cu.cs->area.chromaFormat, Area( 0, 0, pu.lwidth(), pu.lheight() ) );
PelUnitBuf tmpTriangleBuf = m_triangleBuf.getBuf( localUnitArea );
PelUnitBuf predBuf = cu.cs->getPredBuf( pu );
triangleMrgCtx.setMergeInfo( pu, candIdx0 );
PU::spanMotionInfo( pu );
motionCompensation( pu, tmpTriangleBuf );
{
if( g_mctsDecCheckEnabled && !MCTSHelper::checkMvBufferForMCTSConstraint( pu, true ) )
{
printf( "DECODER_TRIANGLE_PU: pu motion vector across tile boundaries (%d,%d,%d,%d)\n", pu.lx(), pu.ly(), pu.lwidth(), pu.lheight() );
}
}
triangleMrgCtx.setMergeInfo( pu, candIdx1 );
PU::spanMotionInfo( pu );
motionCompensation( pu, predBuf );
{
if( g_mctsDecCheckEnabled && !MCTSHelper::checkMvBufferForMCTSConstraint( pu, true ) )
{
printf( "DECODER_TRIANGLE_PU: pu motion vector across tile boundaries (%d,%d,%d,%d)\n", pu.lx(), pu.ly(), pu.lwidth(), pu.lheight() );
}
}
weightedTriangleBlk( pu, splitDir, MAX_NUM_CHANNEL_TYPE, predBuf, tmpTriangleBuf, predBuf );
}
}
void InterPrediction::weightedTriangleBlk( PredictionUnit &pu, const bool splitDir, int32_t channel, PelUnitBuf& predDst, PelUnitBuf& predSrc0, PelUnitBuf& predSrc1 )
{
if( channel == CHANNEL_TYPE_LUMA )
{
m_if.weightedTriangleBlk( pu, pu.lumaSize().width, pu.lumaSize().height, COMPONENT_Y, splitDir, predDst, predSrc0, predSrc1 );
}
else if( channel == CHANNEL_TYPE_CHROMA )
{
m_if.weightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cb, splitDir, predDst, predSrc0, predSrc1 );
m_if.weightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cr, splitDir, predDst, predSrc0, predSrc1 );
}
else
{
m_if.weightedTriangleBlk( pu, pu.lumaSize().width, pu.lumaSize().height, COMPONENT_Y, splitDir, predDst, predSrc0, predSrc1 );
m_if.weightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cb, splitDir, predDst, predSrc0, predSrc1 );
m_if.weightedTriangleBlk( pu, pu.chromaSize().width, pu.chromaSize().height, COMPONENT_Cr, splitDir, predDst, predSrc0, predSrc1 );
}
}
void InterPrediction::xPrefetch(PredictionUnit& pu, PelUnitBuf &pcPad, RefPicList refId, bool forLuma)
{
int offset, width, height;
Mv cMv;
const Picture* refPic = pu.cu->slice->getRefPic( refId, pu.refIdx[refId] )->unscaledPic;
int mvShift = (MV_FRACTIONAL_BITS_INTERNAL);
int start = 0;
int end = MAX_NUM_COMPONENT;
start = forLuma ? 0 : 1;
end = forLuma ? 1 : MAX_NUM_COMPONENT;
for (int compID = start; compID < end; compID++)
{
cMv = Mv(pu.mv[refId].getHor(), pu.mv[refId].getVer());
pcPad.bufs[compID].stride = (pcPad.bufs[compID].width + (2 * DMVR_NUM_ITERATION) + NTAPS_LUMA);
int filtersize = (compID == (COMPONENT_Y)) ? NTAPS_LUMA : NTAPS_CHROMA;
width = pcPad.bufs[compID].width;
height = pcPad.bufs[compID].height;
offset = (DMVR_NUM_ITERATION) * (pcPad.bufs[compID].stride + 1);
int mvshiftTemp = mvShift + getComponentScaleX((ComponentID)compID, pu.chromaFormat);
width += (filtersize - 1);
height += (filtersize - 1);
cMv += Mv(-(((filtersize >> 1) - 1) << mvshiftTemp),
-(((filtersize >> 1) - 1) << mvshiftTemp));
bool wrapRef = false;
if( pu.cs->sps->getWrapAroundEnabledFlag() )
{
wrapRef = wrapClipMv( cMv, pu.blocks[0].pos(), pu.blocks[0].size(), pu.cs->sps, pu.cs->pps );
}
else
{
clipMv( cMv, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps, *pu.cs->pps );
}
/* Pre-fetch similar to HEVC*/
{
CPelBuf refBuf;
Position Rec_offset = pu.blocks[compID].pos().offset(cMv.getHor() >> mvshiftTemp, cMv.getVer() >> mvshiftTemp);
refBuf = refPic->getRecoBuf(CompArea((ComponentID)compID, pu.chromaFormat, Rec_offset, pu.blocks[compID].size()), wrapRef);
PelBuf &dstBuf = pcPad.bufs[compID];
g_pelBufOP.copyBuffer((Pel *)refBuf.buf, refBuf.stride, ((Pel *)dstBuf.buf) + offset, dstBuf.stride, width, height);
}
}
}
void InterPrediction::xPad(PredictionUnit& pu, PelUnitBuf &pcPad, RefPicList refId)
{
int offset = 0, width, height;
int padsize;
Mv cMv;
for (int compID = 0; compID < MAX_NUM_COMPONENT; compID++)
{
int filtersize = (compID == (COMPONENT_Y)) ? NTAPS_LUMA : NTAPS_CHROMA;
width = pcPad.bufs[compID].width;
height = pcPad.bufs[compID].height;
offset = (DMVR_NUM_ITERATION) * (pcPad.bufs[compID].stride + 1);
padsize = (DMVR_NUM_ITERATION) >> getComponentScaleX((ComponentID)compID, pu.chromaFormat);
width += (filtersize - 1);
height += (filtersize - 1);
/*padding on all side of size DMVR_PAD_LENGTH*/
{
g_pelBufOP.padding(pcPad.bufs[compID].buf + offset, pcPad.bufs[compID].stride, width, height, padsize);
}
}
}
inline int32_t div_for_maxq7(int64_t N, int64_t D)
{
int32_t sign, q;
sign = 0;
if (N < 0)
{
sign = 1;
N = -N;
}
q = 0;
D = (D << 3);
if (N >= D)
{
N -= D;
q++;
}
q = (q << 1);
D = (D >> 1);
if (N >= D)
{
N -= D;
q++;
}
q = (q << 1);
if (N >= (D >> 1))
q++;
if (sign)
return (-q);
return(q);
}
void xSubPelErrorSrfc(uint64_t *sadBuffer, int32_t *deltaMv)
{
int64_t numerator, denominator;
int32_t mvDeltaSubPel;
int32_t mvSubPelLvl = 4;/*1: half pel, 2: Qpel, 3:1/8, 4: 1/16*/
/*horizontal*/
numerator = (int64_t)((sadBuffer[1] - sadBuffer[3]) << mvSubPelLvl);
denominator = (int64_t)((sadBuffer[1] + sadBuffer[3] - (sadBuffer[0] << 1)));
if (0 != denominator)
{
if ((sadBuffer[1] != sadBuffer[0]) && (sadBuffer[3] != sadBuffer[0]))
{
mvDeltaSubPel = div_for_maxq7(numerator, denominator);
deltaMv[0] = (mvDeltaSubPel);
}
else
{
if (sadBuffer[1] == sadBuffer[0])
{
deltaMv[0] = -8;// half pel
}
else
{
deltaMv[0] = 8;// half pel
}
}
}
/*vertical*/
numerator = (int64_t)((sadBuffer[2] - sadBuffer[4]) << mvSubPelLvl);
denominator = (int64_t)((sadBuffer[2] + sadBuffer[4] - (sadBuffer[0] << 1)));
if (0 != denominator)
{
if ((sadBuffer[2] != sadBuffer[0]) && (sadBuffer[4] != sadBuffer[0]))
{
mvDeltaSubPel = div_for_maxq7(numerator, denominator);
deltaMv[1] = (mvDeltaSubPel);
}
else
{
if (sadBuffer[2] == sadBuffer[0])
{
deltaMv[1] = -8;// half pel
}
else
{
deltaMv[1] = 8;// half pel
}
}
}
return;
}
void InterPrediction::xBIPMVRefine(int bd, Pel *pRefL0, Pel *pRefL1, uint64_t& minCost, int16_t *deltaMV, uint64_t *pSADsArray, int width, int height)
{
const int32_t refStrideL0 = m_biLinearBufStride;
const int32_t refStrideL1 = m_biLinearBufStride;
Pel *pRefL0Orig = pRefL0;
Pel *pRefL1Orig = pRefL1;
for (int nIdx = 0; (nIdx < 25); ++nIdx)
{
int32_t sadOffset = ((m_pSearchOffset[nIdx].getVer() * ((2 * DMVR_NUM_ITERATION) + 1)) + m_pSearchOffset[nIdx].getHor());
pRefL0 = pRefL0Orig + m_pSearchOffset[nIdx].hor + (m_pSearchOffset[nIdx].ver * refStrideL0);
pRefL1 = pRefL1Orig - m_pSearchOffset[nIdx].hor - (m_pSearchOffset[nIdx].ver * refStrideL1);
if (*(pSADsArray + sadOffset) == MAX_UINT64)
{
const uint64_t cost = xDMVRCost(bd, pRefL0, refStrideL0, pRefL1, refStrideL1, width, height);
*(pSADsArray + sadOffset) = cost;
}
if (*(pSADsArray + sadOffset) < minCost)
{
minCost = *(pSADsArray + sadOffset);
deltaMV[0] = m_pSearchOffset[nIdx].getHor();
deltaMV[1] = m_pSearchOffset[nIdx].getVer();
}
}
}
void InterPrediction::xFinalPaddedMCForDMVR(PredictionUnit& pu, PelUnitBuf &pcYuvSrc0, PelUnitBuf &pcYuvSrc1, PelUnitBuf &pcPad0, PelUnitBuf &pcPad1, const bool bioApplied
, const Mv mergeMV[NUM_REF_PIC_LIST_01]
, bool blockMoved
)
{
int offset, deltaIntMvX, deltaIntMvY;
PelUnitBuf pcYUVTemp = pcYuvSrc0;
PelUnitBuf pcPadTemp = pcPad0;
/*always high precision MVs are used*/
int mvShift = MV_FRACTIONAL_BITS_INTERNAL;
for (int k = 0; k < NUM_REF_PIC_LIST_01; k++)
{
RefPicList refId = (RefPicList)k;
Mv cMv = pu.mv[refId];
m_iRefListIdx = refId;
const Picture* refPic = pu.cu->slice->getRefPic( refId, pu.refIdx[refId] )->unscaledPic;
Mv cMvClipped = cMv;
clipMv( cMvClipped, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps, *pu.cs->pps );
Mv startMv = mergeMV[refId];
if( g_mctsDecCheckEnabled && !MCTSHelper::checkMvForMCTSConstraint( pu, startMv, MV_PRECISION_INTERNAL ) )
{
const Area& tileArea = pu.cs->picture->mctsInfo.getTileArea();
printf( "Attempt an access over tile boundary at block %d,%d %d,%d with MV %d,%d (in Tile TL: %d,%d BR: %d,%d)\n",
pu.lx(), pu.ly(), pu.lwidth(), pu.lheight(), startMv.getHor(), startMv.getVer(), tileArea.topLeft().x, tileArea.topLeft().y, tileArea.bottomRight().x, tileArea.bottomRight().y );
THROW( "MCTS constraint failed!" );
}
for (int compID = 0; compID < MAX_NUM_COMPONENT; compID++)
{
Pel *srcBufPelPtr = NULL;
int pcPadstride = 0;
if (blockMoved || (compID == 0))
{
pcPadstride = pcPadTemp.bufs[compID].stride;
int mvshiftTemp = mvShift + getComponentScaleX((ComponentID)compID, pu.chromaFormat);
int leftPixelExtra;
if (compID == COMPONENT_Y)
{
leftPixelExtra = (NTAPS_LUMA >> 1) - 1;
}
else
{
leftPixelExtra = (NTAPS_CHROMA >> 1) - 1;
}
PelBuf &srcBuf = pcPadTemp.bufs[compID];
deltaIntMvX = (cMv.getHor() >> mvshiftTemp) -
(startMv.getHor() >> mvshiftTemp);
deltaIntMvY = (cMv.getVer() >> mvshiftTemp) -
(startMv.getVer() >> mvshiftTemp);
CHECK((abs(deltaIntMvX) > DMVR_NUM_ITERATION) || (abs(deltaIntMvY) > DMVR_NUM_ITERATION), "not expected DMVR movement");
offset = (DMVR_NUM_ITERATION + leftPixelExtra) * (pcPadTemp.bufs[compID].stride + 1);
offset += (deltaIntMvY)* pcPadTemp.bufs[compID].stride;
offset += (deltaIntMvX);
srcBufPelPtr = (srcBuf.buf + offset);
}
xPredInterBlk( (ComponentID)compID, pu, refPic, cMvClipped, pcYUVTemp, true, pu.cs->slice->getClpRngs().comp[compID],
bioApplied, false, pu.cu->slice->getScalingRatio( refId, pu.refIdx[refId] ), 0, 0, 0, srcBufPelPtr, pcPadstride );
}
pcYUVTemp = pcYuvSrc1;
pcPadTemp = pcPad1;
}
}
uint64_t InterPrediction::xDMVRCost(int bitDepth, Pel* pOrg, uint32_t refStride, const Pel* pRef, uint32_t orgStride, int width, int height)
{
DistParam cDistParam;
cDistParam.applyWeight = false;
cDistParam.useMR = false;
m_pcRdCost->setDistParam(cDistParam, pOrg, pRef, orgStride, refStride, bitDepth, COMPONENT_Y, width, height, 1);
uint64_t uiCost = cDistParam.distFunc(cDistParam);
return uiCost>>1;
}
void xDMVRSubPixelErrorSurface(bool notZeroCost, int16_t *totalDeltaMV, int16_t *deltaMV, uint64_t *pSADsArray)
{
int sadStride = (((2 * DMVR_NUM_ITERATION) + 1));
uint64_t sadbuffer[5];
if (notZeroCost && (abs(totalDeltaMV[0]) != (2 << MV_FRACTIONAL_BITS_INTERNAL))
&& (abs(totalDeltaMV[1]) != (2 << MV_FRACTIONAL_BITS_INTERNAL)))
{
int32_t tempDeltaMv[2] = { 0,0 };
sadbuffer[0] = pSADsArray[0];
sadbuffer[1] = pSADsArray[-1];
sadbuffer[2] = pSADsArray[-sadStride];
sadbuffer[3] = pSADsArray[1];
sadbuffer[4] = pSADsArray[sadStride];
xSubPelErrorSrfc(sadbuffer, tempDeltaMv);
totalDeltaMV[0] += tempDeltaMv[0];
totalDeltaMV[1] += tempDeltaMv[1];
}
}
void InterPrediction::xinitMC(PredictionUnit& pu, const ClpRngs &clpRngs)
{
const int refIdx0 = pu.refIdx[0];
const int refIdx1 = pu.refIdx[1];
/*use merge MV as starting MV*/
Mv mergeMVL0(pu.mv[REF_PIC_LIST_0]);
Mv mergeMVL1(pu.mv[REF_PIC_LIST_1]);
/*Clip the starting MVs*/
clipMv( mergeMVL0, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps, *pu.cs->pps );
clipMv( mergeMVL1, pu.lumaPos(), pu.lumaSize(), *pu.cs->sps, *pu.cs->pps );
/*L0 MC for refinement*/
{
int offset;
int leftPixelExtra = (NTAPS_LUMA >> 1) - 1;
offset = (DMVR_NUM_ITERATION + leftPixelExtra) * (m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y].stride + 1);
offset += (-(int)DMVR_NUM_ITERATION)* (int)m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y].stride;
offset += (-(int)DMVR_NUM_ITERATION);
PelBuf srcBuf = m_cYuvRefBuffDMVRL0.bufs[COMPONENT_Y];
PelUnitBuf yuvPredTempL0 = PelUnitBuf(pu.chromaFormat, PelBuf(m_cYuvPredTempDMVRL0,
m_biLinearBufStride
, pu.lwidth() + (2 * DMVR_NUM_ITERATION), pu.lheight() + (2 * DMVR_NUM_ITERATION)));
xPredInterBlk( COMPONENT_Y, pu, pu.cu->slice->getRefPic( REF_PIC_LIST_0, refIdx0 )->unscaledPic, mergeMVL0, yuvPredTempL0, true, clpRngs.comp[COMPONENT_Y],
false, false, pu.cu->slice->getScalingRatio( REF_PIC_LIST_0, refIdx0 ), pu.lwidth() + ( 2 * DMVR_NUM_ITERATION ), pu.lheight() + ( 2 * DMVR_NUM_ITERATION ), true, ( (Pel *)srcBuf.buf ) + offset, srcBuf.stride );
}
/*L1 MC for refinement*/
{
int offset;
int leftPixelExtra = (NTAPS_LUMA >> 1) - 1;
offset = (DMVR_NUM_ITERATION + leftPixelExtra) * (m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y].stride + 1);
offset += (-(int)DMVR_NUM_ITERATION)* (int)m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y].stride;
offset += (-(int)DMVR_NUM_ITERATION);
PelBuf srcBuf = m_cYuvRefBuffDMVRL1.bufs[COMPONENT_Y];
PelUnitBuf yuvPredTempL1 = PelUnitBuf(pu.chromaFormat, PelBuf(m_cYuvPredTempDMVRL1,
m_biLinearBufStride
, pu.lwidth() + (2 * DMVR_NUM_ITERATION), pu.lheight() + (2 * DMVR_NUM_ITERATION)));
xPredInterBlk( COMPONENT_Y, pu, pu.cu->slice->getRefPic( REF_PIC_LIST_1, refIdx1 )->unscaledPic, mergeMVL1, yuvPredTempL1, true, clpRngs.comp[COMPONENT_Y],
false, false, pu.cu->slice->getScalingRatio( REF_PIC_LIST_1, refIdx1 ), pu.lwidth() + ( 2 * DMVR_NUM_ITERATION ), pu.lheight() + ( 2 * DMVR_NUM_ITERATION ), true, ( (Pel *)srcBuf.buf ) + offset, srcBuf.stride );
}
}
void InterPrediction::xProcessDMVR(PredictionUnit& pu, PelUnitBuf &pcYuvDst, const ClpRngs &clpRngs, const bool bioApplied)
{
int iterationCount = 1;
/*Always High Precision*/
int mvShift = MV_FRACTIONAL_BITS_INTERNAL;
/*use merge MV as starting MV*/
Mv mergeMv[] = { pu.mv[REF_PIC_LIST_0] , pu.mv[REF_PIC_LIST_1] };
m_biLinearBufStride = (MAX_CU_SIZE + (2 * DMVR_NUM_ITERATION));
int dy = std::min<int>(pu.lumaSize().height, DMVR_SUBCU_HEIGHT);
int dx = std::min<int>(pu.lumaSize().width, DMVR_SUBCU_WIDTH);
Position puPos = pu.lumaPos();
int bd = pu.cs->slice->getClpRngs().comp[COMPONENT_Y].bd;
int bioEnabledThres = 2 * dy * dx;
bool bioAppliedType[MAX_NUM_SUBCU_DMVR];
{
int num = 0;
int scaleX = getComponentScaleX(COMPONENT_Cb, pu.chromaFormat);
int scaleY = getComponentScaleY(COMPONENT_Cb, pu.chromaFormat);
m_biLinearBufStride = (dx + (2 * DMVR_NUM_ITERATION));
// point mc buffer to cetre point to avoid multiplication to reach each iteration to the begining
Pel *biLinearPredL0 = m_cYuvPredTempDMVRL0 + (DMVR_NUM_ITERATION * m_biLinearBufStride) + DMVR_NUM_ITERATION;
Pel *biLinearPredL1 = m_cYuvPredTempDMVRL1 + (DMVR_NUM_ITERATION * m_biLinearBufStride) + DMVR_NUM_ITERATION;
PredictionUnit subPu = pu;
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(puPos.x, puPos.y, dx, dy)));
m_cYuvRefBuffDMVRL0 = (pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL0[0], pcYuvDst.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL0[0], pcYuvDst.Y()),
PelBuf(m_cRefSamplesDMVRL0[1], pcYuvDst.Cb()), PelBuf(m_cRefSamplesDMVRL0[2], pcYuvDst.Cr())));
m_cYuvRefBuffDMVRL0 = m_cYuvRefBuffDMVRL0.subBuf(UnitAreaRelative(pu, subPu));
m_cYuvRefBuffDMVRL1 = (pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL1[0], pcYuvDst.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_cRefSamplesDMVRL1[0], pcYuvDst.Y()), PelBuf(m_cRefSamplesDMVRL1[1], pcYuvDst.Cb()),
PelBuf(m_cRefSamplesDMVRL1[2], pcYuvDst.Cr())));
m_cYuvRefBuffDMVRL1 = m_cYuvRefBuffDMVRL1.subBuf(UnitAreaRelative(pu, subPu));
PelUnitBuf srcPred0 = (pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvDst.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[0][0], pcYuvDst.Y()), PelBuf(m_acYuvPred[0][1], pcYuvDst.Cb()), PelBuf(m_acYuvPred[0][2], pcYuvDst.Cr())));
PelUnitBuf srcPred1 = (pu.chromaFormat == CHROMA_400 ?
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvDst.Y())) :
PelUnitBuf(pu.chromaFormat, PelBuf(m_acYuvPred[1][0], pcYuvDst.Y()), PelBuf(m_acYuvPred[1][1], pcYuvDst.Cb()), PelBuf(m_acYuvPred[1][2], pcYuvDst.Cr())));
srcPred0 = srcPred0.subBuf(UnitAreaRelative(pu, subPu));
srcPred1 = srcPred1.subBuf(UnitAreaRelative(pu, subPu));
int yStart = 0;
for (int y = puPos.y; y < (puPos.y + pu.lumaSize().height); y = y + dy, yStart = yStart + dy)
{
for (int x = puPos.x, xStart = 0; x < (puPos.x + pu.lumaSize().width); x = x + dx, xStart = xStart + dx)
{
PredictionUnit subPu = pu;
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
xPrefetch(subPu, m_cYuvRefBuffDMVRL0, REF_PIC_LIST_0, 1);
xPrefetch(subPu, m_cYuvRefBuffDMVRL1, REF_PIC_LIST_1, 1);
xinitMC(subPu, clpRngs);
uint64_t minCost = MAX_UINT64;
bool notZeroCost = true;
int16_t totalDeltaMV[2] = { 0,0 };
int16_t deltaMV[2] = { 0, 0 };
uint64_t *pSADsArray;
for (int i = 0; i < (((2 * DMVR_NUM_ITERATION) + 1) * ((2 * DMVR_NUM_ITERATION) + 1)); i++)
{
m_SADsArray[i] = MAX_UINT64;
}
pSADsArray = &m_SADsArray[(((2 * DMVR_NUM_ITERATION) + 1) * ((2 * DMVR_NUM_ITERATION) + 1)) >> 1];
for (int i = 0; i < iterationCount; i++)
{
deltaMV[0] = 0;
deltaMV[1] = 0;
Pel *addrL0 = biLinearPredL0 + totalDeltaMV[0] + (totalDeltaMV[1] * m_biLinearBufStride);
Pel *addrL1 = biLinearPredL1 - totalDeltaMV[0] - (totalDeltaMV[1] * m_biLinearBufStride);
if (i == 0)
{
minCost = xDMVRCost(clpRngs.comp[COMPONENT_Y].bd, addrL0, m_biLinearBufStride, addrL1, m_biLinearBufStride, dx, dy);
minCost -= (minCost >>2);
if (minCost < (dx * dy))
{
notZeroCost = false;
break;
}
pSADsArray[0] = minCost;
}
if (!minCost)
{
notZeroCost = false;
break;
}
xBIPMVRefine(bd, addrL0, addrL1, minCost, deltaMV, pSADsArray, dx, dy);
if (deltaMV[0] == 0 && deltaMV[1] == 0)
{
break;
}
totalDeltaMV[0] += deltaMV[0];
totalDeltaMV[1] += deltaMV[1];
pSADsArray += ((deltaMV[1] * (((2 * DMVR_NUM_ITERATION) + 1))) + deltaMV[0]);
}
bioAppliedType[num] = (minCost < bioEnabledThres) ? false : bioApplied;
totalDeltaMV[0] = (totalDeltaMV[0] << mvShift);
totalDeltaMV[1] = (totalDeltaMV[1] << mvShift);
xDMVRSubPixelErrorSurface(notZeroCost, totalDeltaMV, deltaMV, pSADsArray);
pu.mvdL0SubPu[num] = Mv(totalDeltaMV[0], totalDeltaMV[1]);
PelUnitBuf subPredBuf = pcYuvDst.subBuf(UnitAreaRelative(pu, subPu));
bool blockMoved = false;
if (pu.mvdL0SubPu[num] != Mv(0, 0))
{
blockMoved = true;
xPrefetch(subPu, m_cYuvRefBuffDMVRL0, REF_PIC_LIST_0, 0);
xPrefetch(subPu, m_cYuvRefBuffDMVRL1, REF_PIC_LIST_1, 0);
xPad(subPu, m_cYuvRefBuffDMVRL0, REF_PIC_LIST_0);
xPad(subPu, m_cYuvRefBuffDMVRL1, REF_PIC_LIST_1);
}
int dstStride[MAX_NUM_COMPONENT] = { pcYuvDst.bufs[COMPONENT_Y].stride, pcYuvDst.bufs[COMPONENT_Cb].stride, pcYuvDst.bufs[COMPONENT_Cr].stride };
subPu.mv[0] = mergeMv[REF_PIC_LIST_0] + pu.mvdL0SubPu[num];
subPu.mv[1] = mergeMv[REF_PIC_LIST_1] - pu.mvdL0SubPu[num];
subPu.mv[0].clipToStorageBitDepth();
subPu.mv[1].clipToStorageBitDepth();
xFinalPaddedMCForDMVR(subPu, srcPred0, srcPred1, m_cYuvRefBuffDMVRL0, m_cYuvRefBuffDMVRL1, bioAppliedType[num], mergeMv
, blockMoved
);
subPredBuf.bufs[COMPONENT_Y].buf = pcYuvDst.bufs[COMPONENT_Y].buf + xStart + yStart * dstStride[COMPONENT_Y];
subPredBuf.bufs[COMPONENT_Cb].buf = pcYuvDst.bufs[COMPONENT_Cb].buf + (xStart >> scaleX) + ((yStart >> scaleY) * dstStride[COMPONENT_Cb]);
subPredBuf.bufs[COMPONENT_Cr].buf = pcYuvDst.bufs[COMPONENT_Cr].buf + (xStart >> scaleX) + ((yStart >> scaleY) * dstStride[COMPONENT_Cr]);
xWeightedAverage(subPu, srcPred0, srcPred1, subPredBuf, subPu.cu->slice->getSPS()->getBitDepths(), subPu.cu->slice->clpRngs(), bioAppliedType[num]);
num++;
}
}
}
JVET_J0090_SET_CACHE_ENABLE(true);
}
#if JVET_J0090_MEMORY_BANDWITH_MEASURE
void InterPrediction::cacheAssign( CacheModel *cache )
{
m_cacheModel = cache;
m_if.cacheAssign( cache );
m_if.initInterpolationFilter( !cache->isCacheEnable() );
}
#endif
void InterPrediction::xFillIBCBuffer(CodingUnit &cu)
{
for (auto &currPU : CU::traverseTUs(cu))
{
for (const CompArea &area : currPU.blocks)
{
if (!area.valid())
continue;
const unsigned int lcuWidth = cu.cs->slice->getSPS()->getMaxCUWidth();
const int shiftSampleHor = ::getComponentScaleX(area.compID, cu.chromaFormat);
const int shiftSampleVer = ::getComponentScaleY(area.compID, cu.chromaFormat);
const int ctuSizeLog2Ver = floorLog2(lcuWidth) - shiftSampleVer;
const int pux = area.x & ((m_IBCBufferWidth >> shiftSampleHor) - 1);
const int puy = area.y & (( 1 << ctuSizeLog2Ver ) - 1);
const CompArea dstArea = CompArea(area.compID, cu.chromaFormat, Position(pux, puy), Size(area.width, area.height));
CPelBuf srcBuf = cu.cs->getRecoBuf(area);
PelBuf dstBuf = m_IBCBuffer.getBuf(dstArea);
dstBuf.copyFrom(srcBuf);
}
}
}
void InterPrediction::xIntraBlockCopy(PredictionUnit &pu, PelUnitBuf &predBuf, const ComponentID compID)
{
const unsigned int lcuWidth = pu.cs->slice->getSPS()->getMaxCUWidth();
const int shiftSampleHor = ::getComponentScaleX(compID, pu.chromaFormat);
const int shiftSampleVer = ::getComponentScaleY(compID, pu.chromaFormat);
const int ctuSizeLog2Ver = floorLog2(lcuWidth) - shiftSampleVer;
pu.bv = pu.mv[REF_PIC_LIST_0];
pu.bv.changePrecision(MV_PRECISION_INTERNAL, MV_PRECISION_INT);
int refx, refy;
if (compID == COMPONENT_Y)
{
refx = pu.Y().x + pu.bv.hor;
refy = pu.Y().y + pu.bv.ver;
}
else
{//Cb or Cr
refx = pu.Cb().x + (pu.bv.hor >> shiftSampleHor);
refy = pu.Cb().y + (pu.bv.ver >> shiftSampleVer);
}
refx &= ((m_IBCBufferWidth >> shiftSampleHor) - 1);
refy &= ((1 << ctuSizeLog2Ver) - 1);
if (refx + predBuf.bufs[compID].width <= (m_IBCBufferWidth >> shiftSampleHor))
{
const CompArea srcArea = CompArea(compID, pu.chromaFormat, Position(refx, refy), Size(predBuf.bufs[compID].width, predBuf.bufs[compID].height));
const CPelBuf refBuf = m_IBCBuffer.getBuf(srcArea);
predBuf.bufs[compID].copyFrom(refBuf);
}
else
{//wrap around
int width = (m_IBCBufferWidth >> shiftSampleHor) - refx;
CompArea srcArea = CompArea(compID, pu.chromaFormat, Position(refx, refy), Size(width, predBuf.bufs[compID].height));
CPelBuf srcBuf = m_IBCBuffer.getBuf(srcArea);
PelBuf dstBuf = PelBuf(predBuf.bufs[compID].bufAt(Position(0, 0)), predBuf.bufs[compID].stride, Size(width, predBuf.bufs[compID].height));
dstBuf.copyFrom(srcBuf);
width = refx + predBuf.bufs[compID].width - (m_IBCBufferWidth >> shiftSampleHor);
srcArea = CompArea(compID, pu.chromaFormat, Position(0, refy), Size(width, predBuf.bufs[compID].height));
srcBuf = m_IBCBuffer.getBuf(srcArea);
dstBuf = PelBuf(predBuf.bufs[compID].bufAt(Position((m_IBCBufferWidth >> shiftSampleHor) - refx, 0)), predBuf.bufs[compID].stride, Size(width, predBuf.bufs[compID].height));
dstBuf.copyFrom(srcBuf);
}
}
void InterPrediction::resetIBCBuffer(const ChromaFormat chromaFormatIDC, const int ctuSize)
{
const UnitArea area = UnitArea(chromaFormatIDC, Area(0, 0, m_IBCBufferWidth, ctuSize));
m_IBCBuffer.getBuf(area).fill(-1);
}
void InterPrediction::resetVPDUforIBC(const ChromaFormat chromaFormatIDC, const int ctuSize, const int vSize, const int xPos, const int yPos)
{
const UnitArea area = UnitArea(chromaFormatIDC, Area(xPos & (m_IBCBufferWidth - 1), yPos & (ctuSize - 1), vSize, vSize));
m_IBCBuffer.getBuf(area).fill(-1);
}
bool InterPrediction::isLumaBvValid(const int ctuSize, const int xCb, const int yCb, const int width, const int height, const int xBv, const int yBv)
{
if(((yCb + yBv) & (ctuSize - 1)) + height > ctuSize)
{
return false;
}
int refTLx = xCb + xBv;
int refTLy = (yCb + yBv) & (ctuSize - 1);
PelBuf buf = m_IBCBuffer.Y();
for(int x = 0; x < width; x += 4)
{
for(int y = 0; y < height; y += 4)
{
if(buf.at((x + refTLx) & (m_IBCBufferWidth - 1), y + refTLy) == -1) return false;
if(buf.at((x + 3 + refTLx) & (m_IBCBufferWidth - 1), y + refTLy) == -1) return false;
if(buf.at((x + refTLx) & (m_IBCBufferWidth - 1), y + 3 + refTLy) == -1) return false;
if(buf.at((x + 3 + refTLx) & (m_IBCBufferWidth - 1), y + 3 + refTLy) == -1) return false;
}
}
return true;
}
bool InterPrediction::xPredInterBlkRPR( const std::pair<int, int>& scalingRatio, const PPS& pps, const CompArea &blk, const Picture* refPic, const Mv& mv, Pel* dst, const int dstStride, const bool bi, const bool wrapRef, const ClpRng& clpRng, const int filterIndex, const bool useAltHpelIf )
{
const ChromaFormat chFmt = blk.chromaFormat;
const ComponentID compID = blk.compID;
const bool rndRes = !bi;
int shiftHor = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleX( compID, chFmt );
int shiftVer = MV_FRACTIONAL_BITS_INTERNAL + ::getComponentScaleY( compID, chFmt );
int width = blk.width;
int height = blk.height;
CPelBuf refBuf;
const bool scaled = scalingRatio != SCALE_1X;
if( scaled )
{
int row, col;
int refPicWidth = refPic->getPicWidthInLumaSamples();
int refPicHeight = refPic->getPicHeightInLumaSamples();
#if JVET_P0088_P0353_RPR_FILTERS
int xFilter = filterIndex;
int yFilter = filterIndex;
const int rprThreshold1 = ( 1 << SCALE_RATIO_BITS ) * 5 / 4;
const int rprThreshold2 = ( 1 << SCALE_RATIO_BITS ) * 7 / 4;
if( filterIndex == 0 )
{
if( scalingRatio.first > rprThreshold2 )
{
xFilter = 4;
}
else if( scalingRatio.first > rprThreshold1 )
{
xFilter = 3;
}
if( scalingRatio.second > rprThreshold2 )
{
yFilter = 4;
}
else if( scalingRatio.second > rprThreshold1 )
{
yFilter = 3;
}
}
#endif
const int posShift = SCALE_RATIO_BITS - 4;
int stepX = ( scalingRatio.first + 8 ) >> 4;
int stepY = ( scalingRatio.second + 8 ) >> 4;
int64_t x0Int;
int64_t y0Int;
int offX = 1 << ( posShift - shiftHor - 1 );
int offY = 1 << ( posShift - shiftVer - 1 );
x0Int = ( ( blk.pos().x << ( 4 + ::getComponentScaleX( compID, chFmt ) ) ) + mv.getHor() )* (int64_t)scalingRatio.first;
x0Int = SIGN( x0Int ) * ( ( llabs( x0Int ) + ( (long long)1 << ( 7 + ::getComponentScaleX( compID, chFmt ) ) ) ) >> ( 8 + ::getComponentScaleX( compID, chFmt ) ) );
y0Int = ( ( blk.pos().y << ( 4 + ::getComponentScaleY( compID, chFmt ) ) ) + mv.getVer() )* (int64_t)scalingRatio.second;
y0Int = SIGN( y0Int ) * ( ( llabs( y0Int ) + ( (long long)1 << ( 7 + ::getComponentScaleY( compID, chFmt ) ) ) ) >> ( 8 + ::getComponentScaleY( compID, chFmt ) ) );
const int extSize = isLuma( compID ) ? 1 : 2;
int vFilterSize = isLuma( compID ) ? NTAPS_LUMA : NTAPS_CHROMA;
int yInt0 = ( (int32_t)y0Int + offY ) >> posShift;
yInt0 = std::min( std::max( -(NTAPS_LUMA / 2), yInt0 ), ( refPicHeight >> ::getComponentScaleY( compID, chFmt ) ) + (NTAPS_LUMA / 2) );
int xInt0 = ( (int32_t)x0Int + offX ) >> posShift;
xInt0 = std::min( std::max( -(NTAPS_LUMA / 2), xInt0 ), ( refPicWidth >> ::getComponentScaleX( compID, chFmt ) ) + (NTAPS_LUMA / 2) );
int refHeight = ((((int32_t)y0Int + (height-1) * stepY) + offY ) >> posShift) - ((((int32_t)y0Int + 0 * stepY) + offY ) >> posShift) + 1;
refHeight = std::max<int>( 1, refHeight );
CHECK( MAX_CU_SIZE * MAX_SCALING_RATIO < refHeight + vFilterSize - 1 + extSize, "Buffer size is not enough, increase MAX_SCALING_RATIO" );
Pel buffer[( MAX_CU_SIZE + 16 ) * ( MAX_CU_SIZE * MAX_SCALING_RATIO + 16 )];
int tmpStride = width;
int xInt = 0, yInt = 0;
for( col = 0; col < width; col++ )
{
int posX = (int32_t)x0Int + col * stepX;
xInt = ( posX + offX ) >> posShift;
xInt = std::min( std::max( -(NTAPS_LUMA / 2), xInt ), ( refPicWidth >> ::getComponentScaleX( compID, chFmt ) ) + (NTAPS_LUMA / 2) );
int xFrac = ( ( posX + offX ) >> ( posShift - shiftHor ) ) & ( ( 1 << shiftHor ) - 1 );
CHECK( xInt0 > xInt, "Wrong horizontal starting point" );
Position offset = Position( xInt, yInt0 );
refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, offset, Size( 1, refHeight ) ), wrapRef );
Pel* tempBuf = buffer + col;
#if JVET_P0088_P0353_RPR_FILTERS
m_if.filterHor( compID, (Pel*)refBuf.buf - ( ( vFilterSize >> 1 ) - 1 ) * refBuf.stride, refBuf.stride, tempBuf, tmpStride, 1, refHeight + vFilterSize - 1 + extSize, xFrac, false, chFmt, clpRng, xFilter, false, useAltHpelIf );
#else
m_if.filterHor( compID, (Pel*)refBuf.buf - ( ( vFilterSize >> 1 ) - 1 ) * refBuf.stride, refBuf.stride, tempBuf, tmpStride, 1, refHeight + vFilterSize - 1 + extSize, xFrac, false, chFmt, clpRng, filterIndex, false, useAltHpelIf );
#endif
}
for( row = 0; row < height; row++ )
{
int posY = (int32_t)y0Int + row * stepY;
yInt = ( posY + offY ) >> posShift;
yInt = std::min( std::max( -(NTAPS_LUMA / 2), yInt ), ( refPicHeight >> ::getComponentScaleY( compID, chFmt ) ) + (NTAPS_LUMA / 2) );
int yFrac = ( ( posY + offY ) >> ( posShift - shiftVer ) ) & ( ( 1 << shiftVer ) - 1 );
CHECK( yInt0 > yInt, "Wrong vertical starting point" );
Pel* tempBuf = buffer + ( yInt - yInt0 ) * tmpStride;
JVET_J0090_SET_CACHE_ENABLE( false );
#if JVET_P0088_P0353_RPR_FILTERS
m_if.filterVer( compID, tempBuf + ( ( vFilterSize >> 1 ) - 1 ) * tmpStride, tmpStride, dst + row * dstStride, dstStride, width, 1, yFrac, false, rndRes, chFmt, clpRng, yFilter, false, useAltHpelIf );
#else
m_if.filterVer( compID, tempBuf + ( ( vFilterSize >> 1 ) - 1 ) * tmpStride, tmpStride, dst + row * dstStride, dstStride, width, 1, yFrac, false, rndRes, chFmt, clpRng, filterIndex, false, useAltHpelIf );
#endif
JVET_J0090_SET_CACHE_ENABLE( true );
}
Position offset = Position( xInt, yInt );
refBuf = refPic->getRecoBuf( CompArea( compID, chFmt, offset, Size( 1, 1 ) ), wrapRef );
}
return scaled;
}