-
Karsten Suehring authoredKarsten Suehring authored
AffineGradientSearch.cpp 6.61 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2020, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
* \brief Implementation of AffineGradientSearch class
*/
// ====================================================================================================================
// Includes
// ====================================================================================================================
#include "AffineGradientSearch.h"
//! \ingroup CommonLib
//! \{
// ====================================================================================================================
// Private member functions
// ====================================================================================================================
AffineGradientSearch::AffineGradientSearch()
{
m_HorizontalSobelFilter = xHorizontalSobelFilter;
m_VerticalSobelFilter = xVerticalSobelFilter;
m_EqualCoeffComputer = xEqualCoeffComputer;
#if ENABLE_SIMD_OPT_AFFINE_ME
#ifdef TARGET_SIMD_X86
initAffineGradientSearchX86();
#endif
#endif
}
void AffineGradientSearch::xHorizontalSobelFilter( Pel *const pPred, const int predStride, int *const pDerivate, const int derivateBufStride, const int width, const int height )
{
for ( int j = 1; j < height - 1; j++ )
{
for ( int k = 1; k < width - 1; k++ )
{
int iCenter = j * predStride + k;
pDerivate[j * derivateBufStride + k] =
(pPred[iCenter + 1 - predStride] -
pPred[iCenter - 1 - predStride] +
(pPred[iCenter + 1] << 1) -
(pPred[iCenter - 1] << 1) +
pPred[iCenter + 1 + predStride] -
pPred[iCenter - 1 + predStride]);
}
pDerivate[j * derivateBufStride] = pDerivate[j * derivateBufStride + 1];
pDerivate[j * derivateBufStride + width - 1] = pDerivate[j * derivateBufStride + width - 2];
}
pDerivate[0] = pDerivate[derivateBufStride + 1];
pDerivate[width - 1] = pDerivate[derivateBufStride + width - 2];
pDerivate[(height - 1) * derivateBufStride] = pDerivate[(height - 2) * derivateBufStride + 1];
pDerivate[(height - 1) * derivateBufStride + width - 1] = pDerivate[(height - 2) * derivateBufStride + (width - 2)];
for ( int j = 1; j < width - 1; j++ )
{
pDerivate[j] = pDerivate[derivateBufStride + j];
pDerivate[(height - 1) * derivateBufStride + j] = pDerivate[(height - 2) * derivateBufStride + j];
}
}
void AffineGradientSearch::xVerticalSobelFilter( Pel *const pPred, const int predStride, int *const pDerivate, const int derivateBufStride, const int width, const int height )
{
for ( int k = 1; k < width - 1; k++ )
{
for ( int j = 1; j < height - 1; j++ )
{
int iCenter = j * predStride + k;
pDerivate[j * derivateBufStride + k] =
(pPred[iCenter + predStride - 1] -
pPred[iCenter - predStride - 1] +
(pPred[iCenter + predStride] << 1) -
(pPred[iCenter - predStride] << 1) +
pPred[iCenter + predStride + 1] -
pPred[iCenter - predStride + 1]);
}
pDerivate[k] = pDerivate[derivateBufStride + k];
pDerivate[(height - 1) * derivateBufStride + k] = pDerivate[(height - 2) * derivateBufStride + k];
}
pDerivate[0] = pDerivate[derivateBufStride + 1];
pDerivate[width - 1] = pDerivate[derivateBufStride + width - 2];
pDerivate[(height - 1) * derivateBufStride] = pDerivate[(height - 2) * derivateBufStride + 1];
pDerivate[(height - 1) * derivateBufStride + width - 1] = pDerivate[(height - 2) * derivateBufStride + (width - 2)];
for ( int j = 1; j < height - 1; j++ )
{
pDerivate[j * derivateBufStride] = pDerivate[j * derivateBufStride + 1];
pDerivate[j * derivateBufStride + width - 1] = pDerivate[j * derivateBufStride + width - 2];
}
}
void AffineGradientSearch::xEqualCoeffComputer( Pel *pResidue, int residueStride, int **ppDerivate, int derivateBufStride, int64_t( *pEqualCoeff )[7], int width, int height, bool b6Param )
{
int affineParamNum = b6Param ? 6 : 4;
for ( int j = 0; j != height; j++ )
{
int cy = ((j >> 2) << 2) + 2;
for ( int k = 0; k != width; k++ )
{
int iC[6];
int idx = j * derivateBufStride + k;
int cx = ((k >> 2) << 2) + 2;
if ( !b6Param )
{
iC[0] = ppDerivate[0][idx];
iC[1] = cx * ppDerivate[0][idx] + cy * ppDerivate[1][idx];
iC[2] = ppDerivate[1][idx];
iC[3] = cy * ppDerivate[0][idx] - cx * ppDerivate[1][idx];
}
else
{
iC[0] = ppDerivate[0][idx];
iC[1] = cx * ppDerivate[0][idx];
iC[2] = ppDerivate[1][idx];
iC[3] = cx * ppDerivate[1][idx];
iC[4] = cy * ppDerivate[0][idx];
iC[5] = cy * ppDerivate[1][idx];
}
for ( int col = 0; col < affineParamNum; col++ )
{
for ( int row = 0; row < affineParamNum; row++ )
{
pEqualCoeff[col + 1][row] += (int64_t)iC[col] * iC[row];
}
pEqualCoeff[col + 1][affineParamNum] += ((int64_t)iC[col] * pResidue[idx]) << 3;
}
}
}
}
//! \}