-
Karsten Suehring authored
AMVR (formely IMV) now has only one mode, which used to be mode #2 - remove SPS imv_mode parameter - remove encoder configuration for mode #1 (mode #2 replaces mode #1) - adapt config files to refer tp mode #1 - rename SPS syntax elements and access functions to AMVR Note: IMV to AMVR renaming in other parts of the software should be done by proponents.
Karsten Suehring authoredAMVR (formely IMV) now has only one mode, which used to be mode #2 - remove SPS imv_mode parameter - remove encoder configuration for mode #1 (mode #2 replaces mode #1) - adapt config files to refer tp mode #1 - rename SPS syntax elements and access functions to AMVR Note: IMV to AMVR renaming in other parts of the software should be done by proponents.
Slice.cpp 88.43 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file Slice.cpp
\brief slice header and SPS class
*/
#include "CommonDef.h"
#include "Unit.h"
#include "Slice.h"
#include "Picture.h"
#include "dtrace_next.h"
#include "UnitTools.h"
//! \ingroup CommonLib
//! \{
Slice::Slice()
: m_iPPSId ( -1 )
, m_PicOutputFlag ( true )
, m_iPOC ( 0 )
, m_iLastIDR ( 0 )
, m_iAssociatedIRAP ( 0 )
, m_iAssociatedIRAPType ( NAL_UNIT_INVALID )
, m_pRPS ( 0 )
, m_localRPS ( )
, m_rpsIdx ( 0 )
, m_RefPicListModification ( )
, m_eNalUnitType ( NAL_UNIT_CODED_SLICE_IDR_W_RADL )
, m_eSliceType ( I_SLICE )
, m_iSliceQp ( 0 )
#if HEVC_DEPENDENT_SLICES
, m_dependentSliceSegmentFlag ( false )
#endif
, m_ChromaQpAdjEnabled ( false )
, m_deblockingFilterDisable ( false )
, m_deblockingFilterOverrideFlag ( false )
, m_deblockingFilterBetaOffsetDiv2( 0 )
, m_deblockingFilterTcOffsetDiv2 ( 0 )
, m_pendingRasInit ( false )
, m_depQuantEnabledFlag ( false )
#if HEVC_USE_SIGN_HIDING
, m_signDataHidingEnabledFlag ( false )
#endif
, m_bCheckLDC ( false )
#if JVET_M0444_SMVD
, m_biDirPred ( false )
#endif
, m_iSliceQpDelta ( 0 )
, m_iDepth ( 0 )
#if HEVC_VPS
, m_pcVPS ( NULL )
#endif
, m_pcSPS ( NULL )
, m_pcPPS ( NULL )
, m_pcPic ( NULL )
, m_colFromL0Flag ( true )
, m_noOutputPriorPicsFlag ( false )
, m_noRaslOutputFlag ( false )
, m_handleCraAsBlaFlag ( false )
, m_colRefIdx ( 0 )
, m_maxNumMergeCand ( 0 )
, m_maxNumAffineMergeCand ( 0 )
#if JVET_M0255_FRACMMVD_SWITCH
, m_disFracMMVD ( false )
#endif
, m_uiTLayer ( 0 )
, m_bTLayerSwitchingFlag ( false )
, m_sliceMode ( NO_SLICES )
, m_sliceArgument ( 0 )
, m_sliceCurStartCtuTsAddr ( 0 )
, m_sliceCurEndCtuTsAddr ( 0 )
, m_independentSliceIdx ( 0 )
#if HEVC_DEPENDENT_SLICES
, m_sliceSegmentIdx ( 0 )
, m_sliceSegmentMode ( NO_SLICES )
, m_sliceSegmentArgument ( 0 )
, m_sliceSegmentCurStartCtuTsAddr ( 0 )
, m_sliceSegmentCurEndCtuTsAddr ( 0 )
#endif
, m_nextSlice ( false )
#if HEVC_DEPENDENT_SLICES
, m_nextSliceSegment ( false )
#endif
, m_sliceBits ( 0 )
#if HEVC_DEPENDENT_SLICES
, m_sliceSegmentBits ( 0 )
#endif
, m_bFinalized ( false )
, m_bTestWeightPred ( false )
, m_bTestWeightBiPred ( false )
, m_substreamSizes ( )
, m_cabacInitFlag ( false )
, m_cabacWinUpdateMode ( 0 )
, m_bLMvdL1Zero ( false )
, m_temporalLayerNonReferenceFlag ( false )
, m_LFCrossSliceBoundaryFlag ( false )
, m_enableTMVPFlag ( true )
, m_encCABACTableIdx (I_SLICE)
, m_iProcessingStartTime ( 0 )
, m_dProcessingTime ( 0 )
, m_splitConsOverrideFlag ( false )
, m_uiMinQTSize ( 0 )
, m_uiMaxBTDepth ( 0 )
, m_uiMaxTTSize ( 0 )
, m_uiMinQTSizeIChroma ( 0 )
, m_uiMaxBTDepthIChroma ( 0 )
, m_uiMaxBTSizeIChroma ( 0 )
, m_uiMaxTTSizeIChroma ( 0 )
, m_uiMaxBTSize ( 0 )
, m_MotionCandLut (NULL)
#if JVET_M0170_MRG_SHARELIST
, m_MotionCandLuTsBkup (NULL)
#endif
{
for(uint32_t i=0; i<NUM_REF_PIC_LIST_01; i++)
{
m_aiNumRefIdx[i] = 0;
}
for (uint32_t component = 0; component < MAX_NUM_COMPONENT; component++)
{
m_lambdas [component] = 0.0;
m_iSliceChromaQpDelta[component] = 0;
}
initEqualRef();
for ( int idx = 0; idx < MAX_NUM_REF; idx++ )
{
m_list1IdxToList0Idx[idx] = -1;
}
for(int iNumCount = 0; iNumCount < MAX_NUM_REF; iNumCount++)
{
for(uint32_t i=0; i<NUM_REF_PIC_LIST_01; i++)
{
m_apcRefPicList [i][iNumCount] = NULL;
m_aiRefPOCList [i][iNumCount] = 0;
}
}
resetWpScaling();
initWpAcDcParam();
for(int ch=0; ch < MAX_NUM_CHANNEL_TYPE; ch++)
{
m_saoEnabledFlag[ch] = false;
}
initMotionLUTs();
#if JVET_M0427_INLOOP_RESHAPER
m_sliceReshapeInfo.setUseSliceReshaper(false);
m_sliceReshapeInfo.setSliceReshapeModelPresentFlag(false);
m_sliceReshapeInfo.setSliceReshapeChromaAdj(0);
m_sliceReshapeInfo.reshaperModelMinBinIdx = 0;
m_sliceReshapeInfo.reshaperModelMaxBinIdx = PIC_CODE_CW_BINS - 1;
memset(m_sliceReshapeInfo.reshaperModelBinCWDelta, 0, PIC_CODE_CW_BINS * sizeof(int));
#endif
}
Slice::~Slice()
{
destroyMotionLUTs();
}
void Slice::initSlice()
{
for(uint32_t i=0; i<NUM_REF_PIC_LIST_01; i++)
{
m_aiNumRefIdx[i] = 0;
}
m_colFromL0Flag = true;
m_colRefIdx = 0;
initEqualRef();
m_bCheckLDC = false;
#if JVET_M0444_SMVD
m_biDirPred = false;
m_symRefIdx[0] = -1;
m_symRefIdx[1] = -1;
#endif
for (uint32_t component = 0; component < MAX_NUM_COMPONENT; component++)
{
m_iSliceChromaQpDelta[component] = 0;
}
m_maxNumMergeCand = MRG_MAX_NUM_CANDS;
m_maxNumAffineMergeCand = AFFINE_MRG_MAX_NUM_CANDS;
m_bFinalized=false;
#if JVET_M0255_FRACMMVD_SWITCH
m_disFracMMVD = false;
#endif
m_substreamSizes.clear();
m_cabacInitFlag = false;
m_cabacWinUpdateMode = 0;
m_enableTMVPFlag = true;
resetMotionLUTs();
}
void Slice::setDefaultClpRng( const SPS& sps )
{
m_clpRngs.comp[COMPONENT_Y].min = m_clpRngs.comp[COMPONENT_Cb].min = m_clpRngs.comp[COMPONENT_Cr].min = 0;
m_clpRngs.comp[COMPONENT_Y].max = (1<< sps.getBitDepth(CHANNEL_TYPE_LUMA))-1;
m_clpRngs.comp[COMPONENT_Y].bd = sps.getBitDepth(CHANNEL_TYPE_LUMA);
m_clpRngs.comp[COMPONENT_Y].n = 0;
m_clpRngs.comp[COMPONENT_Cb].max = m_clpRngs.comp[COMPONENT_Cr].max = (1<< sps.getBitDepth(CHANNEL_TYPE_CHROMA))-1;
m_clpRngs.comp[COMPONENT_Cb].bd = m_clpRngs.comp[COMPONENT_Cr].bd = sps.getBitDepth(CHANNEL_TYPE_CHROMA);
m_clpRngs.comp[COMPONENT_Cb].n = m_clpRngs.comp[COMPONENT_Cr].n = 0;
m_clpRngs.used = m_clpRngs.chroma = false;
}
bool Slice::getRapPicFlag() const
{
return getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA;
}
void Slice::sortPicList (PicList& rcListPic)
{
Picture* pcPicExtract;
Picture* pcPicInsert;
PicList::iterator iterPicExtract;
PicList::iterator iterPicExtract_1;
PicList::iterator iterPicInsert;
for (int i = 1; i < (int)(rcListPic.size()); i++)
{
iterPicExtract = rcListPic.begin();
for (int j = 0; j < i; j++)
{
iterPicExtract++;
}
pcPicExtract = *(iterPicExtract);
iterPicInsert = rcListPic.begin();
while (iterPicInsert != iterPicExtract)
{
pcPicInsert = *(iterPicInsert);
if (pcPicInsert->getPOC() >= pcPicExtract->getPOC())
{
break;
}
iterPicInsert++;
}
iterPicExtract_1 = iterPicExtract; iterPicExtract_1++;
// swap iterPicExtract and iterPicInsert, iterPicExtract = curr. / iterPicInsert = insertion position
rcListPic.insert( iterPicInsert, iterPicExtract, iterPicExtract_1 );
rcListPic.erase( iterPicExtract );
}
}
Picture* Slice::xGetRefPic (PicList& rcListPic, int poc)
{
PicList::iterator iterPic = rcListPic.begin();
Picture* pcPic = *(iterPic);
while ( iterPic != rcListPic.end() )
{
if(pcPic->getPOC() == poc)
{
break;
}
iterPic++;
pcPic = *(iterPic);
}
return pcPic;
}
Picture* Slice::xGetLongTermRefPic( PicList& rcListPic, int poc, bool pocHasMsb)
{
PicList::iterator iterPic = rcListPic.begin();
Picture* pcPic = *(iterPic);
Picture* pcStPic = pcPic;
int pocCycle = 1 << getSPS()->getBitsForPOC();
if (!pocHasMsb)
{
poc = poc & (pocCycle - 1);
}
while ( iterPic != rcListPic.end() )
{
pcPic = *(iterPic);
if (pcPic && pcPic->getPOC()!=this->getPOC() && pcPic->referenced)
{
int picPoc = pcPic->getPOC();
if (!pocHasMsb)
{
picPoc = picPoc & (pocCycle - 1);
}
if (poc == picPoc)
{
if(pcPic->longTerm)
{
return pcPic;
}
else
{
pcStPic = pcPic;
}
break;
}
}
iterPic++;
}
return pcStPic;
}
void Slice::setRefPOCList ()
{
for (int iDir = 0; iDir < NUM_REF_PIC_LIST_01; iDir++)
{
for (int iNumRefIdx = 0; iNumRefIdx < m_aiNumRefIdx[iDir]; iNumRefIdx++)
{
m_aiRefPOCList[iDir][iNumRefIdx] = m_apcRefPicList[iDir][iNumRefIdx]->getPOC();
}
}
}
void Slice::setList1IdxToList0Idx()
{
int idxL0, idxL1;
for ( idxL1 = 0; idxL1 < getNumRefIdx( REF_PIC_LIST_1 ); idxL1++ )
{
m_list1IdxToList0Idx[idxL1] = -1;
for ( idxL0 = 0; idxL0 < getNumRefIdx( REF_PIC_LIST_0 ); idxL0++ )
{
if ( m_apcRefPicList[REF_PIC_LIST_0][idxL0]->getPOC() == m_apcRefPicList[REF_PIC_LIST_1][idxL1]->getPOC() )
{
m_list1IdxToList0Idx[idxL1] = idxL0;
break;
}
}
}
}
void Slice::setRefPicList( PicList& rcListPic, bool checkNumPocTotalCurr, bool bCopyL0toL1ErrorCase )
{
if ( m_eSliceType == I_SLICE)
{
::memset( m_apcRefPicList, 0, sizeof (m_apcRefPicList));
::memset( m_aiNumRefIdx, 0, sizeof ( m_aiNumRefIdx ));
if (!checkNumPocTotalCurr)
{
return;
}
}
Picture* pcRefPic= NULL;
static const uint32_t MAX_NUM_NEGATIVE_PICTURES=16;
Picture* RefPicSetStCurr0[MAX_NUM_NEGATIVE_PICTURES];
Picture* RefPicSetStCurr1[MAX_NUM_NEGATIVE_PICTURES];
Picture* RefPicSetLtCurr[MAX_NUM_NEGATIVE_PICTURES];
uint32_t NumPicStCurr0 = 0;
uint32_t NumPicStCurr1 = 0;
uint32_t NumPicLtCurr = 0;
int i;
for(i=0; i < m_pRPS->getNumberOfNegativePictures(); i++)
{
if(m_pRPS->getUsed(i))
{
pcRefPic = xGetRefPic(rcListPic, getPOC()+m_pRPS->getDeltaPOC(i));
pcRefPic->longTerm = false;
pcRefPic->extendPicBorder();
RefPicSetStCurr0[NumPicStCurr0] = pcRefPic;
NumPicStCurr0++;
}
}
for(; i < m_pRPS->getNumberOfNegativePictures()+m_pRPS->getNumberOfPositivePictures(); i++)
{
if(m_pRPS->getUsed(i))
{
pcRefPic = xGetRefPic(rcListPic, getPOC()+m_pRPS->getDeltaPOC(i));
pcRefPic->longTerm = false;
pcRefPic->extendPicBorder();
RefPicSetStCurr1[NumPicStCurr1] = pcRefPic;
NumPicStCurr1++;
}
}
for(i = m_pRPS->getNumberOfNegativePictures()+m_pRPS->getNumberOfPositivePictures()+m_pRPS->getNumberOfLongtermPictures()-1; i > m_pRPS->getNumberOfNegativePictures()+m_pRPS->getNumberOfPositivePictures()-1 ; i--)
{
if(m_pRPS->getUsed(i))
{
pcRefPic = xGetLongTermRefPic(rcListPic, m_pRPS->getPOC(i), m_pRPS->getCheckLTMSBPresent(i));
pcRefPic->longTerm = true;
pcRefPic->extendPicBorder();
RefPicSetLtCurr[NumPicLtCurr] = pcRefPic;
NumPicLtCurr++;
}
if(pcRefPic==NULL)
{
pcRefPic = xGetLongTermRefPic(rcListPic, m_pRPS->getPOC(i), m_pRPS->getCheckLTMSBPresent(i));
}
}
#if JVET_M0483_IBC==0
if (getSPS()->getIBCMode())
{
RefPicSetLtCurr[NumPicLtCurr] = getPic();
//getPic()->setIsLongTerm(true);
getPic()->longTerm = true;
NumPicLtCurr++;
}
#endif
// ref_pic_list_init
Picture* rpsCurrList0[MAX_NUM_REF+1];
Picture* rpsCurrList1[MAX_NUM_REF+1];
int numPicTotalCurr = NumPicStCurr0 + NumPicStCurr1 + NumPicLtCurr;
if (checkNumPocTotalCurr)
{
// The variable NumPocTotalCurr is derived as specified in subclause 7.4.7.2. It is a requirement of bitstream conformance that the following applies to the value of NumPocTotalCurr:
// - If the current picture is a BLA or CRA picture, the value of NumPocTotalCurr shall be equal to 0.
// - Otherwise, when the current picture contains a P or B slice, the value of NumPocTotalCurr shall not be equal to 0.
if (getRapPicFlag())
{
#if JVET_M0483_IBC==0
if (getSPS()->getIBCMode())
{
CHECK(numPicTotalCurr != 1, "Invalid state");
}
else
#endif
CHECK(numPicTotalCurr != 0, "Invalid state");
}
if (m_eSliceType == I_SLICE)
{
return;
}
CHECK(numPicTotalCurr == 0, "Invalid state");
// general tier and level limit:
CHECK(numPicTotalCurr > 8, "Invalid state");
}
int cIdx = 0;
for ( i=0; i<NumPicStCurr0; i++, cIdx++)
{
rpsCurrList0[cIdx] = RefPicSetStCurr0[i];
}
for ( i=0; i<NumPicStCurr1; i++, cIdx++)
{
rpsCurrList0[cIdx] = RefPicSetStCurr1[i];
}
for ( i=0; i<NumPicLtCurr; i++, cIdx++)
{
rpsCurrList0[cIdx] = RefPicSetLtCurr[i];
}
CHECK(cIdx != numPicTotalCurr, "Invalid state");
if (m_eSliceType==B_SLICE)
{
cIdx = 0;
for ( i=0; i<NumPicStCurr1; i++, cIdx++)
{
rpsCurrList1[cIdx] = RefPicSetStCurr1[i];
}
for ( i=0; i<NumPicStCurr0; i++, cIdx++)
{
rpsCurrList1[cIdx] = RefPicSetStCurr0[i];
}
for ( i=0; i<NumPicLtCurr; i++, cIdx++)
{
rpsCurrList1[cIdx] = RefPicSetLtCurr[i];
}
CHECK(cIdx != numPicTotalCurr, "Invalid state");
}
::memset(m_bIsUsedAsLongTerm, 0, sizeof(m_bIsUsedAsLongTerm));
for (int rIdx = 0; rIdx < m_aiNumRefIdx[REF_PIC_LIST_0]; rIdx ++)
{
cIdx = m_RefPicListModification.getRefPicListModificationFlagL0() ? m_RefPicListModification.getRefPicSetIdxL0(rIdx) : rIdx % numPicTotalCurr;
CHECK(cIdx < 0 || cIdx >= numPicTotalCurr, "Invalid state");
m_apcRefPicList[REF_PIC_LIST_0][rIdx] = rpsCurrList0[ cIdx ];
m_bIsUsedAsLongTerm[REF_PIC_LIST_0][rIdx] = ( cIdx >= NumPicStCurr0 + NumPicStCurr1 );
}
if ( m_eSliceType != B_SLICE )
{
m_aiNumRefIdx[REF_PIC_LIST_1] = 0;
::memset( m_apcRefPicList[REF_PIC_LIST_1], 0, sizeof(m_apcRefPicList[REF_PIC_LIST_1]));
}
else
{
for (int rIdx = 0; rIdx < m_aiNumRefIdx[REF_PIC_LIST_1]; rIdx ++)
{
cIdx = m_RefPicListModification.getRefPicListModificationFlagL1() ? m_RefPicListModification.getRefPicSetIdxL1(rIdx) : rIdx % numPicTotalCurr;
CHECK(cIdx < 0 || cIdx >= numPicTotalCurr, "Invalid state");
m_apcRefPicList[REF_PIC_LIST_1][rIdx] = rpsCurrList1[ cIdx ];
m_bIsUsedAsLongTerm[REF_PIC_LIST_1][rIdx] = ( cIdx >= NumPicStCurr0 + NumPicStCurr1 );
}
}
#if JVET_M0483_IBC==0
if (getSPS()->getIBCMode())
{
m_apcRefPicList[REF_PIC_LIST_0][m_aiNumRefIdx[REF_PIC_LIST_0] - 1] = getPic();
m_bIsUsedAsLongTerm[REF_PIC_LIST_0][m_aiNumRefIdx[REF_PIC_LIST_0] - 1] = true;
}
#endif
// For generalized B
// note: maybe not existed case (always L0 is copied to L1 if L1 is empty)
if( bCopyL0toL1ErrorCase && isInterB() && getNumRefIdx(REF_PIC_LIST_1) == 0)
{
int iNumRefIdx = getNumRefIdx(REF_PIC_LIST_0);
setNumRefIdx( REF_PIC_LIST_1, iNumRefIdx );
for (int iRefIdx = 0; iRefIdx < iNumRefIdx; iRefIdx++)
{
m_apcRefPicList[REF_PIC_LIST_1][iRefIdx] = m_apcRefPicList[REF_PIC_LIST_0] [iRefIdx];
}
}
}
int Slice::getNumRpsCurrTempList() const
{
int numRpsCurrTempList = 0;
if (m_eSliceType == I_SLICE)
{
return 0;
}
for(uint32_t i=0; i < m_pRPS->getNumberOfNegativePictures()+ m_pRPS->getNumberOfPositivePictures() + m_pRPS->getNumberOfLongtermPictures(); i++)
{
if(m_pRPS->getUsed(i))
{
numRpsCurrTempList++;
}
}
#if JVET_M0483_IBC
if (getSPS()->getIBCFlag())
#else
if (getSPS()->getIBCMode())
#endif
{
return numRpsCurrTempList + 1;
}
else
return numRpsCurrTempList;
}
void Slice::initEqualRef()
{
for (int iDir = 0; iDir < NUM_REF_PIC_LIST_01; iDir++)
{
for (int iRefIdx1 = 0; iRefIdx1 < MAX_NUM_REF; iRefIdx1++)
{
for (int iRefIdx2 = iRefIdx1; iRefIdx2 < MAX_NUM_REF; iRefIdx2++)
{
m_abEqualRef[iDir][iRefIdx1][iRefIdx2] = m_abEqualRef[iDir][iRefIdx2][iRefIdx1] = (iRefIdx1 == iRefIdx2? true : false);
}
}
}
}
void Slice::checkColRefIdx(uint32_t curSliceSegmentIdx, const Picture* pic)
{
int i;
Slice* curSlice = pic->slices[curSliceSegmentIdx];
int currColRefPOC = curSlice->getRefPOC( RefPicList(1 - curSlice->getColFromL0Flag()), curSlice->getColRefIdx());
for(i=curSliceSegmentIdx-1; i>=0; i--)
{
const Slice* preSlice = pic->slices[i];
if(preSlice->getSliceType() != I_SLICE)
{
const int preColRefPOC = preSlice->getRefPOC( RefPicList(1 - preSlice->getColFromL0Flag()), preSlice->getColRefIdx());
if(currColRefPOC != preColRefPOC)
{
THROW("Collocated_ref_idx shall always be the same for all slices of a coded picture!");
}
else
{
break;
}
}
}
}
void Slice::checkCRA(const ReferencePictureSet *pReferencePictureSet, int& pocCRA, NalUnitType& associatedIRAPType, PicList& rcListPic)
{
for(int i = 0; i < pReferencePictureSet->getNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures(); i++)
{
if(pocCRA < MAX_UINT && getPOC() > pocCRA)
{
CHECK(getPOC()+pReferencePictureSet->getDeltaPOC(i) < pocCRA, "Invalid state");
}
}
for(int i = pReferencePictureSet->getNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures(); i < pReferencePictureSet->getNumberOfPictures(); i++)
{
if(pocCRA < MAX_UINT && getPOC() > pocCRA)
{
if (!pReferencePictureSet->getCheckLTMSBPresent(i))
{
CHECK(xGetLongTermRefPic(rcListPic, pReferencePictureSet->getPOC(i), false)->getPOC() < pocCRA, "Invalid state");
}
else
{
CHECK(pReferencePictureSet->getPOC(i) < pocCRA, "Invalid state");
}
}
}
if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL || getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP ) // IDR picture found
{
pocCRA = getPOC();
associatedIRAPType = getNalUnitType();
}
else if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA ) // CRA picture found
{
pocCRA = getPOC();
associatedIRAPType = getNalUnitType();
}
else if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP ) // BLA picture found
{
pocCRA = getPOC();
associatedIRAPType = getNalUnitType();
}
}
/** Function for marking the reference pictures when an IDR/CRA/CRANT/BLA/BLANT is encountered.
* \param pocCRA POC of the CRA/CRANT/BLA/BLANT picture
* \param bRefreshPending flag indicating if a deferred decoding refresh is pending
* \param rcListPic reference to the reference picture list
* This function marks the reference pictures as "unused for reference" in the following conditions.
* If the nal_unit_type is IDR/BLA/BLANT, all pictures in the reference picture list
* are marked as "unused for reference"
* If the nal_unit_type is BLA/BLANT, set the pocCRA to the temporal reference of the current picture.
* Otherwise
* If the bRefreshPending flag is true (a deferred decoding refresh is pending) and the current
* temporal reference is greater than the temporal reference of the latest CRA/CRANT/BLA/BLANT picture (pocCRA),
* mark all reference pictures except the latest CRA/CRANT/BLA/BLANT picture as "unused for reference" and set
* the bRefreshPending flag to false.
* If the nal_unit_type is CRA/CRANT, set the bRefreshPending flag to true and pocCRA to the temporal
* reference of the current picture.
* Note that the current picture is already placed in the reference list and its marking is not changed.
* If the current picture has a nal_ref_idc that is not 0, it will remain marked as "used for reference".
*/
void Slice::decodingRefreshMarking(int& pocCRA, bool& bRefreshPending, PicList& rcListPic, const bool bEfficientFieldIRAPEnabled)
{
Picture* rpcPic;
int pocCurr = getPOC();
if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP ) // IDR or BLA picture
{
// mark all pictures as not used for reference
PicList::iterator iterPic = rcListPic.begin();
while (iterPic != rcListPic.end())
{
rpcPic = *(iterPic);
if (rpcPic->getPOC() != pocCurr)
{
rpcPic->referenced = false;
#if JVET_M0253_HASH_ME
rpcPic->getHashMap()->clearAll();
#endif
}
iterPic++;
}
if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL
|| getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP )
{
pocCRA = pocCurr;
}
if (bEfficientFieldIRAPEnabled)
{
bRefreshPending = true;
}
}
else // CRA or No DR
{
if(bEfficientFieldIRAPEnabled && (getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_IDR_N_LP || getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL))
{
if (bRefreshPending==true && pocCurr > m_iLastIDR) // IDR reference marking pending
{
PicList::iterator iterPic = rcListPic.begin();
while (iterPic != rcListPic.end())
{
rpcPic = *(iterPic);
if (rpcPic->getPOC() != pocCurr && rpcPic->getPOC() != m_iLastIDR)
{
rpcPic->referenced = false;
#if JVET_M0253_HASH_ME
rpcPic->getHashMap()->clearAll();
#endif
}
iterPic++;
}
bRefreshPending = false;
}
}
else
{
if (bRefreshPending==true && pocCurr > pocCRA) // CRA reference marking pending
{
PicList::iterator iterPic = rcListPic.begin();
while (iterPic != rcListPic.end())
{
rpcPic = *(iterPic);
if (rpcPic->getPOC() != pocCurr && rpcPic->getPOC() != pocCRA)
{
rpcPic->referenced = false;
#if JVET_M0253_HASH_ME
rpcPic->getHashMap()->clearAll();
#endif
}
iterPic++;
}
bRefreshPending = false;
}
}
if ( getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA ) // CRA picture found
{
bRefreshPending = true;
pocCRA = pocCurr;
}
}
}
void Slice::copySliceInfo(Slice *pSrc, bool cpyAlmostAll)
{
CHECK(!pSrc, "Source is NULL");
int i, j, k;
m_iPOC = pSrc->m_iPOC;
m_eNalUnitType = pSrc->m_eNalUnitType;
m_eSliceType = pSrc->m_eSliceType;
m_iSliceQp = pSrc->m_iSliceQp;
m_iSliceQpBase = pSrc->m_iSliceQpBase;
m_ChromaQpAdjEnabled = pSrc->m_ChromaQpAdjEnabled;
m_deblockingFilterDisable = pSrc->m_deblockingFilterDisable;
m_deblockingFilterOverrideFlag = pSrc->m_deblockingFilterOverrideFlag;
m_deblockingFilterBetaOffsetDiv2 = pSrc->m_deblockingFilterBetaOffsetDiv2;
m_deblockingFilterTcOffsetDiv2 = pSrc->m_deblockingFilterTcOffsetDiv2;
for (i = 0; i < NUM_REF_PIC_LIST_01; i++)
{
m_aiNumRefIdx[i] = pSrc->m_aiNumRefIdx[i];
}
for (i = 0; i < MAX_NUM_REF; i++)
{
m_list1IdxToList0Idx[i] = pSrc->m_list1IdxToList0Idx[i];
}
m_bCheckLDC = pSrc->m_bCheckLDC;
m_iSliceQpDelta = pSrc->m_iSliceQpDelta;
#if JVET_M0444_SMVD
m_biDirPred = pSrc->m_biDirPred;
m_symRefIdx[0] = pSrc->m_symRefIdx[0];
m_symRefIdx[1] = pSrc->m_symRefIdx[1];
#endif
for (uint32_t component = 0; component < MAX_NUM_COMPONENT; component++)
{
m_iSliceChromaQpDelta[component] = pSrc->m_iSliceChromaQpDelta[component];
}
for (i = 0; i < NUM_REF_PIC_LIST_01; i++)
{
for (j = 0; j < MAX_NUM_REF; j++)
{
m_apcRefPicList[i][j] = pSrc->m_apcRefPicList[i][j];
m_aiRefPOCList[i][j] = pSrc->m_aiRefPOCList[i][j];
m_bIsUsedAsLongTerm[i][j] = pSrc->m_bIsUsedAsLongTerm[i][j];
}
m_bIsUsedAsLongTerm[i][MAX_NUM_REF] = pSrc->m_bIsUsedAsLongTerm[i][MAX_NUM_REF];
}
if( cpyAlmostAll ) m_iDepth = pSrc->m_iDepth;
// access channel
if( cpyAlmostAll ) m_pRPS = pSrc->m_pRPS;
m_iLastIDR = pSrc->m_iLastIDR;
if( cpyAlmostAll ) m_pcPic = pSrc->m_pcPic;
m_colFromL0Flag = pSrc->m_colFromL0Flag;
m_colRefIdx = pSrc->m_colRefIdx;
if( cpyAlmostAll ) setLambdas(pSrc->getLambdas());
for (i = 0; i < NUM_REF_PIC_LIST_01; i++)
{
for (j = 0; j < MAX_NUM_REF; j++)
{
for (k =0; k < MAX_NUM_REF; k++)
{
m_abEqualRef[i][j][k] = pSrc->m_abEqualRef[i][j][k];
}
}
}
m_uiTLayer = pSrc->m_uiTLayer;
m_bTLayerSwitchingFlag = pSrc->m_bTLayerSwitchingFlag;
m_sliceMode = pSrc->m_sliceMode;
m_sliceArgument = pSrc->m_sliceArgument;
m_sliceCurStartCtuTsAddr = pSrc->m_sliceCurStartCtuTsAddr;
m_sliceCurEndCtuTsAddr = pSrc->m_sliceCurEndCtuTsAddr;
m_independentSliceIdx = pSrc->m_independentSliceIdx;
#if HEVC_DEPENDENT_SLICES
m_sliceSegmentIdx = pSrc->m_sliceSegmentIdx;
m_sliceSegmentMode = pSrc->m_sliceSegmentMode;
m_sliceSegmentArgument = pSrc->m_sliceSegmentArgument;
m_sliceSegmentCurStartCtuTsAddr = pSrc->m_sliceSegmentCurStartCtuTsAddr;
m_sliceSegmentCurEndCtuTsAddr = pSrc->m_sliceSegmentCurEndCtuTsAddr;
#endif
m_nextSlice = pSrc->m_nextSlice;
#if HEVC_DEPENDENT_SLICES
m_nextSliceSegment = pSrc->m_nextSliceSegment;
#endif
m_clpRngs = pSrc->m_clpRngs;
m_pendingRasInit = pSrc->m_pendingRasInit;
for ( uint32_t e=0 ; e<NUM_REF_PIC_LIST_01 ; e++ )
{
for ( uint32_t n=0 ; n<MAX_NUM_REF ; n++ )
{
memcpy(m_weightPredTable[e][n], pSrc->m_weightPredTable[e][n], sizeof(WPScalingParam)*MAX_NUM_COMPONENT );
}
}
for( uint32_t ch = 0 ; ch < MAX_NUM_CHANNEL_TYPE; ch++)
{
m_saoEnabledFlag[ch] = pSrc->m_saoEnabledFlag[ch];
}
m_cabacInitFlag = pSrc->m_cabacInitFlag;
m_cabacWinUpdateMode = pSrc->m_cabacWinUpdateMode;
m_bLMvdL1Zero = pSrc->m_bLMvdL1Zero;
m_LFCrossSliceBoundaryFlag = pSrc->m_LFCrossSliceBoundaryFlag;
m_enableTMVPFlag = pSrc->m_enableTMVPFlag;
m_maxNumMergeCand = pSrc->m_maxNumMergeCand;
m_maxNumAffineMergeCand = pSrc->m_maxNumAffineMergeCand;
#if JVET_M0255_FRACMMVD_SWITCH
m_disFracMMVD = pSrc->m_disFracMMVD;
#endif
if( cpyAlmostAll ) m_encCABACTableIdx = pSrc->m_encCABACTableIdx;
m_splitConsOverrideFlag = pSrc->m_splitConsOverrideFlag;
m_uiMinQTSize = pSrc->m_uiMinQTSize;
m_uiMaxBTDepth = pSrc->m_uiMaxBTDepth;
m_uiMaxTTSize = pSrc->m_uiMaxTTSize;
m_uiMinQTSizeIChroma = pSrc->m_uiMinQTSizeIChroma;
m_uiMaxBTDepthIChroma = pSrc->m_uiMaxBTDepthIChroma;
m_uiMaxBTSizeIChroma = pSrc->m_uiMaxBTSizeIChroma;
m_uiMaxTTSizeIChroma = pSrc->m_uiMaxTTSizeIChroma;
m_uiMaxBTSize = pSrc->m_uiMaxBTSize;
}
/** Function for checking if this is a switching-point
*/
bool Slice::isTemporalLayerSwitchingPoint(PicList& rcListPic) const
{
// loop through all pictures in the reference picture buffer
PicList::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
const Picture* pcPic = *(iterPic++);
if( pcPic->referenced && pcPic->poc != getPOC())
{
if( pcPic->layer >= getTLayer())
{
return false;
}
}
}
return true;
}
/** Function for checking if this is a STSA candidate
*/
bool Slice::isStepwiseTemporalLayerSwitchingPointCandidate(PicList& rcListPic) const
{
PicList::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
const Picture* pcPic = *(iterPic++);
if( pcPic->referenced && pcPic->usedByCurr && pcPic->poc != getPOC())
{
if( pcPic->layer >= getTLayer())
{
return false;
}
}
}
return true;
}
void Slice::checkLeadingPictureRestrictions(PicList& rcListPic) const
{
int nalUnitType = this->getNalUnitType();
// When a picture is a leading picture, it shall be a RADL or RASL picture.
if(this->getAssociatedIRAPPOC() > this->getPOC())
{
// Do not check IRAP pictures since they may get a POC lower than their associated IRAP
if(nalUnitType < NAL_UNIT_CODED_SLICE_BLA_W_LP ||
nalUnitType > NAL_UNIT_RESERVED_IRAP_VCL23)
{
CHECK( nalUnitType != NAL_UNIT_CODED_SLICE_RASL_N &&
nalUnitType != NAL_UNIT_CODED_SLICE_RASL_R &&
nalUnitType != NAL_UNIT_CODED_SLICE_RADL_N &&
nalUnitType != NAL_UNIT_CODED_SLICE_RADL_R, "Invalid NAL unit type");
}
}
// When a picture is a trailing picture, it shall not be a RADL or RASL picture.
if(this->getAssociatedIRAPPOC() < this->getPOC())
{
CHECK( nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R, "Invalid NAL unit type" );
}
// No RASL pictures shall be present in the bitstream that are associated
// with a BLA picture having nal_unit_type equal to BLA_W_RADL or BLA_N_LP.
if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R)
{
CHECK (this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL ||
this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_N_LP, "Invalid NAL unit type");
}
// No RASL pictures shall be present in the bitstream that are associated with
// an IDR picture.
if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R)
{
CHECK( this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_IDR_N_LP ||
this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL, "Invalid NAL unit type");
}
// No RADL pictures shall be present in the bitstream that are associated with
// a BLA picture having nal_unit_type equal to BLA_N_LP or that are associated
// with an IDR picture having nal_unit_type equal to IDR_N_LP.
if(nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R)
{
CHECK (this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_N_LP ||
this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_IDR_N_LP, "Invalid NAL unit type");
}
// loop through all pictures in the reference picture buffer
PicList::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
Picture* pcPic = *(iterPic++);
if( ! pcPic->reconstructed)
{
continue;
}
if( pcPic->poc == this->getPOC())
{
continue;
}
const Slice* pcSlice = pcPic->slices[0];
// Any picture that has PicOutputFlag equal to 1 that precedes an IRAP picture
// in decoding order shall precede the IRAP picture in output order.
// (Note that any picture following in output order would be present in the DPB)
if(pcSlice->getPicOutputFlag() == 1 && !this->getNoOutputPriorPicsFlag())
{
if(nalUnitType == NAL_UNIT_CODED_SLICE_BLA_N_LP ||
nalUnitType == NAL_UNIT_CODED_SLICE_BLA_W_LP ||
nalUnitType == NAL_UNIT_CODED_SLICE_BLA_W_RADL ||
nalUnitType == NAL_UNIT_CODED_SLICE_CRA ||
nalUnitType == NAL_UNIT_CODED_SLICE_IDR_N_LP ||
nalUnitType == NAL_UNIT_CODED_SLICE_IDR_W_RADL)
{
CHECK(pcPic->poc >= this->getPOC(), "Invalid POC");
}
}
// Any picture that has PicOutputFlag equal to 1 that precedes an IRAP picture
// in decoding order shall precede any RADL picture associated with the IRAP
// picture in output order.
if(pcSlice->getPicOutputFlag() == 1)
{
if((nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R))
{
// rpcPic precedes the IRAP in decoding order
if(this->getAssociatedIRAPPOC() > pcSlice->getAssociatedIRAPPOC())
{
// rpcPic must not be the IRAP picture
if(this->getAssociatedIRAPPOC() != pcPic->poc)
{
CHECK( pcPic->poc >= this->getPOC(), "Invalid POC");
}
}
}
}
// When a picture is a leading picture, it shall precede, in decoding order,
// all trailing pictures that are associated with the same IRAP picture.
if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RADL_R)
{
if(pcSlice->getAssociatedIRAPPOC() == this->getAssociatedIRAPPOC())
{
// rpcPic is a picture that preceded the leading in decoding order since it exist in the DPB
// rpcPic would violate the constraint if it was a trailing picture
CHECK( pcPic->poc > this->getAssociatedIRAPPOC(), "Invalid POC");
}
}
// Any RASL picture associated with a CRA or BLA picture shall precede any
// RADL picture associated with the CRA or BLA picture in output order
if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R)
{
if((this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_N_LP ||
this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_W_LP ||
this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL ||
this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_CRA) &&
this->getAssociatedIRAPPOC() == pcSlice->getAssociatedIRAPPOC())
{
if(pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RADL_N ||
pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_RADL_R)
{
CHECK( pcPic->poc <= this->getPOC(), "Invalid POC");
}
}
}
// Any RASL picture associated with a CRA picture shall follow, in output
// order, any IRAP picture that precedes the CRA picture in decoding order.
if(nalUnitType == NAL_UNIT_CODED_SLICE_RASL_N ||
nalUnitType == NAL_UNIT_CODED_SLICE_RASL_R)
{
if(this->getAssociatedIRAPType() == NAL_UNIT_CODED_SLICE_CRA)
{
if(pcSlice->getPOC() < this->getAssociatedIRAPPOC() &&
(pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_N_LP ||
pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_LP ||
pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_BLA_W_RADL ||
pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_N_LP ||
pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_IDR_W_RADL ||
pcSlice->getNalUnitType() == NAL_UNIT_CODED_SLICE_CRA))
{
CHECK(this->getPOC() <= pcSlice->getPOC(), "Invalid POC");
}
}
}
}
}
/** Function for applying picture marking based on the Reference Picture Set in pReferencePictureSet.
*/
void Slice::applyReferencePictureSet( PicList& rcListPic, const ReferencePictureSet *pReferencePictureSet) const
{
int i, isReference;
checkLeadingPictureRestrictions(rcListPic);
// loop through all pictures in the reference picture buffer
PicList::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
Picture* pcPic = *(iterPic++);
if( ! pcPic->referenced)
{
continue;
}
isReference = 0;
// loop through all pictures in the Reference Picture Set
// to see if the picture should be kept as reference picture
for(i=0;i<pReferencePictureSet->getNumberOfPositivePictures()+pReferencePictureSet->getNumberOfNegativePictures();i++)
{
if( ! pcPic->longTerm && pcPic->poc == this->getPOC() + pReferencePictureSet->getDeltaPOC(i))
{
isReference = 1;
pcPic->usedByCurr = pReferencePictureSet->getUsed(i);
pcPic->longTerm = false;
}
}
for(;i<pReferencePictureSet->getNumberOfPictures();i++)
{
if(pReferencePictureSet->getCheckLTMSBPresent(i)==true)
{
if( pcPic->longTerm && pcPic->poc == pReferencePictureSet->getPOC(i))
{
isReference = 1;
pcPic->usedByCurr = pReferencePictureSet->getUsed(i);
}
}
else
{
int pocCycle = 1 << pcPic->cs->sps->getBitsForPOC();
int curPoc = pcPic->poc & (pocCycle-1);
int refPoc = pReferencePictureSet->getPOC(i) & (pocCycle-1);
if( pcPic->longTerm && curPoc == refPoc)
{
isReference = 1;
pcPic->usedByCurr = pReferencePictureSet->getUsed(i);
}
}
}
// mark the picture as "unused for reference" if it is not in
// the Reference Picture Set
if( pcPic->poc != this->getPOC() && isReference == 0)
{
pcPic->referenced = false;
pcPic->usedByCurr = false;
pcPic->longTerm = false;
#if JVET_M0253_HASH_ME
pcPic->getHashMap()->clearAll();
#endif
}
// sanity checks
if( pcPic->referenced)
{
//check that pictures of higher temporal layers are not used
CHECK( pcPic->usedByCurr && !(pcPic->layer<=this->getTLayer()), "Invalid state");
//check that pictures of higher or equal temporal layer are not in the RPS if the current picture is a TSA picture
if( this->getNalUnitType() == NAL_UNIT_CODED_SLICE_TSA_R || this->getNalUnitType() == NAL_UNIT_CODED_SLICE_TSA_N)
{
CHECK( !(pcPic->layer<this->getTLayer()), "Invalid state");
}
//check that pictures marked as temporal layer non-reference pictures are not used for reference
if( pcPic->poc != this->getPOC() && (pcPic->layer == this->getTLayer()))
{
CHECK( pcPic->usedByCurr && pcPic->slices[0]->getTemporalLayerNonReferenceFlag(), "Invalid state");
}
}
}
}
/** Function for applying picture marking based on the Reference Picture Set in pReferencePictureSet.
*/
int Slice::checkThatAllRefPicsAreAvailable( PicList& rcListPic, const ReferencePictureSet *pReferencePictureSet, bool printErrors, int pocRandomAccess, bool bUseRecoveryPoint) const
{
int atLeastOneUnabledByRecoveryPoint = 0;
int atLeastOneFlushedByPreviousIDR = 0;
Picture* rpcPic;
int i, isAvailable;
int atLeastOneLost = 0;
int atLeastOneRemoved = 0;
int iPocLost = 0;
// loop through all long-term pictures in the Reference Picture Set
// to see if the picture should be kept as reference picture
for(i=pReferencePictureSet->getNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures();i<pReferencePictureSet->getNumberOfPictures();i++)
{
isAvailable = 0;
// loop through all pictures in the reference picture buffer
PicList::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if(pReferencePictureSet->getCheckLTMSBPresent(i)==true)
{
if(rpcPic->longTerm && (rpcPic->getPOC()) == pReferencePictureSet->getPOC(i) && rpcPic->referenced)
{
if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess && this->getPOC() + pReferencePictureSet->getDeltaPOC(i) < pocRandomAccess)
{
isAvailable = 0;
}
else
{
isAvailable = 1;
}
}
}
else
{
int pocCycle = 1<<rpcPic->cs->sps->getBitsForPOC();
int curPoc = rpcPic->getPOC() & (pocCycle-1);
int refPoc = pReferencePictureSet->getPOC(i) & (pocCycle-1);
if(rpcPic->longTerm && curPoc == refPoc && rpcPic->referenced)
{
if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess && this->getPOC() + pReferencePictureSet->getDeltaPOC(i) < pocRandomAccess)
{
isAvailable = 0;
}
else
{
isAvailable = 1;
}
}
}
}
// if there was no such long-term check the short terms
if(!isAvailable)
{
iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
int pocCycle = 1 << rpcPic->cs->sps->getBitsForPOC();
int curPoc = rpcPic->getPOC();
int refPoc = pReferencePictureSet->getPOC(i);
if (!pReferencePictureSet->getCheckLTMSBPresent(i))
{
curPoc = curPoc & (pocCycle - 1);
refPoc = refPoc & (pocCycle - 1);
}
if (rpcPic->referenced && curPoc == refPoc)
{
if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess && this->getPOC() + pReferencePictureSet->getDeltaPOC(i) < pocRandomAccess)
{
isAvailable = 0;
}
else
{
isAvailable = 1;
rpcPic->longTerm = true;
break;
}
}
}
}
// report that a picture is lost if it is in the Reference Picture Set
// but not available as reference picture
if(isAvailable == 0)
{
if (this->getPOC() + pReferencePictureSet->getDeltaPOC(i) >= pocRandomAccess)
{
if(!pReferencePictureSet->getUsed(i) )
{
if(printErrors)
{
msg( ERROR, "\nLong-term reference picture with POC = %3d seems to have been removed or not correctly decoded.", this->getPOC() + pReferencePictureSet->getDeltaPOC(i));
}
atLeastOneRemoved = 1;
}
else
{
if(printErrors)
{
msg( ERROR, "\nLong-term reference picture with POC = %3d is lost or not correctly decoded!", this->getPOC() + pReferencePictureSet->getDeltaPOC(i));
}
atLeastOneLost = 1;
iPocLost=this->getPOC() + pReferencePictureSet->getDeltaPOC(i);
}
}
else if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess)
{
atLeastOneUnabledByRecoveryPoint = 1;
}
else if(bUseRecoveryPoint && (this->getAssociatedIRAPType()==NAL_UNIT_CODED_SLICE_IDR_N_LP || this->getAssociatedIRAPType()==NAL_UNIT_CODED_SLICE_IDR_W_RADL))
{
atLeastOneFlushedByPreviousIDR = 1;
}
}
}
// loop through all short-term pictures in the Reference Picture Set
// to see if the picture should be kept as reference picture
for(i=0;i<pReferencePictureSet->getNumberOfNegativePictures()+pReferencePictureSet->getNumberOfPositivePictures();i++)
{
isAvailable = 0;
// loop through all pictures in the reference picture buffer
PicList::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if( ! rpcPic->longTerm && rpcPic->getPOC() == this->getPOC() + pReferencePictureSet->getDeltaPOC(i) && rpcPic->referenced)
{
if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess && this->getPOC() + pReferencePictureSet->getDeltaPOC(i) < pocRandomAccess)
{
isAvailable = 0;
}
else
{
isAvailable = 1;
}
}
}
// report that a picture is lost if it is in the Reference Picture Set
// but not available as reference picture
if(isAvailable == 0)
{
if (this->getPOC() + pReferencePictureSet->getDeltaPOC(i) >= pocRandomAccess)
{
if(!pReferencePictureSet->getUsed(i) )
{
if(printErrors)
{
msg( ERROR, "\nShort-term reference picture with POC = %3d seems to have been removed or not correctly decoded.", this->getPOC() + pReferencePictureSet->getDeltaPOC(i));
}
atLeastOneRemoved = 1;
}
else
{
if(printErrors)
{
msg( ERROR, "\nShort-term reference picture with POC = %3d is lost or not correctly decoded!", this->getPOC() + pReferencePictureSet->getDeltaPOC(i));
}
atLeastOneLost = 1;
iPocLost=this->getPOC() + pReferencePictureSet->getDeltaPOC(i);
}
}
else if(bUseRecoveryPoint && this->getPOC() > pocRandomAccess)
{
atLeastOneUnabledByRecoveryPoint = 1;
}
else if(bUseRecoveryPoint && (this->getAssociatedIRAPType()==NAL_UNIT_CODED_SLICE_IDR_N_LP || this->getAssociatedIRAPType()==NAL_UNIT_CODED_SLICE_IDR_W_RADL))
{
atLeastOneFlushedByPreviousIDR = 1;
}
}
}
if(atLeastOneUnabledByRecoveryPoint || atLeastOneFlushedByPreviousIDR)
{
return -1;
}
if(atLeastOneLost)
{
return iPocLost+1;
}
if(atLeastOneRemoved)
{
return -2;
}
else
{
return 0;
}
}
/** Function for constructing an explicit Reference Picture Set out of the available pictures in a referenced Reference Picture Set
*/
void Slice::createExplicitReferencePictureSetFromReference(PicList& rcListPic, const ReferencePictureSet *pReferencePictureSet, bool isRAP, int pocRandomAccess, bool bUseRecoveryPoint, const bool bEfficientFieldIRAPEnabled
, bool isEncodeLtRef, bool isCompositeRefEnable
)
{
Picture* rpcPic;
int i, j;
int k = 0;
int nrOfNegativePictures = 0;
int nrOfPositivePictures = 0;
ReferencePictureSet* pLocalRPS = this->getLocalRPS();
(*pLocalRPS)=ReferencePictureSet();
bool irapIsInRPS = false; // Used when bEfficientFieldIRAPEnabled==true
// loop through all pictures in the Reference Picture Set
for(i=0;i<pReferencePictureSet->getNumberOfPictures();i++)
{
j = 0;
// loop through all pictures in the reference picture buffer
PicList::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
j++;
rpcPic = *(iterPic++);
if(rpcPic->getPOC() == this->getPOC() + pReferencePictureSet->getDeltaPOC(i) && rpcPic->referenced)
{
// This picture exists as a reference picture
// and should be added to the explicit Reference Picture Set
pLocalRPS->setDeltaPOC(k, pReferencePictureSet->getDeltaPOC(i));
pLocalRPS->setUsed(k, pReferencePictureSet->getUsed(i) && (!isRAP));
if (bEfficientFieldIRAPEnabled)
{
pLocalRPS->setUsed(k, pLocalRPS->getUsed(k) && !(bUseRecoveryPoint && this->getPOC() > pocRandomAccess && this->getPOC() + pReferencePictureSet->getDeltaPOC(i) < pocRandomAccess) );
}
if(pLocalRPS->getDeltaPOC(k) < 0)
{
nrOfNegativePictures++;
}
else
{
if (bEfficientFieldIRAPEnabled && rpcPic->getPOC() == this->getAssociatedIRAPPOC() && this->getAssociatedIRAPPOC() == this->getPOC() + (isCompositeRefEnable ? 2 : 1))
{
irapIsInRPS = true;
}
nrOfPositivePictures++;
}
k++;
}
}
}
bool useNewRPS = false;
// if current picture is complimentary field associated to IRAP, add the IRAP to its RPS.
if(bEfficientFieldIRAPEnabled && m_pcPic->fieldPic && !irapIsInRPS)
{
PicList::iterator iterPic = rcListPic.begin();
while ( iterPic != rcListPic.end())
{
rpcPic = *(iterPic++);
if (rpcPic->getPOC() == this->getAssociatedIRAPPOC() && this->getAssociatedIRAPPOC() == this->getPOC() + (isCompositeRefEnable ? 2 : 1))
{
pLocalRPS->setDeltaPOC(k, 1);
pLocalRPS->setUsed(k, true);
nrOfPositivePictures++;
k ++;
useNewRPS = true;
}
}
}
if (isCompositeRefEnable && isEncodeLtRef)
{
useNewRPS = true;
nrOfNegativePictures = 0;
nrOfPositivePictures = 0;
for (i = 0; i<pReferencePictureSet->getNumberOfPictures(); i++)
{
j = 0;
k = 0;
// loop through all pictures in the reference picture buffer
PicList::iterator iterPic = rcListPic.begin();
while (iterPic != rcListPic.end())
{
j++;
rpcPic = *(iterPic++);
if (rpcPic->getPOC() == this->getPOC() + 1 + pReferencePictureSet->getDeltaPOC(i) && rpcPic->referenced)
{
// This picture exists as a reference picture
// and should be added to the explicit Reference Picture Set
pLocalRPS->setDeltaPOC(k, pReferencePictureSet->getDeltaPOC(i) + 1);
pLocalRPS->setUsed(k, pReferencePictureSet->getUsed(i) && (!isRAP));
if (bEfficientFieldIRAPEnabled)
{
pLocalRPS->setUsed(k, pLocalRPS->getUsed(k) && !(bUseRecoveryPoint && this->getPOC() > pocRandomAccess && this->getPOC() + pReferencePictureSet->getDeltaPOC(i) + 1 < pocRandomAccess));
}
if (pLocalRPS->getDeltaPOC(k) < 0)
{
nrOfNegativePictures++;
}
else
{
if (bEfficientFieldIRAPEnabled && rpcPic->getPOC() == this->getAssociatedIRAPPOC() && this->getAssociatedIRAPPOC() == this->getPOC() + 2)
{
irapIsInRPS = true;
}
nrOfPositivePictures++;
}
k++;
}
}
}
}
pLocalRPS->setNumberOfNegativePictures(nrOfNegativePictures);
pLocalRPS->setNumberOfPositivePictures(nrOfPositivePictures);
pLocalRPS->setNumberOfPictures(nrOfNegativePictures+nrOfPositivePictures);
// This is a simplistic inter rps example. A smarter encoder will look for a better reference RPS to do the
// inter RPS prediction with. Here we just use the reference used by pReferencePictureSet.
// If pReferencePictureSet is not inter_RPS_predicted, then inter_RPS_prediction is for the current RPS also disabled.
if (!pReferencePictureSet->getInterRPSPrediction() || useNewRPS )
{
pLocalRPS->setInterRPSPrediction(false);
pLocalRPS->setNumRefIdc(0);
}
else
{
int rIdx = this->getRPSidx() - pReferencePictureSet->getDeltaRIdxMinus1() - 1;
int deltaRPS = pReferencePictureSet->getDeltaRPS();
const ReferencePictureSet* pcRefRPS = this->getSPS()->getRPSList()->getReferencePictureSet(rIdx);
int iRefPics = pcRefRPS->getNumberOfPictures();
int iNewIdc=0;
for(i=0; i<= iRefPics; i++)
{
int deltaPOC = ((i != iRefPics)? pcRefRPS->getDeltaPOC(i) : 0); // check if the reference abs POC is >= 0
int iRefIdc = 0;
for (j=0; j < pLocalRPS->getNumberOfPictures(); j++) // loop through the pictures in the new RPS
{
if ( (deltaPOC + deltaRPS) == pLocalRPS->getDeltaPOC(j))
{
if (pLocalRPS->getUsed(j))
{
iRefIdc = 1;
}
else
{
iRefIdc = 2;
}
}
}
pLocalRPS->setRefIdc(i, iRefIdc);
iNewIdc++;
}
pLocalRPS->setInterRPSPrediction(true);
pLocalRPS->setNumRefIdc(iNewIdc);
pLocalRPS->setDeltaRPS(deltaRPS);
pLocalRPS->setDeltaRIdxMinus1(pReferencePictureSet->getDeltaRIdxMinus1() + this->getSPS()->getRPSList()->getNumberOfReferencePictureSets() - this->getRPSidx());
}
this->setRPS(pLocalRPS);
this->setRPSidx(-1);
}
//! get AC and DC values for weighted pred
void Slice::getWpAcDcParam(const WPACDCParam *&wp) const
{
wp = m_weightACDCParam;
}
//! init AC and DC values for weighted pred
void Slice::initWpAcDcParam()
{
for(int iComp = 0; iComp < MAX_NUM_COMPONENT; iComp++ )
{
m_weightACDCParam[iComp].iAC = 0;
m_weightACDCParam[iComp].iDC = 0;
}
}
//! get tables for weighted prediction
void Slice::getWpScaling( RefPicList e, int iRefIdx, WPScalingParam *&wp ) const
{
CHECK(e>=NUM_REF_PIC_LIST_01, "Invalid picture reference list");
wp = (WPScalingParam*) m_weightPredTable[e][iRefIdx];
}
//! reset Default WP tables settings : no weight.
void Slice::resetWpScaling()
{
for ( int e=0 ; e<NUM_REF_PIC_LIST_01 ; e++ )
{
for ( int i=0 ; i<MAX_NUM_REF ; i++ )
{
for ( int yuv=0 ; yuv<MAX_NUM_COMPONENT ; yuv++ )
{
WPScalingParam *pwp = &(m_weightPredTable[e][i][yuv]);
pwp->bPresentFlag = false;
pwp->uiLog2WeightDenom = 0;
pwp->uiLog2WeightDenom = 0;
pwp->iWeight = 1;
pwp->iOffset = 0;
}
}
}
}
//! init WP table
void Slice::initWpScaling(const SPS *sps)
{
const bool bUseHighPrecisionPredictionWeighting = sps->getSpsRangeExtension().getHighPrecisionOffsetsEnabledFlag();
for ( int e=0 ; e<NUM_REF_PIC_LIST_01 ; e++ )
{
for ( int i=0 ; i<MAX_NUM_REF ; i++ )
{
for ( int yuv=0 ; yuv<MAX_NUM_COMPONENT ; yuv++ )
{
WPScalingParam *pwp = &(m_weightPredTable[e][i][yuv]);
if ( !pwp->bPresentFlag )
{
// Inferring values not present :
pwp->iWeight = (1 << pwp->uiLog2WeightDenom);
pwp->iOffset = 0;
}
const int offsetScalingFactor = bUseHighPrecisionPredictionWeighting ? 1 : (1 << (sps->getBitDepth(toChannelType(ComponentID(yuv)))-8));
pwp->w = pwp->iWeight;
pwp->o = pwp->iOffset * offsetScalingFactor; //NOTE: This value of the ".o" variable is never used - .o is set immediately before it gets used
pwp->shift = pwp->uiLog2WeightDenom;
pwp->round = (pwp->uiLog2WeightDenom>=1) ? (1 << (pwp->uiLog2WeightDenom-1)) : (0);
}
}
}
}
void Slice::startProcessingTimer()
{
m_iProcessingStartTime = clock();
}
void Slice::stopProcessingTimer()
{
m_dProcessingTime += (double)(clock()-m_iProcessingStartTime) / CLOCKS_PER_SEC;
m_iProcessingStartTime = 0;
}
void Slice::initMotionLUTs()
{
m_MotionCandLut = new LutMotionCand;
m_MotionCandLut->currCnt = 0;
#if JVET_M0483_IBC
m_MotionCandLut->currCntIBC = 0;
#endif
m_MotionCandLut->motionCand = nullptr;
#if JVET_M0483_IBC
m_MotionCandLut->motionCand = new MotionInfo[MAX_NUM_HMVP_CANDS * 2];
#else
m_MotionCandLut->motionCand = new MotionInfo[MAX_NUM_HMVP_CANDS];
#endif
#if JVET_M0170_MRG_SHARELIST
m_MotionCandLuTsBkup = new LutMotionCand;
m_MotionCandLuTsBkup->currCnt = 0;
#if JVET_M0483_IBC
m_MotionCandLuTsBkup->currCntIBC = 0;
#endif
m_MotionCandLuTsBkup->motionCand = nullptr;
#if JVET_M0483_IBC
m_MotionCandLuTsBkup->motionCand = new MotionInfo[MAX_NUM_HMVP_CANDS * 2];
#else
m_MotionCandLuTsBkup->motionCand = new MotionInfo[MAX_NUM_HMVP_CANDS];
#endif
#endif
}
void Slice::destroyMotionLUTs()
{
delete[] m_MotionCandLut->motionCand;
m_MotionCandLut->motionCand = nullptr;
delete m_MotionCandLut;
m_MotionCandLut = NULL;
#if JVET_M0170_MRG_SHARELIST
delete[] m_MotionCandLuTsBkup->motionCand;
m_MotionCandLuTsBkup->motionCand = nullptr;
delete m_MotionCandLuTsBkup;
m_MotionCandLuTsBkup = NULL;
#endif
}
void Slice::resetMotionLUTs()
{
m_MotionCandLut->currCnt = 0;
#if JVET_M0483_IBC
m_MotionCandLut->currCntIBC = 0;
#endif
#if JVET_M0170_MRG_SHARELIST
m_MotionCandLuTsBkup->currCnt = 0;
#if JVET_M0483_IBC
m_MotionCandLuTsBkup->currCntIBC = 0;
#endif
#endif
}
MotionInfo Slice::getMotionInfoFromLUTs(int MotCandIdx) const
{
return m_MotionCandLut->motionCand[MotCandIdx];
}
#if JVET_M0170_MRG_SHARELIST
MotionInfo Slice::getMotionInfoFromLUTBkup(int MotCandIdx) const
{
return m_MotionCandLuTsBkup->motionCand[MotCandIdx];
}
#endif
#if JVET_M0483_IBC
void Slice::addMotionInfoToLUTs(LutMotionCand* lutMC, MotionInfo newMi, bool ibcflag)
#else
void Slice::addMotionInfoToLUTs(LutMotionCand* lutMC, MotionInfo newMi)
#endif
{
#if JVET_M0483_IBC
int currCntIBC = ibcflag ? lutMC->currCntIBC : lutMC->currCnt;
int offset = ibcflag ? MAX_NUM_HMVP_CANDS : 0;
bool pruned = false;
int sameCandIdx = 0;
for (int idx = 0; idx < currCntIBC; idx++)
{
if (lutMC->motionCand[idx + offset] == newMi)
{
sameCandIdx = idx;
pruned = true;
break;
}
}
if (pruned || currCntIBC == MAX_NUM_HMVP_CANDS)
{
memmove(&lutMC->motionCand[sameCandIdx + offset], &lutMC->motionCand[sameCandIdx + offset + 1],
sizeof(MotionInfo) * (currCntIBC - sameCandIdx - 1));
memcpy(&lutMC->motionCand[currCntIBC + offset - 1], &newMi, sizeof(MotionInfo));
}
else
{
if (ibcflag)
{
memcpy(&lutMC->motionCand[currCntIBC + offset], &newMi, sizeof(MotionInfo));
lutMC->currCntIBC++;
}
else
{
memcpy(&lutMC->motionCand[currCntIBC], &newMi, sizeof(MotionInfo));
lutMC->currCnt++;
}
}
#else
int currCnt = lutMC->currCnt ;
bool pruned = false;
int sameCandIdx = 0;
for (int idx = 0; idx < currCnt; idx++)
{
if (lutMC->motionCand[idx] == newMi)
{
sameCandIdx = idx;
pruned = true;
break;
}
}
if (pruned || lutMC->currCnt == MAX_NUM_HMVP_CANDS)
{
memmove(&lutMC->motionCand[sameCandIdx], &lutMC->motionCand[sameCandIdx + 1],
sizeof(MotionInfo) * (currCnt - sameCandIdx - 1));
memcpy(&lutMC->motionCand[lutMC->currCnt-1], &newMi, sizeof(MotionInfo));
}
else
{
memcpy(&lutMC->motionCand[lutMC->currCnt++], &newMi, sizeof(MotionInfo));
}
#endif
}
void Slice::updateMotionLUTs(LutMotionCand* lutMC, CodingUnit & cu)
{
PredictionUnit *selectedPU = cu.firstPU;
if (cu.affine) { return; }
if (cu.triangle) { return; }
MotionInfo newMi = selectedPU->getMotionInfo();
#if JVET_M0264_HMVP_WITH_GBIIDX
newMi.GBiIdx = (newMi.interDir == 3) ? cu.GBiIdx : GBI_DEFAULT;
#endif
#if JVET_M0483_IBC
addMotionInfoToLUTs(lutMC, newMi, CU::isIBC(cu));
#else
addMotionInfoToLUTs(lutMC, newMi);
#endif
}
void Slice::copyMotionLUTs(LutMotionCand* Src, LutMotionCand* Dst)
{
memcpy(Dst->motionCand, Src->motionCand, sizeof(MotionInfo)*(std::min(Src->currCnt, MAX_NUM_HMVP_CANDS)));
Dst->currCnt = Src->currCnt;
#if JVET_M0483_IBC
memcpy(Dst->motionCand + MAX_NUM_HMVP_CANDS, Src->motionCand + MAX_NUM_HMVP_CANDS, sizeof(MotionInfo)*(std::min(Src->currCntIBC, MAX_NUM_HMVP_CANDS)));
Dst->currCntIBC = Src->currCntIBC;
#endif
}
unsigned Slice::getMinPictureDistance() const
{
int minPicDist = MAX_INT;
#if JVET_M0483_IBC
if (getSPS()->getIBCFlag())
{
minPicDist = 0;
}
else
#endif
if( ! isIntra() )
{
const int currPOC = getPOC();
for (int refIdx = 0; refIdx < getNumRefIdx(REF_PIC_LIST_0); refIdx++)
{
minPicDist = std::min( minPicDist, std::abs(currPOC - getRefPic(REF_PIC_LIST_0, refIdx)->getPOC()));
}
if( getSliceType() == B_SLICE )
{
for (int refIdx = 0; refIdx < getNumRefIdx(REF_PIC_LIST_1); refIdx++)
{
minPicDist = std::min( minPicDist, std::abs(currPOC - getRefPic(REF_PIC_LIST_0, refIdx)->getPOC()));
}
}
}
return (unsigned) minPicDist;
}
#if HEVC_VPS
// ------------------------------------------------------------------------------------------------
// Video parameter set (VPS)
// ------------------------------------------------------------------------------------------------
VPS::VPS()
: m_VPSId ( 0)
, m_uiMaxTLayers ( 1)
, m_uiMaxLayers ( 1)
, m_bTemporalIdNestingFlag (false)
, m_numHrdParameters ( 0)
, m_maxNuhReservedZeroLayerId ( 0)
, m_hrdParameters ()
, m_hrdOpSetIdx ()
, m_cprmsPresentFlag ()
{
for( int i = 0; i < MAX_TLAYER; i++)
{
m_numReorderPics[i] = 0;
m_uiMaxDecPicBuffering[i] = 1;
m_uiMaxLatencyIncrease[i] = 0;
}
}
VPS::~VPS()
{
}
#endif
// ------------------------------------------------------------------------------------------------
// Sequence parameter set (SPS)
// ------------------------------------------------------------------------------------------------
SPSRExt::SPSRExt()
: m_transformSkipRotationEnabledFlag (false)
, m_transformSkipContextEnabledFlag (false)
// m_rdpcmEnabledFlag initialized below
, m_extendedPrecisionProcessingFlag (false)
, m_intraSmoothingDisabledFlag (false)
, m_highPrecisionOffsetsEnabledFlag (false)
, m_persistentRiceAdaptationEnabledFlag(false)
, m_cabacBypassAlignmentEnabledFlag (false)
{
for (uint32_t signallingModeIndex = 0; signallingModeIndex < NUMBER_OF_RDPCM_SIGNALLING_MODES; signallingModeIndex++)
{
m_rdpcmEnabledFlag[signallingModeIndex] = false;
}
}
SPS::SPS()
: m_SPSId ( 0)
, m_bIntraOnlyConstraintFlag (false)
, m_maxBitDepthConstraintIdc ( 0)
, m_maxChromaFormatConstraintIdc(CHROMA_420)
, m_bFrameConstraintFlag (false)
, m_bNoQtbttDualTreeIntraConstraintFlag(false)
, m_bNoCclmConstraintFlag (false)
, m_bNoSaoConstraintFlag (false)
, m_bNoAlfConstraintFlag (false)
, m_bNoPcmConstraintFlag (false)
, m_bNoTemporalMvpConstraintFlag(false)
, m_bNoSbtmvpConstraintFlag (false)
, m_bNoAmvrConstraintFlag (false)
, m_bNoAffineMotionConstraintFlag(false)
, m_bNoMtsConstraintFlag (false)
, m_bNoLadfConstraintFlag (false)
, m_bNoDepQuantConstraintFlag (false)
, m_bNoSignDataHidingConstraintFlag(false)
#if JVET_M0246_AFFINE_AMVR
, m_affineAmvrEnabledFlag ( false )
#endif
#if JVET_M0147_DMVR
, m_DMVR ( false )
#endif
#if JVET_M0140_SBT
, m_SBT ( false )
, m_MaxSbtSize ( 32 )
#endif
#if HEVC_VPS
, m_VPSId ( 0)
#endif
, m_chromaFormatIdc (CHROMA_420)
, m_uiMaxTLayers ( 1)
// Structure
, m_picWidthInLumaSamples (352)
, m_picHeightInLumaSamples (288)
, m_log2MinCodingBlockSize ( 0)
, m_log2DiffMaxMinCodingBlockSize(0)
, m_CTUSize(0)
, m_minQT{ 0, 0, 0 }
, m_maxBTDepth{ MAX_BT_DEPTH, MAX_BT_DEPTH_INTER, MAX_BT_DEPTH_C }
, m_maxBTSize{ MAX_BT_SIZE, MAX_BT_SIZE_INTER, MAX_BT_SIZE_C }
, m_maxTTSize{ MAX_TT_SIZE, MAX_TT_SIZE_INTER, MAX_TT_SIZE_C }
, m_uiMaxCUWidth ( 32)
, m_uiMaxCUHeight ( 32)
, m_uiMaxCodingDepth ( 3)
, m_bLongTermRefsPresent (false)
, m_uiQuadtreeTULog2MaxSize ( 0)
, m_uiQuadtreeTULog2MinSize ( 0)
, m_uiQuadtreeTUMaxDepthInter ( 0)
, m_uiQuadtreeTUMaxDepthIntra ( 0)
// Tool list
, m_pcmEnabledFlag (false)
, m_pcmLog2MaxSize ( 5)
, m_uiPCMLog2MinSize ( 7)
, m_bPCMFilterDisableFlag (false)
, m_sbtmvpEnabledFlag (false)
, m_bdofEnabledFlag (false)
#if JVET_M0255_FRACMMVD_SWITCH
, m_disFracMmvdEnabledFlag ( false )
#endif
, m_uiBitsForPOC ( 8)
, m_numLongTermRefPicSPS ( 0)
, m_uiMaxTrSize ( 32)
, m_saoEnabledFlag (false)
, m_bTemporalIdNestingFlag (false)
#if HEVC_USE_SCALING_LISTS
, m_scalingListEnabledFlag (false)
#endif
#if HEVC_USE_INTRA_SMOOTHING_T32 || HEVC_USE_INTRA_SMOOTHING_T64
, m_useStrongIntraSmoothing (false)
#endif
, m_vuiParametersPresentFlag (false)
, m_vuiParameters ()
, m_wrapAroundEnabledFlag (false)
, m_wrapAroundOffset ( 0)
#if JVET_M0483_IBC
, m_IBCFlag ( 0)
#endif
#if JVET_M0427_INLOOP_RESHAPER
, m_lumaReshapeEnable (false)
#endif
// KJS: BEGIN former SPSNext parameters
, m_AMVREnabledFlag ( false )
, m_LMChroma ( false )
#if JVET_M0142_CCLM_COLLOCATED_CHROMA
, m_cclmCollocatedChromaFlag ( false )
#endif
#if JVET_M0464_UNI_MTS
, m_IntraMTS ( false )
, m_InterMTS ( false )
#else
, m_IntraEMT ( false )
, m_InterEMT ( false )
#endif
, m_Affine ( false )
, m_AffineType ( false )
, m_MHIntra ( false )
, m_Triangle ( false )
#if LUMA_ADAPTIVE_DEBLOCKING_FILTER_QP_OFFSET
, m_LadfEnabled ( false )
, m_LadfNumIntervals ( 0 )
, m_LadfQpOffset { 0 }
, m_LadfIntervalLowerBound { 0 }
#endif
, m_compositeRefEnabled ( false )
#if !JVET_M0483_IBC
, m_IBCMode ( 0 )
#endif
// KJS: END former SPSNext parameters
{
for(int ch=0; ch<MAX_NUM_CHANNEL_TYPE; ch++)
{
m_bitDepths.recon[ch] = 8;
m_pcmBitDepths[ch] = 8;
m_qpBDOffset [ch] = 0;
}
for ( int i = 0; i < MAX_TLAYER; i++ )
{
m_uiMaxLatencyIncreasePlus1[i] = 0;
m_uiMaxDecPicBuffering[i] = 1;
m_numReorderPics[i] = 0;
}
::memset(m_ltRefPicPocLsbSps, 0, sizeof(m_ltRefPicPocLsbSps));
::memset(m_usedByCurrPicLtSPSFlag, 0, sizeof(m_usedByCurrPicLtSPSFlag));
}
SPS::~SPS()
{
m_RPSList.destroy();
}
void SPS::createRPSList( int numRPS )
{
m_RPSList.destroy();
m_RPSList.create(numRPS);
}
const int SPS::m_winUnitX[]={1,2,2,1};
const int SPS::m_winUnitY[]={1,2,1,1};
PPSRExt::PPSRExt()
: m_log2MaxTransformSkipBlockSize (2)
, m_crossComponentPredictionEnabledFlag(false)
, m_diffCuChromaQpOffsetDepth (0)
, m_chromaQpOffsetListLen (0)
// m_ChromaQpAdjTableIncludingNullEntry initialized below
// m_log2SaoOffsetScale initialized below
{
m_ChromaQpAdjTableIncludingNullEntry[0].u.comp.CbOffset = 0; // Array includes entry [0] for the null offset used when cu_chroma_qp_offset_flag=0. This is initialised here and never subsequently changed.
m_ChromaQpAdjTableIncludingNullEntry[0].u.comp.CrOffset = 0;
for(int ch=0; ch<MAX_NUM_CHANNEL_TYPE; ch++)
{
m_log2SaoOffsetScale[ch] = 0;
}
}
PPS::PPS()
: m_PPSId (0)
, m_SPSId (0)
, m_picInitQPMinus26 (0)
, m_useDQP (false)
, m_bConstrainedIntraPred (false)
, m_bSliceChromaQpFlag (false)
, m_uiMaxCuDQPDepth (0)
, m_chromaCbQpOffset (0)
, m_chromaCrQpOffset (0)
, m_numRefIdxL0DefaultActive (1)
, m_numRefIdxL1DefaultActive (1)
, m_TransquantBypassEnabledFlag (false)
, m_useTransformSkip (false)
#if HEVC_DEPENDENT_SLICES
, m_dependentSliceSegmentsEnabledFlag(false)
#endif
#if HEVC_TILES_WPP
, m_tilesEnabledFlag (false)
, m_entropyCodingSyncEnabledFlag (false)
, m_loopFilterAcrossTilesEnabledFlag (true)
, m_uniformSpacingFlag (false)
, m_numTileColumnsMinus1 (0)
, m_numTileRowsMinus1 (0)
#endif
, m_cabacInitPresentFlag (false)
, m_sliceHeaderExtensionPresentFlag (false)
, m_loopFilterAcrossSlicesEnabledFlag(false)
, m_listsModificationPresentFlag (0)
, m_numExtraSliceHeaderBits (0)
, m_ppsRangeExtension ()
, pcv (NULL)
{
}
PPS::~PPS()
{
delete pcv;
}
ReferencePictureSet::ReferencePictureSet()
: m_numberOfPictures (0)
, m_numberOfNegativePictures (0)
, m_numberOfPositivePictures (0)
, m_numberOfLongtermPictures (0)
, m_interRPSPrediction (0)
, m_deltaRIdxMinus1 (0)
, m_deltaRPS (0)
, m_numRefIdc (0)
{
::memset( m_deltaPOC, 0, sizeof(m_deltaPOC) );
::memset( m_POC, 0, sizeof(m_POC) );
::memset( m_used, 0, sizeof(m_used) );
::memset( m_refIdc, 0, sizeof(m_refIdc) );
::memset( m_bCheckLTMSB, 0, sizeof(m_bCheckLTMSB) );
::memset( m_pocLSBLT, 0, sizeof(m_pocLSBLT) );
::memset( m_deltaPOCMSBCycleLT, 0, sizeof(m_deltaPOCMSBCycleLT) );
::memset( m_deltaPocMSBPresentFlag, 0, sizeof(m_deltaPocMSBPresentFlag) );
}
ReferencePictureSet::~ReferencePictureSet()
{
}
void ReferencePictureSet::setUsed(int bufferNum, bool used)
{
m_used[bufferNum] = used;
}
void ReferencePictureSet::setDeltaPOC(int bufferNum, int deltaPOC)
{
m_deltaPOC[bufferNum] = deltaPOC;
}
void ReferencePictureSet::setNumberOfPictures(int numberOfPictures)
{
m_numberOfPictures = numberOfPictures;
}
int ReferencePictureSet::getUsed(int bufferNum) const
{
return m_used[bufferNum];
}
int ReferencePictureSet::getDeltaPOC(int bufferNum) const
{
return m_deltaPOC[bufferNum];
}
int ReferencePictureSet::getNumberOfPictures() const
{
return m_numberOfPictures;
}
int ReferencePictureSet::getPOC(int bufferNum) const
{
return m_POC[bufferNum];
}
void ReferencePictureSet::setPOC(int bufferNum, int POC)
{
m_POC[bufferNum] = POC;
}
bool ReferencePictureSet::getCheckLTMSBPresent(int bufferNum) const
{
return m_bCheckLTMSB[bufferNum];
}
void ReferencePictureSet::setCheckLTMSBPresent(int bufferNum, bool b)
{
m_bCheckLTMSB[bufferNum] = b;
}
//! set the reference idc value at uiBufferNum entry to the value of iRefIdc
void ReferencePictureSet::setRefIdc(int bufferNum, int refIdc)
{
m_refIdc[bufferNum] = refIdc;
}
//! get the reference idc value at uiBufferNum
int ReferencePictureSet::getRefIdc(int bufferNum) const
{
return m_refIdc[bufferNum];
}
/** Sorts the deltaPOC and Used by current values in the RPS based on the deltaPOC values.
* deltaPOC values are sorted with -ve values before the +ve values. -ve values are in decreasing order.
* +ve values are in increasing order.
* \returns void
*/
void ReferencePictureSet::sortDeltaPOC()
{
// sort in increasing order (smallest first)
for(int j=1; j < getNumberOfPictures(); j++)
{
int deltaPOC = getDeltaPOC(j);
bool used = getUsed(j);
for (int k=j-1; k >= 0; k--)
{
int temp = getDeltaPOC(k);
if (deltaPOC < temp)
{
setDeltaPOC(k+1, temp);
setUsed(k+1, getUsed(k));
setDeltaPOC(k, deltaPOC);
setUsed(k, used);
}
}
}
// flip the negative values to largest first
int numNegPics = getNumberOfNegativePictures();
for(int j=0, k=numNegPics-1; j < numNegPics>>1; j++, k--)
{
int deltaPOC = getDeltaPOC(j);
bool used = getUsed(j);
setDeltaPOC(j, getDeltaPOC(k));
setUsed(j, getUsed(k));
setDeltaPOC(k, deltaPOC);
setUsed(k, used);
}
}
/** Prints the deltaPOC and RefIdc (if available) values in the RPS.
* A "*" is added to the deltaPOC value if it is Used bu current.
* \returns void
*/
void ReferencePictureSet::printDeltaPOC() const
{
DTRACE( g_trace_ctx, D_RPSINFO, "DeltaPOC = { " );
for(int j=0; j < getNumberOfPictures(); j++)
{
DTRACE( g_trace_ctx, D_RPSINFO, "%d%s ", getDeltaPOC( j ), ( getUsed( j ) == 1 ) ? "*" : "" );
}
if (getInterRPSPrediction())
{
DTRACE( g_trace_ctx, D_RPSINFO, "}, RefIdc = { " );
for(int j=0; j < getNumRefIdc(); j++)
{
DTRACE( g_trace_ctx, D_RPSINFO, "%d ", getRefIdc( j ) );
}
}
DTRACE( g_trace_ctx, D_RPSINFO, "}\n" );
}
RefPicListModification::RefPicListModification()
: m_refPicListModificationFlagL0 (false)
, m_refPicListModificationFlagL1 (false)
{
::memset( m_RefPicSetIdxL0, 0, sizeof(m_RefPicSetIdxL0) );
::memset( m_RefPicSetIdxL1, 0, sizeof(m_RefPicSetIdxL1) );
}
RefPicListModification::~RefPicListModification()
{
}
#if HEVC_USE_SCALING_LISTS
ScalingList::ScalingList()
{
for(uint32_t sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++)
{
for(uint32_t listId = 0; listId < SCALING_LIST_NUM; listId++)
{
m_scalingListCoef[sizeId][listId].resize(std::min<int>(MAX_MATRIX_COEF_NUM,(int)g_scalingListSize[sizeId]));
}
}
}
/** set default quantization matrix to array
*/
void ScalingList::setDefaultScalingList()
{
for(uint32_t sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++)
{
for(uint32_t listId=0;listId<SCALING_LIST_NUM;listId++)
{
processDefaultMatrix(sizeId, listId);
}
}
}
/** check if use default quantization matrix
* \returns true if use default quantization matrix in all size
*/
bool ScalingList::checkDefaultScalingList()
{
uint32_t defaultCounter=0;
for( uint32_t sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++ )
{
for(uint32_t listId=0;listId<SCALING_LIST_NUM;listId++)
{
if( !::memcmp(getScalingListAddress(sizeId,listId), getScalingListDefaultAddress(sizeId, listId),sizeof(int)*std::min(MAX_MATRIX_COEF_NUM,(int)g_scalingListSize[sizeId])) // check value of matrix
&& ((sizeId < SCALING_LIST_16x16) || (getScalingListDC(sizeId,listId) == 16))) // check DC value
{
defaultCounter++;
}
}
}
return (defaultCounter == (SCALING_LIST_NUM * SCALING_LIST_SIZE_NUM )) ? false : true;
}
/** get scaling matrix from RefMatrixID
* \param sizeId size index
* \param listId index of input matrix
* \param refListId index of reference matrix
*/
void ScalingList::processRefMatrix( uint32_t sizeId, uint32_t listId , uint32_t refListId )
{
::memcpy(getScalingListAddress(sizeId, listId),((listId == refListId)? getScalingListDefaultAddress(sizeId, refListId): getScalingListAddress(sizeId, refListId)),sizeof(int)*std::min(MAX_MATRIX_COEF_NUM,(int)g_scalingListSize[sizeId]));
}
void ScalingList::checkPredMode(uint32_t sizeId, uint32_t listId)
{
int predListStep = (sizeId == SCALING_LIST_32x32? (SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) : 1); // if 32x32, skip over chroma entries.
for(int predListIdx = (int)listId ; predListIdx >= 0; predListIdx-=predListStep)
{
if( !::memcmp(getScalingListAddress(sizeId,listId),((listId == predListIdx) ?
getScalingListDefaultAddress(sizeId, predListIdx): getScalingListAddress(sizeId, predListIdx)),sizeof(int)*std::min(MAX_MATRIX_COEF_NUM,(int)g_scalingListSize[sizeId])) // check value of matrix
&& ((sizeId < SCALING_LIST_16x16) || (getScalingListDC(sizeId,listId) == getScalingListDC(sizeId,predListIdx)))) // check DC value
{
setRefMatrixId(sizeId, listId, predListIdx);
setScalingListPredModeFlag(sizeId, listId, false);
return;
}
}
setScalingListPredModeFlag(sizeId, listId, true);
}
static void outputScalingListHelp(std::ostream &os)
{
os << "The scaling list file specifies all matrices and their DC values; none can be missing,\n"
"but their order is arbitrary.\n\n"
"The matrices are specified by:\n"
"<matrix name><unchecked data>\n"
" <value>,<value>,<value>,....\n\n"
" Line-feeds can be added arbitrarily between values, and the number of values needs to be\n"
" at least the number of entries for the matrix (superfluous entries are ignored).\n"
" The <unchecked data> is text on the same line as the matrix that is not checked\n"
" except to ensure that the matrix name token is unique. It is recommended that it is ' ='\n"
" The values in the matrices are the absolute values (0-255), not the delta values as\n"
" exchanged between the encoder and decoder\n\n"
"The DC values (for matrix sizes larger than 8x8) are specified by:\n"
"<matrix name>_DC<unchecked data>\n"
" <value>\n";
os << "The permitted matrix names are:\n";
for(uint32_t sizeIdc = 0; sizeIdc < SCALING_LIST_SIZE_NUM; sizeIdc++)
{
for(uint32_t listIdc = 0; listIdc < SCALING_LIST_NUM; listIdc++)
{
if ((sizeIdc!=SCALING_LIST_32x32) || (listIdc%(SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) == 0))
{
os << " " << MatrixType[sizeIdc][listIdc] << '\n';
}
}
}
}
void ScalingList::outputScalingLists(std::ostream &os) const
{
for(uint32_t sizeIdc = 0; sizeIdc < SCALING_LIST_SIZE_NUM; sizeIdc++)
{
const uint32_t size = std::min(8,4<<(sizeIdc));
for(uint32_t listIdc = 0; listIdc < SCALING_LIST_NUM; listIdc++)
{
if ((sizeIdc!=SCALING_LIST_32x32) || (listIdc%(SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) == 0))
{
const int *src = getScalingListAddress(sizeIdc, listIdc);
os << (MatrixType[sizeIdc][listIdc]) << " =\n ";
for(uint32_t y=0; y<size; y++)
{
for(uint32_t x=0; x<size; x++, src++)
{
os << std::setw(3) << (*src) << ", ";
}
os << (y+1<size?"\n ":"\n");
}
if(sizeIdc > SCALING_LIST_8x8)
{
os << MatrixType_DC[sizeIdc][listIdc] << " = \n " << std::setw(3) << getScalingListDC(sizeIdc, listIdc) << "\n";
}
os << "\n";
}
}
}
}
bool ScalingList::xParseScalingList(const std::string &fileName)
{
static const int LINE_SIZE=1024;
FILE *fp = NULL;
char line[LINE_SIZE];
if (fileName.empty())
{
msg( ERROR, "Error: no scaling list file specified. Help on scaling lists being output\n");
outputScalingListHelp(std::cout);
std::cout << "\n\nExample scaling list file using default values:\n\n";
outputScalingLists(std::cout);
return true;
}
else if ((fp = fopen(fileName.c_str(),"r")) == (FILE*)NULL)
{
msg( ERROR, "Error: cannot open scaling list file %s for reading\n", fileName.c_str());
return true;
}
for(uint32_t sizeIdc = SCALING_LIST_FIRST_CODED; sizeIdc < SCALING_LIST_SIZE_NUM; sizeIdc++)
{
const uint32_t size = std::min(MAX_MATRIX_COEF_NUM,(int)g_scalingListSize[sizeIdc]);
for(uint32_t listIdc = 0; listIdc < SCALING_LIST_NUM; listIdc++)
{
int * const src = getScalingListAddress(sizeIdc, listIdc);
if ((sizeIdc==SCALING_LIST_32x32) && (listIdc%(SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) != 0)) // derive chroma32x32 from chroma16x16
{
const int *srcNextSmallerSize = getScalingListAddress(sizeIdc-1, listIdc);
for(uint32_t i=0; i<size; i++)
{
src[i] = srcNextSmallerSize[i];
}
setScalingListDC(sizeIdc,listIdc,(sizeIdc > SCALING_LIST_8x8) ? getScalingListDC(sizeIdc-1, listIdc) : src[0]);
}
else
{
{
fseek(fp, 0, SEEK_SET);
bool bFound=false;
while ((!feof(fp)) && (!bFound))
{
char *ret = fgets(line, LINE_SIZE, fp);
char *findNamePosition= ret==NULL ? NULL : strstr(line, MatrixType[sizeIdc][listIdc]);
// This could be a match against the DC string as well, so verify it isn't
if (findNamePosition!= NULL && (MatrixType_DC[sizeIdc][listIdc]==NULL || strstr(line, MatrixType_DC[sizeIdc][listIdc])==NULL))
{
bFound=true;
}
}
if (!bFound)
{
msg( ERROR, "Error: cannot find Matrix %s from scaling list file %s\n", MatrixType[sizeIdc][listIdc], fileName.c_str());
return true;
}
}
for (uint32_t i=0; i<size; i++)
{
int data;
if (fscanf(fp, "%d,", &data)!=1)
{
msg( ERROR, "Error: cannot read value #%d for Matrix %s from scaling list file %s at file position %ld\n", i, MatrixType[sizeIdc][listIdc], fileName.c_str(), ftell(fp));
return true;
}
if (data<0 || data>255)
{
msg( ERROR, "Error: QMatrix entry #%d of value %d for Matrix %s from scaling list file %s at file position %ld is out of range (0 to 255)\n", i, data, MatrixType[sizeIdc][listIdc], fileName.c_str(), ftell(fp));
return true;
}
src[i] = data;
}
//set DC value for default matrix check
setScalingListDC(sizeIdc,listIdc,src[0]);
if(sizeIdc > SCALING_LIST_8x8)
{
{
fseek(fp, 0, SEEK_SET);
bool bFound=false;
while ((!feof(fp)) && (!bFound))
{
char *ret = fgets(line, LINE_SIZE, fp);
char *findNamePosition= ret==NULL ? NULL : strstr(line, MatrixType_DC[sizeIdc][listIdc]);
if (findNamePosition!= NULL)
{
// This won't be a match against the non-DC string.
bFound=true;
}
}
if (!bFound)
{
msg( ERROR, "Error: cannot find DC Matrix %s from scaling list file %s\n", MatrixType_DC[sizeIdc][listIdc], fileName.c_str());
return true;
}
}
int data;
if (fscanf(fp, "%d,", &data)!=1)
{
msg( ERROR, "Error: cannot read DC %s from scaling list file %s at file position %ld\n", MatrixType_DC[sizeIdc][listIdc], fileName.c_str(), ftell(fp));
return true;
}
if (data<0 || data>255)
{
msg( ERROR, "Error: DC value %d for Matrix %s from scaling list file %s at file position %ld is out of range (0 to 255)\n", data, MatrixType[sizeIdc][listIdc], fileName.c_str(), ftell(fp));
return true;
}
//overwrite DC value when size of matrix is larger than 16x16
setScalingListDC(sizeIdc,listIdc,data);
}
}
}
}
// std::cout << "\n\nRead scaling lists of:\n\n";
// outputScalingLists(std::cout);
fclose(fp);
return false;
}
/** get default address of quantization matrix
* \param sizeId size index
* \param listId list index
* \returns pointer of quantization matrix
*/
const int* ScalingList::getScalingListDefaultAddress(uint32_t sizeId, uint32_t listId)
{
const int *src = 0;
switch(sizeId)
{
case SCALING_LIST_2x2:
case SCALING_LIST_4x4:
src = g_quantTSDefault4x4;
break;
case SCALING_LIST_8x8:
case SCALING_LIST_16x16:
case SCALING_LIST_32x32:
case SCALING_LIST_64x64:
case SCALING_LIST_128x128:
src = (listId < (SCALING_LIST_NUM/NUMBER_OF_PREDICTION_MODES) ) ? g_quantIntraDefault8x8 : g_quantInterDefault8x8;
break;
default:
THROW( "Invalid scaling list" );
src = NULL;
break;
}
return src;
}
/** process of default matrix
* \param sizeId size index
* \param listId index of input matrix
*/
void ScalingList::processDefaultMatrix(uint32_t sizeId, uint32_t listId)
{
::memcpy(getScalingListAddress(sizeId, listId),getScalingListDefaultAddress(sizeId,listId),sizeof(int)*std::min(MAX_MATRIX_COEF_NUM,(int)g_scalingListSize[sizeId]));
setScalingListDC(sizeId,listId,SCALING_LIST_DC);
}
/** check DC value of matrix for default matrix signaling
*/
void ScalingList::checkDcOfMatrix()
{
for(uint32_t sizeId = 0; sizeId < SCALING_LIST_SIZE_NUM; sizeId++)
{
for(uint32_t listId = 0; listId < SCALING_LIST_NUM; listId++)
{
//check default matrix?
if(getScalingListDC(sizeId,listId) == 0)
{
processDefaultMatrix(sizeId, listId);
}
}
}
}
#endif
ParameterSetManager::ParameterSetManager()
#if HEVC_VPS
: m_vpsMap(MAX_NUM_VPS)
, m_spsMap(MAX_NUM_SPS)
#else
: m_spsMap(MAX_NUM_SPS)
#endif
, m_ppsMap(MAX_NUM_PPS)
#if HEVC_VPS
, m_activeVPSId(-1)
#endif
, m_activeSPSId(-1)
{
}
ParameterSetManager::~ParameterSetManager()
{
}
//! activate a SPS from a active parameter sets SEI message
//! \returns true, if activation is successful
//bool ParameterSetManager::activateSPSWithSEI(int spsId)
//{
// SPS *sps = m_spsMap.getPS(spsId);
// if (sps)
// {
// int vpsId = sps->getVPSId();
// VPS *vps = m_vpsMap.getPS(vpsId);
// if (vps)
// {
// m_activeVPS = *(vps);
// m_activeSPS = *(sps);
// return true;
// }
// else
// {
// msg( WARNING, "Warning: tried to activate SPS using an Active parameter sets SEI message. Referenced VPS does not exist.");
// }
// }
// else
// {
// msg( WARNING, "Warning: tried to activate non-existing SPS using an Active parameter sets SEI message.");
// }
// return false;
//}
#if HEVC_VPS
//! activate a PPS and depending on isIDR parameter also SPS and VPS
#else
//! activate a PPS and depending on isIDR parameter also SPS
#endif
//! \returns true, if activation is successful
bool ParameterSetManager::activatePPS(int ppsId, bool isIRAP)
{
PPS *pps = m_ppsMap.getPS(ppsId);
if (pps)
{
int spsId = pps->getSPSId();
if (!isIRAP && (spsId != m_activeSPSId ))
{
msg( WARNING, "Warning: tried to activate PPS referring to a inactive SPS at non-IDR.");
}
else
{
SPS *sps = m_spsMap.getPS(spsId);
if (sps)
{
#if HEVC_VPS
int vpsId = sps->getVPSId();
if (!isIRAP && (vpsId != m_activeVPSId ))
{
msg( WARNING, "Warning: tried to activate PPS referring to a inactive VPS at non-IDR.");
}
else
{
#endif
m_spsMap.setActive(spsId);
#if HEVC_VPS
VPS *vps =m_vpsMap.getPS(vpsId);
if (vps)
{
m_activeVPSId = vpsId;
m_activeSPSId = spsId;
m_ppsMap.setActive(ppsId);
return true;
}
else
{
msg( WARNING, "Warning: tried to activate PPS that refers to a non-existing VPS.");
}
}
#else
m_activeSPSId = spsId;
m_ppsMap.setActive(ppsId);
return true;
#endif
}
else
{
msg( WARNING, "Warning: tried to activate a PPS that refers to a non-existing SPS.");
}
}
}
else
{
msg( WARNING, "Warning: tried to activate non-existing PPS.");
}
// Failed to activate if reach here.
m_activeSPSId=-1;
#if HEVC_VPS
m_activeVPSId=-1;
#endif
return false;
}
template <>
void ParameterSetMap<PPS>::setID(PPS* parameterSet, const int psId)
{
parameterSet->setPPSId(psId);
}
template <>
void ParameterSetMap<SPS>::setID(SPS* parameterSet, const int psId)
{
parameterSet->setSPSId(psId);
}
ProfileTierLevel::ProfileTierLevel()
: m_profileSpace (0)
, m_tierFlag (Level::MAIN)
, m_profileIdc (Profile::NONE)
, m_levelIdc (Level::NONE)
, m_progressiveSourceFlag (false)
, m_interlacedSourceFlag (false)
, m_nonPackedConstraintFlag(false)
, m_frameOnlyConstraintFlag(false)
{
::memset(m_profileCompatibilityFlag, 0, sizeof(m_profileCompatibilityFlag));
}
PTL::PTL()
{
::memset(m_subLayerProfilePresentFlag, 0, sizeof(m_subLayerProfilePresentFlag));
::memset(m_subLayerLevelPresentFlag, 0, sizeof(m_subLayerLevelPresentFlag ));
}
void calculateParameterSetChangedFlag(bool &bChanged, const std::vector<uint8_t> *pOldData, const std::vector<uint8_t> *pNewData)
{
if (!bChanged)
{
if ((pOldData==0 && pNewData!=0) || (pOldData!=0 && pNewData==0))
{
bChanged=true;
}
else if (pOldData!=0 && pNewData!=0)
{
// compare the two
if (pOldData->size() != pNewData->size())
{
bChanged=true;
}
else
{
const uint8_t *pNewDataArray=&(*pNewData)[0];
const uint8_t *pOldDataArray=&(*pOldData)[0];
if (memcmp(pOldDataArray, pNewDataArray, pOldData->size()))
{
bChanged=true;
}
}
}
}
}
//! \}
uint32_t PreCalcValues::getValIdx( const Slice &slice, const ChannelType chType ) const
{
return slice.isIRAP() ? ( ISingleTree ? 0 : ( chType << 1 ) ) : 1;
}
uint32_t PreCalcValues::getMaxBtDepth( const Slice &slice, const ChannelType chType ) const
{
if ( slice.getSplitConsOverrideFlag() )
return (!slice.isIRAP() || isLuma(chType) || ISingleTree) ? slice.getMaxBTDepth() : slice.getMaxBTDepthIChroma();
else
return maxBtDepth[getValIdx( slice, chType )];
}
uint32_t PreCalcValues::getMinBtSize( const Slice &slice, const ChannelType chType ) const
{
return minBtSize[getValIdx( slice, chType )];
}
uint32_t PreCalcValues::getMaxBtSize( const Slice &slice, const ChannelType chType ) const
{
if (slice.getSplitConsOverrideFlag())
return (!slice.isIRAP() || isLuma(chType) || ISingleTree) ? slice.getMaxBTSize() : slice.getMaxBTSizeIChroma();
else
return maxBtSize[getValIdx(slice, chType)];
}
uint32_t PreCalcValues::getMinTtSize( const Slice &slice, const ChannelType chType ) const
{
return minTtSize[getValIdx( slice, chType )];
}
uint32_t PreCalcValues::getMaxTtSize( const Slice &slice, const ChannelType chType ) const
{
if ( slice.getSplitConsOverrideFlag() )
return (!slice.isIRAP() || isLuma(chType) || ISingleTree) ? slice.getMaxTTSize() : slice.getMaxTTSizeIChroma();
else
return maxTtSize[getValIdx( slice, chType )];
}
uint32_t PreCalcValues::getMinQtSize( const Slice &slice, const ChannelType chType ) const
{
if ( slice.getSplitConsOverrideFlag() )
return (!slice.isIRAP() || isLuma(chType) || ISingleTree) ? slice.getMinQTSize() : slice.getMinQTSizeIChroma();
else
return minQtSize[getValIdx( slice, chType )];
}
#if ENABLE_TRACING
#if HEVC_VPS
void xTraceVPSHeader()
{
DTRACE( g_trace_ctx, D_HEADER, "=========== Video Parameter Set ===========\n" );
}
#endif
void xTraceSPSHeader()
{
DTRACE( g_trace_ctx, D_HEADER, "=========== Sequence Parameter Set ===========\n" );
}
void xTracePPSHeader()
{
DTRACE( g_trace_ctx, D_HEADER, "=========== Picture Parameter Set ===========\n" );
}
void xTraceSliceHeader()
{
DTRACE( g_trace_ctx, D_HEADER, "=========== Slice ===========\n" );
}
void xTraceAccessUnitDelimiter()
{
DTRACE( g_trace_ctx, D_HEADER, "=========== Access Unit Delimiter ===========\n" );
}
#endif