-
Fabrice URBAN authored
avoid redundant coding of RPL in both SPS and SH in multilayer. New parameter "RPLofDepLayerInSH" specify if coding in SPS or SH (default SH)
Fabrice URBAN authoredavoid redundant coding of RPL in both SPS and SH in multilayer. New parameter "RPLofDepLayerInSH" specify if coding in SPS or SH (default SH)
encmain.cpp 11.77 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2022, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file encmain.cpp
\brief Encoder application main
*/
#include <time.h>
#include <iostream>
#include <chrono>
#include <ctime>
#include "EncoderLib/EncLibCommon.h"
#include "EncApp.h"
#include "Utilities/program_options_lite.h"
//! \ingroup EncoderApp
//! \{
static constexpr uint32_t settingNameWidth = 66;
static constexpr uint32_t settingHelpWidth = 84;
static constexpr uint32_t settingValueWidth = 3;
// --------------------------------------------------------------------------------------------------------------------- //
//macro value printing function
#define PRINT_CONSTANT(NAME, NAME_WIDTH, VALUE_WIDTH) std::cout << std::setw(NAME_WIDTH) << #NAME << " = " << std::setw(VALUE_WIDTH) << NAME << std::endl;
static void printMacroSettings()
{
if( g_verbosity >= DETAILS )
{
std::cout << "Non-environment-variable-controlled macros set as follows: \n" << std::endl;
//------------------------------------------------
//setting macros
PRINT_CONSTANT( RExt__DECODER_DEBUG_BIT_STATISTICS, settingNameWidth, settingValueWidth );
PRINT_CONSTANT( RExt__HIGH_BIT_DEPTH_SUPPORT, settingNameWidth, settingValueWidth );
PRINT_CONSTANT( RExt__HIGH_PRECISION_FORWARD_TRANSFORM, settingNameWidth, settingValueWidth );
//------------------------------------------------
std::cout << std::endl;
}
}
// ====================================================================================================================
// Main function
// ====================================================================================================================
int main(int argc, char* argv[])
{
// print information
fprintf( stdout, "\n" );
fprintf( stdout, "VVCSoftware: VTM Encoder Version %s ", VTM_VERSION );
fprintf( stdout, NVM_ONOS );
fprintf( stdout, NVM_COMPILEDBY );
fprintf( stdout, NVM_BITS );
#if ENABLE_SIMD_OPT
std::string SIMD;
df::program_options_lite::Options opts;
opts.addOptions()("SIMD", SIMD, std::string(""), "")("c", df::program_options_lite::parseConfigFile, "");
df::program_options_lite::SilentReporter err;
df::program_options_lite::scanArgv( opts, argc, ( const char** ) argv, err );
fprintf( stdout, "[SIMD=%s] ", read_x86_extension( SIMD ) );
#endif
#if ENABLE_TRACING
fprintf( stdout, "[ENABLE_TRACING] " );
#endif
fprintf( stdout, "\n" );
std::fstream bitstream;
EncLibCommon encLibCommon;
std::vector<EncApp*> pcEncApp(1);
bool resized = false;
int layerIdx = 0;
initROM();
TComHash::initBlockSizeToIndex();
char** layerArgv = new char*[argc];
do
{
pcEncApp[layerIdx] = new EncApp( bitstream, &encLibCommon );
// create application encoder class per layer
pcEncApp[layerIdx]->create(layerIdx);
// parse configuration per layer
try
{
int j = 0;
for( int i = 0; i < argc; i++ )
{
if( argv[i][0] == '-' && argv[i][1] == 'l' )
{
if (argc <= i + 1)
{
THROW("Command line parsing error: missing parameter after -lx\n");
}
int numParams = 1; // count how many parameters are consumed
// check for long parameters, which start with "--"
const std::string param = argv[i + 1];
if (param.rfind("--", 0) != 0)
{
// only short parameters have a second parameter for the value
if (argc <= i + 2)
{
THROW("Command line parsing error: missing parameter after -lx\n");
}
numParams++;
}
// check if correct layer index
if( argv[i][2] == std::to_string( layerIdx ).c_str()[0] )
{
layerArgv[j] = argv[i + 1];
if (numParams > 1)
{
layerArgv[j + 1] = argv[i + 2];
}
j+= numParams;
}
i += numParams;
}
else
{
layerArgv[j] = argv[i];
j++;
}
}
if( !pcEncApp[layerIdx]->parseCfg( j, layerArgv ) )
{
pcEncApp[layerIdx]->destroy();
return 1;
}
}
catch( df::program_options_lite::ParseFailure &e )
{
std::cerr << "Error parsing option \"" << e.arg << "\" with argument \"" << e.val << "\"." << std::endl;
return 1;
}
pcEncApp[layerIdx]->createLib( layerIdx );
if( !resized )
{
pcEncApp.resize( pcEncApp[layerIdx]->getMaxLayers() );
resized = true;
}
layerIdx++;
} while( layerIdx < pcEncApp.size() );
delete[] layerArgv;
if (layerIdx > 1)
{
int nbLayersUsingAlf = 0;
int totalUsedAPSIDs = 0;
std::array<uint8_t, ALF_CTB_MAX_NUM_APS> usedAlfAps;
usedAlfAps.fill(0);
bool overlapAPS = false;
for (uint32_t i = 0; i < layerIdx; i++)
{
if (pcEncApp[i]->getALFEnabled())
{
nbLayersUsingAlf++;
totalUsedAPSIDs += pcEncApp[i]->getMaxNumALFAPS();
for (int apsid = 0; apsid < pcEncApp[i]->getMaxNumALFAPS(); apsid++)
{
usedAlfAps[apsid + pcEncApp[i]->getALFAPSIDShift()] ++;
if (usedAlfAps[apsid + pcEncApp[i]->getALFAPSIDShift()] > 1)
{
overlapAPS = true;
}
}
}
}
if (totalUsedAPSIDs > ALF_CTB_MAX_NUM_APS || overlapAPS)
{
msg(WARNING, "Number of configured ALF APS Ids exceeds maximum for multilayer, or overlap APS Ids - reconfiguring with automatic settings\n");
int apsShift = 0;
for (uint32_t i = 0; i < layerIdx; i++)
{
if (pcEncApp[i]->getALFEnabled())
{
int nbAPS = pcEncApp[i]->getMaxNumALFAPS();
if (totalUsedAPSIDs > ALF_CTB_MAX_NUM_APS)
{
nbAPS = std::min(nbAPS, std::max(1, ALF_CTB_MAX_NUM_APS / nbLayersUsingAlf));
nbAPS = std::min(nbAPS, ALF_CTB_MAX_NUM_APS - apsShift);
}
msg(WARNING, "\tlayer %d : %d: %d -> %d \n", i, nbAPS, apsShift, apsShift + nbAPS - 1);
pcEncApp[i]->forceMaxNumALFAPS(nbAPS);
pcEncApp[i]->forceALFAPSIDShift(apsShift);
apsShift += nbAPS;
}
}
}
VPS* vps = pcEncApp[0]->getVPS();
//check chroma format and bit-depth for dependent layers
for (uint32_t i = 0; i < layerIdx; i++)
{
int curLayerChromaFormatIdc = pcEncApp[i]->getChromaFormatIDC();
int curLayerBitDepth = pcEncApp[i]->getBitDepth();
for (uint32_t j = 0; j < layerIdx; j++)
{
if (vps->getDirectRefLayerFlag(i, j))
{
int refLayerChromaFormatIdcInVPS = pcEncApp[j]->getChromaFormatIDC();
CHECK(curLayerChromaFormatIdc != refLayerChromaFormatIdcInVPS, "The chroma formats of the current layer and the reference layer are different");
int refLayerBitDepthInVPS = pcEncApp[j]->getBitDepth();
CHECK(curLayerBitDepth != refLayerBitDepthInVPS, "The bit-depth of the current layer and the reference layer are different");
}
}
}
}
#if PRINT_MACRO_VALUES
printMacroSettings();
#endif
// starting time
auto startTime = std::chrono::steady_clock::now();
std::time_t startTime2 = std::chrono::system_clock::to_time_t(std::chrono::system_clock::now());
fprintf(stdout, " started @ %s", std::ctime(&startTime2) );
clock_t startClock = clock();
// call encoding function per layer
bool eos = false;
while( !eos )
{
// read GOP
bool keepLoop = true;
while( keepLoop )
{
for( auto & encApp : pcEncApp )
{
#ifndef _DEBUG
try
{
#endif
keepLoop = encApp->encodePrep( eos );
#ifndef _DEBUG
}
catch( Exception &e )
{
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}
catch( const std::bad_alloc &e )
{
std::cout << "Memory allocation failed: " << e.what() << std::endl;
return EXIT_FAILURE;
}
#endif
}
}
// encode GOP
keepLoop = true;
while( keepLoop )
{
for( auto & encApp : pcEncApp )
{
#ifndef _DEBUG
try
{
#endif
keepLoop = encApp->encode();
#ifndef _DEBUG
}
catch( Exception &e )
{
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}
catch( const std::bad_alloc &e )
{
std::cout << "Memory allocation failed: " << e.what() << std::endl;
return EXIT_FAILURE;
}
#endif
}
}
}
// ending time
clock_t endClock = clock();
auto endTime = std::chrono::steady_clock::now();
std::time_t endTime2 = std::chrono::system_clock::to_time_t(std::chrono::system_clock::now());
#if JVET_O0756_CALCULATE_HDRMETRICS
auto metricTime = pcEncApp[0]->getMetricTime();
for( int layerIdx = 1; layerIdx < pcEncApp.size(); layerIdx++ )
{
metricTime += pcEncApp[layerIdx]->getMetricTime();
}
auto totalTime = std::chrono::duration_cast<std::chrono::milliseconds>( endTime - startTime ).count();
auto encTime = std::chrono::duration_cast<std::chrono::milliseconds>( endTime - startTime - metricTime ).count();
auto metricTimeuser = std::chrono::duration_cast<std::chrono::milliseconds>( metricTime ).count();
#else
auto encTime = std::chrono::duration_cast<std::chrono::milliseconds>( endTime - startTime).count();
#endif
for( auto & encApp : pcEncApp )
{
encApp->destroyLib();
// destroy application encoder class per layer
encApp->destroy();
delete encApp;
}
// destroy ROM
destroyROM();
pcEncApp.clear();
printf( "\n finished @ %s", std::ctime(&endTime2) );
#if JVET_O0756_CALCULATE_HDRMETRICS
printf(" Encoding Time (Total Time): %12.3f ( %12.3f ) sec. [user] %12.3f ( %12.3f ) sec. [elapsed]\n",
((endClock - startClock) * 1.0 / CLOCKS_PER_SEC) - (metricTimeuser/1000.0),
(endClock - startClock) * 1.0 / CLOCKS_PER_SEC,
encTime / 1000.0,
totalTime / 1000.0);
#else
printf(" Total Time: %12.3f sec. [user] %12.3f sec. [elapsed]\n",
(endClock - startClock) * 1.0 / CLOCKS_PER_SEC,
encTime / 1000.0);
#endif
return 0;
}
//! \}