-
Tomohiro Ikai authoredTomohiro Ikai authored
UnitTools.cpp 187.14 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file UnitTool.cpp
* \brief defines operations for basic units
*/
#include "UnitTools.h"
#include "dtrace_next.h"
#include "Unit.h"
#include "Slice.h"
#include "Picture.h"
#include <utility>
#include <algorithm>
// CS tools
uint64_t CS::getEstBits(const CodingStructure &cs)
{
return cs.fracBits >> SCALE_BITS;
}
bool CS::isDualITree( const CodingStructure &cs )
{
return cs.slice->isIRAP() && !cs.pcv->ISingleTree;
}
UnitArea CS::getArea( const CodingStructure &cs, const UnitArea &area, const ChannelType chType )
{
return isDualITree( cs ) ? area.singleChan( chType ) : area;
}
void CS::setRefinedMotionField(CodingStructure &cs)
{
for (CodingUnit *cu : cs.cus)
{
for (auto &pu : CU::traversePUs(*cu))
{
PredictionUnit subPu = pu;
int dx, dy, x, y, num = 0;
dy = std::min<int>(pu.lumaSize().height, DMVR_SUBCU_HEIGHT);
dx = std::min<int>(pu.lumaSize().width, DMVR_SUBCU_WIDTH);
Position puPos = pu.lumaPos();
if (PU::checkDMVRCondition(pu))
{
for (y = puPos.y; y < (puPos.y + pu.lumaSize().height); y = y + dy)
{
for (x = puPos.x; x < (puPos.x + pu.lumaSize().width); x = x + dx)
{
subPu.UnitArea::operator=(UnitArea(pu.chromaFormat, Area(x, y, dx, dy)));
subPu.mv[0] = pu.mv[0];
subPu.mv[1] = pu.mv[1];
subPu.mv[REF_PIC_LIST_0] += pu.mvdL0SubPu[num];
subPu.mv[REF_PIC_LIST_1] -= pu.mvdL0SubPu[num];
#if JVET_N0334_MVCLIPPING
subPu.mv[REF_PIC_LIST_0].clipToStorageBitDepth();
subPu.mv[REF_PIC_LIST_1].clipToStorageBitDepth();
#endif
pu.mvdL0SubPu[num].setZero();
num++;
PU::spanMotionInfo(subPu);
}
}
}
}
}
}
// CU tools
bool CU::isIntra(const CodingUnit &cu)
{
return cu.predMode == MODE_INTRA;
}
bool CU::isInter(const CodingUnit &cu)
{
return cu.predMode == MODE_INTER;
}
bool CU::isIBC(const CodingUnit &cu)
{
return cu.predMode == MODE_IBC;
}
bool CU::isRDPCMEnabled(const CodingUnit& cu)
{
return cu.cs->sps->getSpsRangeExtension().getRdpcmEnabledFlag(cu.predMode == MODE_INTRA ? RDPCM_SIGNAL_IMPLICIT : RDPCM_SIGNAL_EXPLICIT);
}
bool CU::isLosslessCoded(const CodingUnit &cu)
{
return cu.cs->pps->getTransquantBypassEnabledFlag() && cu.transQuantBypass;
}
bool CU::isSameSlice(const CodingUnit& cu, const CodingUnit& cu2)
{
return cu.slice->getIndependentSliceIdx() == cu2.slice->getIndependentSliceIdx();
}
bool CU::isSameTile(const CodingUnit& cu, const CodingUnit& cu2)
{
return cu.tileIdx == cu2.tileIdx;
}
bool CU::isSameSliceAndTile(const CodingUnit& cu, const CodingUnit& cu2)
{
return ( cu.slice->getIndependentSliceIdx() == cu2.slice->getIndependentSliceIdx() ) && ( cu.tileIdx == cu2.tileIdx );
}
bool CU::isSameCtu(const CodingUnit& cu, const CodingUnit& cu2)
{
uint32_t ctuSizeBit = g_aucLog2[cu.cs->sps->getMaxCUWidth()];
Position pos1Ctu(cu.lumaPos().x >> ctuSizeBit, cu.lumaPos().y >> ctuSizeBit);
Position pos2Ctu(cu2.lumaPos().x >> ctuSizeBit, cu2.lumaPos().y >> ctuSizeBit);
return pos1Ctu.x == pos2Ctu.x && pos1Ctu.y == pos2Ctu.y;
}
uint32_t CU::getIntraSizeIdx(const CodingUnit &cu)
{
uint8_t uiWidth = cu.lumaSize().width;
uint32_t uiCnt = 0;
while (uiWidth)
{
uiCnt++;
uiWidth >>= 1;
}
uiCnt -= 2;
return uiCnt > 6 ? 6 : uiCnt;
}
bool CU::isLastSubCUOfCtu( const CodingUnit &cu )
{
const SPS &sps = *cu.cs->sps;
const Area cuAreaY = CS::isDualITree( *cu.cs ) ? Area( recalcPosition( cu.chromaFormat, cu.chType, CHANNEL_TYPE_LUMA, cu.blocks[cu.chType].pos() ), recalcSize( cu.chromaFormat, cu.chType, CHANNEL_TYPE_LUMA, cu.blocks[cu.chType].size() ) ) : ( const Area& ) cu.Y();
return ( ( ( ( cuAreaY.x + cuAreaY.width ) & cu.cs->pcv->maxCUWidthMask ) == 0 || cuAreaY.x + cuAreaY.width == sps.getPicWidthInLumaSamples() ) &&
( ( ( cuAreaY.y + cuAreaY.height ) & cu.cs->pcv->maxCUHeightMask ) == 0 || cuAreaY.y + cuAreaY.height == sps.getPicHeightInLumaSamples() ) );
}
uint32_t CU::getCtuAddr( const CodingUnit &cu )
{
return getCtuAddr( cu.blocks[cu.chType].lumaPos(), *cu.cs->pcv );
}
int CU::predictQP( const CodingUnit& cu, const int prevQP )
{
const CodingStructure &cs = *cu.cs;
if ( !cu.blocks[cu.chType].x && !( cu.blocks[cu.chType].y & ( cs.pcv->maxCUHeightMask >> getChannelTypeScaleY( cu.chType, cu.chromaFormat ) ) ) && ( cs.getCU( cu.blocks[cu.chType].pos().offset( 0, -1 ), cu.chType) != NULL ) )
{
return ( ( cs.getCU( cu.blocks[cu.chType].pos().offset( 0, -1 ), cu.chType ) )->qp );
}
else
{
const int a = ( cu.blocks[cu.chType].y & ( cs.pcv->maxCUHeightMask >> getChannelTypeScaleY( cu.chType, cu.chromaFormat ) ) ) ? ( cs.getCU(cu.blocks[cu.chType].pos().offset( 0, -1 ), cu.chType))->qp : prevQP;
const int b = ( cu.blocks[cu.chType].x & ( cs.pcv->maxCUWidthMask >> getChannelTypeScaleX( cu.chType, cu.chromaFormat ) ) ) ? ( cs.getCU(cu.blocks[cu.chType].pos().offset( -1, 0 ), cu.chType))->qp : prevQP;
return ( a + b + 1 ) >> 1;
}
}
uint32_t CU::getNumPUs( const CodingUnit& cu )
{
uint32_t cnt = 0;
PredictionUnit *pu = cu.firstPU;
do
{
cnt++;
} while( ( pu != cu.lastPU ) && ( pu = pu->next ) );
return cnt;
}
void CU::addPUs( CodingUnit& cu )
{
cu.cs->addPU( CS::getArea( *cu.cs, cu, cu.chType ), cu.chType );
}
PartSplit CU::getSplitAtDepth( const CodingUnit& cu, const unsigned depth )
{
if( depth >= cu.depth ) return CU_DONT_SPLIT;
const PartSplit cuSplitType = PartSplit( ( cu.splitSeries >> ( depth * SPLIT_DMULT ) ) & SPLIT_MASK );
if ( cuSplitType == CU_QUAD_SPLIT ) return CU_QUAD_SPLIT;
else if( cuSplitType == CU_HORZ_SPLIT ) return CU_HORZ_SPLIT;
else if( cuSplitType == CU_VERT_SPLIT ) return CU_VERT_SPLIT;
else if( cuSplitType == CU_TRIH_SPLIT ) return CU_TRIH_SPLIT;
else if( cuSplitType == CU_TRIV_SPLIT ) return CU_TRIV_SPLIT;
else { THROW( "Unknown split mode" ); return CU_QUAD_SPLIT; }
}
bool CU::hasNonTsCodedBlock( const CodingUnit& cu )
{
bool hasAnyNonTSCoded = false;
for( auto &currTU : traverseTUs( cu ) )
{
for( uint32_t i = 0; i < ::getNumberValidTBlocks( *cu.cs->pcv ); i++ )
{
hasAnyNonTSCoded |= ( currTU.blocks[i].valid() && ( isLuma(ComponentID(i)) ? currTU.mtsIdx != MTS_SKIP : true ) && TU::getCbf( currTU, ComponentID( i ) ) );
}
}
return hasAnyNonTSCoded;
}
#if JVET_N0193_LFNST
uint32_t CU::getNumNonZeroCoeffNonTs( const CodingUnit& cu, const bool lumaFlag, const bool chromaFlag )
#else
uint32_t CU::getNumNonZeroCoeffNonTs( const CodingUnit& cu )
#endif
{
uint32_t count = 0;
for( auto &currTU : traverseTUs( cu ) )
{
#if JVET_N0193_LFNST
count += TU::getNumNonZeroCoeffsNonTS( currTU, lumaFlag, chromaFlag );
#else
count += TU::getNumNonZeroCoeffsNonTS( currTU );
#endif
}
return count;
}
#if JVET_N0193_LFNST
uint32_t CU::getNumNonZeroCoeffNonTsCorner8x8( const CodingUnit& cu, const bool lumaFlag, const bool chromaFlag )
{
uint32_t count = 0;
for( auto &currTU : traverseTUs( cu ) )
{
count += TU::getNumNonZeroCoeffsNonTSCorner8x8( currTU, lumaFlag, chromaFlag );
}
return count;
}
#endif
bool CU::divideTuInRows( const CodingUnit &cu )
{
CHECK( cu.ispMode != HOR_INTRA_SUBPARTITIONS && cu.ispMode != VER_INTRA_SUBPARTITIONS, "Intra Subpartitions type not recognized!" );
return cu.ispMode == HOR_INTRA_SUBPARTITIONS ? true : false;
}
bool CU::firstTestISPHorSplit( const int width, const int height, const ComponentID compID, const CodingUnit *cuLeft, const CodingUnit *cuAbove )
{
//this function decides which split mode (horizontal or vertical) is tested first (encoder only)
//we check the logarithmic aspect ratios of the block
int aspectRatio = g_aucLog2[width] - g_aucLog2[height];
if( aspectRatio > 0 )
{
return true;
}
else if( aspectRatio < 0 )
{
return false;
}
else //if (aspectRatio == 0)
{
//we gather data from the neighboring CUs
const int cuLeftWidth = cuLeft != nullptr ? cuLeft->blocks[compID].width : -1;
const int cuLeftHeight = cuLeft != nullptr ? cuLeft->blocks[compID].height : -1;
const int cuAboveWidth = cuAbove != nullptr ? cuAbove->blocks[compID].width : -1;
const int cuAboveHeight = cuAbove != nullptr ? cuAbove->blocks[compID].height : -1;
const int cuLeft1dSplit = cuLeft != nullptr && cuLeft->predMode == MODE_INTRA ? cuLeft->ispMode : 0;
const int cuAbove1dSplit = cuAbove != nullptr && cuAbove->predMode == MODE_INTRA ? cuAbove->ispMode : 0;
if( cuLeftWidth != -1 && cuAboveWidth == -1 )
{
int cuLeftAspectRatio = g_aucLog2[cuLeftWidth] - g_aucLog2[cuLeftHeight];
return cuLeftAspectRatio < 0 ? false : cuLeftAspectRatio > 0 ? true : cuLeft1dSplit == VER_INTRA_SUBPARTITIONS ? false : true;
}
else if( cuLeftWidth == -1 && cuAboveWidth != -1 )
{
int cuAboveAspectRatio = g_aucLog2[cuAboveWidth] - g_aucLog2[cuAboveHeight];
return cuAboveAspectRatio < 0 ? false : cuAboveAspectRatio > 0 ? true : cuAbove1dSplit == VER_INTRA_SUBPARTITIONS ? false : true;
}
else if( cuLeftWidth != -1 && cuAboveWidth != -1 )
{
int cuLeftAspectRatio = g_aucLog2[cuLeftWidth] - g_aucLog2[cuLeftHeight];
int cuAboveAspectRatio = g_aucLog2[cuAboveWidth] - g_aucLog2[cuAboveHeight];
if( cuLeftAspectRatio < 0 && cuAboveAspectRatio < 0 )
{
return false;
}
else if( cuLeftAspectRatio > 0 && cuAboveAspectRatio > 0 )
{
return true;
}
else if( cuLeftAspectRatio == 0 && cuAboveAspectRatio == 0 )
{
if( cuLeft1dSplit != 0 && cuAbove1dSplit != 0 )
{
return cuLeft1dSplit == VER_INTRA_SUBPARTITIONS && cuAbove1dSplit == VER_INTRA_SUBPARTITIONS ? false : true;
}
else if( cuLeft1dSplit != 0 && cuAbove1dSplit == 0 )
{
return cuLeft1dSplit == VER_INTRA_SUBPARTITIONS ? false : true;
}
else if( cuLeft1dSplit == 0 && cuAbove1dSplit != 0 )
{
return cuAbove1dSplit == VER_INTRA_SUBPARTITIONS ? false : true;
}
return true;
}
else
{
return cuLeftAspectRatio > cuAboveAspectRatio ? cuLeftAspectRatio > 0 : cuAboveAspectRatio > 0;
}
//return true;
}
return true;
}
}
PartSplit CU::getISPType( const CodingUnit &cu, const ComponentID compID )
{
if( cu.ispMode && isLuma( compID ) )
{
const bool tuIsDividedInRows = CU::divideTuInRows( cu );
return tuIsDividedInRows ? TU_1D_HORZ_SPLIT : TU_1D_VERT_SPLIT;
}
return TU_NO_ISP;
}
bool CU::isISPLast( const CodingUnit &cu, const CompArea &tuArea, const ComponentID compID )
{
PartSplit partitionType = CU::getISPType( cu, compID );
Area originalArea = cu.blocks[compID];
switch( partitionType )
{
case TU_1D_HORZ_SPLIT:
return tuArea.y + tuArea.height == originalArea.y + originalArea.height;
case TU_1D_VERT_SPLIT:
return tuArea.x + tuArea.width == originalArea.x + originalArea.width;
default:
THROW( "Unknown ISP processing order type!" );
return false;
}
}
bool CU::isISPFirst( const CodingUnit &cu, const CompArea &tuArea, const ComponentID compID )
{
return tuArea == cu.firstTU->blocks[compID];
}
ISPType CU::canUseISPSplit( const CodingUnit &cu, const ComponentID compID )
{
const int width = cu.blocks[compID].width;
const int height = cu.blocks[compID].height;
#if MAX_TB_SIZE_SIGNALLING
const int maxTrSize = cu.cs->sps->getMaxTbSize();
#else
const int maxTrSize = MAX_TB_SIZEY;
#endif
return CU::canUseISPSplit( width, height, maxTrSize );
}
ISPType CU::canUseISPSplit( const int width, const int height, const int maxTrSize )
{
bool widthCannotBeUsed = false, heightCannotBeUsed = false;
const uint32_t minTuSizeForISP = MIN_TB_SIZEY;
bool notEnoughSamplesToSplit = ( g_aucLog2[width] + g_aucLog2[height] <= ( g_aucLog2[minTuSizeForISP] << 1 ) );
#if JVET_N0308_MAX_CU_SIZE_FOR_ISP
bool cuSizeLargerThanMaxTrSize = width > maxTrSize || height > maxTrSize;
widthCannotBeUsed = cuSizeLargerThanMaxTrSize || notEnoughSamplesToSplit;
heightCannotBeUsed = cuSizeLargerThanMaxTrSize || notEnoughSamplesToSplit;
#else
widthCannotBeUsed = width > maxTrSize || notEnoughSamplesToSplit;
heightCannotBeUsed = height > maxTrSize || notEnoughSamplesToSplit;
#endif
if( !widthCannotBeUsed && !heightCannotBeUsed )
{
return CAN_USE_VER_AND_HORL_SPLITS; //both splits can be used
}
else if( widthCannotBeUsed && !heightCannotBeUsed )
{
return VER_INTRA_SUBPARTITIONS; //only the vertical split can be performed
}
else if( !widthCannotBeUsed && heightCannotBeUsed )
{
return HOR_INTRA_SUBPARTITIONS; //only the horizontal split can be performed
}
else
{
return NOT_INTRA_SUBPARTITIONS; //neither of the splits can be used
}
}
uint32_t CU::getISPSplitDim( const int width, const int height, const PartSplit ispType )
{
bool divideTuInRows = ispType == TU_1D_HORZ_SPLIT;
uint32_t splitDimensionSize, nonSplitDimensionSize, partitionSize, divShift = 2;
if( divideTuInRows )
{
splitDimensionSize = height;
nonSplitDimensionSize = width;
}
else
{
splitDimensionSize = width;
nonSplitDimensionSize = height;
}
const int minNumberOfSamplesPerCu = 1 << ( ( g_aucLog2[MIN_TB_SIZEY] << 1 ) );
const int factorToMinSamples = nonSplitDimensionSize < minNumberOfSamplesPerCu ? minNumberOfSamplesPerCu >> g_aucLog2[nonSplitDimensionSize] : 1;
partitionSize = ( splitDimensionSize >> divShift ) < factorToMinSamples ? factorToMinSamples : ( splitDimensionSize >> divShift );
CHECK( g_aucLog2[partitionSize] + g_aucLog2[nonSplitDimensionSize] < g_aucLog2[minNumberOfSamplesPerCu], "A partition has less than the minimum amount of samples!" );
return partitionSize;
}
PUTraverser CU::traversePUs( CodingUnit& cu )
{
return PUTraverser( cu.firstPU, cu.lastPU->next );
}
TUTraverser CU::traverseTUs( CodingUnit& cu )
{
return TUTraverser( cu.firstTU, cu.lastTU->next );
}
cPUTraverser CU::traversePUs( const CodingUnit& cu )
{
return cPUTraverser( cu.firstPU, cu.lastPU->next );
}
cTUTraverser CU::traverseTUs( const CodingUnit& cu )
{
return cTUTraverser( cu.firstTU, cu.lastTU->next );
}
// PU tools
int PU::getIntraMPMs( const PredictionUnit &pu, unsigned* mpm, const ChannelType &channelType /*= CHANNEL_TYPE_LUMA*/ )
{
const int numMPMs = NUM_MOST_PROBABLE_MODES;
#if !JVET_N0185_UNIFIED_MPM
const int extendRefLine = (channelType == CHANNEL_TYPE_LUMA) ? pu.multiRefIdx : 0;
const ISPType ispType = isLuma( channelType ) ? ISPType( pu.cu->ispMode ) : NOT_INTRA_SUBPARTITIONS;
const bool isHorSplit = ispType == HOR_INTRA_SUBPARTITIONS;
#endif
{
#if JVET_N0217_MATRIX_INTRAPRED
CHECK(channelType != CHANNEL_TYPE_LUMA, "Not harmonized yet");
#endif
int numCand = -1;
int leftIntraDir = PLANAR_IDX, aboveIntraDir = PLANAR_IDX;
const CompArea &area = pu.block(getFirstComponentOfChannel(channelType));
const Position posRT = area.topRight();
const Position posLB = area.bottomLeft();
// Get intra direction of left PU
const PredictionUnit *puLeft = pu.cs->getPURestricted(posLB.offset(-1, 0), pu, channelType);
if (puLeft && CU::isIntra(*puLeft->cu))
{
#if JVET_N0217_MATRIX_INTRAPRED
leftIntraDir = PU::getIntraDirLuma( *puLeft );
#else
leftIntraDir = puLeft->intraDir[channelType];
#endif
}
// Get intra direction of above PU
const PredictionUnit *puAbove = pu.cs->getPURestricted(posRT.offset(0, -1), pu, channelType);
if (puAbove && CU::isIntra(*puAbove->cu) && CU::isSameCtu(*pu.cu, *puAbove->cu))
{
#if JVET_N0217_MATRIX_INTRAPRED
aboveIntraDir = PU::getIntraDirLuma( *puAbove );
#else
aboveIntraDir = puAbove->intraDir[channelType];
#endif
}
CHECK(2 >= numMPMs, "Invalid number of most probable modes");
const int offset = (int)NUM_LUMA_MODE - 6;
const int mod = offset + 3;
#if !JVET_N0185_UNIFIED_MPM
if (extendRefLine)
{
int modeIdx = 0;
int angularMode[2] = { 0, 0 };
if (leftIntraDir > DC_IDX)
{
angularMode[modeIdx++] = leftIntraDir;
}
if (aboveIntraDir > DC_IDX && aboveIntraDir != leftIntraDir)
{
angularMode[modeIdx++] = aboveIntraDir;
}
if (modeIdx == 0)
{
mpm[0] = VER_IDX;
mpm[1] = HOR_IDX;
mpm[2] = 2;
mpm[3] = DIA_IDX;
mpm[4] = VDIA_IDX;
mpm[5] = 26;
}
else if (modeIdx == 1)
{
mpm[0] = angularMode[0];
mpm[1] = ((angularMode[0] + offset) % mod) + 2;
mpm[2] = ((angularMode[0] - 1) % mod) + 2;
mpm[3] = ((angularMode[0] + offset - 1) % mod) + 2;
mpm[4] = (angularMode[0] % mod) + 2;
mpm[5] = ((angularMode[0] + offset - 2) % mod) + 2;
}
else
{
mpm[0] = angularMode[0];
mpm[1] = angularMode[1];
int maxCandModeIdx = mpm[0] > mpm[1] ? 0 : 1;
int minCandModeIdx = 1 - maxCandModeIdx;
if (mpm[maxCandModeIdx] - mpm[minCandModeIdx] == 1)
{
mpm[2] = ((angularMode[minCandModeIdx] + offset) % mod) + 2;
mpm[3] = ((angularMode[maxCandModeIdx] - 1) % mod) + 2;
mpm[4] = ((angularMode[minCandModeIdx] + offset - 1) % mod) + 2;
mpm[5] = ( angularMode[maxCandModeIdx] % mod) + 2;
}
else if (mpm[maxCandModeIdx] - mpm[minCandModeIdx] >= 62)
{
mpm[2] = ((angularMode[minCandModeIdx] - 1) % mod) + 2;
mpm[3] = ((angularMode[maxCandModeIdx] + offset) % mod) + 2;
mpm[4] = ((angularMode[minCandModeIdx]) % mod) + 2;
mpm[5] = ((angularMode[maxCandModeIdx] + offset - 1) % mod) + 2;
}
else if (mpm[maxCandModeIdx] - mpm[minCandModeIdx] == 2)
{
mpm[2] = ((angularMode[minCandModeIdx] - 1) % mod) + 2;
mpm[3] = ((angularMode[minCandModeIdx] + offset) % mod) + 2;
mpm[4] = ((angularMode[maxCandModeIdx] - 1) % mod) + 2;
mpm[5] = ((angularMode[minCandModeIdx] + offset - 1) % mod) + 2;
}
else
{
mpm[2] = ((angularMode[minCandModeIdx] + offset) % mod) + 2;
mpm[3] = ((angularMode[minCandModeIdx] - 1) % mod) + 2;
mpm[4] = ((angularMode[maxCandModeIdx] + offset) % mod) + 2;
mpm[5] = ((angularMode[maxCandModeIdx] - 1) % mod) + 2;
}
}
}
else if( ispType != NOT_INTRA_SUBPARTITIONS )
{
//default case
mpm[0] = PLANAR_IDX;
if( isHorSplit )
{
mpm[1] = HOR_IDX;
mpm[2] = 25;
mpm[3] = 10;
mpm[4] = 65;
mpm[5] = VER_IDX;
}
else
{
mpm[1] = VER_IDX;
mpm[2] = 43;
mpm[3] = 60;
mpm[4] = 3;
mpm[5] = HOR_IDX;
}
int canonicalMode = mpm[1];
if( leftIntraDir == aboveIntraDir ) //L=A
{
numCand = 1;
if( leftIntraDir > DC_IDX )
{
mpm[0] = leftIntraDir;
mpm[1] = ( ( leftIntraDir + offset ) % mod ) + 2;
mpm[2] = ( ( leftIntraDir - 1 ) % mod ) + 2;
if( ( isHorSplit && leftIntraDir < DIA_IDX ) || ( !isHorSplit && leftIntraDir >= DIA_IDX ) )
{
mpm[3] = ( ( leftIntraDir + offset - 1 ) % mod ) + 2;
mpm[4] = ( leftIntraDir % mod ) + 2;
mpm[5] = ( ( leftIntraDir + offset - 2 ) % mod ) + 2;;
}
else
{
if( isHorSplit )
{
mpm[3] = HOR_IDX;
mpm[4] = 5;
}
else
{
mpm[3] = VER_IDX;
mpm[4] = VDIA_IDX - 3;
}
mpm[5] = PLANAR_IDX;
}
}
}
else //L!=A
{
numCand = 2;
if( ( leftIntraDir > DC_IDX ) && ( aboveIntraDir > DC_IDX ) )
{
int distLeftToCanonicalMode = abs( leftIntraDir - canonicalMode );
int distAboveToCanonicalMode = abs( aboveIntraDir - canonicalMode );
mpm[0] = aboveIntraDir;
mpm[1] = leftIntraDir;
if( distLeftToCanonicalMode <= distAboveToCanonicalMode )
{
mpm[0] = leftIntraDir;
mpm[1] = aboveIntraDir;
}
int maxCandModeIdx = mpm[0] > mpm[1] ? 0 : 1;
int minCandModeIdx = 1 - maxCandModeIdx;
if( mpm[maxCandModeIdx] - mpm[minCandModeIdx] == 1 )
{
mpm[2] = ( ( mpm[minCandModeIdx] + offset ) % mod ) + 2;
mpm[3] = ( ( mpm[maxCandModeIdx] - 1 ) % mod ) + 2;
mpm[4] = ( ( mpm[minCandModeIdx] + offset - 1 ) % mod ) + 2;
mpm[5] = ( mpm[maxCandModeIdx] % mod ) + 2;
}
else if( mpm[maxCandModeIdx] - mpm[minCandModeIdx] >= 62 )
{
mpm[2] = ( ( mpm[minCandModeIdx] - 1 ) % mod ) + 2;
mpm[3] = ( ( mpm[maxCandModeIdx] + offset ) % mod ) + 2;
mpm[4] = ( ( mpm[minCandModeIdx] ) % mod ) + 2;
mpm[5] = ( ( mpm[maxCandModeIdx] + offset - 1 ) % mod ) + 2;
}
else if( mpm[maxCandModeIdx] - mpm[minCandModeIdx] == 2 )
{
mpm[2] = ( ( mpm[minCandModeIdx] - 1 ) % mod ) + 2;
mpm[3] = ( ( mpm[minCandModeIdx] + offset ) % mod ) + 2;
mpm[4] = ( ( mpm[maxCandModeIdx] - 1 ) % mod ) + 2;
mpm[5] = ( ( mpm[minCandModeIdx] + offset - 1 ) % mod ) + 2;
}
else
{
mpm[2] = ( ( mpm[minCandModeIdx] + offset ) % mod ) + 2;
mpm[3] = ( ( mpm[minCandModeIdx] - 1 ) % mod ) + 2;
mpm[4] = ( ( mpm[maxCandModeIdx] + offset ) % mod ) + 2;
mpm[5] = ( ( mpm[maxCandModeIdx] - 1 ) % mod ) + 2;
}
}
else if( leftIntraDir + aboveIntraDir > 2 )
{
//mpm[0] = PLANAR_IDX;
int angMode = leftIntraDir > DC_IDX ? leftIntraDir : aboveIntraDir;
mpm[1] = angMode;
mpm[2] = ( ( angMode + offset ) % mod ) + 2;
mpm[3] = ( ( angMode - 1 ) % mod ) + 2;
mpm[4] = ( ( angMode + offset - 1 ) % mod ) + 2;
mpm[5] = ( ( angMode ) % mod ) + 2;
}
}
}
else
#endif
{
#if JVET_N0185_UNIFIED_MPM
mpm[0] = PLANAR_IDX;
mpm[1] = DC_IDX;
#else
mpm[0] = leftIntraDir;
mpm[1] = (mpm[0] == PLANAR_IDX) ? DC_IDX : PLANAR_IDX;
#endif
mpm[2] = VER_IDX;
mpm[3] = HOR_IDX;
mpm[4] = VER_IDX - 4;
mpm[5] = VER_IDX + 4;
if (leftIntraDir == aboveIntraDir)
{
numCand = 1;
if (leftIntraDir > DC_IDX)
{
#if JVET_N0185_UNIFIED_MPM
mpm[0] = PLANAR_IDX;
mpm[1] = leftIntraDir;
mpm[2] = ((leftIntraDir + offset) % mod) + 2;
mpm[3] = ((leftIntraDir - 1) % mod) + 2;
mpm[4] = DC_IDX;
mpm[5] = ((leftIntraDir + offset - 1) % mod) + 2;
#else
mpm[0] = leftIntraDir;
mpm[1] = PLANAR_IDX;
mpm[2] = DC_IDX;
mpm[3] = ((leftIntraDir + offset) % mod) + 2;
mpm[4] = ((leftIntraDir - 1) % mod) + 2;
mpm[5] = ((leftIntraDir + offset - 1) % mod) + 2;
#endif
}
}
else //L!=A
{
numCand = 2;
#if !JVET_N0185_UNIFIED_MPM
mpm[0] = leftIntraDir;
mpm[1] = aboveIntraDir;
#endif
#if JVET_N0185_UNIFIED_MPM
int maxCandModeIdx = mpm[0] > mpm[1] ? 0 : 1;
#else
bool maxCandModeIdx = mpm[0] > mpm[1] ? 0 : 1;
#endif
if ((leftIntraDir > DC_IDX) && (aboveIntraDir > DC_IDX))
{
#if JVET_N0185_UNIFIED_MPM
mpm[0] = PLANAR_IDX;
mpm[1] = leftIntraDir;
mpm[2] = aboveIntraDir;
maxCandModeIdx = mpm[1] > mpm[2] ? 1 : 2;
int minCandModeIdx = mpm[1] > mpm[2] ? 2 : 1;
#else
mpm[2] = PLANAR_IDX;
#endif
mpm[3] = DC_IDX;
#if JVET_N0185_UNIFIED_MPM
if ((mpm[maxCandModeIdx] - mpm[minCandModeIdx] < 63) && (mpm[maxCandModeIdx] - mpm[minCandModeIdx] > 1))
#else
if ((mpm[maxCandModeIdx] - mpm[!maxCandModeIdx] < 63) && (mpm[maxCandModeIdx] - mpm[!maxCandModeIdx] > 1))
#endif
{
mpm[4] = ((mpm[maxCandModeIdx] + offset) % mod) + 2;
mpm[5] = ((mpm[maxCandModeIdx] - 1) % mod) + 2;
}
else
{
mpm[4] = ((mpm[maxCandModeIdx] + offset - 1) % mod) + 2;
mpm[5] = ((mpm[maxCandModeIdx]) % mod) + 2;
}
}
else if (leftIntraDir + aboveIntraDir >= 2)
{
#if JVET_N0185_UNIFIED_MPM
mpm[0] = PLANAR_IDX;
mpm[1] = (leftIntraDir < aboveIntraDir) ? aboveIntraDir : leftIntraDir;
maxCandModeIdx = 1;
mpm[2] = DC_IDX;
#else
mpm[2] = (mpm[!maxCandModeIdx] == PLANAR_IDX) ? DC_IDX : PLANAR_IDX;
#endif
mpm[3] = ((mpm[maxCandModeIdx] + offset) % mod) + 2;
mpm[4] = ((mpm[maxCandModeIdx] - 1) % mod) + 2;
mpm[5] = ((mpm[maxCandModeIdx] + offset - 1) % mod) + 2;
}
}
}
for (int i = 0; i < numMPMs; i++)
{
CHECK(mpm[i] >= NUM_LUMA_MODE, "Invalid MPM");
}
CHECK(numCand == 0, "No candidates found");
return numCand;
}
}
#if JVET_N0217_MATRIX_INTRAPRED
bool PU::isMIP(const PredictionUnit &pu, const ChannelType &chType)
{
return (chType == CHANNEL_TYPE_LUMA && pu.cu->mipFlag);
}
int PU::getMipSizeId(const PredictionUnit &pu)
{
if ((pu.lwidth() == 4) && (pu.lheight() == 4))
{
return 0; // MIP with 16x4 matrix
}
else if (pu.lwidth() <= 8 && pu.lheight() <= 8)
{
return 1; // MIP with 16x8 matrix
}
else
{
return 2; // MIP with 64x8 matrix
}
}
int PU::getMipMPMs(const PredictionUnit &pu, unsigned *mpm)
{
const CompArea &area = pu.block( getFirstComponentOfChannel( CHANNEL_TYPE_LUMA ) );
const Position &pos = area.pos();
bool realMode = false;
// Get intra mode of left PU
int leftIntraMode = -1;
const PredictionUnit *puLeft = pu.cs->getPURestricted( pos.offset( -1, 0 ), pu, CHANNEL_TYPE_LUMA );
if( puLeft && CU::isIntra( *puLeft->cu ) )
{
if( PU::isMIP( *puLeft ) )
{
if (getMipSizeId(*puLeft) == getMipSizeId(pu))
{
leftIntraMode = puLeft->intraDir[CHANNEL_TYPE_LUMA];
realMode = true;
}
}
else
{
leftIntraMode = g_mapAngular33ToMip[getMipSizeId(pu)][g_intraMode65to33AngMapping[puLeft->intraDir[CHANNEL_TYPE_LUMA]]];
}
}
// Get intra mode of above PU
int aboveIntraMode = -1;
const PredictionUnit *puAbove = pu.cs->getPURestricted( pos.offset( 0, -1 ), pu, CHANNEL_TYPE_LUMA );
if( puAbove && CU::isIntra( *puAbove->cu ) && CU::isSameCtu(*pu.cu, *puAbove->cu) )
{
if( PU::isMIP( *puAbove ) )
{
if (getMipSizeId(*puAbove) == getMipSizeId(pu))
{
aboveIntraMode = puAbove->intraDir[CHANNEL_TYPE_LUMA];
realMode = true;
}
}
else
{
aboveIntraMode = g_mapAngular33ToMip[getMipSizeId(pu)][g_intraMode65to33AngMapping[puAbove->intraDir[CHANNEL_TYPE_LUMA]]];
}
}
// derive MPMs
CHECKD(NUM_MPM_MIP != 3, "Error: wrong number of MPMs for MIP");
const int* modeList = g_sortedMipMpms[getMipSizeId(pu)];
int numCand = 0;
if( leftIntraMode == aboveIntraMode )
{
if( leftIntraMode > -1 )
{
mpm[0] = leftIntraMode;
numCand = 1;
if( leftIntraMode != modeList[0] )
{
mpm[1] = modeList[0];
mpm[2] = (leftIntraMode != modeList[1]) ? modeList[1] : modeList[2];
}
else
{
mpm[1] = modeList[1];
mpm[2] = modeList[2];
}
}
else
{
mpm[0] = modeList[0];
mpm[1] = modeList[1];
mpm[2] = modeList[2];
}
}
else
{
if( leftIntraMode > -1 && aboveIntraMode > -1 )
{
mpm[0] = leftIntraMode;
mpm[1] = aboveIntraMode;
numCand = 2;
int index = 0;
for( int i = 0; i < 3; i++ )
{
if( (leftIntraMode != modeList[i]) && (aboveIntraMode != modeList[i]) )
{
index = i;
break;
}
}
CHECK( index > 2, "Error" );
mpm[2] = modeList[index];
}
else
{
mpm[0] = leftIntraMode > -1 ? leftIntraMode : aboveIntraMode;
numCand = 1;
if( mpm[0] != modeList[0] )
{
mpm[1] = modeList[0];
mpm[2] = (mpm[0] != modeList[1]) ? modeList[1] : modeList[2];
}
else
{
mpm[1] = modeList[1];
mpm[2] = modeList[2];
}
}
}
return (realMode ? numCand : 0);
}
uint32_t PU::getIntraDirLuma( const PredictionUnit &pu )
{
if (isMIP(pu))
{
return g_mapMipToAngular65[getMipSizeId(pu)][pu.intraDir[CHANNEL_TYPE_LUMA]];
}
else
{
return pu.intraDir[CHANNEL_TYPE_LUMA];
}
}
AvailableInfo PU::getAvailableInfoLuma(const PredictionUnit &pu)
{
const Area puArea = pu.Y();
const CodingStructure &cs = *pu.cs;
CHECK(cs.pps->getConstrainedIntraPred(), "Error: constrained intra prediction not supported");
AvailableInfo availInfo(0, 0);
// above
const int unitWidth = cs.pcv->minCUWidth;
const int numAboveUnits = (puArea.width + (unitWidth - 1)) / unitWidth;
for (int uX = 0; uX < numAboveUnits; uX++)
{
const Position topPos = puArea.offset(availInfo.maxPosTop, -1);
const CodingUnit* pcCUAbove = cs.isDecomp(topPos, CHANNEL_TYPE_LUMA) ? cs.getCURestricted(topPos, *(pu.cu), CHANNEL_TYPE_LUMA) : nullptr;
if (!pcCUAbove) { break; }
availInfo.maxPosTop += unitWidth;
}
// left
const int unitHeight = cs.pcv->minCUHeight;
const int numLeftUnits = (puArea.height + (unitHeight - 1)) / unitHeight;
for (int uY = 0; uY < numLeftUnits; uY++)
{
const Position leftPos = puArea.offset(-1, availInfo.maxPosLeft);
const CodingUnit* pcCULeft = cs.isDecomp(leftPos, CHANNEL_TYPE_LUMA) ? cs.getCURestricted(leftPos, *(pu.cu), CHANNEL_TYPE_LUMA) : nullptr;
if (!pcCULeft) { break; }
availInfo.maxPosLeft += unitHeight;
}
CHECKD(availInfo.maxPosTop > puArea.width || availInfo.maxPosLeft > puArea.height, "Error");
return availInfo;
}
#endif
void PU::getIntraChromaCandModes( const PredictionUnit &pu, unsigned modeList[NUM_CHROMA_MODE] )
{
{
modeList[ 0 ] = PLANAR_IDX;
modeList[ 1 ] = VER_IDX;
modeList[ 2 ] = HOR_IDX;
modeList[ 3 ] = DC_IDX;
modeList[4] = LM_CHROMA_IDX;
modeList[5] = MDLM_L_IDX;
modeList[6] = MDLM_T_IDX;
modeList[7] = DM_CHROMA_IDX;
Position topLeftPos = pu.blocks[pu.chType].lumaPos();
Position refPos = topLeftPos.offset( pu.blocks[pu.chType].lumaSize().width >> 1, pu.blocks[pu.chType].lumaSize().height >> 1 );
const PredictionUnit *lumaPU = CS::isDualITree( *pu.cs ) ? pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : &pu;
#if JVET_N0217_MATRIX_INTRAPRED
const uint32_t lumaMode = PU::getIntraDirLuma( *lumaPU );
#else
const uint32_t lumaMode = lumaPU->intraDir[CHANNEL_TYPE_LUMA];
#endif
for( int i = 0; i < 4; i++ )
{
if( lumaMode == modeList[i] )
{
modeList[i] = VDIA_IDX;
break;
}
}
}
}
bool PU::isLMCMode(unsigned mode)
{
return (mode >= LM_CHROMA_IDX && mode <= MDLM_T_IDX);
}
bool PU::isLMCModeEnabled(const PredictionUnit &pu, unsigned mode)
{
if ( pu.cs->sps->getUseLMChroma() )
{
return true;
}
return false;
}
int PU::getLMSymbolList(const PredictionUnit &pu, int *pModeList)
{
int iIdx = 0;
pModeList[ iIdx++ ] = LM_CHROMA_IDX;
pModeList[ iIdx++ ] = -1;
pModeList[iIdx++] = MDLM_L_IDX;
pModeList[iIdx++] = MDLM_T_IDX;
return iIdx;
}
bool PU::isChromaIntraModeCrossCheckMode( const PredictionUnit &pu )
{
return pu.intraDir[CHANNEL_TYPE_CHROMA] == DM_CHROMA_IDX;
}
#if !JVET_N0302_SIMPLFIED_CIIP
int PU::getMHIntraMPMs(const PredictionUnit &pu, unsigned* mpm, const ChannelType &channelType /*= CHANNEL_TYPE_LUMA*/, const bool isChromaMDMS /*= false*/, const unsigned startIdx /*= 0*/)
{
const int numMPMs = 3; // Multi-hypothesis intra uses only 3 MPM
{
int numCand = -1;
uint32_t leftIntraDir = DC_IDX, aboveIntraDir = DC_IDX;
const CompArea& area = pu.block(getFirstComponentOfChannel(channelType));
const Position& pos = area.pos();
// Get intra direction of left PU
const PredictionUnit *puLeft = pu.cs->getPURestricted(pos.offset(-1, 0), pu, channelType);
if (puLeft && (CU::isIntra(*puLeft->cu) || puLeft->mhIntraFlag))
{
leftIntraDir = puLeft->intraDir[channelType];
if (isChroma(channelType) && leftIntraDir == DM_CHROMA_IDX)
{
leftIntraDir = puLeft->intraDir[0];
}
}
// Get intra direction of above PU
const PredictionUnit* puAbove = pu.cs->getPURestricted(pos.offset(0, -1), pu, channelType);
if (puAbove && (CU::isIntra(*puAbove->cu) || puAbove->mhIntraFlag) && CU::isSameCtu(*pu.cu, *puAbove->cu))
{
aboveIntraDir = puAbove->intraDir[channelType];
if (isChroma(channelType) && aboveIntraDir == DM_CHROMA_IDX)
{
aboveIntraDir = puAbove->intraDir[0];
}
}
CHECK(2 >= numMPMs, "Invalid number of most probable modes");
uint32_t leftIntraDir2 = leftIntraDir;
uint32_t aboveIntraDir2 = aboveIntraDir;
leftIntraDir2 = (leftIntraDir2 > DC_IDX) ? ((leftIntraDir2 <= DIA_IDX) ? HOR_IDX : VER_IDX) : leftIntraDir2;
aboveIntraDir2 = (aboveIntraDir2 > DC_IDX) ? ((aboveIntraDir2 <= DIA_IDX) ? HOR_IDX : VER_IDX) : aboveIntraDir2;
if (leftIntraDir2 == aboveIntraDir2)
{
numCand = 1;
if (leftIntraDir2 > DC_IDX) // angular modes
{
mpm[0] = leftIntraDir2;
mpm[1] = PLANAR_IDX;
mpm[2] = DC_IDX;
}
else //non-angular
{
mpm[0] = PLANAR_IDX;
mpm[1] = DC_IDX;
mpm[2] = VER_IDX;
}
}
else
{
numCand = 2;
mpm[0] = leftIntraDir2;
mpm[1] = aboveIntraDir2;
if (leftIntraDir2 && aboveIntraDir2) //both modes are non-planar
{
mpm[2] = PLANAR_IDX;
}
else
{
mpm[2] = (leftIntraDir2 + aboveIntraDir2) < 2 ? VER_IDX : DC_IDX;
}
}
int narrowCase = getNarrowShape(pu.lwidth(), pu.lheight());
if (narrowCase > 0)
{
bool isMPM[NUM_LUMA_MODE];
for (int idx = 0; idx < NUM_LUMA_MODE; idx++)
{
isMPM[idx] = false;
}
for (int idx = 0; idx < numMPMs; idx++)
{
isMPM[mpm[idx]] = true;
}
if (narrowCase == 1 && isMPM[HOR_IDX])
{
for (int idx = 0; idx < numMPMs; idx++)
{
if (mpm[idx] == HOR_IDX)
{
if (!isMPM[PLANAR_IDX])
mpm[idx] = PLANAR_IDX;
else if (!isMPM[DC_IDX])
mpm[idx] = DC_IDX;
else if (!isMPM[VER_IDX])
mpm[idx] = VER_IDX;
break;
}
}
}
if (narrowCase == 2 && isMPM[VER_IDX])
{
for (int idx = 0; idx < numMPMs; idx++)
{
if (mpm[idx] == VER_IDX)
{
if (!isMPM[PLANAR_IDX])
mpm[idx] = PLANAR_IDX;
else if (!isMPM[DC_IDX])
mpm[idx] = DC_IDX;
else if (!isMPM[HOR_IDX])
mpm[idx] = HOR_IDX;
break;
}
}
}
}
CHECK(numCand == 0, "No candidates found");
CHECK(mpm[0] == mpm[1] || mpm[0] == mpm[2] || mpm[2] == mpm[1], "redundant MPM");
return numCand;
}
}
#endif
int PU::getNarrowShape(const int width, const int height)
{
int longSide = (width > height) ? width : height;
int shortSide = (width > height) ? height : width;
if (longSide > (2 * shortSide))
{
if (longSide == width)
return 1;
else
return 2;
}
else
{
return 0;
}
}
uint32_t PU::getFinalIntraMode( const PredictionUnit &pu, const ChannelType &chType )
{
uint32_t uiIntraMode = pu.intraDir[chType];
if( uiIntraMode == DM_CHROMA_IDX && !isLuma( chType ) )
{
Position topLeftPos = pu.blocks[pu.chType].lumaPos();
Position refPos = topLeftPos.offset( pu.blocks[pu.chType].lumaSize().width >> 1, pu.blocks[pu.chType].lumaSize().height >> 1 );
const PredictionUnit &lumaPU = CS::isDualITree( *pu.cs ) ? *pu.cs->picture->cs->getPU( refPos, CHANNEL_TYPE_LUMA ) : *pu.cs->getPU( topLeftPos, CHANNEL_TYPE_LUMA );
#if JVET_N0217_MATRIX_INTRAPRED
uiIntraMode = PU::getIntraDirLuma( lumaPU );
#else
uiIntraMode = lumaPU.intraDir[0];
#endif
}
#if JVET_N0671_CHROMA_FORMAT_422
if( pu.chromaFormat == CHROMA_422 && !isLuma( chType ) && uiIntraMode < NUM_LUMA_MODE ) // map directional, planar and dc
#else
if( pu.chromaFormat == CHROMA_422 && !isLuma( chType ) )
#endif //JVET_N0671_CHROMA_FORMAT_422
{
uiIntraMode = g_chroma422IntraAngleMappingTable[uiIntraMode];
}
return uiIntraMode;
}
#if JVET_N0193_LFNST
int PU::getWideAngIntraMode( const TransformUnit &tu, const uint32_t dirMode, const ComponentID compID )
{
if( dirMode < 2 )
{
return ( int ) dirMode;
}
CodingStructure& cs = *tu.cs;
const CompArea& area = tu.blocks[ compID ];
PelBuf pred = cs.getPredBuf( area );
int width = int( pred.width );
int height = int( pred.height );
int modeShift[ ] = { 0, 6, 10, 12, 14, 15 };
int deltaSize = abs( g_aucLog2[ width ] - g_aucLog2[ height ] );
int predMode = dirMode;
if( width > height && dirMode < 2 + modeShift[ deltaSize ] )
{
predMode += ( VDIA_IDX - 1 );
}
else if( height > width && predMode > VDIA_IDX - modeShift[ deltaSize ] )
{
predMode -= ( VDIA_IDX + 1 );
}
return predMode;
}
#endif
bool PU::xCheckSimilarMotion(const int mergeCandIndex, const int prevCnt, const MergeCtx mergeCandList, bool hasPruned[MRG_MAX_NUM_CANDS])
{
for (uint32_t ui = 0; ui < prevCnt; ui++)
{
if (hasPruned[ui])
{
continue;
}
if (mergeCandList.interDirNeighbours[ui] == mergeCandList.interDirNeighbours[mergeCandIndex])
{
if (mergeCandList.interDirNeighbours[ui] == 3)
{
int offset0 = (ui * 2);
int offset1 = (mergeCandIndex * 2);
if (mergeCandList.mvFieldNeighbours[offset0].refIdx == mergeCandList.mvFieldNeighbours[offset1].refIdx &&
mergeCandList.mvFieldNeighbours[offset0 + 1].refIdx == mergeCandList.mvFieldNeighbours[offset1 + 1].refIdx &&
mergeCandList.mvFieldNeighbours[offset0].mv == mergeCandList.mvFieldNeighbours[offset1].mv &&
mergeCandList.mvFieldNeighbours[offset0 + 1].mv == mergeCandList.mvFieldNeighbours[offset1 + 1].mv
)
{
hasPruned[ui] = true;
return true;
}
}
else
{
int offset0 = (ui * 2) + mergeCandList.interDirNeighbours[ui] - 1;
int offset1 = (mergeCandIndex * 2) + mergeCandList.interDirNeighbours[ui] - 1;
if (mergeCandList.mvFieldNeighbours[offset0].refIdx == mergeCandList.mvFieldNeighbours[offset1].refIdx &&
mergeCandList.mvFieldNeighbours[offset0].mv == mergeCandList.mvFieldNeighbours[offset1].mv
)
{
hasPruned[ui] = true;
return true;
}
}
}
}
return false;
}
#if JVET_L0090_PAIR_AVG
bool PU::addMergeHMVPCand(const CodingStructure &cs, MergeCtx& mrgCtx, bool canFastExit, const int& mrgCandIdx, const uint32_t maxNumMergeCandMin1, int &cnt, const int prevCnt, bool isAvailableSubPu, unsigned subPuMvpPos
, bool ibcFlag
, bool isShared
)
#else
bool PU::addMergeHMVPCand(const CodingStructure &cs, MergeCtx& mrgCtx, bool isCandInter[MRG_MAX_NUM_CANDS], bool canFastExit, const int& mrgCandIdx, const uint32_t maxNumMergeCandMin1, int &cnt, const int prevCnt, bool isAvailableSubPu, unsigned subPuMvpPos
, int mmvdList
)
#endif
{
const Slice& slice = *cs.slice;
MotionInfo miNeighbor;
bool hasPruned[MRG_MAX_NUM_CANDS];
memset(hasPruned, 0, MRG_MAX_NUM_CANDS * sizeof(bool));
if (isAvailableSubPu)
{
hasPruned[subPuMvpPos] = true;
}
#if JVET_N0266_SMALL_BLOCKS
auto &lut = ibcFlag ? ( isShared ? cs.motionLut.lutShareIbc : cs.motionLut.lutIbc ) : cs.motionLut.lut;
#else
auto &lut = ibcFlag ? ( isShared ? cs.motionLut.lutShareIbc : cs.motionLut.lutIbc ) : ( isShared ? cs.motionLut.lutShare : cs.motionLut.lut );
#endif
int num_avai_candInLUT = (int) lut.size();
for (int mrgIdx = 1; mrgIdx <= num_avai_candInLUT; mrgIdx++)
{
miNeighbor = lut[num_avai_candInLUT - mrgIdx];
mrgCtx.interDirNeighbours[cnt] = miNeighbor.interDir;
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miNeighbor.mv[0], miNeighbor.refIdx[0]);
if (slice.isInterB())
{
mrgCtx.mvFieldNeighbours[(cnt << 1) + 1].setMvField(miNeighbor.mv[1], miNeighbor.refIdx[1]);
}
#if JVET_N0843_BVP_SIMPLIFICATION
if (mrgIdx > 2 || (mrgIdx > 1 && ibcFlag) || !xCheckSimilarMotion(cnt, prevCnt, mrgCtx, hasPruned))
#else
if (mrgIdx > 2 || !xCheckSimilarMotion(cnt, prevCnt, mrgCtx, hasPruned))
#endif
{
#if !JVET_L0090_PAIR_AVG
isCandInter[cnt] = true;
#endif
mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? miNeighbor.GBiIdx : GBI_DEFAULT;
if (mrgCandIdx == cnt && canFastExit)
{
return true;
}
cnt ++;
if (cnt == maxNumMergeCandMin1)
{
break;
}
}
}
return false;
}
void PU::getIBCMergeCandidates(const PredictionUnit &pu, MergeCtx& mrgCtx, const int& mrgCandIdx)
{
const CodingStructure &cs = *pu.cs;
const Slice &slice = *pu.cs->slice;
const uint32_t maxNumMergeCand = slice.getMaxNumMergeCand();
const bool canFastExit = pu.cs->pps->getLog2ParallelMergeLevelMinus2() == 0;
for (uint32_t ui = 0; ui < maxNumMergeCand; ++ui)
{
mrgCtx.GBiIdx[ui] = GBI_DEFAULT;
mrgCtx.interDirNeighbours[ui] = 0;
mrgCtx.mrgTypeNeighbours[ui] = MRG_TYPE_IBC;
mrgCtx.mvFieldNeighbours[ui * 2].refIdx = NOT_VALID;
mrgCtx.mvFieldNeighbours[ui * 2 + 1].refIdx = NOT_VALID;
}
mrgCtx.numValidMergeCand = maxNumMergeCand;
// compute the location of the current PU
int cnt = 0;
#if JVET_N0843_BVP_SIMPLIFICATION==0
const Position posLT = pu.shareParentPos;
#endif
const Position posRT = pu.shareParentPos.offset(pu.shareParentSize.width - 1, 0);
const Position posLB = pu.shareParentPos.offset(0, pu.shareParentSize.height - 1);
MotionInfo miAbove, miLeft, miAboveLeft, miAboveRight, miBelowLeft;
//left
const PredictionUnit* puLeft = cs.getPURestricted(posLB.offset(-1, 0), pu, pu.chType);
const bool isAvailableA1 = puLeft && isDiffMER(pu, *puLeft) && pu.cu != puLeft->cu && CU::isIBC(*puLeft->cu);
if (isAvailableA1)
{
miLeft = puLeft->getMotionInfo(posLB.offset(-1, 0));
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miLeft.interDir;
// get Mv from Left
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miLeft.mv[0], miLeft.refIdx[0]);
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
// above
const PredictionUnit *puAbove = cs.getPURestricted(posRT.offset(0, -1), pu, pu.chType);
bool isAvailableB1 = puAbove && isDiffMER(pu, *puAbove) && pu.cu != puAbove->cu && CU::isIBC(*puAbove->cu);
if (isAvailableB1)
{
miAbove = puAbove->getMotionInfo(posRT.offset(0, -1));
if (!isAvailableA1 || (miAbove != miLeft))
{
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miAbove.interDir;
// get Mv from Above
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miAbove.mv[0], miAbove.refIdx[0]);
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
int spatialCandPos = cnt;
#if JVET_N0843_BVP_SIMPLIFICATION==0
// above right
const PredictionUnit *puAboveRight = cs.getPURestricted(posRT.offset(1, -1), pu, pu.chType);
bool isAvailableB0 = puAboveRight && isDiffMER(pu, *puAboveRight) && CU::isIBC(*puAboveRight->cu);
if (isAvailableB0)
{
miAboveRight = puAboveRight->getMotionInfo(posRT.offset(1, -1));
#if HM_JEM_MERGE_CANDS
if ((!isAvailableB1 || (miAbove != miAboveRight)) && (!isAvailableA1 || (miLeft != miAboveRight)))
#else
if (!isAvailableB1 || (miAbove != miAboveRight))
#endif
{
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miAboveRight.interDir;
// get Mv from Above-right
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miAboveRight.mv[0], miAboveRight.refIdx[0]);
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
//left bottom
const PredictionUnit *puLeftBottom = cs.getPURestricted(posLB.offset(-1, 1), pu, pu.chType);
bool isAvailableA0 = puLeftBottom && isDiffMER(pu, *puLeftBottom) && CU::isIBC(*puLeftBottom->cu);
if (isAvailableA0)
{
miBelowLeft = puLeftBottom->getMotionInfo(posLB.offset(-1, 1));
#if HM_JEM_MERGE_CANDS
if ((!isAvailableA1 || (miBelowLeft != miLeft)) && (!isAvailableB1 || (miBelowLeft != miAbove)) && (!isAvailableB0 || (miBelowLeft != miAboveRight)))
#else
if (!isAvailableA1 || (miBelowLeft != miLeft))
#endif
{
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miBelowLeft.interDir;
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miBelowLeft.mv[0], miBelowLeft.refIdx[0]);
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
// above left
if (cnt < 4)
{
const PredictionUnit *puAboveLeft = cs.getPURestricted(posLT.offset(-1, -1), pu, pu.chType);
bool isAvailableB2 = puAboveLeft && isDiffMER(pu, *puAboveLeft) && CU::isIBC(*puAboveLeft->cu);
if (isAvailableB2)
{
miAboveLeft = puAboveLeft->getMotionInfo(posLT.offset(-1, -1));
#if HM_JEM_MERGE_CANDS
if ((!isAvailableA1 || (miLeft != miAboveLeft)) && (!isAvailableB1 || (miAbove != miAboveLeft)) && (!isAvailableA0 || (miBelowLeft != miAboveLeft)) && (!isAvailableB0 || (miAboveRight != miAboveLeft)))
#else
if ((!isAvailableA1 || (miLeft != miAboveLeft)) && (!isAvailableB1 || (miAbove != miAboveLeft)))
#endif
{
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miAboveLeft.interDir;
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miAboveLeft.mv[0], miAboveLeft.refIdx[0]);
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
#endif
#if JVET_N0843_BVP_SIMPLIFICATION
int maxNumMergeCandMin1 = maxNumMergeCand;
#else
int maxNumMergeCandMin1 = maxNumMergeCand - 1;
#endif
if (cnt != maxNumMergeCandMin1)
{
bool isAvailableSubPu = false;
unsigned subPuMvpPos = 0;
bool isShared = ((pu.Y().lumaSize().width != pu.shareParentSize.width) || (pu.Y().lumaSize().height != pu.shareParentSize.height));
#if JVET_L0090_PAIR_AVG
bool bFound = addMergeHMVPCand(cs, mrgCtx, canFastExit
, mrgCandIdx
, maxNumMergeCandMin1, cnt
, spatialCandPos
, isAvailableSubPu, subPuMvpPos
, true
, isShared
);
#else
bool bFound = addMergeHMVPCand(slice, mrgCtx, isCandInter, canFastExit
, mrgCandIdx
, maxNumMergeCandMin1, cnt, cnt, isAvailableSubPu, subPuMvpPos
);
#endif
if (bFound)
{
return;
}
}
#if JVET_L0090_PAIR_AVG && JVET_N0843_BVP_SIMPLIFICATION==0
// pairwise-average candidates
if (cnt>1 && cnt <maxNumMergeCand)
{
mrgCtx.mvFieldNeighbours[cnt * 2 ].setMvField(Mv(0, 0), NOT_VALID);
mrgCtx.mvFieldNeighbours[cnt * 2 + 1].setMvField(Mv(0, 0), NOT_VALID);
const Mv& MvI = mrgCtx.mvFieldNeighbours[0 * 2].mv;
const Mv& MvJ = mrgCtx.mvFieldNeighbours[1 * 2].mv;
// average two MVs
Mv avgMv = MvI;
avgMv += MvJ;
mrgCtx.mrgTypeNeighbours[cnt] = MRG_TYPE_IBC;
roundAffineMv(avgMv.hor, avgMv.ver, 1);
avgMv.roundToPrecision(MV_PRECISION_INTERNAL, MV_PRECISION_INT);
mrgCtx.mvFieldNeighbours[cnt * 2 ].setMvField(avgMv, MAX_NUM_REF);
mrgCtx.interDirNeighbours[cnt] = 1;
cnt++;
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
#endif
#if JVET_N0317_ADD_ZERO_BV
while (cnt < maxNumMergeCand)
{
mrgCtx.mvFieldNeighbours[cnt * 2].setMvField(Mv(0, 0), MAX_NUM_REF);
mrgCtx.interDirNeighbours[cnt] = 1;
cnt++;
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
}
#endif
mrgCtx.numValidMergeCand = cnt;
}
void PU::getInterMergeCandidates( const PredictionUnit &pu, MergeCtx& mrgCtx,
int mmvdList,
const int& mrgCandIdx )
{
const CodingStructure &cs = *pu.cs;
const Slice &slice = *pu.cs->slice;
const uint32_t maxNumMergeCand = slice.getMaxNumMergeCand();
const bool canFastExit = pu.cs->pps->getLog2ParallelMergeLevelMinus2() == 0;
#if !JVET_L0090_PAIR_AVG
// this variable is unused if remove HEVC combined candidates
bool isCandInter[MRG_MAX_NUM_CANDS];
#endif
for (uint32_t ui = 0; ui < maxNumMergeCand; ++ui)
{
#if !JVET_L0090_PAIR_AVG
isCandInter[ui] = false;
#endif
mrgCtx.GBiIdx[ui] = GBI_DEFAULT;
mrgCtx.interDirNeighbours[ui] = 0;
mrgCtx.mrgTypeNeighbours [ui] = MRG_TYPE_DEFAULT_N;
mrgCtx.mvFieldNeighbours[(ui << 1) ].refIdx = NOT_VALID;
mrgCtx.mvFieldNeighbours[(ui << 1) + 1].refIdx = NOT_VALID;
}
mrgCtx.numValidMergeCand = maxNumMergeCand;
// compute the location of the current PU
int cnt = 0;
#if JVET_N0266_SMALL_BLOCKS
const Position posLT = pu.Y().topLeft();
const Position posRT = pu.Y().topRight();
const Position posLB = pu.Y().bottomLeft();
#else
const Position posLT = pu.shareParentPos;
const Position posRT = pu.shareParentPos.offset(pu.shareParentSize.width - 1, 0);
const Position posLB = pu.shareParentPos.offset(0, pu.shareParentSize.height - 1);
#endif
MotionInfo miAbove, miLeft, miAboveLeft, miAboveRight, miBelowLeft;
//left
const PredictionUnit* puLeft = cs.getPURestricted( posLB.offset( -1, 0 ), pu, pu.chType );
const bool isAvailableA1 = puLeft && isDiffMER( pu, *puLeft ) && pu.cu != puLeft->cu && CU::isInter( *puLeft->cu );
if( isAvailableA1 )
{
miLeft = puLeft->getMotionInfo( posLB.offset(-1, 0) );
#if !JVET_L0090_PAIR_AVG
isCandInter[cnt] = true;
#endif
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miLeft.interDir;
mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? puLeft->cu->GBiIdx : GBI_DEFAULT;
// get Mv from Left
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField(miLeft.mv[0], miLeft.refIdx[0]);
if (slice.isInterB())
{
mrgCtx.mvFieldNeighbours[(cnt << 1) + 1].setMvField(miLeft.mv[1], miLeft.refIdx[1]);
}
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
// above
const PredictionUnit *puAbove = cs.getPURestricted( posRT.offset( 0, -1 ), pu, pu.chType );
bool isAvailableB1 = puAbove && isDiffMER( pu, *puAbove ) && pu.cu != puAbove->cu && CU::isInter( *puAbove->cu );
if( isAvailableB1 )
{
miAbove = puAbove->getMotionInfo( posRT.offset( 0, -1 ) );
if( !isAvailableA1 || ( miAbove != miLeft ) )
{
#if !JVET_L0090_PAIR_AVG
isCandInter[cnt] = true;
#endif
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miAbove.interDir;
// get Mv from Above
mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? puAbove->cu->GBiIdx : GBI_DEFAULT;
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField( miAbove.mv[0], miAbove.refIdx[0] );
if( slice.isInterB() )
{
mrgCtx.mvFieldNeighbours[( cnt << 1 ) + 1].setMvField( miAbove.mv[1], miAbove.refIdx[1] );
}
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
// early termination
if( cnt == maxNumMergeCand )
{
return;
}
int spatialCandPos = cnt;
// above right
const PredictionUnit *puAboveRight = cs.getPURestricted( posRT.offset( 1, -1 ), pu, pu.chType );
bool isAvailableB0 = puAboveRight && isDiffMER( pu, *puAboveRight ) && CU::isInter( *puAboveRight->cu );
if( isAvailableB0 )
{
miAboveRight = puAboveRight->getMotionInfo( posRT.offset( 1, -1 ) );
#if HM_JEM_MERGE_CANDS
if( ( !isAvailableB1 || ( miAbove != miAboveRight ) ) && ( !isAvailableA1 || ( miLeft != miAboveRight ) ) )
#else
if( !isAvailableB1 || ( miAbove != miAboveRight ) )
#endif
{
#if !JVET_L0090_PAIR_AVG
isCandInter[cnt] = true;
#endif
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miAboveRight.interDir;
// get Mv from Above-right
mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? puAboveRight->cu->GBiIdx : GBI_DEFAULT;
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField( miAboveRight.mv[0], miAboveRight.refIdx[0] );
if( slice.isInterB() )
{
mrgCtx.mvFieldNeighbours[( cnt << 1 ) + 1].setMvField( miAboveRight.mv[1], miAboveRight.refIdx[1] );
}
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
// early termination
if( cnt == maxNumMergeCand )
{
return;
}
//left bottom
const PredictionUnit *puLeftBottom = cs.getPURestricted( posLB.offset( -1, 1 ), pu, pu.chType );
bool isAvailableA0 = puLeftBottom && isDiffMER( pu, *puLeftBottom ) && CU::isInter( *puLeftBottom->cu );
if( isAvailableA0 )
{
miBelowLeft = puLeftBottom->getMotionInfo( posLB.offset( -1, 1 ) );
#if HM_JEM_MERGE_CANDS
if( ( !isAvailableA1 || ( miBelowLeft != miLeft ) ) && ( !isAvailableB1 || ( miBelowLeft != miAbove ) ) && ( !isAvailableB0 || ( miBelowLeft != miAboveRight ) ) )
#else
if( !isAvailableA1 || ( miBelowLeft != miLeft ) )
#endif
{
#if !JVET_L0090_PAIR_AVG
isCandInter[cnt] = true;
#endif
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miBelowLeft.interDir;
mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? puLeftBottom->cu->GBiIdx : GBI_DEFAULT;
// get Mv from Bottom-Left
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField( miBelowLeft.mv[0], miBelowLeft.refIdx[0] );
if( slice.isInterB() )
{
mrgCtx.mvFieldNeighbours[( cnt << 1 ) + 1].setMvField( miBelowLeft.mv[1], miBelowLeft.refIdx[1] );
}
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
// early termination
if( cnt == maxNumMergeCand )
{
return;
}
// above left
if ( cnt < 4 )
{
const PredictionUnit *puAboveLeft = cs.getPURestricted( posLT.offset( -1, -1 ), pu, pu.chType );
bool isAvailableB2 = puAboveLeft && isDiffMER( pu, *puAboveLeft ) && CU::isInter( *puAboveLeft->cu );
if( isAvailableB2 )
{
miAboveLeft = puAboveLeft->getMotionInfo( posLT.offset( -1, -1 ) );
#if HM_JEM_MERGE_CANDS
if( ( !isAvailableA1 || ( miLeft != miAboveLeft ) ) && ( !isAvailableB1 || ( miAbove != miAboveLeft ) ) && ( !isAvailableA0 || ( miBelowLeft != miAboveLeft ) ) && ( !isAvailableB0 || ( miAboveRight != miAboveLeft ) ) )
#else
if( ( !isAvailableA1 || ( miLeft != miAboveLeft ) ) && ( !isAvailableB1 || ( miAbove != miAboveLeft ) ) )
#endif
{
#if !JVET_L0090_PAIR_AVG
isCandInter[cnt] = true;
#endif
// get Inter Dir
mrgCtx.interDirNeighbours[cnt] = miAboveLeft.interDir;
mrgCtx.GBiIdx[cnt] = (mrgCtx.interDirNeighbours[cnt] == 3) ? puAboveLeft->cu->GBiIdx : GBI_DEFAULT;
// get Mv from Above-Left
mrgCtx.mvFieldNeighbours[cnt << 1].setMvField( miAboveLeft.mv[0], miAboveLeft.refIdx[0] );
if( slice.isInterB() )
{
mrgCtx.mvFieldNeighbours[( cnt << 1 ) + 1].setMvField( miAboveLeft.mv[1], miAboveLeft.refIdx[1] );
}
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
#if JVET_N0213_TMVP_REMOVAL
if (slice.getEnableTMVPFlag() && (pu.lumaSize().width + pu.lumaSize().height > 12))
#else
if (slice.getEnableTMVPFlag())
#endif
{
//>> MTK colocated-RightBottom
// offset the pos to be sure to "point" to the same position the uiAbsPartIdx would've pointed to
#if JVET_N0266_SMALL_BLOCKS
Position posRB = pu.Y().bottomRight().offset( -3, -3 );
#else
Position posRB = pu.shareParentPos.offset(pu.shareParentSize.width-3, pu.shareParentSize.height - 3);
#endif
const PreCalcValues& pcv = *cs.pcv;
Position posC0;
#if JVET_N0266_SMALL_BLOCKS
Position posC1 = pu.Y().center();
#else
Position posC1 = pu.shareParentPos.offset((pu.shareParentSize.width/2), (pu.shareParentSize.height/2));
#endif
bool C0Avail = false;
#if !JVET_N0266_SMALL_BLOCKS
bool C1Avail = (posC1.x < pcv.lumaWidth) && (posC1.y < pcv.lumaHeight);
#endif
if (((posRB.x + pcv.minCUWidth) < pcv.lumaWidth) && ((posRB.y + pcv.minCUHeight) < pcv.lumaHeight))
{
{
Position posInCtu( posRB.x & pcv.maxCUWidthMask, posRB.y & pcv.maxCUHeightMask );
if( ( posInCtu.x + 4 < pcv.maxCUWidth ) && // is not at the last column of CTU
( posInCtu.y + 4 < pcv.maxCUHeight ) ) // is not at the last row of CTU
{
posC0 = posRB.offset( 4, 4 );
C0Avail = true;
}
else if( posInCtu.x + 4 < pcv.maxCUWidth ) // is not at the last column of CTU But is last row of CTU
{
posC0 = posRB.offset( 4, 4 );
// in the reference the CTU address is not set - thus probably resulting in no using this C0 possibility
}
else if( posInCtu.y + 4 < pcv.maxCUHeight ) // is not at the last row of CTU But is last column of CTU
{
posC0 = posRB.offset( 4, 4 );
C0Avail = true;
}
else //is the right bottom corner of CTU
{
posC0 = posRB.offset( 4, 4 );
// same as for last column but not last row
}
}
}
Mv cColMv;
int iRefIdx = 0;
int dir = 0;
unsigned uiArrayAddr = cnt;
bool bExistMV = ( C0Avail && getColocatedMVP(pu, REF_PIC_LIST_0, posC0, cColMv, iRefIdx ) )
#if JVET_N0266_SMALL_BLOCKS
|| getColocatedMVP( pu, REF_PIC_LIST_0, posC1, cColMv, iRefIdx );
#else
|| ( C1Avail && getColocatedMVP(pu, REF_PIC_LIST_0, posC1, cColMv, iRefIdx ));
#endif
if (bExistMV)
{
dir |= 1;
mrgCtx.mvFieldNeighbours[2 * uiArrayAddr].setMvField(cColMv, iRefIdx);
}
if (slice.isInterB())
{
bExistMV = ( C0Avail && getColocatedMVP(pu, REF_PIC_LIST_1, posC0, cColMv, iRefIdx ) )
#if JVET_N0266_SMALL_BLOCKS
|| getColocatedMVP( pu, REF_PIC_LIST_1, posC1, cColMv, iRefIdx );
#else
|| (C1Avail && getColocatedMVP(pu, REF_PIC_LIST_1, posC1, cColMv, iRefIdx ) );
#endif
if (bExistMV)
{
dir |= 2;
mrgCtx.mvFieldNeighbours[2 * uiArrayAddr + 1].setMvField(cColMv, iRefIdx);
}
}
if( dir != 0 )
{
bool addTMvp = true;
#if HM_JEM_MERGE_CANDS
int iSpanCand = cnt;
for( int i = 0; i < iSpanCand; i++ )
{
if( mrgCtx.interDirNeighbours[ i ] == dir &&
mrgCtx.mvFieldNeighbours [ i << 1 ] == mrgCtx.mvFieldNeighbours[ uiArrayAddr << 1 ] &&
mrgCtx.mvFieldNeighbours [( i << 1 ) + 1] == mrgCtx.mvFieldNeighbours[( uiArrayAddr << 1 ) + 1] )
{
addTMvp = false;
}
}
#endif
if( addTMvp )
{
mrgCtx.interDirNeighbours[uiArrayAddr] = dir;
#if !JVET_L0090_PAIR_AVG
isCandInter [uiArrayAddr] = true;
#endif
mrgCtx.GBiIdx[uiArrayAddr] = GBI_DEFAULT;
if (mrgCandIdx == cnt && canFastExit)
{
return;
}
cnt++;
}
}
}
// early termination
if (cnt == maxNumMergeCand)
{
return;
}
int maxNumMergeCandMin1 = maxNumMergeCand - 1;
if (cnt != maxNumMergeCandMin1)
{
bool isAvailableSubPu = false;
unsigned subPuMvpPos = 0;
#if JVET_L0090_PAIR_AVG
#if JVET_N0266_SMALL_BLOCKS
bool isShared = false;
#else
bool isShared = ((pu.Y().lumaSize().width != pu.shareParentSize.width) || (pu.Y().lumaSize().height != pu.shareParentSize.height));
#endif
bool bFound = addMergeHMVPCand(cs, mrgCtx, canFastExit
, mrgCandIdx
, maxNumMergeCandMin1, cnt
, spatialCandPos
, isAvailableSubPu, subPuMvpPos
, CU::isIBC(*pu.cu)
, isShared
);
#else
bool bFound = addMergeHMVPCand(slice, mrgCtx, isCandInter, canFastExit
, (mmvdList != 0 && mrgCandIdx != -1) ? (const int)mrgCandIdxIBC : mrgCandIdx
, maxNumMergeCandMin1, cnt, cnt, isAvailableSubPu, subPuMvpPos
, mmvdList
);
#endif
if (bFound)
{
return;
}
}
#if JVET_L0090_PAIR_AVG
// pairwise-average candidates
{
if (cnt > 1 && cnt < maxNumMergeCand)
{
mrgCtx.mvFieldNeighbours[cnt * 2].setMvField( Mv( 0, 0 ), NOT_VALID );
mrgCtx.mvFieldNeighbours[cnt * 2 + 1].setMvField( Mv( 0, 0 ), NOT_VALID );
// calculate average MV for L0 and L1 seperately
unsigned char interDir = 0;
for( int refListId = 0; refListId < (slice.isInterB() ? 2 : 1); refListId++ )
{
const short refIdxI = mrgCtx.mvFieldNeighbours[0 * 2 + refListId].refIdx;
const short refIdxJ = mrgCtx.mvFieldNeighbours[1 * 2 + refListId].refIdx;
// both MVs are invalid, skip
if( (refIdxI == NOT_VALID) && (refIdxJ == NOT_VALID) )
{
continue;
}
interDir += 1 << refListId;
// both MVs are valid, average these two MVs
if( (refIdxI != NOT_VALID) && (refIdxJ != NOT_VALID) )
{
const Mv& MvI = mrgCtx.mvFieldNeighbours[0 * 2 + refListId].mv;
const Mv& MvJ = mrgCtx.mvFieldNeighbours[1 * 2 + refListId].mv;
// average two MVs
Mv avgMv = MvI;
avgMv += MvJ;
roundAffineMv(avgMv.hor, avgMv.ver, 1);
mrgCtx.mvFieldNeighbours[cnt * 2 + refListId].setMvField( avgMv, refIdxI );
}
// only one MV is valid, take the only one MV
else if( refIdxI != NOT_VALID )
{
Mv singleMv = mrgCtx.mvFieldNeighbours[0 * 2 + refListId].mv;
mrgCtx.mvFieldNeighbours[cnt * 2 + refListId].setMvField( singleMv, refIdxI );
}
else if( refIdxJ != NOT_VALID )
{
Mv singleMv = mrgCtx.mvFieldNeighbours[1 * 2 + refListId].mv;
mrgCtx.mvFieldNeighbours[cnt * 2 + refListId].setMvField( singleMv, refIdxJ );
}
}
mrgCtx.interDirNeighbours[cnt] = interDir;
if( interDir > 0 )
{
cnt++;
}
}
// early termination
if( cnt == maxNumMergeCand )
{
return;
}
}
#endif
uint32_t uiArrayAddr = cnt;
#if !JVET_L0090_PAIR_AVG
uint32_t uiCutoff = std::min( uiArrayAddr, 3u );
if (slice.isInterB())
{
static const uint32_t NUM_PRIORITY_LIST = 12;
static const uint32_t uiPriorityList0[NUM_PRIORITY_LIST] = { 0 , 1, 0, 2, 1, 2, 0, 3, 1, 3, 2, 3 };
static const uint32_t uiPriorityList1[NUM_PRIORITY_LIST] = { 1 , 0, 2, 0, 2, 1, 3, 0, 3, 1, 3, 2 };
for (int idx = 0; idx < uiCutoff * (uiCutoff - 1) && uiArrayAddr != maxNumMergeCand; idx++)
{
CHECK( idx >= NUM_PRIORITY_LIST, "Invalid priority list number" );
int i = uiPriorityList0[idx];
int j = uiPriorityList1[idx];
if (isCandInter[i] && isCandInter[j] && (mrgCtx.interDirNeighbours[i] & 0x1) && (mrgCtx.interDirNeighbours[j] & 0x2))
{
isCandInter[uiArrayAddr] = true;
mrgCtx.interDirNeighbours[uiArrayAddr] = 3;
mrgCtx.GBiIdx[uiArrayAddr] = ((mrgCtx.interDirNeighbours[uiArrayAddr] == 3)) ? CU::deriveGbiIdx(mrgCtx.GBiIdx[i], mrgCtx.GBiIdx[j]) : GBI_DEFAULT;
// get Mv from cand[i] and cand[j]
mrgCtx.mvFieldNeighbours[ uiArrayAddr << 1 ].setMvField(mrgCtx.mvFieldNeighbours[ i << 1 ].mv, mrgCtx.mvFieldNeighbours[ i << 1 ].refIdx);
mrgCtx.mvFieldNeighbours[(uiArrayAddr << 1) + 1].setMvField(mrgCtx.mvFieldNeighbours[(j << 1) + 1].mv, mrgCtx.mvFieldNeighbours[(j << 1) + 1].refIdx);
int iRefPOCL0 = slice.getRefPOC(REF_PIC_LIST_0, mrgCtx.mvFieldNeighbours[(uiArrayAddr << 1) ].refIdx);
int iRefPOCL1 = slice.getRefPOC(REF_PIC_LIST_1, mrgCtx.mvFieldNeighbours[(uiArrayAddr << 1) + 1].refIdx);
if( iRefPOCL0 == iRefPOCL1 && mrgCtx.mvFieldNeighbours[( uiArrayAddr << 1 )].mv == mrgCtx.mvFieldNeighbours[( uiArrayAddr << 1 ) + 1].mv )
{
isCandInter[uiArrayAddr] = false;
}
else
{
uiArrayAddr++;
}
}
}
}
// early termination
if (uiArrayAddr == maxNumMergeCand)
{
return;
}
#endif
int iNumRefIdx = slice.isInterB() ? std::min(slice.getNumRefIdx(REF_PIC_LIST_0), slice.getNumRefIdx(REF_PIC_LIST_1)) : slice.getNumRefIdx(REF_PIC_LIST_0);
int r = 0;
int refcnt = 0;
while (uiArrayAddr < maxNumMergeCand)
{
#if !JVET_L0090_PAIR_AVG
isCandInter [uiArrayAddr ] = true;
#endif
mrgCtx.interDirNeighbours [uiArrayAddr ] = 1;
mrgCtx.GBiIdx [uiArrayAddr ] = GBI_DEFAULT;
mrgCtx.mvFieldNeighbours [uiArrayAddr << 1].setMvField(Mv(0, 0), r);
if (slice.isInterB())
{
mrgCtx.interDirNeighbours [ uiArrayAddr ] = 3;
mrgCtx.mvFieldNeighbours [(uiArrayAddr << 1) + 1].setMvField(Mv(0, 0), r);
}
if ( mrgCtx.interDirNeighbours[uiArrayAddr] == 1 && pu.cs->slice->getRefPic(REF_PIC_LIST_0, mrgCtx.mvFieldNeighbours[uiArrayAddr << 1].refIdx)->getPOC() == pu.cs->slice->getPOC())
{
mrgCtx.mrgTypeNeighbours[uiArrayAddr] = MRG_TYPE_IBC;
}
uiArrayAddr++;
if (refcnt == iNumRefIdx - 1)
{
r = 0;
}
else
{
++r;
++refcnt;
}
}
mrgCtx.numValidMergeCand = uiArrayAddr;
}
bool PU::checkDMVRCondition(const PredictionUnit& pu)
{
#if JVET_N0146_DMVR_BDOF_CONDITION
WPScalingParam *wp0;
WPScalingParam *wp1;
int refIdx0 = pu.refIdx[REF_PIC_LIST_0];
int refIdx1 = pu.refIdx[REF_PIC_LIST_1];
pu.cs->slice->getWpScaling(REF_PIC_LIST_0, refIdx0, wp0);
pu.cs->slice->getWpScaling(REF_PIC_LIST_1, refIdx1, wp1);
#endif
if (pu.cs->sps->getUseDMVR())
{
return pu.mergeFlag
&& pu.mergeType == MRG_TYPE_DEFAULT_N
&& !pu.cu->affine
&& !pu.mmvdMergeFlag
&& !pu.cu->mmvdSkip
&& PU::isBiPredFromDifferentDirEqDistPoc(pu)
&& (pu.lheight() >= 8)
#if JVET_N0407_DMVR_CU_SIZE_RESTRICTION
&& (pu.lwidth() >= 8)
&& ((pu.lheight() * pu.lwidth()) >= 128)
#else
&& ((pu.lheight() * pu.lwidth()) >= 64)
#endif
#if JVET_N0146_DMVR_BDOF_CONDITION
&& (pu.cu->GBiIdx == GBI_DEFAULT)
&& ((!wp0[COMPONENT_Y].bPresentFlag) && (!wp1[COMPONENT_Y].bPresentFlag))
#endif
;
}
else
{
return false;
}
}
// for ibc pu validation
bool PU::isBlockVectorValid(PredictionUnit& pu, int xPos, int yPos, int width, int height, int picWidth, int picHeight, int xStartInCU, int yStartInCU, int xBv, int yBv, int ctuSize)
{
const int ctuSizeLog2 = g_aucLog2[ctuSize];
int refRightX = xPos + xBv + width - 1;
int refBottomY = yPos + yBv + height - 1;
int refLeftX = xPos + xBv;
int refTopY = yPos + yBv;
if ((xPos + xBv) < 0)
{
return false;
}
if (refRightX >= picWidth)
{
return false;
}
if ((yPos + yBv) < 0)
{
return false;
}
if (refBottomY >= picHeight)
{
return false;
}
if ((xBv + width) > 0 && (yBv + height) > 0)
{
return false;
}
// cannot be in the above CTU row
if (refTopY >> ctuSizeLog2 < yPos >> ctuSizeLog2)
return false;
// cannot be in the below CTU row
if (refBottomY >> ctuSizeLog2 > yPos >> ctuSizeLog2)
{
return false;
}
// in the same CTU line
#if JVET_N0175_N0251_N0384_IBC_SMALL_CTU
int numLeftCTUs = (1 << ((7 - ctuSizeLog2) << 1)) - ((ctuSizeLog2 < 7) ? 1 : 0);
if ((refRightX >> ctuSizeLog2 <= xPos >> ctuSizeLog2) && (refLeftX >> ctuSizeLog2 >= (xPos >> ctuSizeLog2) - numLeftCTUs))
#else
if ((refRightX >> ctuSizeLog2 <= xPos >> ctuSizeLog2) && (refLeftX >> ctuSizeLog2 >= (xPos >> ctuSizeLog2) - 1))
#endif
{
// in the same CTU, or left CTU
// if part of ref block is in the left CTU, some area can be referred from the not-yet updated local CTU buffer
#if JVET_N0175_N0251_N0384_IBC_SMALL_CTU
if (((refLeftX >> ctuSizeLog2) == ((xPos >> ctuSizeLog2) - 1)) && (ctuSizeLog2 == 7))
#else
if ((refLeftX >> ctuSizeLog2) == ((xPos >> ctuSizeLog2) - 1))
#endif
{
// ref block's collocated block in current CTU
const Position refPosCol = pu.Y().topLeft().offset(xBv + ctuSize, yBv);
int offset64x = (refPosCol.x >> (ctuSizeLog2 - 1)) << (ctuSizeLog2 - 1);
int offset64y = (refPosCol.y >> (ctuSizeLog2 - 1)) << (ctuSizeLog2 - 1);
const Position refPosCol64x64 = {offset64x, offset64y};
if (pu.cs->isDecomp(refPosCol64x64, toChannelType(COMPONENT_Y)))
return false;
#if JVET_N0383_N0251_IBC_COL_VPDU_REMOVE
if (refPosCol64x64 == pu.Y().topLeft())
return false;
#endif
}
}
else
return false;
// in the same CTU, or valid area from left CTU. Check if the reference block is already coded
const Position refPosLT = pu.Y().topLeft().offset(xBv, yBv);
const Position refPosBR = pu.Y().bottomRight().offset(xBv, yBv);
const ChannelType chType = toChannelType(COMPONENT_Y);
if (!pu.cs->isDecomp(refPosBR, chType))
return false;
if (!pu.cs->isDecomp(refPosLT, chType))
return false;
return true;
}// for ibc pu validation
static int xGetDistScaleFactor(const int &iCurrPOC, const int &iCurrRefPOC, const int &iColPOC, const int &iColRefPOC)
{
int iDiffPocD = iColPOC - iColRefPOC;
int iDiffPocB = iCurrPOC - iCurrRefPOC;
if (iDiffPocD == iDiffPocB)
{
return 4096;
}
else
{
int iTDB = Clip3(-128, 127, iDiffPocB);
int iTDD = Clip3(-128, 127, iDiffPocD);
int iX = (0x4000 + abs(iTDD / 2)) / iTDD;
int iScale = Clip3(-4096, 4095, (iTDB * iX + 32) >> 6);
return iScale;
}
}
int convertMvFixedToFloat(int32_t val)
{
int sign = val >> 31;
int scale = floorLog2((val ^ sign) | MV_MANTISSA_UPPER_LIMIT) - (MV_MANTISSA_BITCOUNT - 1);
int exponent;
int mantissa;
if (scale >= 0)
{
int round = (1 << scale) >> 1;
int n = (val + round) >> scale;
exponent = scale + ((n ^ sign) >> (MV_MANTISSA_BITCOUNT - 1));
mantissa = (n & MV_MANTISSA_UPPER_LIMIT) | (sign << (MV_MANTISSA_BITCOUNT - 1));
}
else
{
exponent = 0;
mantissa = val;
}
return exponent | (mantissa << MV_EXPONENT_BITCOUNT);
}
int convertMvFloatToFixed(int val)
{
int exponent = val & MV_EXPONENT_MASK;
int mantissa = val >> MV_EXPONENT_BITCOUNT;
return exponent == 0 ? mantissa : (mantissa ^ MV_MANTISSA_LIMIT) << (exponent - 1);
}
int roundMvComp(int x)
{
return convertMvFloatToFixed(convertMvFixedToFloat(x));
}
int PU::getDistScaleFactor(const int &currPOC, const int &currRefPOC, const int &colPOC, const int &colRefPOC)
{
return xGetDistScaleFactor(currPOC, currRefPOC, colPOC, colRefPOC);
}
void PU::getInterMMVDMergeCandidates(const PredictionUnit &pu, MergeCtx& mrgCtx, const int& mrgCandIdx)
{
int refIdxList0, refIdxList1;
int k;
int currBaseNum = 0;
const uint16_t maxNumMergeCand = mrgCtx.numValidMergeCand;
for (k = 0; k < maxNumMergeCand; k++)
{
if (mrgCtx.mrgTypeNeighbours[k] == MRG_TYPE_DEFAULT_N)
{
refIdxList0 = mrgCtx.mvFieldNeighbours[(k << 1)].refIdx;
refIdxList1 = mrgCtx.mvFieldNeighbours[(k << 1) + 1].refIdx;
if ((refIdxList0 >= 0) && (refIdxList1 >= 0))
{
mrgCtx.mmvdBaseMv[currBaseNum][0] = mrgCtx.mvFieldNeighbours[(k << 1)];
mrgCtx.mmvdBaseMv[currBaseNum][1] = mrgCtx.mvFieldNeighbours[(k << 1) + 1];
}
else if (refIdxList0 >= 0)
{
mrgCtx.mmvdBaseMv[currBaseNum][0] = mrgCtx.mvFieldNeighbours[(k << 1)];
mrgCtx.mmvdBaseMv[currBaseNum][1] = MvField(Mv(0, 0), -1);
}
else if (refIdxList1 >= 0)
{
mrgCtx.mmvdBaseMv[currBaseNum][0] = MvField(Mv(0, 0), -1);
mrgCtx.mmvdBaseMv[currBaseNum][1] = mrgCtx.mvFieldNeighbours[(k << 1) + 1];
}
currBaseNum++;
if (currBaseNum == MMVD_BASE_MV_NUM)
break;
}
}
#if !JVET_N0448_N0380
if (currBaseNum < MMVD_BASE_MV_NUM)
{
for (k = currBaseNum; k < MMVD_BASE_MV_NUM; k++)
{
mrgCtx.mmvdBaseMv[k][0] = MvField(Mv(0, 0), 0);
const Slice &slice = *pu.cs->slice;
mrgCtx.mmvdBaseMv[k][1] = MvField(Mv(0, 0), (slice.isInterB() ? 0 : -1));
mrgCtx.GBiIdx[k] = GBI_DEFAULT;
mrgCtx.interDirNeighbours[k] = (mrgCtx.mmvdBaseMv[k][0].refIdx >= 0) + (mrgCtx.mmvdBaseMv[k][1].refIdx >= 0) * 2;
}
}
#endif
}
bool PU::getColocatedMVP(const PredictionUnit &pu, const RefPicList &eRefPicList, const Position &_pos, Mv& rcMv, const int &refIdx )
{
// don't perform MV compression when generally disabled or subPuMvp is used
const unsigned scale = 4 * std::max<int>(1, 4 * AMVP_DECIMATION_FACTOR / 4);
const unsigned mask = ~( scale - 1 );
const Position pos = Position{ PosType( _pos.x & mask ), PosType( _pos.y & mask ) };
const Slice &slice = *pu.cs->slice;
// use coldir.
const Picture* const pColPic = slice.getRefPic(RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0), slice.getColRefIdx());
if( !pColPic )
{
return false;
}
RefPicList eColRefPicList = slice.getCheckLDC() ? eRefPicList : RefPicList(slice.getColFromL0Flag());
const MotionInfo& mi = pColPic->cs->getMotionInfo( pos );
if( !mi.isInter )
{
return false;
}
if (mi.isIBCmot)
{
return false;
}
if (CU::isIBC(*pu.cu))
{
return false;
}
int iColRefIdx = mi.refIdx[eColRefPicList];
if (iColRefIdx < 0)
{
eColRefPicList = RefPicList(1 - eColRefPicList);
iColRefIdx = mi.refIdx[eColRefPicList];
if (iColRefIdx < 0)
{
return false;
}
}
const Slice *pColSlice = nullptr;
for( const auto s : pColPic->slices )
{
if( s->getIndependentSliceIdx() == mi.sliceIdx )
{
pColSlice = s;
break;
}
}
CHECK( pColSlice == nullptr, "Slice segment not found" );
const Slice &colSlice = *pColSlice;
const bool bIsCurrRefLongTerm = slice.getRefPic(eRefPicList, refIdx)->longTerm;
const bool bIsColRefLongTerm = colSlice.getIsUsedAsLongTerm(eColRefPicList, iColRefIdx);
if (bIsCurrRefLongTerm != bIsColRefLongTerm)
{
return false;
}
// Scale the vector.
Mv cColMv = mi.mv[eColRefPicList];
cColMv.setHor(roundMvComp(cColMv.getHor()));
cColMv.setVer(roundMvComp(cColMv.getVer()));
if (bIsCurrRefLongTerm /*|| bIsColRefLongTerm*/)
{
rcMv = cColMv;
}
else
{
const int currPOC = slice.getPOC();
const int colPOC = colSlice.getPOC();
const int colRefPOC = colSlice.getRefPOC(eColRefPicList, iColRefIdx);
const int currRefPOC = slice.getRefPic(eRefPicList, refIdx)->getPOC();
const int distscale = xGetDistScaleFactor(currPOC, currRefPOC, colPOC, colRefPOC);
if (distscale == 4096)
{
rcMv = cColMv;
}
else
{
rcMv = cColMv.scaleMv(distscale);
}
}
return true;
}
bool PU::isDiffMER(const PredictionUnit &pu1, const PredictionUnit &pu2)
{
const unsigned xN = pu1.lumaPos().x;
const unsigned yN = pu1.lumaPos().y;
const unsigned xP = pu2.lumaPos().x;
const unsigned yP = pu2.lumaPos().y;
unsigned plevel = pu1.cs->pps->getLog2ParallelMergeLevelMinus2() + 2;
if ((xN >> plevel) != (xP >> plevel))
{
return true;
}
if ((yN >> plevel) != (yP >> plevel))
{
return true;
}
return false;
}
#if JVET_N0329_IBC_SEARCH_IMP
bool PU::isAddNeighborMv(const Mv& currMv, Mv* neighborMvs, int numNeighborMv)
{
bool existed = false;
for (uint32_t cand = 0; cand < numNeighborMv && !existed; cand++)
{
if (currMv == neighborMvs[cand])
{
existed = true;
}
}
if (!existed)
{
return true;
}
else
{
return false;
}
}
#endif
#if JVET_N0329_IBC_SEARCH_IMP
void PU::getIbcMVPsEncOnly(PredictionUnit &pu, Mv* mvPred, int& nbPred)
#else
void PU::getIbcMVPsEncOnly(PredictionUnit &pu, Mv* MvPred, int& nbPred)
#endif
{
#if JVET_N0329_IBC_SEARCH_IMP
const PreCalcValues &pcv = *pu.cs->pcv;
const int cuWidth = pu.blocks[COMPONENT_Y].width;
const int cuHeight = pu.blocks[COMPONENT_Y].height;
const int log2UnitWidth = g_aucLog2[pcv.minCUWidth];
const int log2UnitHeight = g_aucLog2[pcv.minCUHeight];
const int totalAboveUnits = (cuWidth >> log2UnitWidth) + 1;
const int totalLeftUnits = (cuHeight >> log2UnitHeight) + 1;
nbPred = 0;
Position posLT = pu.Y().topLeft();
// above-left
const PredictionUnit *aboveLeftPU = pu.cs->getPURestricted(posLT.offset(-1, -1), pu, CHANNEL_TYPE_LUMA);
if (aboveLeftPU && CU::isIBC(*aboveLeftPU->cu))
{
if (isAddNeighborMv(aboveLeftPU->bv, mvPred, nbPred))
{
mvPred[nbPred++] = aboveLeftPU->bv;
}
}
// above neighbors
for (uint32_t dx = 0; dx < totalAboveUnits && nbPred < IBC_NUM_CANDIDATES; dx++)
{
const PredictionUnit* tmpPU = pu.cs->getPURestricted(posLT.offset((dx << log2UnitWidth), -1), pu, CHANNEL_TYPE_LUMA);
if (tmpPU && CU::isIBC(*tmpPU->cu))
{
if (isAddNeighborMv(tmpPU->bv, mvPred, nbPred))
{
mvPred[nbPred++] = tmpPU->bv;
}
}
}
// left neighbors
for (uint32_t dy = 0; dy < totalLeftUnits && nbPred < IBC_NUM_CANDIDATES; dy++)
{
const PredictionUnit* tmpPU = pu.cs->getPURestricted(posLT.offset(-1, (dy << log2UnitHeight)), pu, CHANNEL_TYPE_LUMA);
if (tmpPU && CU::isIBC(*tmpPU->cu))
{
if (isAddNeighborMv(tmpPU->bv, mvPred, nbPred))
{
mvPred[nbPred++] = tmpPU->bv;
}
}
}
size_t numAvaiCandInLUT = pu.cs->motionLut.lutIbc.size();
for (uint32_t cand = 0; cand < numAvaiCandInLUT && nbPred < IBC_NUM_CANDIDATES; cand++)
{
MotionInfo neibMi = pu.cs->motionLut.lutIbc[cand];
if (isAddNeighborMv(neibMi.bv, mvPred, nbPred))
{
mvPred[nbPred++] = neibMi.bv;
}
}
bool isBvCandDerived[IBC_NUM_CANDIDATES];
::memset(isBvCandDerived, false, IBC_NUM_CANDIDATES);
int curNbPred = nbPred;
if (curNbPred < IBC_NUM_CANDIDATES)
{
do
{
curNbPred = nbPred;
for (uint32_t idx = 0; idx < curNbPred && nbPred < IBC_NUM_CANDIDATES; idx++)
{
if (!isBvCandDerived[idx])
{
Mv derivedBv;
if (getDerivedBV(pu, mvPred[idx], derivedBv))
{
if (isAddNeighborMv(derivedBv, mvPred, nbPred))
{
mvPred[nbPred++] = derivedBv;
}
}
isBvCandDerived[idx] = true;
}
}
} while (nbPred > curNbPred && nbPred < IBC_NUM_CANDIDATES);
}
#else
//-- Get Spatial MV
Position posLT = pu.Y().topLeft();
Position posRT = pu.Y().topRight();
Position posLB = pu.Y().bottomLeft();
unsigned int left = 0, above = 0;
//left
const PredictionUnit *neibLeftPU = NULL;
neibLeftPU = pu.cs->getPURestricted(posLB.offset(-1, 0), pu, CHANNEL_TYPE_LUMA);
left = (neibLeftPU) ? CU::isIBC(*neibLeftPU->cu) : 0;
if (left)
{
MvPred[nbPred++] = neibLeftPU->bv;
if (getDerivedBV(pu, MvPred[nbPred - 1], MvPred[nbPred]))
nbPred++;
}
//above
const PredictionUnit *neibAbovePU = NULL;
neibAbovePU = pu.cs->getPURestricted(posRT.offset(0, -1), pu, CHANNEL_TYPE_LUMA);
above = (neibAbovePU) ? CU::isIBC(*neibAbovePU->cu) : 0;
if (above)
{
MvPred[nbPred++] = neibAbovePU->bv;
if (getDerivedBV(pu, MvPred[nbPred - 1], MvPred[nbPred]))
nbPred++;
}
// Below Left predictor search
const PredictionUnit *neibBelowLeftPU = NULL;
neibBelowLeftPU = pu.cs->getPURestricted(posLB.offset(-1, 1), pu, CHANNEL_TYPE_LUMA);
unsigned int belowLeft = (neibBelowLeftPU) ? CU::isIBC(*neibBelowLeftPU->cu) : 0;
if (belowLeft)
{
MvPred[nbPred++] = neibBelowLeftPU->bv;
if (getDerivedBV(pu, MvPred[nbPred - 1], MvPred[nbPred]))
nbPred++;
}
// Above Right predictor search
const PredictionUnit *neibAboveRightPU = NULL;
neibAboveRightPU = pu.cs->getPURestricted(posRT.offset(1, -1), pu, CHANNEL_TYPE_LUMA);
unsigned int aboveRight = (neibAboveRightPU) ? CU::isIBC(*neibAboveRightPU->cu) : 0;
if (aboveRight)
{
MvPred[nbPred++] = neibAboveRightPU->bv;
if (getDerivedBV(pu, MvPred[nbPred - 1], MvPred[nbPred]))
nbPred++;
}
// Above Left predictor search
const PredictionUnit *neibAboveLeftPU = NULL;
neibAboveLeftPU = pu.cs->getPURestricted(posLT.offset(-1, -1), pu, CHANNEL_TYPE_LUMA);
unsigned int aboveLeft = (neibAboveLeftPU) ? CU::isIBC(*neibAboveLeftPU->cu) : 0;
if (aboveLeft)
{
MvPred[nbPred++] = neibAboveLeftPU->bv;
if (getDerivedBV(pu, MvPred[nbPred - 1], MvPred[nbPred]))
nbPred++;
}
#endif
}
bool PU::getDerivedBV(PredictionUnit &pu, const Mv& currentMv, Mv& derivedMv)
{
int cuPelX = pu.lumaPos().x;
int cuPelY = pu.lumaPos().y;
int rX = cuPelX + currentMv.getHor();
int rY = cuPelY + currentMv.getVer();
int offsetX = currentMv.getHor();
int offsetY = currentMv.getVer();
if (rX < 0 || rY < 0 || rX >= pu.cs->slice->getSPS()->getPicWidthInLumaSamples() || rY >= pu.cs->slice->getSPS()->getPicHeightInLumaSamples())
{
return false;
}
const PredictionUnit *neibRefPU = NULL;
neibRefPU = pu.cs->getPURestricted(pu.lumaPos().offset(offsetX, offsetY), pu, CHANNEL_TYPE_LUMA);
bool isIBC = (neibRefPU) ? CU::isIBC(*neibRefPU->cu) : 0;
if (isIBC)
{
derivedMv = neibRefPU->bv;
derivedMv += currentMv;
}
return isIBC;
}
/**
* Constructs a list of candidates for IBC AMVP (See specification, section "Derivation process for motion vector predictor candidates")
*/
void PU::fillIBCMvpCand(PredictionUnit &pu, AMVPInfo &amvpInfo)
{
#if JVET_N0843_BVP_SIMPLIFICATION==0
CodingStructure &cs = *pu.cs;
#endif
AMVPInfo *pInfo = &amvpInfo;
pInfo->numCand = 0;
#if JVET_N0843_BVP_SIMPLIFICATION==0
//-- Get Spatial MV
Position posLT = pu.Y().topLeft();
Position posRT = pu.Y().topRight();
Position posLB = pu.Y().bottomLeft();
bool isScaledFlagLX = false; /// variable name from specification; true when the PUs below left or left are available (availableA0 || availableA1).
const PredictionUnit* tmpPU = cs.getPURestricted(posLB.offset(-1, 1), pu, pu.chType); // getPUBelowLeft(idx, partIdxLB);
isScaledFlagLX = tmpPU != NULL && CU::isIBC(*tmpPU->cu);
if (!isScaledFlagLX)
{
tmpPU = cs.getPURestricted(posLB.offset(-1, 0), pu, pu.chType);
isScaledFlagLX = tmpPU != NULL && CU::isIBC(*tmpPU->cu);
}
// Left predictor search
if (isScaledFlagLX)
{
bool isAdded = addIBCMVPCand(pu, posLB, MD_BELOW_LEFT, *pInfo);
if (!isAdded)
{
isAdded = addIBCMVPCand(pu, posLB, MD_LEFT, *pInfo);
}
}
// Above predictor search
bool isAdded = addIBCMVPCand(pu, posRT, MD_ABOVE_RIGHT, *pInfo);
if (!isAdded)
{
isAdded = addIBCMVPCand(pu, posRT, MD_ABOVE, *pInfo);
if (!isAdded)
{
addIBCMVPCand(pu, posLT, MD_ABOVE_LEFT, *pInfo);
}
}
for( int i = 0; i < pInfo->numCand; i++ )
{
pInfo->mvCand[i].roundTransPrecInternal2Amvr(pu.cu->imv);
}
if (pInfo->numCand == 2)
{
if (pInfo->mvCand[0] == pInfo->mvCand[1])
{
pInfo->numCand = 1;
}
}
if (pInfo->numCand < AMVP_MAX_NUM_CANDS)
{
addAMVPHMVPCand(pu, REF_PIC_LIST_0, REF_PIC_LIST_1, cs.slice->getPOC(), *pInfo, pu.cu->imv);
}
if (pInfo->numCand > AMVP_MAX_NUM_CANDS)
{
pInfo->numCand = AMVP_MAX_NUM_CANDS;
}
while (pInfo->numCand < AMVP_MAX_NUM_CANDS)
{
pInfo->mvCand[pInfo->numCand] = Mv(0, 0);
pInfo->numCand++;
}
#endif
#if JVET_N0843_BVP_SIMPLIFICATION
MergeCtx mergeCtx;
PU::getIBCMergeCandidates(pu, mergeCtx, AMVP_MAX_NUM_CANDS - 1);
int candIdx = 0;
while (pInfo->numCand < AMVP_MAX_NUM_CANDS)
{
pInfo->mvCand[pInfo->numCand] = mergeCtx.mvFieldNeighbours[(candIdx << 1) + 0].mv;;
pInfo->numCand++;
candIdx++;
}
#endif
for (Mv &mv : pInfo->mvCand)
{
#if JVET_N0843_BVP_SIMPLIFICATION
mv.roundIbcPrecInternal2Amvr(pu.cu->imv);
#endif
}
}
/** Constructs a list of candidates for AMVP (See specification, section "Derivation process for motion vector predictor candidates")
* \param uiPartIdx
* \param uiPartAddr
* \param eRefPicList
* \param iRefIdx
* \param pInfo
*/
void PU::fillMvpCand(PredictionUnit &pu, const RefPicList &eRefPicList, const int &refIdx, AMVPInfo &amvpInfo)
{
CodingStructure &cs = *pu.cs;
AMVPInfo *pInfo = &amvpInfo;
pInfo->numCand = 0;
if (refIdx < 0)
{
return;
}
//-- Get Spatial MV
Position posLT = pu.Y().topLeft();
Position posRT = pu.Y().topRight();
Position posLB = pu.Y().bottomLeft();
bool isScaledFlagLX = false; /// variable name from specification; true when the PUs below left or left are available (availableA0 || availableA1).
{
const PredictionUnit* tmpPU = cs.getPURestricted( posLB.offset( -1, 1 ), pu, pu.chType ); // getPUBelowLeft(idx, partIdxLB);
isScaledFlagLX = tmpPU != NULL && CU::isInter( *tmpPU->cu );
if( !isScaledFlagLX )
{
tmpPU = cs.getPURestricted( posLB.offset( -1, 0 ), pu, pu.chType );
isScaledFlagLX = tmpPU != NULL && CU::isInter( *tmpPU->cu );
}
}
// Left predictor search
if( isScaledFlagLX )
{
bool bAdded = addMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_BELOW_LEFT, *pInfo );
if( !bAdded )
{
bAdded = addMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_LEFT, *pInfo );
if( !bAdded )
{
bAdded = addMVPCandWithScaling( pu, eRefPicList, refIdx, posLB, MD_BELOW_LEFT, *pInfo );
if( !bAdded )
{
addMVPCandWithScaling( pu, eRefPicList, refIdx, posLB, MD_LEFT, *pInfo );
}
}
}
}
// Above predictor search
{
bool bAdded = addMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE_RIGHT, *pInfo );
if( !bAdded )
{
bAdded = addMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE, *pInfo );
if( !bAdded )
{
addMVPCandUnscaled( pu, eRefPicList, refIdx, posLT, MD_ABOVE_LEFT, *pInfo );
}
}
}
if( !isScaledFlagLX )
{
bool bAdded = addMVPCandWithScaling( pu, eRefPicList, refIdx, posRT, MD_ABOVE_RIGHT, *pInfo );
if( !bAdded )
{
bAdded = addMVPCandWithScaling( pu, eRefPicList, refIdx, posRT, MD_ABOVE, *pInfo );
if( !bAdded )
{
addMVPCandWithScaling( pu, eRefPicList, refIdx, posLT, MD_ABOVE_LEFT, *pInfo );
}
}
}
for( int i = 0; i < pInfo->numCand; i++ )
{
pInfo->mvCand[i].roundTransPrecInternal2Amvr(pu.cu->imv);
}
if( pInfo->numCand == 2 )
{
if( pInfo->mvCand[0] == pInfo->mvCand[1] )
{
pInfo->numCand = 1;
}
}
#if JVET_N0213_TMVP_REMOVAL
if (cs.slice->getEnableTMVPFlag() && pInfo->numCand < AMVP_MAX_NUM_CANDS && (pu.lumaSize().width + pu.lumaSize().height > 12))
#else
if( cs.slice->getEnableTMVPFlag() && pInfo->numCand < AMVP_MAX_NUM_CANDS )
#endif
{
// Get Temporal Motion Predictor
const int refIdx_Col = refIdx;
Position posRB = pu.Y().bottomRight().offset(-3, -3);
const PreCalcValues& pcv = *cs.pcv;
Position posC0;
bool C0Avail = false;
Position posC1 = pu.Y().center();
#if !JVET_N0266_SMALL_BLOCKS
bool C1Avail = ( posC1.x < pcv.lumaWidth ) && ( posC1.y < pcv.lumaHeight ) ;
#endif
Mv cColMv;
if( ( ( posRB.x + pcv.minCUWidth ) < pcv.lumaWidth ) && ( ( posRB.y + pcv.minCUHeight ) < pcv.lumaHeight ) )
{
Position posInCtu( posRB.x & pcv.maxCUWidthMask, posRB.y & pcv.maxCUHeightMask );
if ((posInCtu.x + 4 < pcv.maxCUWidth) && // is not at the last column of CTU
(posInCtu.y + 4 < pcv.maxCUHeight)) // is not at the last row of CTU
{
posC0 = posRB.offset(4, 4);
C0Avail = true;
}
else if (posInCtu.x + 4 < pcv.maxCUWidth) // is not at the last column of CTU But is last row of CTU
{
// in the reference the CTU address is not set - thus probably resulting in no using this C0 possibility
posC0 = posRB.offset(4, 4);
}
else if (posInCtu.y + 4 < pcv.maxCUHeight) // is not at the last row of CTU But is last column of CTU
{
posC0 = posRB.offset(4, 4);
C0Avail = true;
}
else //is the right bottom corner of CTU
{
// same as for last column but not last row
posC0 = posRB.offset(4, 4);
}
}
#if JVET_N0266_SMALL_BLOCKS
if ( ( C0Avail && getColocatedMVP( pu, eRefPicList, posC0, cColMv, refIdx_Col ) ) || getColocatedMVP( pu, eRefPicList, posC1, cColMv, refIdx_Col ) )
#else
if ((C0Avail && getColocatedMVP(pu, eRefPicList, posC0, cColMv, refIdx_Col)) || (C1Avail && getColocatedMVP(pu, eRefPicList, posC1, cColMv, refIdx_Col)))
#endif
{
cColMv.roundTransPrecInternal2Amvr(pu.cu->imv);
pInfo->mvCand[pInfo->numCand++] = cColMv;
}
}
if (pInfo->numCand < AMVP_MAX_NUM_CANDS)
{
const int currRefPOC = cs.slice->getRefPic(eRefPicList, refIdx)->getPOC();
const RefPicList eRefPicList2nd = (eRefPicList == REF_PIC_LIST_0) ? REF_PIC_LIST_1 : REF_PIC_LIST_0;
addAMVPHMVPCand(pu, eRefPicList, eRefPicList2nd, currRefPOC, *pInfo, pu.cu->imv);
}
if (pInfo->numCand > AMVP_MAX_NUM_CANDS)
{
pInfo->numCand = AMVP_MAX_NUM_CANDS;
}
while (pInfo->numCand < AMVP_MAX_NUM_CANDS)
{
pInfo->mvCand[pInfo->numCand] = Mv( 0, 0 );
pInfo->numCand++;
}
for (Mv &mv : pInfo->mvCand)
{
mv.roundTransPrecInternal2Amvr(pu.cu->imv);
}
}
bool PU::addAffineMVPCandUnscaled( const PredictionUnit &pu, const RefPicList &refPicList, const int &refIdx, const Position &pos, const MvpDir &dir, AffineAMVPInfo &affiAMVPInfo )
{
CodingStructure &cs = *pu.cs;
const PredictionUnit *neibPU = NULL;
Position neibPos;
switch ( dir )
{
case MD_LEFT:
neibPos = pos.offset( -1, 0 );
break;
case MD_ABOVE:
neibPos = pos.offset( 0, -1 );
break;
case MD_ABOVE_RIGHT:
neibPos = pos.offset( 1, -1 );
break;
case MD_BELOW_LEFT:
neibPos = pos.offset( -1, 1 );
break;
case MD_ABOVE_LEFT:
neibPos = pos.offset( -1, -1 );
break;
default:
break;
}
neibPU = cs.getPURestricted( neibPos, pu, pu.chType );
if ( neibPU == NULL || !CU::isInter( *neibPU->cu ) || !neibPU->cu->affine
|| neibPU->mergeType != MRG_TYPE_DEFAULT_N
)
{
return false;
}
Mv outputAffineMv[3];
const MotionInfo& neibMi = neibPU->getMotionInfo( neibPos );
const int currRefPOC = cs.slice->getRefPic( refPicList, refIdx )->getPOC();
const RefPicList refPicList2nd = (refPicList == REF_PIC_LIST_0) ? REF_PIC_LIST_1 : REF_PIC_LIST_0;
for ( int predictorSource = 0; predictorSource < 2; predictorSource++ ) // examine the indicated reference picture list, then if not available, examine the other list.
{
const RefPicList eRefPicListIndex = (predictorSource == 0) ? refPicList : refPicList2nd;
const int neibRefIdx = neibMi.refIdx[eRefPicListIndex];
if ( ((neibPU->interDir & (eRefPicListIndex + 1)) == 0) || pu.cu->slice->getRefPOC( eRefPicListIndex, neibRefIdx ) != currRefPOC )
{
continue;
}
xInheritedAffineMv( pu, neibPU, eRefPicListIndex, outputAffineMv );
outputAffineMv[0].roundAffinePrecInternal2Amvr(pu.cu->imv);
outputAffineMv[1].roundAffinePrecInternal2Amvr(pu.cu->imv);
affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand] = outputAffineMv[0];
affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand] = outputAffineMv[1];
if ( pu.cu->affineType == AFFINEMODEL_6PARAM )
{
outputAffineMv[2].roundAffinePrecInternal2Amvr(pu.cu->imv);
affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand] = outputAffineMv[2];
}
affiAMVPInfo.numCand++;
return true;
}
return false;
}
void PU::xInheritedAffineMv( const PredictionUnit &pu, const PredictionUnit* puNeighbour, RefPicList eRefPicList, Mv rcMv[3] )
{
int posNeiX = puNeighbour->Y().pos().x;
int posNeiY = puNeighbour->Y().pos().y;
int posCurX = pu.Y().pos().x;
int posCurY = pu.Y().pos().y;
int neiW = puNeighbour->Y().width;
int curW = pu.Y().width;
int neiH = puNeighbour->Y().height;
int curH = pu.Y().height;
Mv mvLT, mvRT, mvLB;
mvLT = puNeighbour->mvAffi[eRefPicList][0];
mvRT = puNeighbour->mvAffi[eRefPicList][1];
mvLB = puNeighbour->mvAffi[eRefPicList][2];
bool isTopCtuBoundary = false;
if ( (posNeiY + neiH) % pu.cs->sps->getCTUSize() == 0 && (posNeiY + neiH) == posCurY )
{
// use bottom-left and bottom-right sub-block MVs for inheritance
const Position posRB = puNeighbour->Y().bottomRight();
const Position posLB = puNeighbour->Y().bottomLeft();
mvLT = puNeighbour->getMotionInfo( posLB ).mv[eRefPicList];
mvRT = puNeighbour->getMotionInfo( posRB ).mv[eRefPicList];
posNeiY += neiH;
isTopCtuBoundary = true;
}
int shift = MAX_CU_DEPTH;
int iDMvHorX, iDMvHorY, iDMvVerX, iDMvVerY;
iDMvHorX = (mvRT - mvLT).getHor() << (shift - g_aucLog2[neiW]);
iDMvHorY = (mvRT - mvLT).getVer() << (shift - g_aucLog2[neiW]);
if ( puNeighbour->cu->affineType == AFFINEMODEL_6PARAM && !isTopCtuBoundary )
{
iDMvVerX = (mvLB - mvLT).getHor() << (shift - g_aucLog2[neiH]);
iDMvVerY = (mvLB - mvLT).getVer() << (shift - g_aucLog2[neiH]);
}
else
{
iDMvVerX = -iDMvHorY;
iDMvVerY = iDMvHorX;
}
int iMvScaleHor = mvLT.getHor() << shift;
int iMvScaleVer = mvLT.getVer() << shift;
int horTmp, verTmp;
// v0
horTmp = iMvScaleHor + iDMvHorX * (posCurX - posNeiX) + iDMvVerX * (posCurY - posNeiY);
verTmp = iMvScaleVer + iDMvHorY * (posCurX - posNeiX) + iDMvVerY * (posCurY - posNeiY);
roundAffineMv( horTmp, verTmp, shift );
rcMv[0].hor = horTmp;
rcMv[0].ver = verTmp;
rcMv[0].clipToStorageBitDepth();
// v1
horTmp = iMvScaleHor + iDMvHorX * (posCurX + curW - posNeiX) + iDMvVerX * (posCurY - posNeiY);
verTmp = iMvScaleVer + iDMvHorY * (posCurX + curW - posNeiX) + iDMvVerY * (posCurY - posNeiY);
roundAffineMv( horTmp, verTmp, shift );
rcMv[1].hor = horTmp;
rcMv[1].ver = verTmp;
rcMv[1].clipToStorageBitDepth();
// v2
if ( pu.cu->affineType == AFFINEMODEL_6PARAM )
{
horTmp = iMvScaleHor + iDMvHorX * (posCurX - posNeiX) + iDMvVerX * (posCurY + curH - posNeiY);
verTmp = iMvScaleVer + iDMvHorY * (posCurX - posNeiX) + iDMvVerY * (posCurY + curH - posNeiY);
roundAffineMv( horTmp, verTmp, shift );
rcMv[2].hor = horTmp;
rcMv[2].ver = verTmp;
rcMv[2].clipToStorageBitDepth();
}
}
void PU::fillAffineMvpCand(PredictionUnit &pu, const RefPicList &eRefPicList, const int &refIdx, AffineAMVPInfo &affiAMVPInfo)
{
affiAMVPInfo.numCand = 0;
if (refIdx < 0)
{
return;
}
// insert inherited affine candidates
Mv outputAffineMv[3];
Position posLT = pu.Y().topLeft();
Position posRT = pu.Y().topRight();
Position posLB = pu.Y().bottomLeft();
// check left neighbor
if ( !addAffineMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_BELOW_LEFT, affiAMVPInfo ) )
{
addAffineMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_LEFT, affiAMVPInfo );
}
// check above neighbor
if ( !addAffineMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE_RIGHT, affiAMVPInfo ) )
{
if ( !addAffineMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE, affiAMVPInfo ) )
{
addAffineMVPCandUnscaled( pu, eRefPicList, refIdx, posLT, MD_ABOVE_LEFT, affiAMVPInfo );
}
}
if ( affiAMVPInfo.numCand >= AMVP_MAX_NUM_CANDS )
{
for (int i = 0; i < affiAMVPInfo.numCand; i++)
{
affiAMVPInfo.mvCandLT[i].roundAffinePrecInternal2Amvr(pu.cu->imv);
affiAMVPInfo.mvCandRT[i].roundAffinePrecInternal2Amvr(pu.cu->imv);
affiAMVPInfo.mvCandLB[i].roundAffinePrecInternal2Amvr(pu.cu->imv);
}
return;
}
// insert constructed affine candidates
int cornerMVPattern = 0;
//------------------- V0 (START) -------------------//
AMVPInfo amvpInfo0;
amvpInfo0.numCand = 0;
// A->C: Above Left, Above, Left
addMVPCandUnscaled( pu, eRefPicList, refIdx, posLT, MD_ABOVE_LEFT, amvpInfo0 );
if ( amvpInfo0.numCand < 1 )
{
addMVPCandUnscaled( pu, eRefPicList, refIdx, posLT, MD_ABOVE, amvpInfo0 );
}
if ( amvpInfo0.numCand < 1 )
{
addMVPCandUnscaled( pu, eRefPicList, refIdx, posLT, MD_LEFT, amvpInfo0 );
}
cornerMVPattern = cornerMVPattern | amvpInfo0.numCand;
//------------------- V1 (START) -------------------//
AMVPInfo amvpInfo1;
amvpInfo1.numCand = 0;
// D->E: Above, Above Right
addMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE, amvpInfo1 );
if ( amvpInfo1.numCand < 1 )
{
addMVPCandUnscaled( pu, eRefPicList, refIdx, posRT, MD_ABOVE_RIGHT, amvpInfo1 );
}
cornerMVPattern = cornerMVPattern | (amvpInfo1.numCand << 1);
//------------------- V2 (START) -------------------//
AMVPInfo amvpInfo2;
amvpInfo2.numCand = 0;
// F->G: Left, Below Left
addMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_LEFT, amvpInfo2 );
if ( amvpInfo2.numCand < 1 )
{
addMVPCandUnscaled( pu, eRefPicList, refIdx, posLB, MD_BELOW_LEFT, amvpInfo2 );
}
cornerMVPattern = cornerMVPattern | (amvpInfo2.numCand << 2);
outputAffineMv[0] = amvpInfo0.mvCand[0];
outputAffineMv[1] = amvpInfo1.mvCand[0];
outputAffineMv[2] = amvpInfo2.mvCand[0];
outputAffineMv[0].roundAffinePrecInternal2Amvr(pu.cu->imv);
outputAffineMv[1].roundAffinePrecInternal2Amvr(pu.cu->imv);
outputAffineMv[2].roundAffinePrecInternal2Amvr(pu.cu->imv);
if ( cornerMVPattern == 7 || (cornerMVPattern == 3 && pu.cu->affineType == AFFINEMODEL_4PARAM) )
{
affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand] = outputAffineMv[0];
affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand] = outputAffineMv[1];
affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand] = outputAffineMv[2];
affiAMVPInfo.numCand++;
}
if ( affiAMVPInfo.numCand < 2 )
{
// check corner MVs
for ( int i = 2; i >= 0 && affiAMVPInfo.numCand < AMVP_MAX_NUM_CANDS; i-- )
{
if ( cornerMVPattern & (1 << i) ) // MV i exist
{
affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand] = outputAffineMv[i];
affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand] = outputAffineMv[i];
affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand] = outputAffineMv[i];
affiAMVPInfo.numCand++;
}
}
// Get Temporal Motion Predictor
if ( affiAMVPInfo.numCand < 2 && pu.cs->slice->getEnableTMVPFlag() )
{
const int refIdxCol = refIdx;
Position posRB = pu.Y().bottomRight().offset( -3, -3 );
const PreCalcValues& pcv = *pu.cs->pcv;
Position posC0;
bool C0Avail = false;
Position posC1 = pu.Y().center();
#if !JVET_N0266_SMALL_BLOCKS
bool C1Avail = ( posC1.x < pcv.lumaWidth ) && ( posC1.y < pcv.lumaHeight ) ;
#endif
Mv cColMv;
if ( ((posRB.x + pcv.minCUWidth) < pcv.lumaWidth) && ((posRB.y + pcv.minCUHeight) < pcv.lumaHeight) )
{
Position posInCtu( posRB.x & pcv.maxCUWidthMask, posRB.y & pcv.maxCUHeightMask );
if ( (posInCtu.x + 4 < pcv.maxCUWidth) && // is not at the last column of CTU
(posInCtu.y + 4 < pcv.maxCUHeight) ) // is not at the last row of CTU
{
posC0 = posRB.offset( 4, 4 );
C0Avail = true;
}
else if ( posInCtu.x + 4 < pcv.maxCUWidth ) // is not at the last column of CTU But is last row of CTU
{
// in the reference the CTU address is not set - thus probably resulting in no using this C0 possibility
posC0 = posRB.offset( 4, 4 );
}
else if ( posInCtu.y + 4 < pcv.maxCUHeight ) // is not at the last row of CTU But is last column of CTU
{
posC0 = posRB.offset( 4, 4 );
C0Avail = true;
}
else //is the right bottom corner of CTU
{
// same as for last column but not last row
posC0 = posRB.offset( 4, 4 );
}
}
#if JVET_N0266_SMALL_BLOCKS
if ( ( C0Avail && getColocatedMVP( pu, eRefPicList, posC0, cColMv, refIdxCol ) ) || getColocatedMVP( pu, eRefPicList, posC1, cColMv, refIdxCol ) )
#else
if ( (C0Avail && getColocatedMVP( pu, eRefPicList, posC0, cColMv, refIdxCol )) || (C1Avail && getColocatedMVP( pu, eRefPicList, posC1, cColMv, refIdxCol ) ) )
#endif
{
cColMv.roundAffinePrecInternal2Amvr(pu.cu->imv);
affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand] = cColMv;
affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand] = cColMv;
affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand] = cColMv;
affiAMVPInfo.numCand++;
}
}
if ( affiAMVPInfo.numCand < 2 )
{
// add zero MV
for ( int i = affiAMVPInfo.numCand; i < AMVP_MAX_NUM_CANDS; i++ )
{
affiAMVPInfo.mvCandLT[affiAMVPInfo.numCand].setZero();
affiAMVPInfo.mvCandRT[affiAMVPInfo.numCand].setZero();
affiAMVPInfo.mvCandLB[affiAMVPInfo.numCand].setZero();
affiAMVPInfo.numCand++;
}
}
}
for (int i = 0; i < affiAMVPInfo.numCand; i++)
{
affiAMVPInfo.mvCandLT[i].roundAffinePrecInternal2Amvr(pu.cu->imv);
affiAMVPInfo.mvCandRT[i].roundAffinePrecInternal2Amvr(pu.cu->imv);
affiAMVPInfo.mvCandLB[i].roundAffinePrecInternal2Amvr(pu.cu->imv);
}
}
bool PU::addIBCMVPCand(const PredictionUnit &pu, const Position &pos, const MvpDir &eDir, AMVPInfo &info)
{
CodingStructure &cs = *pu.cs;
const PredictionUnit *neibPU = NULL;
Position neibPos;
switch (eDir)
{
case MD_LEFT:
neibPos = pos.offset(-1, 0);
break;
case MD_ABOVE:
neibPos = pos.offset(0, -1);
break;
case MD_ABOVE_RIGHT:
neibPos = pos.offset(1, -1);
break;
case MD_BELOW_LEFT:
neibPos = pos.offset(-1, 1);
break;
case MD_ABOVE_LEFT:
neibPos = pos.offset(-1, -1);
break;
default:
break;
}
neibPU = cs.getPURestricted(neibPos, pu, pu.chType);
if (neibPU == NULL || CU::isIBC(*neibPU->cu)==false)
{
return false;
}
const MotionInfo& neibMi = neibPU->getMotionInfo(neibPos);
info.mvCand[info.numCand++] = neibMi.mv[REF_PIC_LIST_0];
return true;
}
bool PU::addMVPCandUnscaled( const PredictionUnit &pu, const RefPicList &eRefPicList, const int &iRefIdx, const Position &pos, const MvpDir &eDir, AMVPInfo &info )
{
CodingStructure &cs = *pu.cs;
const PredictionUnit *neibPU = NULL;
Position neibPos;
switch (eDir)
{
case MD_LEFT:
neibPos = pos.offset( -1, 0 );
break;
case MD_ABOVE:
neibPos = pos.offset( 0, -1 );
break;
case MD_ABOVE_RIGHT:
neibPos = pos.offset( 1, -1 );
break;
case MD_BELOW_LEFT:
neibPos = pos.offset( -1, 1 );
break;
case MD_ABOVE_LEFT:
neibPos = pos.offset( -1, -1 );
break;
default:
break;
}
neibPU = cs.getPURestricted( neibPos, pu, pu.chType );
if( neibPU == NULL || !CU::isInter( *neibPU->cu ) )
{
return false;
}
const MotionInfo& neibMi = neibPU->getMotionInfo( neibPos );
const int currRefPOC = cs.slice->getRefPic( eRefPicList, iRefIdx )->getPOC();
const RefPicList eRefPicList2nd = ( eRefPicList == REF_PIC_LIST_0 ) ? REF_PIC_LIST_1 : REF_PIC_LIST_0;
for( int predictorSource = 0; predictorSource < 2; predictorSource++ ) // examine the indicated reference picture list, then if not available, examine the other list.
{
const RefPicList eRefPicListIndex = ( predictorSource == 0 ) ? eRefPicList : eRefPicList2nd;
const int neibRefIdx = neibMi.refIdx[eRefPicListIndex];
if( neibRefIdx >= 0 && currRefPOC == cs.slice->getRefPOC( eRefPicListIndex, neibRefIdx ) )
{
info.mvCand[info.numCand++] = neibMi.mv[eRefPicListIndex];
return true;
}
}
return false;
}
/**
* \param pInfo
* \param eRefPicList
* \param iRefIdx
* \param uiPartUnitIdx
* \param eDir
* \returns bool
*/
bool PU::addMVPCandWithScaling( const PredictionUnit &pu, const RefPicList &eRefPicList, const int &iRefIdx, const Position &pos, const MvpDir &eDir, AMVPInfo &info )
{
CodingStructure &cs = *pu.cs;
const Slice &slice = *cs.slice;
const PredictionUnit *neibPU = NULL;
Position neibPos;
switch( eDir )
{
case MD_LEFT:
neibPos = pos.offset( -1, 0 );
break;
case MD_ABOVE:
neibPos = pos.offset( 0, -1 );
break;
case MD_ABOVE_RIGHT:
neibPos = pos.offset( 1, -1 );
break;
case MD_BELOW_LEFT:
neibPos = pos.offset( -1, 1 );
break;
case MD_ABOVE_LEFT:
neibPos = pos.offset( -1, -1 );
break;
default:
break;
}
neibPU = cs.getPURestricted( neibPos, pu, pu.chType );
if (neibPU == NULL || !CU::isInter(*neibPU->cu) || !CU::isInter(*pu.cu))
{
return false;
}
const MotionInfo& neibMi = neibPU->getMotionInfo( neibPos );
const RefPicList eRefPicList2nd = ( eRefPicList == REF_PIC_LIST_0 ) ? REF_PIC_LIST_1 : REF_PIC_LIST_0;
const int currPOC = slice.getPOC();
const int currRefPOC = slice.getRefPic( eRefPicList, iRefIdx )->poc;
const bool bIsCurrRefLongTerm = slice.getRefPic( eRefPicList, iRefIdx )->longTerm;
const int neibPOC = currPOC;
for( int predictorSource = 0; predictorSource < 2; predictorSource++ ) // examine the indicated reference picture list, then if not available, examine the other list.
{
const RefPicList eRefPicListIndex = (predictorSource == 0) ? eRefPicList : eRefPicList2nd;
const int neibRefIdx = neibMi.refIdx[eRefPicListIndex];
if( neibRefIdx >= 0 )
{
const bool bIsNeibRefLongTerm = slice.getRefPic(eRefPicListIndex, neibRefIdx)->longTerm;
if (bIsCurrRefLongTerm == bIsNeibRefLongTerm)
{
Mv cMv = neibMi.mv[eRefPicListIndex];
if( !( bIsCurrRefLongTerm /* || bIsNeibRefLongTerm*/) )
{
const int neibRefPOC = slice.getRefPOC( eRefPicListIndex, neibRefIdx );
const int scale = xGetDistScaleFactor( currPOC, currRefPOC, neibPOC, neibRefPOC );
if( scale != 4096 )
{
cMv = cMv.scaleMv( scale );
}
}
info.mvCand[info.numCand++] = cMv;
return true;
}
}
}
return false;
}
void PU::addAMVPHMVPCand(const PredictionUnit &pu, const RefPicList eRefPicList, const RefPicList eRefPicList2nd, const int currRefPOC, AMVPInfo &info, uint8_t imv)
{
const Slice &slice = *(*pu.cs).slice;
MotionInfo neibMi;
auto &lut = CU::isIBC(*pu.cu) ? pu.cs->motionLut.lutIbc : pu.cs->motionLut.lut;
int num_avai_candInLUT = (int) lut.size();
int num_allowedCand = std::min(MAX_NUM_HMVP_AVMPCANDS, num_avai_candInLUT);
for (int mrgIdx = 1; mrgIdx <= num_allowedCand; mrgIdx++)
{
if (info.numCand >= AMVP_MAX_NUM_CANDS)
{
return;
}
neibMi = lut[mrgIdx - 1];
for (int predictorSource = 0; predictorSource < 2; predictorSource++)
{
const RefPicList eRefPicListIndex = (predictorSource == 0) ? eRefPicList : eRefPicList2nd;
const int neibRefIdx = neibMi.refIdx[eRefPicListIndex];
if (neibRefIdx >= 0 && (CU::isIBC(*pu.cu) || (currRefPOC == slice.getRefPOC(eRefPicListIndex, neibRefIdx))))
{
Mv pmv = neibMi.mv[eRefPicListIndex];
pmv.roundTransPrecInternal2Amvr(pu.cu->imv);
info.mvCand[info.numCand++] = pmv;
if (info.numCand >= AMVP_MAX_NUM_CANDS)
{
return;
}
}
}
}
}
bool PU::isBipredRestriction(const PredictionUnit &pu)
{
if(pu.cu->lumaSize().width == 4 && pu.cu->lumaSize().height ==4 )
{
return true;
}
#if JVET_N0266_SMALL_BLOCKS
/* disable bi-prediction for 4x8/8x4 */
if ( pu.cu->lumaSize().width + pu.cu->lumaSize().height == 12 )
{
return true;
}
#endif
return false;
}
#if JVET_N0481_BCW_CONSTRUCTED_AFFINE
void PU::getAffineControlPointCand(const PredictionUnit &pu, MotionInfo mi[4], int8_t neighGbi[4], bool isAvailable[4], int verIdx[4], int modelIdx, int verNum, AffineMergeCtx& affMrgType)
#else
void PU::getAffineControlPointCand( const PredictionUnit &pu, MotionInfo mi[4], bool isAvailable[4], int verIdx[4], int modelIdx, int verNum, AffineMergeCtx& affMrgType )
#endif
{
int cuW = pu.Y().width;
int cuH = pu.Y().height;
int vx, vy;
int shift = MAX_CU_DEPTH;
int shiftHtoW = shift + g_aucLog2[cuW] - g_aucLog2[cuH];
// motion info
Mv cMv[2][4];
int refIdx[2] = { -1, -1 };
int dir = 0;
#if JVET_N0481_BCW_CONSTRUCTED_AFFINE
int8_t gbiIdx = GBI_DEFAULT;
#endif
EAffineModel curType = (verNum == 2) ? AFFINEMODEL_4PARAM : AFFINEMODEL_6PARAM;
if ( verNum == 2 )
{
int idx0 = verIdx[0], idx1 = verIdx[1];
if ( !isAvailable[idx0] || !isAvailable[idx1] )
{
return;
}
for ( int l = 0; l < 2; l++ )
{
if ( mi[idx0].refIdx[l] >= 0 && mi[idx1].refIdx[l] >= 0 )
{
// check same refidx and different mv
if ( mi[idx0].refIdx[l] == mi[idx1].refIdx[l])
{
dir |= (l + 1);
refIdx[l] = mi[idx0].refIdx[l];
}
}
}
#if JVET_N0481_BCW_CONSTRUCTED_AFFINE
if (dir == 3)
{
if (neighGbi[idx0] == neighGbi[idx1])
{
gbiIdx = neighGbi[idx0];
}
}
#endif
}
else if ( verNum == 3 )
{
int idx0 = verIdx[0], idx1 = verIdx[1], idx2 = verIdx[2];
if ( !isAvailable[idx0] || !isAvailable[idx1] || !isAvailable[idx2] )
{
return;
}
for ( int l = 0; l < 2; l++ )
{
if ( mi[idx0].refIdx[l] >= 0 && mi[idx1].refIdx[l] >= 0 && mi[idx2].refIdx[l] >= 0 )
{
// check same refidx and different mv
if ( mi[idx0].refIdx[l] == mi[idx1].refIdx[l] && mi[idx0].refIdx[l] == mi[idx2].refIdx[l])
{
dir |= (l + 1);
refIdx[l] = mi[idx0].refIdx[l];
}
}
}
#if JVET_N0481_BCW_CONSTRUCTED_AFFINE
int gbiClass[5] = { -1,0,0,0,1 };
if (dir == 3)
{
if (neighGbi[idx0] == neighGbi[idx1] && gbiClass[neighGbi[idx0]] == gbiClass[neighGbi[idx2]])
{
gbiIdx = neighGbi[idx0];
}
else if (neighGbi[idx0] == neighGbi[idx2] && gbiClass[neighGbi[idx0]] == gbiClass[neighGbi[idx1]])
{
gbiIdx = neighGbi[idx0];
}
else if (neighGbi[idx1] == neighGbi[idx2] && gbiClass[neighGbi[idx0]] == gbiClass[neighGbi[idx1]])
{
gbiIdx = neighGbi[idx1];
}
else
{
gbiIdx = GBI_DEFAULT;
}
}
#endif
}
if ( dir == 0 )
{
return;
}
for ( int l = 0; l < 2; l++ )
{
if ( dir & (l + 1) )
{
for ( int i = 0; i < verNum; i++ )
{
cMv[l][verIdx[i]] = mi[verIdx[i]].mv[l];
}
// convert to LT, RT[, [LB]]
switch ( modelIdx )
{
case 0: // 0 : LT, RT, LB
break;
case 1: // 1 : LT, RT, RB
cMv[l][2].hor = cMv[l][3].hor + cMv[l][0].hor - cMv[l][1].hor;
cMv[l][2].ver = cMv[l][3].ver + cMv[l][0].ver - cMv[l][1].ver;
#if JVET_N0334_MVCLIPPING
cMv[l][2].clipToStorageBitDepth();
#endif
break;
case 2: // 2 : LT, LB, RB
cMv[l][1].hor = cMv[l][3].hor + cMv[l][0].hor - cMv[l][2].hor;
cMv[l][1].ver = cMv[l][3].ver + cMv[l][0].ver - cMv[l][2].ver;
#if JVET_N0334_MVCLIPPING
cMv[l][1].clipToStorageBitDepth();
#endif
break;
case 3: // 3 : RT, LB, RB
cMv[l][0].hor = cMv[l][1].hor + cMv[l][2].hor - cMv[l][3].hor;
cMv[l][0].ver = cMv[l][1].ver + cMv[l][2].ver - cMv[l][3].ver;
#if JVET_N0334_MVCLIPPING
cMv[l][0].clipToStorageBitDepth();
#endif
break;
case 4: // 4 : LT, RT
break;
case 5: // 5 : LT, LB
vx = (cMv[l][0].hor << shift) + ((cMv[l][2].ver - cMv[l][0].ver) << shiftHtoW);
vy = (cMv[l][0].ver << shift) - ((cMv[l][2].hor - cMv[l][0].hor) << shiftHtoW);
roundAffineMv( vx, vy, shift );
cMv[l][1].set( vx, vy );
#if JVET_N0334_MVCLIPPING
cMv[l][1].clipToStorageBitDepth();
#endif
break;
default:
CHECK( 1, "Invalid model index!\n" );
break;
}
}
else
{
for ( int i = 0; i < 4; i++ )
{
cMv[l][i].hor = 0;
cMv[l][i].ver = 0;
}
}
}
for ( int i = 0; i < 3; i++ )
{
affMrgType.mvFieldNeighbours[(affMrgType.numValidMergeCand << 1) + 0][i].mv = cMv[0][i];
affMrgType.mvFieldNeighbours[(affMrgType.numValidMergeCand << 1) + 0][i].refIdx = refIdx[0];
affMrgType.mvFieldNeighbours[(affMrgType.numValidMergeCand << 1) + 1][i].mv = cMv[1][i];
affMrgType.mvFieldNeighbours[(affMrgType.numValidMergeCand << 1) + 1][i].refIdx = refIdx[1];
}
affMrgType.interDirNeighbours[affMrgType.numValidMergeCand] = dir;
affMrgType.affineType[affMrgType.numValidMergeCand] = curType;
#if JVET_N0481_BCW_CONSTRUCTED_AFFINE
affMrgType.GBiIdx[affMrgType.numValidMergeCand] = gbiIdx;
#endif
affMrgType.numValidMergeCand++;
return;
}
const int getAvailableAffineNeighboursForLeftPredictor( const PredictionUnit &pu, const PredictionUnit* npu[] )
{
const Position posLB = pu.Y().bottomLeft();
int num = 0;
const PredictionUnit *puLeftBottom = pu.cs->getPURestricted( posLB.offset( -1, 1 ), pu, pu.chType );
if ( puLeftBottom && puLeftBottom->cu->affine
&& puLeftBottom->mergeType == MRG_TYPE_DEFAULT_N
)
{
npu[num++] = puLeftBottom;
return num;
}
const PredictionUnit* puLeft = pu.cs->getPURestricted( posLB.offset( -1, 0 ), pu, pu.chType );
if ( puLeft && puLeft->cu->affine
&& puLeft->mergeType == MRG_TYPE_DEFAULT_N
)
{
npu[num++] = puLeft;
return num;
}
return num;
}
const int getAvailableAffineNeighboursForAbovePredictor( const PredictionUnit &pu, const PredictionUnit* npu[], int numAffNeighLeft )
{
const Position posLT = pu.Y().topLeft();
const Position posRT = pu.Y().topRight();
int num = numAffNeighLeft;
const PredictionUnit* puAboveRight = pu.cs->getPURestricted( posRT.offset( 1, -1 ), pu, pu.chType );
if ( puAboveRight && puAboveRight->cu->affine
&& puAboveRight->mergeType == MRG_TYPE_DEFAULT_N
)
{
npu[num++] = puAboveRight;
return num;
}
const PredictionUnit* puAbove = pu.cs->getPURestricted( posRT.offset( 0, -1 ), pu, pu.chType );
if ( puAbove && puAbove->cu->affine
&& puAbove->mergeType == MRG_TYPE_DEFAULT_N
)
{
npu[num++] = puAbove;
return num;
}
const PredictionUnit *puAboveLeft = pu.cs->getPURestricted( posLT.offset( -1, -1 ), pu, pu.chType );
if ( puAboveLeft && puAboveLeft->cu->affine
&& puAboveLeft->mergeType == MRG_TYPE_DEFAULT_N
)
{
npu[num++] = puAboveLeft;
return num;
}
return num;
}
void PU::getAffineMergeCand( const PredictionUnit &pu, AffineMergeCtx& affMrgCtx, const int mrgCandIdx )
{
const CodingStructure &cs = *pu.cs;
const Slice &slice = *pu.cs->slice;
const uint32_t maxNumAffineMergeCand = slice.getMaxNumAffineMergeCand();
for ( int i = 0; i < maxNumAffineMergeCand; i++ )
{
for ( int mvNum = 0; mvNum < 3; mvNum++ )
{
affMrgCtx.mvFieldNeighbours[(i << 1) + 0][mvNum].setMvField( Mv(), -1 );
affMrgCtx.mvFieldNeighbours[(i << 1) + 1][mvNum].setMvField( Mv(), -1 );
}
affMrgCtx.interDirNeighbours[i] = 0;
affMrgCtx.affineType[i] = AFFINEMODEL_4PARAM;
affMrgCtx.mergeType[i] = MRG_TYPE_DEFAULT_N;
affMrgCtx.GBiIdx[i] = GBI_DEFAULT;
}
affMrgCtx.numValidMergeCand = 0;
affMrgCtx.maxNumMergeCand = maxNumAffineMergeCand;
bool enableSubPuMvp = slice.getSPS()->getSBTMVPEnabledFlag() && !(slice.getPOC() == slice.getRefPic(REF_PIC_LIST_0, 0)->getPOC() && slice.isIRAP());
bool isAvailableSubPu = false;
if ( enableSubPuMvp && slice.getEnableTMVPFlag() )
{
MergeCtx mrgCtx = *affMrgCtx.mrgCtx;
bool tmpLICFlag = false;
CHECK( mrgCtx.subPuMvpMiBuf.area() == 0 || !mrgCtx.subPuMvpMiBuf.buf, "Buffer not initialized" );
mrgCtx.subPuMvpMiBuf.fill( MotionInfo() );
int pos = 0;
// Get spatial MV
const Position posCurLB = pu.Y().bottomLeft();
MotionInfo miLeft;
//left
const PredictionUnit* puLeft = cs.getPURestricted( posCurLB.offset( -1, 0 ), pu, pu.chType );
const bool isAvailableA1 = puLeft && isDiffMER( pu, *puLeft ) && pu.cu != puLeft->cu && CU::isInter( *puLeft->cu );
if ( isAvailableA1 )
{
miLeft = puLeft->getMotionInfo( posCurLB.offset( -1, 0 ) );
// get Inter Dir
mrgCtx.interDirNeighbours[pos] = miLeft.interDir;
// get Mv from Left
mrgCtx.mvFieldNeighbours[pos << 1].setMvField( miLeft.mv[0], miLeft.refIdx[0] );
if ( slice.isInterB() )
{
mrgCtx.mvFieldNeighbours[(pos << 1) + 1].setMvField( miLeft.mv[1], miLeft.refIdx[1] );
}
pos++;
}
mrgCtx.numValidMergeCand = pos;
isAvailableSubPu = getInterMergeSubPuMvpCand( pu, mrgCtx, tmpLICFlag, pos
, 0
);
if ( isAvailableSubPu )
{
for ( int mvNum = 0; mvNum < 3; mvNum++ )
{
affMrgCtx.mvFieldNeighbours[(affMrgCtx.numValidMergeCand << 1) + 0][mvNum].setMvField( mrgCtx.mvFieldNeighbours[(pos << 1) + 0].mv, mrgCtx.mvFieldNeighbours[(pos << 1) + 0].refIdx );
affMrgCtx.mvFieldNeighbours[(affMrgCtx.numValidMergeCand << 1) + 1][mvNum].setMvField( mrgCtx.mvFieldNeighbours[(pos << 1) + 1].mv, mrgCtx.mvFieldNeighbours[(pos << 1) + 1].refIdx );
}
affMrgCtx.interDirNeighbours[affMrgCtx.numValidMergeCand] = mrgCtx.interDirNeighbours[pos];
affMrgCtx.affineType[affMrgCtx.numValidMergeCand] = AFFINE_MODEL_NUM;
affMrgCtx.mergeType[affMrgCtx.numValidMergeCand] = MRG_TYPE_SUBPU_ATMVP;
if ( affMrgCtx.numValidMergeCand == mrgCandIdx )
{
return;
}
affMrgCtx.numValidMergeCand++;
// early termination
if ( affMrgCtx.numValidMergeCand == maxNumAffineMergeCand )
{
return;
}
}
}
if ( slice.getSPS()->getUseAffine() )
{
///> Start: inherited affine candidates
const PredictionUnit* npu[5];
int numAffNeighLeft = getAvailableAffineNeighboursForLeftPredictor( pu, npu );
int numAffNeigh = getAvailableAffineNeighboursForAbovePredictor( pu, npu, numAffNeighLeft );
for ( int idx = 0; idx < numAffNeigh; idx++ )
{
// derive Mv from Neigh affine PU
Mv cMv[2][3];
const PredictionUnit* puNeigh = npu[idx];
pu.cu->affineType = puNeigh->cu->affineType;
if ( puNeigh->interDir != 2 )
{
xInheritedAffineMv( pu, puNeigh, REF_PIC_LIST_0, cMv[0] );
}
if ( slice.isInterB() )
{
if ( puNeigh->interDir != 1 )
{
xInheritedAffineMv( pu, puNeigh, REF_PIC_LIST_1, cMv[1] );
}
}
for ( int mvNum = 0; mvNum < 3; mvNum++ )
{
affMrgCtx.mvFieldNeighbours[(affMrgCtx.numValidMergeCand << 1) + 0][mvNum].setMvField( cMv[0][mvNum], puNeigh->refIdx[0] );
affMrgCtx.mvFieldNeighbours[(affMrgCtx.numValidMergeCand << 1) + 1][mvNum].setMvField( cMv[1][mvNum], puNeigh->refIdx[1] );
}
affMrgCtx.interDirNeighbours[affMrgCtx.numValidMergeCand] = puNeigh->interDir;
affMrgCtx.affineType[affMrgCtx.numValidMergeCand] = (EAffineModel)(puNeigh->cu->affineType);
affMrgCtx.GBiIdx[affMrgCtx.numValidMergeCand] = puNeigh->cu->GBiIdx;
if ( affMrgCtx.numValidMergeCand == mrgCandIdx )
{
return;
}
// early termination
affMrgCtx.numValidMergeCand++;
if ( affMrgCtx.numValidMergeCand == maxNumAffineMergeCand )
{
return;
}
}
///> End: inherited affine candidates
///> Start: Constructed affine candidates
{
MotionInfo mi[4];
bool isAvailable[4] = { false };
#if JVET_N0481_BCW_CONSTRUCTED_AFFINE
int8_t neighGbi[4] = { GBI_DEFAULT };
#endif
// control point: LT B2->B3->A2
const Position posLT[3] = { pu.Y().topLeft().offset( -1, -1 ), pu.Y().topLeft().offset( 0, -1 ), pu.Y().topLeft().offset( -1, 0 ) };
for ( int i = 0; i < 3; i++ )
{
const Position pos = posLT[i];
const PredictionUnit* puNeigh = cs.getPURestricted( pos, pu, pu.chType );
if ( puNeigh && CU::isInter( *puNeigh->cu )
)
{
isAvailable[0] = true;
mi[0] = puNeigh->getMotionInfo( pos );
#if JVET_N0481_BCW_CONSTRUCTED_AFFINE
neighGbi[0] = puNeigh->cu->GBiIdx;
#endif
break;
}
}
// control point: RT B1->B0
const Position posRT[2] = { pu.Y().topRight().offset( 0, -1 ), pu.Y().topRight().offset( 1, -1 ) };
for ( int i = 0; i < 2; i++ )
{
const Position pos = posRT[i];
const PredictionUnit* puNeigh = cs.getPURestricted( pos, pu, pu.chType );
if ( puNeigh && CU::isInter( *puNeigh->cu )
)
{
isAvailable[1] = true;
mi[1] = puNeigh->getMotionInfo( pos );
#if JVET_N0481_BCW_CONSTRUCTED_AFFINE
neighGbi[1] = puNeigh->cu->GBiIdx;
#endif
break;
}
}
// control point: LB A1->A0
const Position posLB[2] = { pu.Y().bottomLeft().offset( -1, 0 ), pu.Y().bottomLeft().offset( -1, 1 ) };
for ( int i = 0; i < 2; i++ )
{
const Position pos = posLB[i];
const PredictionUnit* puNeigh = cs.getPURestricted( pos, pu, pu.chType );
if ( puNeigh && CU::isInter( *puNeigh->cu )
)
{
isAvailable[2] = true;
mi[2] = puNeigh->getMotionInfo( pos );
#if JVET_N0481_BCW_CONSTRUCTED_AFFINE
neighGbi[2] = puNeigh->cu->GBiIdx;
#endif
break;
}
}
// control point: RB
if ( slice.getEnableTMVPFlag() )
{
//>> MTK colocated-RightBottom
// offset the pos to be sure to "point" to the same position the uiAbsPartIdx would've pointed to
Position posRB = pu.Y().bottomRight().offset( -3, -3 );
const PreCalcValues& pcv = *cs.pcv;
Position posC0;
bool C0Avail = false;
if ( ((posRB.x + pcv.minCUWidth) < pcv.lumaWidth) && ((posRB.y + pcv.minCUHeight) < pcv.lumaHeight) )
{
Position posInCtu( posRB.x & pcv.maxCUWidthMask, posRB.y & pcv.maxCUHeightMask );
if ( (posInCtu.x + 4 < pcv.maxCUWidth) && // is not at the last column of CTU
(posInCtu.y + 4 < pcv.maxCUHeight) ) // is not at the last row of CTU
{
posC0 = posRB.offset( 4, 4 );
C0Avail = true;
}
else if ( posInCtu.x + 4 < pcv.maxCUWidth ) // is not at the last column of CTU But is last row of CTU
{
posC0 = posRB.offset( 4, 4 );
// in the reference the CTU address is not set - thus probably resulting in no using this C0 possibility
}
else if ( posInCtu.y + 4 < pcv.maxCUHeight ) // is not at the last row of CTU But is last column of CTU
{
posC0 = posRB.offset( 4, 4 );
C0Avail = true;
}
else //is the right bottom corner of CTU
{
posC0 = posRB.offset( 4, 4 );
// same as for last column but not last row
}
}
Mv cColMv;
int refIdx = 0;
bool bExistMV = C0Avail && getColocatedMVP( pu, REF_PIC_LIST_0, posC0, cColMv, refIdx );
if ( bExistMV )
{
mi[3].mv[0] = cColMv;
mi[3].refIdx[0] = refIdx;
mi[3].interDir = 1;
isAvailable[3] = true;
}
if ( slice.isInterB() )
{
bExistMV = C0Avail && getColocatedMVP( pu, REF_PIC_LIST_1, posC0, cColMv, refIdx );
if ( bExistMV )
{
mi[3].mv[1] = cColMv;
mi[3].refIdx[1] = refIdx;
mi[3].interDir |= 2;
isAvailable[3] = true;
}
}
}
//------------------- insert model -------------------//
int order[6] = { 0, 1, 2, 3, 4, 5 };
int modelNum = 6;
int model[6][4] = {
{ 0, 1, 2 }, // 0: LT, RT, LB
{ 0, 1, 3 }, // 1: LT, RT, RB
{ 0, 2, 3 }, // 2: LT, LB, RB
{ 1, 2, 3 }, // 3: RT, LB, RB
{ 0, 1 }, // 4: LT, RT
{ 0, 2 }, // 5: LT, LB
};
int verNum[6] = { 3, 3, 3, 3, 2, 2 };
int startIdx = pu.cs->sps->getUseAffineType() ? 0 : 4;
for ( int idx = startIdx; idx < modelNum; idx++ )
{
int modelIdx = order[idx];
#if JVET_N0481_BCW_CONSTRUCTED_AFFINE
getAffineControlPointCand(pu, mi, neighGbi, isAvailable, model[modelIdx], modelIdx, verNum[modelIdx], affMrgCtx);
#else
getAffineControlPointCand( pu, mi, isAvailable, model[modelIdx], modelIdx, verNum[modelIdx], affMrgCtx );
#endif
if ( affMrgCtx.numValidMergeCand != 0 && affMrgCtx.numValidMergeCand - 1 == mrgCandIdx )
{
return;
}
// early termination
if ( affMrgCtx.numValidMergeCand == maxNumAffineMergeCand )
{
return;
}
}
}
///> End: Constructed affine candidates
}
///> zero padding
int cnt = affMrgCtx.numValidMergeCand;
while ( cnt < maxNumAffineMergeCand )
{
for ( int mvNum = 0; mvNum < 3; mvNum++ )
{
affMrgCtx.mvFieldNeighbours[(cnt << 1) + 0][mvNum].setMvField( Mv( 0, 0 ), 0 );
}
affMrgCtx.interDirNeighbours[cnt] = 1;
if ( slice.isInterB() )
{
for ( int mvNum = 0; mvNum < 3; mvNum++ )
{
affMrgCtx.mvFieldNeighbours[(cnt << 1) + 1][mvNum].setMvField( Mv( 0, 0 ), 0 );
}
affMrgCtx.interDirNeighbours[cnt] = 3;
}
affMrgCtx.affineType[cnt] = AFFINEMODEL_4PARAM;
if ( cnt == mrgCandIdx )
{
return;
}
cnt++;
affMrgCtx.numValidMergeCand++;
}
}
void PU::setAllAffineMvField( PredictionUnit &pu, MvField *mvField, RefPicList eRefList )
{
// Set Mv
Mv mv[3];
for ( int i = 0; i < 3; i++ )
{
mv[i] = mvField[i].mv;
}
setAllAffineMv( pu, mv[0], mv[1], mv[2], eRefList );
// Set RefIdx
CHECK( mvField[0].refIdx != mvField[1].refIdx || mvField[0].refIdx != mvField[2].refIdx, "Affine mv corners don't have the same refIdx." );
pu.refIdx[eRefList] = mvField[0].refIdx;
}
#if JVET_N0334_MVCLIPPING
void PU::setAllAffineMv(PredictionUnit& pu, Mv affLT, Mv affRT, Mv affLB, RefPicList eRefList, bool clipCPMVs)
#else
void PU::setAllAffineMv( PredictionUnit& pu, Mv affLT, Mv affRT, Mv affLB, RefPicList eRefList)
#endif
{
int width = pu.Y().width;
int shift = MAX_CU_DEPTH;
#if JVET_N0334_MVCLIPPING
if (clipCPMVs)
{
affLT.mvCliptoStorageBitDepth();
affRT.mvCliptoStorageBitDepth();
if (pu.cu->affineType == AFFINEMODEL_6PARAM)
{
affLB.mvCliptoStorageBitDepth();
}
}
#endif
int deltaMvHorX, deltaMvHorY, deltaMvVerX, deltaMvVerY;
deltaMvHorX = (affRT - affLT).getHor() << (shift - g_aucLog2[width]);
deltaMvHorY = (affRT - affLT).getVer() << (shift - g_aucLog2[width]);
int height = pu.Y().height;
if ( pu.cu->affineType == AFFINEMODEL_6PARAM )
{
deltaMvVerX = (affLB - affLT).getHor() << (shift - g_aucLog2[height]);
deltaMvVerY = (affLB - affLT).getVer() << (shift - g_aucLog2[height]);
}
else
{
deltaMvVerX = -deltaMvHorY;
deltaMvVerY = deltaMvHorX;
}
int mvScaleHor = affLT.getHor() << shift;
int mvScaleVer = affLT.getVer() << shift;
int blockWidth = AFFINE_MIN_BLOCK_SIZE;
int blockHeight = AFFINE_MIN_BLOCK_SIZE;
const int halfBW = blockWidth >> 1;
const int halfBH = blockHeight >> 1;
MotionBuf mb = pu.getMotionBuf();
int mvScaleTmpHor, mvScaleTmpVer;
#if JVET_N0068_AFFINE_MEM_BW
const bool subblkMVSpreadOverLimit = InterPrediction::isSubblockVectorSpreadOverLimit( deltaMvHorX, deltaMvHorY, deltaMvVerX, deltaMvVerY, pu.interDir );
#endif
for ( int h = 0; h < pu.Y().height; h += blockHeight )
{
for ( int w = 0; w < pu.Y().width; w += blockWidth )
{
#if JVET_N0068_AFFINE_MEM_BW
if ( !subblkMVSpreadOverLimit )
{
#endif
mvScaleTmpHor = mvScaleHor + deltaMvHorX * (halfBW + w) + deltaMvVerX * (halfBH + h);
mvScaleTmpVer = mvScaleVer + deltaMvHorY * (halfBW + w) + deltaMvVerY * (halfBH + h);
#if JVET_N0068_AFFINE_MEM_BW
}
else
{
mvScaleTmpHor = mvScaleHor + deltaMvHorX * ( pu.Y().width >> 1 ) + deltaMvVerX * ( pu.Y().height >> 1 );
mvScaleTmpVer = mvScaleVer + deltaMvHorY * ( pu.Y().width >> 1 ) + deltaMvVerY * ( pu.Y().height >> 1 );
}
#endif
roundAffineMv( mvScaleTmpHor, mvScaleTmpVer, shift );
Mv curMv(mvScaleTmpHor, mvScaleTmpVer);
curMv.clipToStorageBitDepth();
for ( int y = (h >> MIN_CU_LOG2); y < ((h + blockHeight) >> MIN_CU_LOG2); y++ )
{
for ( int x = (w >> MIN_CU_LOG2); x < ((w + blockWidth) >> MIN_CU_LOG2); x++ )
{
mb.at(x, y).mv[eRefList] = curMv;
}
}
}
}
pu.mvAffi[eRefList][0] = affLT;
pu.mvAffi[eRefList][1] = affRT;
pu.mvAffi[eRefList][2] = affLB;
}
static bool deriveScaledMotionTemporal( const Slice& slice,
const Position& colPos,
const Picture* pColPic,
const RefPicList eCurrRefPicList,
Mv& cColMv,
const RefPicList eFetchRefPicList)
{
const MotionInfo &mi = pColPic->cs->getMotionInfo(colPos);
const Slice *pColSlice = nullptr;
for (const auto &pSlice : pColPic->slices)
{
if (pSlice->getIndependentSliceIdx() == mi.sliceIdx)
{
pColSlice = pSlice;
break;
}
}
CHECK(pColSlice == nullptr, "Couldn't find the colocated slice");
int iColPOC, iColRefPOC, iCurrPOC, iCurrRefPOC, iScale;
bool bAllowMirrorMV = true;
RefPicList eColRefPicList = slice.getCheckLDC() ? eCurrRefPicList : RefPicList(1 - eFetchRefPicList);
if (pColPic == slice.getRefPic(RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0), slice.getColRefIdx()))
{
eColRefPicList = eCurrRefPicList; //67 -> disable, 64 -> enable
bAllowMirrorMV = false;
}
// Although it might make sense to keep the unavailable motion field per direction still be unavailable, I made the MV prediction the same way as in TMVP
// So there is an interaction between MV0 and MV1 of the corresponding blocks identified by TV.
// Grab motion and do necessary scaling.{{
iCurrPOC = slice.getPOC();
int iColRefIdx = mi.refIdx[eColRefPicList];
if (iColRefIdx < 0 && (slice.getCheckLDC() || bAllowMirrorMV))
{
eColRefPicList = RefPicList(1 - eColRefPicList);
iColRefIdx = mi.refIdx[eColRefPicList];
if (iColRefIdx < 0)
{
return false;
}
}
if (iColRefIdx >= 0 && slice.getNumRefIdx(eCurrRefPicList) > 0)
{
iColPOC = pColSlice->getPOC();
iColRefPOC = pColSlice->getRefPOC(eColRefPicList, iColRefIdx);
if (iColPOC == iColRefPOC)
return false;
///////////////////////////////////////////////////////////////
// Set the target reference index to 0, may be changed later //
///////////////////////////////////////////////////////////////
iCurrRefPOC = slice.getRefPic(eCurrRefPicList, 0)->getPOC();
// Scale the vector.
cColMv = mi.mv[eColRefPicList];
cColMv.setHor(roundMvComp(cColMv.getHor()));
cColMv.setVer(roundMvComp(cColMv.getVer()));
//pcMvFieldSP[2*iPartition + eCurrRefPicList].getMv();
// Assume always short-term for now
iScale = xGetDistScaleFactor(iCurrPOC, iCurrRefPOC, iColPOC, iColRefPOC);
if (iScale != 4096)
{
cColMv = cColMv.scaleMv(iScale);
}
return true;
}
return false;
}
void clipColPos(int& posX, int& posY, const PredictionUnit& pu)
{
Position puPos = pu.lumaPos();
int log2CtuSize = g_aucLog2[pu.cs->sps->getCTUSize()];
int ctuX = ((puPos.x >> log2CtuSize) << log2CtuSize);
int ctuY = ((puPos.y >> log2CtuSize) << log2CtuSize);
int horMax = std::min((int)pu.cs->sps->getPicWidthInLumaSamples() - 1, ctuX + (int)pu.cs->sps->getCTUSize() + 3);
int horMin = std::max((int)0, ctuX);
int verMax = std::min((int)pu.cs->sps->getPicHeightInLumaSamples() - 1, ctuY + (int)pu.cs->sps->getCTUSize() - 1);
int verMin = std::max((int)0, ctuY);
posX = std::min(horMax, std::max(horMin, posX));
posY = std::min(verMax, std::max(verMin, posY));
}
bool PU::getInterMergeSubPuMvpCand(const PredictionUnit &pu, MergeCtx& mrgCtx, bool& LICFlag, const int count
, int mmvdList
)
{
const Slice &slice = *pu.cs->slice;
const unsigned scale = 4 * std::max<int>(1, 4 * AMVP_DECIMATION_FACTOR / 4);
const unsigned mask = ~(scale - 1);
const Picture *pColPic = slice.getRefPic(RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0), slice.getColRefIdx());
Mv cTMv;
RefPicList fetchRefPicList = RefPicList(slice.isInterB() ? 1 - slice.getColFromL0Flag() : 0);
bool terminate = false;
for (unsigned currRefListId = 0; currRefListId < (slice.getSliceType() == B_SLICE ? 2 : 1) && !terminate; currRefListId++)
{
if ( count )
{
RefPicList currRefPicList = RefPicList(slice.getCheckLDC() ? (slice.getColFromL0Flag() ? currRefListId : 1 - currRefListId) : currRefListId);
if ((mrgCtx.interDirNeighbours[0] & (1 << currRefPicList)) && slice.getRefPic(currRefPicList, mrgCtx.mvFieldNeighbours[0 * 2 + currRefPicList].refIdx) == pColPic)
{
cTMv = mrgCtx.mvFieldNeighbours[0 * 2 + currRefPicList].mv;
terminate = true;
fetchRefPicList = currRefPicList;
break;
}
}
}
///////////////////////////////////////////////////////////////////////
//////// GET Initial Temporal Vector ////////
///////////////////////////////////////////////////////////////////////
int mvPrec = MV_FRACTIONAL_BITS_INTERNAL;
Mv cTempVector = cTMv;
bool tempLICFlag = false;
// compute the location of the current PU
Position puPos = pu.lumaPos();
Size puSize = pu.lumaSize();
int numPartLine = std::max(puSize.width >> ATMVP_SUB_BLOCK_SIZE, 1u);
int numPartCol = std::max(puSize.height >> ATMVP_SUB_BLOCK_SIZE, 1u);
int puHeight = numPartCol == 1 ? puSize.height : 1 << ATMVP_SUB_BLOCK_SIZE;
int puWidth = numPartLine == 1 ? puSize.width : 1 << ATMVP_SUB_BLOCK_SIZE;
Mv cColMv;
// use coldir.
bool bBSlice = slice.isInterB();
Position centerPos;
bool found = false;
cTempVector = cTMv;
int tempX = cTempVector.getHor() >> mvPrec;
int tempY = cTempVector.getVer() >> mvPrec;
centerPos.x = puPos.x + (puSize.width >> 1) + tempX;
centerPos.y = puPos.y + (puSize.height >> 1) + tempY;
clipColPos(centerPos.x, centerPos.y, pu);
centerPos = Position{ PosType(centerPos.x & mask), PosType(centerPos.y & mask) };
// derivation of center motion parameters from the collocated CU
const MotionInfo &mi = pColPic->cs->getMotionInfo(centerPos);
if (mi.isInter && mi.isIBCmot == false)
{
mrgCtx.interDirNeighbours[count] = 0;
for (unsigned currRefListId = 0; currRefListId < (bBSlice ? 2 : 1); currRefListId++)
{
RefPicList currRefPicList = RefPicList(currRefListId);
if (deriveScaledMotionTemporal(slice, centerPos, pColPic, currRefPicList, cColMv, fetchRefPicList))
{
// set as default, for further motion vector field spanning
mrgCtx.mvFieldNeighbours[(count << 1) + currRefListId].setMvField(cColMv, 0);
mrgCtx.interDirNeighbours[count] |= (1 << currRefListId);
LICFlag = tempLICFlag;
mrgCtx.GBiIdx[count] = GBI_DEFAULT;
found = true;
}
else
{
mrgCtx.mvFieldNeighbours[(count << 1) + currRefListId].setMvField(Mv(), NOT_VALID);
mrgCtx.interDirNeighbours[count] &= ~(1 << currRefListId);
}
}
}
if (!found)
{
return false;
}
if (mmvdList != 1)
{
int xOff = (puWidth >> 1) + tempX;
int yOff = (puHeight >> 1) + tempY;
MotionBuf& mb = mrgCtx.subPuMvpMiBuf;
const bool isBiPred = isBipredRestriction(pu);
for (int y = puPos.y; y < puPos.y + puSize.height; y += puHeight)
{
for (int x = puPos.x; x < puPos.x + puSize.width; x += puWidth)
{
Position colPos{ x + xOff, y + yOff };
clipColPos(colPos.x, colPos.y, pu);
colPos = Position{ PosType(colPos.x & mask), PosType(colPos.y & mask) };
const MotionInfo &colMi = pColPic->cs->getMotionInfo(colPos);
MotionInfo mi;
found = false;
mi.isInter = true;
mi.sliceIdx = slice.getIndependentSliceIdx();
mi.isIBCmot = false;
if (colMi.isInter && colMi.isIBCmot == false)
{
for (unsigned currRefListId = 0; currRefListId < (bBSlice ? 2 : 1); currRefListId++)
{
RefPicList currRefPicList = RefPicList(currRefListId);
if (deriveScaledMotionTemporal(slice, colPos, pColPic, currRefPicList, cColMv, fetchRefPicList))
{
mi.refIdx[currRefListId] = 0;
mi.mv[currRefListId] = cColMv;
found = true;
}
}
}
if (!found)
{
mi.mv[0] = mrgCtx.mvFieldNeighbours[(count << 1) + 0].mv;
mi.mv[1] = mrgCtx.mvFieldNeighbours[(count << 1) + 1].mv;
mi.refIdx[0] = mrgCtx.mvFieldNeighbours[(count << 1) + 0].refIdx;
mi.refIdx[1] = mrgCtx.mvFieldNeighbours[(count << 1) + 1].refIdx;
}
mi.interDir = (mi.refIdx[0] != -1 ? 1 : 0) + (mi.refIdx[1] != -1 ? 2 : 0);
if (isBiPred && mi.interDir == 3)
{
mi.interDir = 1;
mi.mv[1] = Mv();
mi.refIdx[1] = NOT_VALID;
}
mb.subBuf(g_miScaling.scale(Position{ x, y } -pu.lumaPos()), g_miScaling.scale(Size(puWidth, puHeight))).fill(mi);
}
}
}
return true;
}
void PU::spanMotionInfo( PredictionUnit &pu, const MergeCtx &mrgCtx )
{
MotionBuf mb = pu.getMotionBuf();
if( !pu.mergeFlag || pu.mergeType == MRG_TYPE_DEFAULT_N
|| pu.mergeType == MRG_TYPE_IBC
)
{
MotionInfo mi;
mi.isInter = !CU::isIntra(*pu.cu);
mi.isIBCmot = CU::isIBC(*pu.cu);
mi.sliceIdx = pu.cu->slice->getIndependentSliceIdx();
if( mi.isInter )
{
mi.interDir = pu.interDir;
for( int i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
mi.mv[i] = pu.mv[i];
mi.refIdx[i] = pu.refIdx[i];
}
if (mi.isIBCmot)
{
mi.bv = pu.bv;
}
}
if( pu.cu->affine )
{
for( int y = 0; y < mb.height; y++ )
{
for( int x = 0; x < mb.width; x++ )
{
MotionInfo &dest = mb.at( x, y );
dest.isInter = mi.isInter;
dest.isIBCmot = false;
dest.interDir = mi.interDir;
dest.sliceIdx = mi.sliceIdx;
for( int i = 0; i < NUM_REF_PIC_LIST_01; i++ )
{
if( mi.refIdx[i] == -1 )
{
dest.mv[i] = Mv();
}
dest.refIdx[i] = mi.refIdx[i];
}
}
}
}
else
{
mb.fill( mi );
}
}
else if (pu.mergeType == MRG_TYPE_SUBPU_ATMVP)
{
CHECK(mrgCtx.subPuMvpMiBuf.area() == 0 || !mrgCtx.subPuMvpMiBuf.buf, "Buffer not initialized");
mb.copyFrom(mrgCtx.subPuMvpMiBuf);
}
else
{
if( isBipredRestriction( pu ) )
{
for( int y = 0; y < mb.height; y++ )
{
for( int x = 0; x < mb.width; x++ )
{
MotionInfo &mi = mb.at( x, y );
if( mi.interDir == 3 )
{
mi.interDir = 1;
mi.mv [1] = Mv();
mi.refIdx[1] = NOT_VALID;
}
}
}
}
}
}
void PU::applyImv( PredictionUnit& pu, MergeCtx &mrgCtx, InterPrediction *interPred )
{
if( !pu.mergeFlag )
{
if( pu.interDir != 2 /* PRED_L1 */ )
{
pu.mvd[0].changeTransPrecAmvr2Internal(pu.cu->imv);
unsigned mvp_idx = pu.mvpIdx[0];
AMVPInfo amvpInfo;
if (CU::isIBC(*pu.cu))
{
PU::fillIBCMvpCand(pu, amvpInfo);
}
else
PU::fillMvpCand(pu, REF_PIC_LIST_0, pu.refIdx[0], amvpInfo);
pu.mvpNum[0] = amvpInfo.numCand;
pu.mvpIdx[0] = mvp_idx;
pu.mv [0] = amvpInfo.mvCand[mvp_idx] + pu.mvd[0];
#if JVET_N0334_MVCLIPPING
pu.mv[0].mvCliptoStorageBitDepth();
#endif
}
if (pu.interDir != 1 /* PRED_L0 */)
{
if( !( pu.cu->cs->slice->getMvdL1ZeroFlag() && pu.interDir == 3 ) && pu.cu->imv )/* PRED_BI */
{
pu.mvd[1].changeTransPrecAmvr2Internal(pu.cu->imv);
}
unsigned mvp_idx = pu.mvpIdx[1];
AMVPInfo amvpInfo;
PU::fillMvpCand(pu, REF_PIC_LIST_1, pu.refIdx[1], amvpInfo);
pu.mvpNum[1] = amvpInfo.numCand;
pu.mvpIdx[1] = mvp_idx;
pu.mv [1] = amvpInfo.mvCand[mvp_idx] + pu.mvd[1];
#if JVET_N0334_MVCLIPPING
pu.mv[1].mvCliptoStorageBitDepth();
#endif
}
}
else
{
// this function is never called for merge
THROW("unexpected");
PU::getInterMergeCandidates ( pu, mrgCtx
, 0
);
mrgCtx.setMergeInfo( pu, pu.mergeIdx );
}
PU::spanMotionInfo( pu, mrgCtx );
}
bool PU::isBiPredFromDifferentDir( const PredictionUnit& pu )
{
if ( pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0 )
{
const int iPOC0 = pu.cu->slice->getRefPOC( REF_PIC_LIST_0, pu.refIdx[0] );
const int iPOC1 = pu.cu->slice->getRefPOC( REF_PIC_LIST_1, pu.refIdx[1] );
const int iPOC = pu.cu->slice->getPOC();
if ( (iPOC - iPOC0)*(iPOC - iPOC1) < 0 )
{
return true;
}
}
return false;
}
bool PU::isBiPredFromDifferentDirEqDistPoc(const PredictionUnit& pu)
{
if (pu.refIdx[0] >= 0 && pu.refIdx[1] >= 0)
{
const int poc0 = pu.cu->slice->getRefPOC(REF_PIC_LIST_0, pu.refIdx[0]);
const int poc1 = pu.cu->slice->getRefPOC(REF_PIC_LIST_1, pu.refIdx[1]);
const int poc = pu.cu->slice->getPOC();
if ((poc - poc0)*(poc - poc1) < 0)
{
if (abs(poc - poc0) == abs(poc - poc1))
{
return true;
}
}
}
return false;
}
void PU::restrictBiPredMergeCands( const PredictionUnit &pu, MergeCtx& mergeCtx )
{
if( PU::isBipredRestriction( pu ) )
{
for( uint32_t mergeCand = 0; mergeCand < mergeCtx.numValidMergeCand; ++mergeCand )
{
if( mergeCtx.interDirNeighbours[ mergeCand ] == 3 )
{
mergeCtx.interDirNeighbours[ mergeCand ] = 1;
mergeCtx.mvFieldNeighbours[( mergeCand << 1 ) + 1].setMvField( Mv( 0, 0 ), -1 );
mergeCtx.GBiIdx[mergeCand] = GBI_DEFAULT;
}
}
}
}
void PU::restrictBiPredMergeCandsOne(PredictionUnit &pu)
{
if (PU::isBipredRestriction(pu))
{
if (pu.interDir == 3)
{
pu.interDir = 1;
pu.refIdx[1] = -1;
pu.mv[1] = Mv(0, 0);
pu.cu->GBiIdx = GBI_DEFAULT;
}
}
}
void PU::getTriangleMergeCandidates( const PredictionUnit &pu, MergeCtx& triangleMrgCtx )
{
#if JVET_N0340_TRI_MERGE_CAND
MergeCtx tmpMergeCtx;
const Slice &slice = *pu.cs->slice;
const uint32_t maxNumMergeCand = slice.getMaxNumMergeCand();
triangleMrgCtx.numValidMergeCand = 0;
for (int32_t i = 0; i < TRIANGLE_MAX_NUM_UNI_CANDS; i++)
{
triangleMrgCtx.GBiIdx[i] = GBI_DEFAULT;
triangleMrgCtx.interDirNeighbours[i] = 0;
triangleMrgCtx.mrgTypeNeighbours[i] = MRG_TYPE_DEFAULT_N;
triangleMrgCtx.mvFieldNeighbours[(i << 1)].refIdx = NOT_VALID;
triangleMrgCtx.mvFieldNeighbours[(i << 1) + 1].refIdx = NOT_VALID;
triangleMrgCtx.mvFieldNeighbours[(i << 1)].mv = Mv();
triangleMrgCtx.mvFieldNeighbours[(i << 1) + 1].mv = Mv();
}
PU::getInterMergeCandidates(pu, tmpMergeCtx, 0);
for (int32_t i = 0; i < maxNumMergeCand; i++)
{
int parity = i & 1;
if (tmpMergeCtx.interDirNeighbours[i] & (0x01 + parity))
{
triangleMrgCtx.interDirNeighbours[triangleMrgCtx.numValidMergeCand] = 1 + parity;
triangleMrgCtx.mrgTypeNeighbours[triangleMrgCtx.numValidMergeCand] = MRG_TYPE_DEFAULT_N;
triangleMrgCtx.mvFieldNeighbours[(triangleMrgCtx.numValidMergeCand << 1) + !parity].mv = Mv(0, 0);
triangleMrgCtx.mvFieldNeighbours[(triangleMrgCtx.numValidMergeCand << 1) + parity].mv = tmpMergeCtx.mvFieldNeighbours[(i << 1) + parity].mv;
triangleMrgCtx.mvFieldNeighbours[(triangleMrgCtx.numValidMergeCand << 1) + !parity].refIdx = -1;
triangleMrgCtx.mvFieldNeighbours[(triangleMrgCtx.numValidMergeCand << 1) + parity].refIdx = tmpMergeCtx.mvFieldNeighbours[(i << 1) + parity].refIdx;
triangleMrgCtx.numValidMergeCand++;
if (triangleMrgCtx.numValidMergeCand == TRIANGLE_MAX_NUM_UNI_CANDS)
{
return;
}
continue;
}
if (tmpMergeCtx.interDirNeighbours[i] & (0x02 - parity))
{
triangleMrgCtx.interDirNeighbours[triangleMrgCtx.numValidMergeCand] = 2 - parity;
triangleMrgCtx.mrgTypeNeighbours[triangleMrgCtx.numValidMergeCand] = MRG_TYPE_DEFAULT_N;
triangleMrgCtx.mvFieldNeighbours[(triangleMrgCtx.numValidMergeCand << 1) + !parity].mv = tmpMergeCtx.mvFieldNeighbours[(i << 1) + !parity].mv;
triangleMrgCtx.mvFieldNeighbours[(triangleMrgCtx.numValidMergeCand << 1) + parity].mv = Mv(0, 0);
triangleMrgCtx.mvFieldNeighbours[(triangleMrgCtx.numValidMergeCand << 1) + !parity].refIdx = tmpMergeCtx.mvFieldNeighbours[(i << 1) + !parity].refIdx;
triangleMrgCtx.mvFieldNeighbours[(triangleMrgCtx.numValidMergeCand << 1) + parity].refIdx = -1;
triangleMrgCtx.numValidMergeCand++;
if (triangleMrgCtx.numValidMergeCand == TRIANGLE_MAX_NUM_UNI_CANDS)
{
return;
}
}
}
#else
const CodingStructure &cs = *pu.cs;
const Slice &slice = *pu.cs->slice;
const int32_t maxNumMergeCand = TRIANGLE_MAX_NUM_UNI_CANDS;
triangleMrgCtx.numValidMergeCand = 0;
for( int32_t i = 0; i < maxNumMergeCand; i++ )
{
triangleMrgCtx.interDirNeighbours[i] = 0;
triangleMrgCtx.mrgTypeNeighbours [i] = MRG_TYPE_DEFAULT_N;
triangleMrgCtx.mvFieldNeighbours[(i << 1) ].refIdx = NOT_VALID;
triangleMrgCtx.mvFieldNeighbours[(i << 1) + 1].refIdx = NOT_VALID;
triangleMrgCtx.mvFieldNeighbours[(i << 1) ].mv = Mv();
triangleMrgCtx.mvFieldNeighbours[(i << 1) + 1].mv = Mv();
}
MotionInfo candidate[TRIANGLE_MAX_NUM_CANDS_MEM];
int32_t candCount = 0;
const Position posLT = pu.Y().topLeft();
const Position posRT = pu.Y().topRight();
const Position posLB = pu.Y().bottomLeft();
MotionInfo miAbove, miLeft, miAboveLeft, miAboveRight, miBelowLeft;
//left
const PredictionUnit* puLeft = cs.getPURestricted( posLB.offset( -1, 0 ), pu, pu.chType );
const bool isAvailableA1 = puLeft && isDiffMER( pu, *puLeft ) && pu.cu != puLeft->cu && CU::isInter( *puLeft->cu )
;
if( isAvailableA1 )
{
miLeft = puLeft->getMotionInfo( posLB.offset(-1, 0) );
candidate[candCount].isInter = true;
candidate[candCount].interDir = miLeft.interDir;
candidate[candCount].mv[0] = miLeft.mv[0];
candidate[candCount].mv[1] = miLeft.mv[1];
candidate[candCount].refIdx[0] = miLeft.refIdx[0];
candidate[candCount].refIdx[1] = miLeft.refIdx[1];
candCount++;
}
// above
const PredictionUnit *puAbove = cs.getPURestricted( posRT.offset( 0, -1 ), pu, pu.chType );
bool isAvailableB1 = puAbove && isDiffMER( pu, *puAbove ) && pu.cu != puAbove->cu && CU::isInter( *puAbove->cu )
;
if( isAvailableB1 )
{
miAbove = puAbove->getMotionInfo( posRT.offset( 0, -1 ) );
if( !isAvailableA1 || ( miAbove != miLeft ) )
{
candidate[candCount].isInter = true;
candidate[candCount].interDir = miAbove.interDir;
candidate[candCount].mv[0] = miAbove.mv[0];
candidate[candCount].mv[1] = miAbove.mv[1];
candidate[candCount].refIdx[0] = miAbove.refIdx[0];
candidate[candCount].refIdx[1] = miAbove.refIdx[1];
candCount++;
}
}
// above right
const PredictionUnit *puAboveRight = cs.getPURestricted( posRT.offset( 1, -1 ), pu, pu.chType );
bool isAvailableB0 = puAboveRight && isDiffMER( pu, *puAboveRight ) && CU::isInter( *puAboveRight->cu )
;
if( isAvailableB0 )
{
miAboveRight = puAboveRight->getMotionInfo( posRT.offset( 1, -1 ) );
if( ( !isAvailableB1 || ( miAbove != miAboveRight ) ) && ( !isAvailableA1 || ( miLeft != miAboveRight ) ) )
{
candidate[candCount].isInter = true;
candidate[candCount].interDir = miAboveRight.interDir;
candidate[candCount].mv[0] = miAboveRight.mv[0];
candidate[candCount].mv[1] = miAboveRight.mv[1];
candidate[candCount].refIdx[0] = miAboveRight.refIdx[0];
candidate[candCount].refIdx[1] = miAboveRight.refIdx[1];
candCount++;
}
}
//left bottom
const PredictionUnit *puLeftBottom = cs.getPURestricted( posLB.offset( -1, 1 ), pu, pu.chType );
bool isAvailableA0 = puLeftBottom && isDiffMER( pu, *puLeftBottom ) && CU::isInter( *puLeftBottom->cu )
;
if( isAvailableA0 )
{
miBelowLeft = puLeftBottom->getMotionInfo( posLB.offset( -1, 1 ) );
if( ( !isAvailableA1 || ( miBelowLeft != miLeft ) ) && ( !isAvailableB1 || ( miBelowLeft != miAbove ) ) && ( !isAvailableB0 || ( miBelowLeft != miAboveRight ) ) )
{
candidate[candCount].isInter = true;
candidate[candCount].interDir = miBelowLeft.interDir;
candidate[candCount].mv[0] = miBelowLeft.mv[0];
candidate[candCount].mv[1] = miBelowLeft.mv[1];
candidate[candCount].refIdx[0] = miBelowLeft.refIdx[0];
candidate[candCount].refIdx[1] = miBelowLeft.refIdx[1];
candCount++;
}
}
// above left
const PredictionUnit *puAboveLeft = cs.getPURestricted( posLT.offset( -1, -1 ), pu, pu.chType );
bool isAvailableB2 = puAboveLeft && isDiffMER( pu, *puAboveLeft ) && CU::isInter( *puAboveLeft->cu )
;
if( isAvailableB2 )
{
miAboveLeft = puAboveLeft->getMotionInfo( posLT.offset( -1, -1 ) );
if( ( !isAvailableA1 || ( miLeft != miAboveLeft ) ) && ( !isAvailableB1 || ( miAbove != miAboveLeft ) ) && ( !isAvailableA0 || ( miBelowLeft != miAboveLeft ) ) && ( !isAvailableB0 || ( miAboveRight != miAboveLeft ) ) )
{
candidate[candCount].isInter = true;
candidate[candCount].interDir = miAboveLeft.interDir;
candidate[candCount].mv[0] = miAboveLeft.mv[0];
candidate[candCount].mv[1] = miAboveLeft.mv[1];
candidate[candCount].refIdx[0] = miAboveLeft.refIdx[0];
candidate[candCount].refIdx[1] = miAboveLeft.refIdx[1];
candCount++;
}
}
if( slice.getEnableTMVPFlag() )
{
Position posRB = pu.Y().bottomRight().offset(-3, -3);
const PreCalcValues& pcv = *cs.pcv;
Position posC0;
Position posC1 = pu.Y().center();
bool isAvailableC0 = false;
#if !JVET_N0266_SMALL_BLOCKS
bool isAvailableC1 = (posC1.x < pcv.lumaWidth) && (posC1.y < pcv.lumaHeight);
#endif
if (((posRB.x + pcv.minCUWidth) < pcv.lumaWidth) && ((posRB.y + pcv.minCUHeight) < pcv.lumaHeight))
{
Position posInCtu( posRB.x & pcv.maxCUWidthMask, posRB.y & pcv.maxCUHeightMask );
if( ( posInCtu.x + 4 < pcv.maxCUWidth ) && // is not at the last column of CTU
( posInCtu.y + 4 < pcv.maxCUHeight ) ) // is not at the last row of CTU
{
posC0 = posRB.offset( 4, 4 );
isAvailableC0 = true;
}
else if( posInCtu.x + 4 < pcv.maxCUWidth ) // is not at the last column of CTU But is last row of CTU
{
posC0 = posRB.offset( 4, 4 );
// in the reference the CTU address is not set - thus probably resulting in no using this C0 possibility
}
else if( posInCtu.y + 4 < pcv.maxCUHeight ) // is not at the last row of CTU But is last column of CTU
{
posC0 = posRB.offset( 4, 4 );
isAvailableC0 = true;
}
else //is the right bottom corner of CTU
{
posC0 = posRB.offset( 4, 4 );
// same as for last column but not last row
}
}
// C0
Mv cColMv;
int32_t refIdx = 0;
bool existMV = ( isAvailableC0 && getColocatedMVP( pu, REF_PIC_LIST_0, posC0, cColMv, refIdx ) );
MotionInfo temporalMv;
temporalMv.interDir = 0;
if( existMV )
{
temporalMv.isInter = true;
temporalMv.interDir |= 1;
temporalMv.mv[0] = cColMv;
temporalMv.refIdx[0] = refIdx;
}
existMV = ( isAvailableC0 && getColocatedMVP( pu, REF_PIC_LIST_1, posC0, cColMv, refIdx ) );
if( existMV )
{
temporalMv.interDir |= 2;
temporalMv.mv[1] = cColMv;
temporalMv.refIdx[1] = refIdx;
}
if( temporalMv.interDir != 0 )
{
candidate[candCount].isInter = true;
candidate[candCount].interDir = temporalMv.interDir;
candidate[candCount].mv[0] = temporalMv.mv[0];
candidate[candCount].mv[1] = temporalMv.mv[1];
candidate[candCount].refIdx[0] = temporalMv.refIdx[0];
candidate[candCount].refIdx[1] = temporalMv.refIdx[1];
candCount++;
}
// C1
temporalMv.interDir = 0;
#if JVET_N0266_SMALL_BLOCKS
existMV = getColocatedMVP( pu, REF_PIC_LIST_0, posC1, cColMv, refIdx );
#else
existMV = isAvailableC1 && getColocatedMVP(pu, REF_PIC_LIST_0, posC1, cColMv, refIdx );
#endif
if( existMV )
{
temporalMv.isInter = true;
temporalMv.interDir |= 1;
temporalMv.mv[0] = cColMv;
temporalMv.refIdx[0] = refIdx;
}
#if JVET_N0266_SMALL_BLOCKS
existMV = getColocatedMVP( pu, REF_PIC_LIST_1, posC1, cColMv, refIdx );
#else
existMV = isAvailableC1 && getColocatedMVP(pu, REF_PIC_LIST_1, posC1, cColMv, refIdx );
#endif
if( existMV )
{
temporalMv.interDir |= 2;
temporalMv.mv[1] = cColMv;
temporalMv.refIdx[1] = refIdx;
}
if( temporalMv.interDir != 0 )
{
candidate[candCount].isInter = true;
candidate[candCount].interDir = temporalMv.interDir;
candidate[candCount].mv[0] = temporalMv.mv[0];
candidate[candCount].mv[1] = temporalMv.mv[1];
candidate[candCount].refIdx[0] = temporalMv.refIdx[0];
candidate[candCount].refIdx[1] = temporalMv.refIdx[1];
candCount++;
}
}
// put uni-prediction candidate to the triangle candidate list
for( int32_t i = 0; i < candCount; i++ )
{
if( candidate[i].interDir != 3 )
{
triangleMrgCtx.interDirNeighbours[triangleMrgCtx.numValidMergeCand] = candidate[i].interDir;
triangleMrgCtx.mrgTypeNeighbours [triangleMrgCtx.numValidMergeCand] = MRG_TYPE_DEFAULT_N;
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) ].mv = candidate[i].mv[0];
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) + 1].mv = candidate[i].mv[1];
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) ].refIdx = candidate[i].refIdx[0];
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) + 1].refIdx = candidate[i].refIdx[1];
triangleMrgCtx.numValidMergeCand += isUniqueTriangleCandidates(pu, triangleMrgCtx);
if( triangleMrgCtx.numValidMergeCand == TRIANGLE_MAX_NUM_UNI_CANDS )
{
return;
}
}
}
// put L0 mv of bi-prediction candidate to the triangle candidate list
for( int32_t i = 0; i < candCount; i++ )
{
if( candidate[i].interDir == 3 )
{
triangleMrgCtx.interDirNeighbours[triangleMrgCtx.numValidMergeCand] = 1;
triangleMrgCtx.mrgTypeNeighbours [triangleMrgCtx.numValidMergeCand] = MRG_TYPE_DEFAULT_N;
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) ].mv = candidate[i].mv[0];
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) + 1].mv = Mv(0, 0);
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) ].refIdx = candidate[i].refIdx[0];
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) + 1].refIdx = -1;
triangleMrgCtx.numValidMergeCand += isUniqueTriangleCandidates(pu, triangleMrgCtx);
if( triangleMrgCtx.numValidMergeCand == TRIANGLE_MAX_NUM_UNI_CANDS )
{
return;
}
}
}
// put L1 mv of bi-prediction candidate to the triangle candidate list
for( int32_t i = 0; i < candCount; i++ )
{
if( candidate[i].interDir == 3 )
{
triangleMrgCtx.interDirNeighbours[triangleMrgCtx.numValidMergeCand] = 2;
triangleMrgCtx.mrgTypeNeighbours [triangleMrgCtx.numValidMergeCand] = MRG_TYPE_DEFAULT_N;
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) ].mv = Mv(0, 0);
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) + 1].mv = candidate[i].mv[1];
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) ].refIdx = -1;
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) + 1].refIdx = candidate[i].refIdx[1];
triangleMrgCtx.numValidMergeCand += isUniqueTriangleCandidates(pu, triangleMrgCtx);
if( triangleMrgCtx.numValidMergeCand == TRIANGLE_MAX_NUM_UNI_CANDS )
{
return;
}
}
}
// put average of L0 and L1 mvs of bi-prediction candidate to the triangle candidate list
for( int32_t i = 0; i < candCount; i++ )
{
if( candidate[i].interDir == 3 )
{
int32_t curPicPoc = slice.getPOC();
int32_t refPicPocL0 = slice.getRefPOC(REF_PIC_LIST_0, candidate[i].refIdx[0]);
int32_t refPicPocL1 = slice.getRefPOC(REF_PIC_LIST_1, candidate[i].refIdx[1]);
Mv aveMv = candidate[i].mv[1];
int32_t distscale = xGetDistScaleFactor( curPicPoc, refPicPocL0, curPicPoc, refPicPocL1 );
if( distscale != 4096 )
{
aveMv = aveMv.scaleMv( distscale ); // scaling to L0
}
aveMv = aveMv + candidate[i].mv[0];
roundAffineMv(aveMv.hor, aveMv.ver, 1);
triangleMrgCtx.interDirNeighbours[triangleMrgCtx.numValidMergeCand] = 1;
triangleMrgCtx.mrgTypeNeighbours [triangleMrgCtx.numValidMergeCand] = MRG_TYPE_DEFAULT_N;
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) ].mv = aveMv;
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) + 1].mv = Mv(0, 0);
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) ].refIdx = candidate[i].refIdx[0];
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) + 1].refIdx = -1;
triangleMrgCtx.numValidMergeCand += isUniqueTriangleCandidates(pu, triangleMrgCtx);
if( triangleMrgCtx.numValidMergeCand == TRIANGLE_MAX_NUM_UNI_CANDS )
{
return;
}
}
}
// fill with Mv(0, 0)
int32_t numRefIdx = std::min( slice.getNumRefIdx(REF_PIC_LIST_0), slice.getNumRefIdx(REF_PIC_LIST_1) );
int32_t cnt = 0;
while( triangleMrgCtx.numValidMergeCand < TRIANGLE_MAX_NUM_UNI_CANDS )
{
if( cnt < numRefIdx )
{
triangleMrgCtx.interDirNeighbours[triangleMrgCtx.numValidMergeCand] = 1;
triangleMrgCtx.mvFieldNeighbours[triangleMrgCtx.numValidMergeCand << 1].setMvField(Mv(0, 0), cnt);
triangleMrgCtx.mvFieldNeighbours[(triangleMrgCtx.numValidMergeCand << 1) + 1].refIdx = NOT_VALID;
triangleMrgCtx.mvFieldNeighbours[(triangleMrgCtx.numValidMergeCand << 1) + 1].mv = Mv();
triangleMrgCtx.numValidMergeCand++;
if( triangleMrgCtx.numValidMergeCand == TRIANGLE_MAX_NUM_UNI_CANDS )
{
return;
}
triangleMrgCtx.interDirNeighbours[triangleMrgCtx.numValidMergeCand] = 2;
triangleMrgCtx.mvFieldNeighbours [(triangleMrgCtx.numValidMergeCand << 1) + 1 ].setMvField(Mv(0, 0), cnt);
triangleMrgCtx.mvFieldNeighbours[triangleMrgCtx.numValidMergeCand << 1].refIdx = NOT_VALID;
triangleMrgCtx.mvFieldNeighbours[triangleMrgCtx.numValidMergeCand << 1].mv = Mv();
triangleMrgCtx.numValidMergeCand++;
cnt = (cnt + 1) % numRefIdx;
}
}
#endif
}
bool PU::isUniqueTriangleCandidates( const PredictionUnit &pu, MergeCtx& triangleMrgCtx )
{
int newCand = triangleMrgCtx.numValidMergeCand;
for( int32_t i = 0; i < newCand; i++ )
{
int32_t predFlagCur = triangleMrgCtx.interDirNeighbours[i] == 1 ? 0 : 1;
int32_t predFlagNew = triangleMrgCtx.interDirNeighbours[newCand] == 1 ? 0 : 1;
int32_t refPicPocCur = pu.cs->slice->getRefPOC( (RefPicList)predFlagCur, triangleMrgCtx.mvFieldNeighbours[(i << 1) + predFlagCur].refIdx );
int32_t refPicPocNew = pu.cs->slice->getRefPOC( (RefPicList)predFlagNew, triangleMrgCtx.mvFieldNeighbours[(newCand << 1) + predFlagNew].refIdx);
if( refPicPocCur == refPicPocNew && triangleMrgCtx.mvFieldNeighbours[(i << 1) + predFlagCur].mv == triangleMrgCtx.mvFieldNeighbours[(newCand << 1) + predFlagNew].mv )
{
return false;
}
}
return true;
}
void PU::spanTriangleMotionInfo( PredictionUnit &pu, MergeCtx &triangleMrgCtx, const bool splitDir, const uint8_t candIdx0, const uint8_t candIdx1 )
{
pu.triangleSplitDir = splitDir;
pu.triangleMergeIdx0 = candIdx0;
pu.triangleMergeIdx1 = candIdx1;
MotionBuf mb = pu.getMotionBuf();
MotionInfo biMv;
biMv.isInter = true;
biMv.sliceIdx = pu.cs->slice->getIndependentSliceIdx();
if( triangleMrgCtx.interDirNeighbours[candIdx0] == 1 && triangleMrgCtx.interDirNeighbours[candIdx1] == 2 )
{
biMv.interDir = 3;
biMv.mv[0] = triangleMrgCtx.mvFieldNeighbours[ candIdx0 << 1 ].mv;
biMv.mv[1] = triangleMrgCtx.mvFieldNeighbours[(candIdx1 << 1) + 1].mv;
biMv.refIdx[0] = triangleMrgCtx.mvFieldNeighbours[ candIdx0 << 1 ].refIdx;
biMv.refIdx[1] = triangleMrgCtx.mvFieldNeighbours[(candIdx1 << 1) + 1].refIdx;
}
else if( triangleMrgCtx.interDirNeighbours[candIdx0] == 2 && triangleMrgCtx.interDirNeighbours[candIdx1] == 1 )
{
biMv.interDir = 3;
biMv.mv[0] = triangleMrgCtx.mvFieldNeighbours[ candIdx1 << 1 ].mv;
biMv.mv[1] = triangleMrgCtx.mvFieldNeighbours[(candIdx0 << 1) + 1].mv;
biMv.refIdx[0] = triangleMrgCtx.mvFieldNeighbours[ candIdx1 << 1 ].refIdx;
biMv.refIdx[1] = triangleMrgCtx.mvFieldNeighbours[(candIdx0 << 1) + 1].refIdx;
}
else if( triangleMrgCtx.interDirNeighbours[candIdx0] == 1 && triangleMrgCtx.interDirNeighbours[candIdx1] == 1 )
{
int32_t refIdx = mappingRefPic( pu, pu.cs->slice->getRefPOC( REF_PIC_LIST_0, triangleMrgCtx.mvFieldNeighbours[candIdx1 << 1].refIdx ), REF_PIC_LIST_1 );
if( refIdx != -1 )
{
biMv.interDir = 3;
biMv.mv[0] = triangleMrgCtx.mvFieldNeighbours[candIdx0 << 1].mv;
biMv.mv[1] = triangleMrgCtx.mvFieldNeighbours[candIdx1 << 1].mv;
biMv.refIdx[0] = triangleMrgCtx.mvFieldNeighbours[candIdx0 << 1].refIdx;
biMv.refIdx[1] = refIdx;
}
else
{
refIdx = mappingRefPic( pu, pu.cs->slice->getRefPOC( REF_PIC_LIST_0, triangleMrgCtx.mvFieldNeighbours[candIdx0 << 1].refIdx), REF_PIC_LIST_1 );
biMv.interDir = ( refIdx != -1 ) ? 3 : 1;
biMv.mv[0] = ( refIdx != -1 ) ? triangleMrgCtx.mvFieldNeighbours[candIdx1 << 1].mv : triangleMrgCtx.mvFieldNeighbours[candIdx0 << 1].mv;
biMv.mv[1] = ( refIdx != -1 ) ? triangleMrgCtx.mvFieldNeighbours[candIdx0 << 1].mv : Mv(0, 0);
biMv.refIdx[0] = ( refIdx != -1 ) ? triangleMrgCtx.mvFieldNeighbours[candIdx1 << 1].refIdx : triangleMrgCtx.mvFieldNeighbours[candIdx0 << 1].refIdx;
biMv.refIdx[1] = ( refIdx != -1 ) ? refIdx : -1;
}
}
else if( triangleMrgCtx.interDirNeighbours[candIdx0] == 2 && triangleMrgCtx.interDirNeighbours[candIdx1] == 2 )
{
int32_t refIdx = mappingRefPic( pu, pu.cs->slice->getRefPOC( REF_PIC_LIST_1, triangleMrgCtx.mvFieldNeighbours[(candIdx1 << 1) + 1].refIdx ), REF_PIC_LIST_0 );
if( refIdx != -1 )
{
biMv.interDir = 3;
biMv.mv[0] = triangleMrgCtx.mvFieldNeighbours[(candIdx1 << 1) + 1].mv;
biMv.mv[1] = triangleMrgCtx.mvFieldNeighbours[(candIdx0 << 1) + 1].mv;
biMv.refIdx[0] = refIdx;
biMv.refIdx[1] = triangleMrgCtx.mvFieldNeighbours[(candIdx0 << 1) + 1].refIdx;
}
else
{
refIdx = mappingRefPic( pu, pu.cs->slice->getRefPOC( REF_PIC_LIST_1, triangleMrgCtx.mvFieldNeighbours[(candIdx0 << 1) + 1].refIdx ), REF_PIC_LIST_0 );
biMv.interDir = ( refIdx != -1 ) ? 3 : 2;
biMv.mv[0] = ( refIdx != -1 ) ? triangleMrgCtx.mvFieldNeighbours[(candIdx0 << 1) + 1].mv : Mv(0, 0);
biMv.mv[1] = ( refIdx != -1 ) ? triangleMrgCtx.mvFieldNeighbours[(candIdx1 << 1) + 1].mv : triangleMrgCtx.mvFieldNeighbours[(candIdx0 << 1) + 1].mv;
biMv.refIdx[0] = ( refIdx != -1 ) ? refIdx : -1;
biMv.refIdx[1] = ( refIdx != -1 ) ? triangleMrgCtx.mvFieldNeighbours[(candIdx1 << 1) + 1].refIdx : triangleMrgCtx.mvFieldNeighbours[(candIdx0 << 1) + 1].refIdx;
}
}
int32_t idxW = (int32_t)(g_aucLog2[pu.lwidth() ] - MIN_CU_LOG2);
int32_t idxH = (int32_t)(g_aucLog2[pu.lheight()] - MIN_CU_LOG2);
for( int32_t y = 0; y < mb.height; y++ )
{
for( int32_t x = 0; x < mb.width; x++ )
{
if( g_triangleMvStorage[splitDir][idxH][idxW][y][x] == 2 )
{
mb.at( x, y ).isInter = true;
mb.at( x, y ).interDir = biMv.interDir;
mb.at( x, y ).refIdx[0] = biMv.refIdx[0];
mb.at( x, y ).refIdx[1] = biMv.refIdx[1];
mb.at( x, y ).mv [0] = biMv.mv [0];
mb.at( x, y ).mv [1] = biMv.mv [1];
mb.at( x, y ).sliceIdx = biMv.sliceIdx;
}
else if( g_triangleMvStorage[splitDir][idxH][idxW][y][x] == 0 )
{
mb.at( x, y ).isInter = true;
mb.at( x, y ).interDir = triangleMrgCtx.interDirNeighbours[candIdx0];
mb.at( x, y ).refIdx[0] = triangleMrgCtx.mvFieldNeighbours[ candIdx0 << 1 ].refIdx;
mb.at( x, y ).refIdx[1] = triangleMrgCtx.mvFieldNeighbours[(candIdx0 << 1) + 1].refIdx;
mb.at( x, y ).mv [0] = triangleMrgCtx.mvFieldNeighbours[ candIdx0 << 1 ].mv;
mb.at( x, y ).mv [1] = triangleMrgCtx.mvFieldNeighbours[(candIdx0 << 1) + 1].mv;
mb.at( x, y ).sliceIdx = biMv.sliceIdx;
}
else
{
mb.at( x, y ).isInter = true;
mb.at( x, y ).interDir = triangleMrgCtx.interDirNeighbours[candIdx1];
mb.at( x, y ).refIdx[0] = triangleMrgCtx.mvFieldNeighbours[ candIdx1 << 1 ].refIdx;
mb.at( x, y ).refIdx[1] = triangleMrgCtx.mvFieldNeighbours[(candIdx1 << 1) + 1].refIdx;
mb.at( x, y ).mv [0] = triangleMrgCtx.mvFieldNeighbours[ candIdx1 << 1 ].mv;
mb.at( x, y ).mv [1] = triangleMrgCtx.mvFieldNeighbours[(candIdx1 << 1) + 1].mv;
mb.at( x, y ).sliceIdx = biMv.sliceIdx;
}
}
}
}
int32_t PU::mappingRefPic( const PredictionUnit &pu, int32_t refPicPoc, bool targetRefPicList )
{
int32_t numRefIdx = pu.cs->slice->getNumRefIdx( (RefPicList)targetRefPicList );
for( int32_t i = 0; i < numRefIdx; i++ )
{
if( pu.cs->slice->getRefPOC( (RefPicList)targetRefPicList, i ) == refPicPoc )
{
return i;
}
}
return -1;
}
void CU::resetMVDandMV2Int( CodingUnit& cu, InterPrediction *interPred )
{
for( auto &pu : CU::traversePUs( cu ) )
{
MergeCtx mrgCtx;
if( !pu.mergeFlag )
{
if( pu.interDir != 2 /* PRED_L1 */ )
{
Mv mv = pu.mv[0];
Mv mvPred;
AMVPInfo amvpInfo;
if (CU::isIBC(*pu.cu))
PU::fillIBCMvpCand(pu, amvpInfo);
else
PU::fillMvpCand(pu, REF_PIC_LIST_0, pu.refIdx[0], amvpInfo);
pu.mvpNum[0] = amvpInfo.numCand;
mvPred = amvpInfo.mvCand[pu.mvpIdx[0]];
mv.roundTransPrecInternal2Amvr(cu.imv);
pu.mv[0] = mv;
Mv mvDiff = mv - mvPred;
pu.mvd[0] = mvDiff;
}
if( pu.interDir != 1 /* PRED_L0 */ )
{
Mv mv = pu.mv[1];
Mv mvPred;
AMVPInfo amvpInfo;
PU::fillMvpCand(pu, REF_PIC_LIST_1, pu.refIdx[1], amvpInfo);
pu.mvpNum[1] = amvpInfo.numCand;
mvPred = amvpInfo.mvCand[pu.mvpIdx[1]];
mv.roundTransPrecInternal2Amvr(cu.imv);
Mv mvDiff = mv - mvPred;
if( pu.cu->cs->slice->getMvdL1ZeroFlag() && pu.interDir == 3 /* PRED_BI */ )
{
pu.mvd[1] = Mv();
mv = mvPred;
}
else
{
pu.mvd[1] = mvDiff;
}
pu.mv[1] = mv;
}
}
else
{
PU::getInterMergeCandidates ( pu, mrgCtx
, 0
);
mrgCtx.setMergeInfo( pu, pu.mergeIdx );
}
PU::spanMotionInfo( pu, mrgCtx );
}
}
bool CU::hasSubCUNonZeroMVd( const CodingUnit& cu )
{
bool bNonZeroMvd = false;
for( const auto &pu : CU::traversePUs( cu ) )
{
if( ( !pu.mergeFlag ) && ( !cu.skip ) )
{
if( pu.interDir != 2 /* PRED_L1 */ )
{
bNonZeroMvd |= pu.mvd[REF_PIC_LIST_0].getHor() != 0;
bNonZeroMvd |= pu.mvd[REF_PIC_LIST_0].getVer() != 0;
}
if( pu.interDir != 1 /* PRED_L0 */ )
{
if( !pu.cu->cs->slice->getMvdL1ZeroFlag() || pu.interDir != 3 /* PRED_BI */ )
{
bNonZeroMvd |= pu.mvd[REF_PIC_LIST_1].getHor() != 0;
bNonZeroMvd |= pu.mvd[REF_PIC_LIST_1].getVer() != 0;
}
}
}
}
return bNonZeroMvd;
}
bool CU::hasSubCUNonZeroAffineMVd( const CodingUnit& cu )
{
bool nonZeroAffineMvd = false;
if ( !cu.affine || cu.firstPU->mergeFlag )
{
return false;
}
for ( const auto &pu : CU::traversePUs( cu ) )
{
if ( ( !pu.mergeFlag ) && ( !cu.skip ) )
{
if ( pu.interDir != 2 /* PRED_L1 */ )
{
for ( int i = 0; i < ( cu.affineType == AFFINEMODEL_6PARAM ? 3 : 2 ); i++ )
{
nonZeroAffineMvd |= pu.mvdAffi[REF_PIC_LIST_0][i].getHor() != 0;
nonZeroAffineMvd |= pu.mvdAffi[REF_PIC_LIST_0][i].getVer() != 0;
}
}
if ( pu.interDir != 1 /* PRED_L0 */ )
{
if ( !pu.cu->cs->slice->getMvdL1ZeroFlag() || pu.interDir != 3 /* PRED_BI */ )
{
for ( int i = 0; i < ( cu.affineType == AFFINEMODEL_6PARAM ? 3 : 2 ); i++ )
{
nonZeroAffineMvd |= pu.mvdAffi[REF_PIC_LIST_1][i].getHor() != 0;
nonZeroAffineMvd |= pu.mvdAffi[REF_PIC_LIST_1][i].getVer() != 0;
}
}
}
}
}
return nonZeroAffineMvd;
}
int CU::getMaxNeighboriMVCandNum( const CodingStructure& cs, const Position& pos )
{
const int numDefault = 0;
int maxImvNumCand = 0;
// Get BCBP of left PU
#if JVET_N0857_TILES_BRICKS
#if JVET_N0150_ONE_CTU_DELAY_WPP
const CodingUnit *cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), pos, cs.slice->getIndependentSliceIdx(), cs.picture->brickMap->getBrickIdxRsMap( pos ), CH_L );
#else
const CodingUnit *cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), cs.slice->getIndependentSliceIdx(), cs.picture->brickMap->getBrickIdxRsMap( pos ), CH_L );
#endif
#else
#if JVET_N0150_ONE_CTU_DELAY_WPP
const CodingUnit *cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), pos, cs.slice->getIndependentSliceIdx(), cs.picture->tileMap->getTileIdxMap( pos ), CH_L );
#else
const CodingUnit *cuLeft = cs.getCURestricted( pos.offset( -1, 0 ), cs.slice->getIndependentSliceIdx(), cs.picture->tileMap->getTileIdxMap( pos ), CH_L );
#endif
#endif
maxImvNumCand = ( cuLeft ) ? cuLeft->imvNumCand : numDefault;
// Get BCBP of above PU
#if JVET_N0857_TILES_BRICKS
#if JVET_N0150_ONE_CTU_DELAY_WPP
const CodingUnit *cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), pos, cs.slice->getIndependentSliceIdx(), cs.picture->brickMap->getBrickIdxRsMap( pos ), CH_L );
#else
const CodingUnit *cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), cs.slice->getIndependentSliceIdx(), cs.picture->brickMap->getBrickIdxRsMap( pos ), CH_L );
#endif
#else
#if JVET_N0150_ONE_CTU_DELAY_WPP
const CodingUnit *cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), pos, cs.slice->getIndependentSliceIdx(), cs.picture->tileMap->getTileIdxMap( pos ), CH_L );
#else
const CodingUnit *cuAbove = cs.getCURestricted( pos.offset( 0, -1 ), cs.slice->getIndependentSliceIdx(), cs.picture->tileMap->getTileIdxMap( pos ), CH_L );
#endif
#endif
maxImvNumCand = std::max( maxImvNumCand, ( cuAbove ) ? cuAbove->imvNumCand : numDefault );
return maxImvNumCand;
}
uint8_t CU::getSbtInfo( uint8_t idx, uint8_t pos )
{
return ( pos << 4 ) + ( idx << 0 );
}
uint8_t CU::getSbtIdx( const uint8_t sbtInfo )
{
return ( sbtInfo >> 0 ) & 0xf;
}
uint8_t CU::getSbtPos( const uint8_t sbtInfo )
{
return ( sbtInfo >> 4 ) & 0x3;
}
uint8_t CU::getSbtMode( uint8_t sbtIdx, uint8_t sbtPos )
{
uint8_t sbtMode = 0;
switch( sbtIdx )
{
case SBT_VER_HALF: sbtMode = sbtPos + SBT_VER_H0; break;
case SBT_HOR_HALF: sbtMode = sbtPos + SBT_HOR_H0; break;
case SBT_VER_QUAD: sbtMode = sbtPos + SBT_VER_Q0; break;
case SBT_HOR_QUAD: sbtMode = sbtPos + SBT_HOR_Q0; break;
default: assert( 0 );
}
assert( sbtMode < NUMBER_SBT_MODE );
return sbtMode;
}
uint8_t CU::getSbtIdxFromSbtMode( uint8_t sbtMode )
{
if( sbtMode <= SBT_VER_H1 )
return SBT_VER_HALF;
else if( sbtMode <= SBT_HOR_H1 )
return SBT_HOR_HALF;
else if( sbtMode <= SBT_VER_Q1 )
return SBT_VER_QUAD;
else if( sbtMode <= SBT_HOR_Q1 )
return SBT_HOR_QUAD;
else
{
assert( 0 );
return 0;
}
}
uint8_t CU::getSbtPosFromSbtMode( uint8_t sbtMode )
{
if( sbtMode <= SBT_VER_H1 )
return sbtMode - SBT_VER_H0;
else if( sbtMode <= SBT_HOR_H1 )
return sbtMode - SBT_HOR_H0;
else if( sbtMode <= SBT_VER_Q1 )
return sbtMode - SBT_VER_Q0;
else if( sbtMode <= SBT_HOR_Q1 )
return sbtMode - SBT_HOR_Q0;
else
{
assert( 0 );
return 0;
}
}
uint8_t CU::targetSbtAllowed( uint8_t sbtIdx, uint8_t sbtAllowed )
{
uint8_t val = 0;
switch( sbtIdx )
{
case SBT_VER_HALF: val = ( ( sbtAllowed >> SBT_VER_HALF ) & 0x1 ); break;
case SBT_HOR_HALF: val = ( ( sbtAllowed >> SBT_HOR_HALF ) & 0x1 ); break;
case SBT_VER_QUAD: val = ( ( sbtAllowed >> SBT_VER_QUAD ) & 0x1 ); break;
case SBT_HOR_QUAD: val = ( ( sbtAllowed >> SBT_HOR_QUAD ) & 0x1 ); break;
default: CHECK( 1, "unknown SBT type" );
}
return val;
}
uint8_t CU::numSbtModeRdo( uint8_t sbtAllowed )
{
uint8_t num = 0;
uint8_t sum = 0;
num = targetSbtAllowed( SBT_VER_HALF, sbtAllowed ) + targetSbtAllowed( SBT_HOR_HALF, sbtAllowed );
sum += std::min( SBT_NUM_RDO, ( num << 1 ) );
num = targetSbtAllowed( SBT_VER_QUAD, sbtAllowed ) + targetSbtAllowed( SBT_HOR_QUAD, sbtAllowed );
sum += std::min( SBT_NUM_RDO, ( num << 1 ) );
return sum;
}
bool CU::isMtsMode( const uint8_t sbtInfo )
{
return getSbtIdx( sbtInfo ) == SBT_OFF_MTS;
}
bool CU::isSbtMode( const uint8_t sbtInfo )
{
uint8_t sbtIdx = getSbtIdx( sbtInfo );
return sbtIdx >= SBT_VER_HALF && sbtIdx <= SBT_HOR_QUAD;
}
bool CU::isSameSbtSize( const uint8_t sbtInfo1, const uint8_t sbtInfo2 )
{
uint8_t sbtIdx1 = getSbtIdxFromSbtMode( sbtInfo1 );
uint8_t sbtIdx2 = getSbtIdxFromSbtMode( sbtInfo2 );
if( sbtIdx1 == SBT_HOR_HALF || sbtIdx1 == SBT_VER_HALF )
return sbtIdx2 == SBT_HOR_HALF || sbtIdx2 == SBT_VER_HALF;
else if( sbtIdx1 == SBT_HOR_QUAD || sbtIdx1 == SBT_VER_QUAD )
return sbtIdx2 == SBT_HOR_QUAD || sbtIdx2 == SBT_VER_QUAD;
else
return false;
}
bool CU::isGBiIdxCoded( const CodingUnit &cu )
{
if( cu.cs->sps->getUseGBi() == false )
{
CHECK(cu.GBiIdx != GBI_DEFAULT, "Error: cu.GBiIdx != GBI_DEFAULT");
return false;
}
if (cu.predMode == MODE_IBC)
{
return false;
}
if( cu.predMode == MODE_INTRA || cu.cs->slice->isInterP() )
{
return false;
}
if( cu.lwidth() * cu.lheight() < GBI_SIZE_CONSTRAINT )
{
return false;
}
if( !cu.firstPU->mergeFlag )
{
if( cu.firstPU->interDir == 3 )
{
WPScalingParam *wp0;
WPScalingParam *wp1;
int refIdx0 = cu.firstPU->refIdx[REF_PIC_LIST_0];
int refIdx1 = cu.firstPU->refIdx[REF_PIC_LIST_1];
cu.cs->slice->getWpScaling(REF_PIC_LIST_0, refIdx0, wp0);
cu.cs->slice->getWpScaling(REF_PIC_LIST_1, refIdx1, wp1);
if ((wp0[COMPONENT_Y].bPresentFlag || wp0[COMPONENT_Cb].bPresentFlag || wp0[COMPONENT_Cr].bPresentFlag
|| wp1[COMPONENT_Y].bPresentFlag || wp1[COMPONENT_Cb].bPresentFlag || wp1[COMPONENT_Cr].bPresentFlag)
)
{
return false;
}
return true;
}
}
return false;
}
uint8_t CU::getValidGbiIdx( const CodingUnit &cu )
{
if( cu.firstPU->interDir == 3 && !cu.firstPU->mergeFlag )
{
return cu.GBiIdx;
}
else if( cu.firstPU->interDir == 3 && cu.firstPU->mergeFlag && cu.firstPU->mergeType == MRG_TYPE_DEFAULT_N )
{
// This is intended to do nothing here.
}
else if( cu.firstPU->mergeFlag && cu.firstPU->mergeType == MRG_TYPE_SUBPU_ATMVP )
{
CHECK(cu.GBiIdx != GBI_DEFAULT, " cu.GBiIdx != GBI_DEFAULT ");
}
else
{
CHECK(cu.GBiIdx != GBI_DEFAULT, " cu.GBiIdx != GBI_DEFAULT ");
}
return GBI_DEFAULT;
}
void CU::setGbiIdx( CodingUnit &cu, uint8_t uh )
{
int8_t uhCnt = 0;
if( cu.firstPU->interDir == 3 && !cu.firstPU->mergeFlag )
{
cu.GBiIdx = uh;
++uhCnt;
}
else if( cu.firstPU->interDir == 3 && cu.firstPU->mergeFlag && cu.firstPU->mergeType == MRG_TYPE_DEFAULT_N )
{
// This is intended to do nothing here.
}
else if( cu.firstPU->mergeFlag && cu.firstPU->mergeType == MRG_TYPE_SUBPU_ATMVP )
{
cu.GBiIdx = GBI_DEFAULT;
}
else
{
cu.GBiIdx = GBI_DEFAULT;
}
CHECK(uhCnt <= 0, " uhCnt <= 0 ");
}
uint8_t CU::deriveGbiIdx( uint8_t gbiLO, uint8_t gbiL1 )
{
if( gbiLO == gbiL1 )
{
return gbiLO;
}
const int8_t w0 = getGbiWeight(gbiLO, REF_PIC_LIST_0);
const int8_t w1 = getGbiWeight(gbiL1, REF_PIC_LIST_1);
const int8_t th = g_GbiWeightBase >> 1;
const int8_t off = 1;
if( w0 == w1 || (w0 < (th - off) && w1 < (th - off)) || (w0 >(th + off) && w1 >(th + off)) )
{
return GBI_DEFAULT;
}
else
{
if( w0 > w1 )
{
return ( w0 >= th ? gbiLO : gbiL1 );
}
else
{
return ( w1 >= th ? gbiL1 : gbiLO );
}
}
}
#if JVET_N0413_RDPCM
bool CU::bdpcmAllowed( const CodingUnit& cu, const ComponentID compID )
{
bool bdpcmAllowed = compID == COMPONENT_Y;
bdpcmAllowed &= CU::isIntra( cu );
bdpcmAllowed &= ( cu.lwidth() <= 32 && cu.lheight() <= 32 );
return bdpcmAllowed;
}
#endif
// TU tools
bool TU::isNonTransformedResidualRotated(const TransformUnit &tu, const ComponentID &compID)
{
return tu.cs->sps->getSpsRangeExtension().getTransformSkipRotationEnabledFlag() && tu.blocks[compID].width == 4 && tu.cu->predMode == MODE_INTRA;
}
bool TU::getCbf( const TransformUnit &tu, const ComponentID &compID )
{
return getCbfAtDepth( tu, compID, tu.depth );
}
bool TU::getCbfAtDepth(const TransformUnit &tu, const ComponentID &compID, const unsigned &depth)
{
return ((tu.cbf[compID] >> depth) & 1) == 1;
}
void TU::setCbfAtDepth(TransformUnit &tu, const ComponentID &compID, const unsigned &depth, const bool &cbf)
{
// first clear the CBF at the depth
tu.cbf[compID] &= ~(1 << depth);
// then set the CBF
tu.cbf[compID] |= ((cbf ? 1 : 0) << depth);
}
bool TU::isTSAllowed(const TransformUnit &tu, const ComponentID compID)
{
bool tsAllowed = compID == COMPONENT_Y;
const int maxSize = tu.cs->pps->getPpsRangeExtension().getLog2MaxTransformSkipBlockSize();
tsAllowed &= tu.cs->pps->getUseTransformSkip();
tsAllowed &= !tu.cu->transQuantBypass;
tsAllowed &= ( !tu.cu->ispMode || !isLuma(compID) );
#if JVET_N0413_RDPCM
tsAllowed &= !( tu.cu->bdpcmMode && tu.lwidth() <= BDPCM_MAX_CU_SIZE && tu.lheight() <= BDPCM_MAX_CU_SIZE );
#endif
SizeType transformSkipMaxSize = 1 << maxSize;
tsAllowed &= tu.lwidth() <= transformSkipMaxSize && tu.lheight() <= transformSkipMaxSize;
tsAllowed &= !tu.cu->sbtInfo;
return tsAllowed;
}
bool TU::isMTSAllowed(const TransformUnit &tu, const ComponentID compID)
{
bool mtsAllowed = compID == COMPONENT_Y;
const int maxSize = CU::isIntra( *tu.cu ) ? MTS_INTRA_MAX_CU_SIZE : MTS_INTER_MAX_CU_SIZE;
mtsAllowed &= CU::isIntra( *tu.cu ) ? tu.cs->sps->getUseIntraMTS() : tu.cs->sps->getUseInterMTS() && CU::isInter( *tu.cu );
mtsAllowed &= ( tu.lwidth() <= maxSize && tu.lheight() <= maxSize );
mtsAllowed &= !tu.cu->ispMode;
mtsAllowed &= !tu.cu->sbtInfo;
#if JVET_N0413_RDPCM
mtsAllowed &= !( tu.cu->bdpcmMode && tu.lwidth() <= BDPCM_MAX_CU_SIZE && tu.lheight() <= BDPCM_MAX_CU_SIZE );
#endif
return mtsAllowed;
}
uint32_t TU::getGolombRiceStatisticsIndex(const TransformUnit &tu, const ComponentID &compID)
{
const bool transformSkip = tu.mtsIdx==MTS_SKIP;
const bool transquantBypass = tu.cu->transQuantBypass;
//--------
const uint32_t channelTypeOffset = isChroma(compID) ? 2 : 0;
const uint32_t nonTransformedOffset = (transformSkip || transquantBypass) ? 1 : 0;
//--------
const uint32_t selectedIndex = channelTypeOffset + nonTransformedOffset;
CHECK( selectedIndex >= RExt__GOLOMB_RICE_ADAPTATION_STATISTICS_SETS, "Invalid golomb rice adaptation statistics set" );
return selectedIndex;
}
#if HEVC_USE_MDCS
uint32_t TU::getCoefScanIdx(const TransformUnit &tu, const ComponentID &compID)
{
//------------------------------------------------
//this mechanism is available for intra only
if( !CU::isIntra( *tu.cu ) )
{
return SCAN_DIAG;
}
//------------------------------------------------
//check that MDCS can be used for this TU
const CompArea &area = tu.blocks[compID];
const SPS &sps = *tu.cs->sps;
const ChromaFormat format = sps.getChromaFormatIdc();
const uint32_t maximumWidth = MDCS_MAXIMUM_WIDTH >> getComponentScaleX(compID, format);
const uint32_t maximumHeight = MDCS_MAXIMUM_HEIGHT >> getComponentScaleY(compID, format);
if ((area.width > maximumWidth) || (area.height > maximumHeight))
{
return SCAN_DIAG;
}
//------------------------------------------------
//otherwise, select the appropriate mode
const PredictionUnit &pu = *tu.cs->getPU( area.pos(), toChannelType( compID ) );
uint32_t uiDirMode = PU::getFinalIntraMode(pu, toChannelType(compID));
//------------------
if (abs((int) uiDirMode - VER_IDX) <= MDCS_ANGLE_LIMIT)
{
return SCAN_HOR;
}
else if (abs((int) uiDirMode - HOR_IDX) <= MDCS_ANGLE_LIMIT)
{
return SCAN_VER;
}
else
{
return SCAN_DIAG;
}
}
#endif
bool TU::hasCrossCompPredInfo( const TransformUnit &tu, const ComponentID &compID )
{
return (isChroma(compID) && tu.cs->pps->getPpsRangeExtension().getCrossComponentPredictionEnabledFlag() && TU::getCbf(tu, COMPONENT_Y) &&
(!CU::isIntra(*tu.cu) || PU::isChromaIntraModeCrossCheckMode(*tu.cs->getPU(tu.blocks[compID].pos(), toChannelType(compID)))));
}
uint32_t TU::getNumNonZeroCoeffsNonTS( const TransformUnit& tu, const bool bLuma, const bool bChroma )
{
uint32_t count = 0;
for( uint32_t i = 0; i < ::getNumberValidTBlocks( *tu.cs->pcv ); i++ )
{
#if JVET_N0193_LFNST
if( tu.blocks[ i ].valid() && tu.mtsIdx != MTS_SKIP && TU::getCbf( tu, ComponentID( i ) ) )
#else
if( tu.blocks[i].valid() && ( isLuma(ComponentID(i)) ? tu.mtsIdx !=MTS_SKIP : true ) && TU::getCbf( tu, ComponentID( i ) ) )
#endif
{
if( isLuma ( tu.blocks[i].compID ) && !bLuma ) continue;
if( isChroma( tu.blocks[i].compID ) && !bChroma ) continue;
uint32_t area = tu.blocks[i].area();
const TCoeff* coeff = tu.getCoeffs( ComponentID( i ) ).buf;
for( uint32_t j = 0; j < area; j++ )
{
count += coeff[j] != 0;
}
}
}
return count;
}
#if JVET_N0193_LFNST
uint32_t TU::getNumNonZeroCoeffsNonTSCorner8x8( const TransformUnit& tu, const bool lumaFlag, const bool chromaFlag )
{
const uint32_t lumaWidth = tu.blocks[ 0 ].width, chromaWidth = tu.blocks[ 1 ].width;
const uint32_t lumaHeight = tu.blocks[ 0 ].height, chromaHeight = tu.blocks[ 1 ].height;
bool luma4x4TUFlag = lumaWidth == 4 && lumaHeight == 4;
bool chroma4x4TUFlag = chromaWidth == 4 && chromaHeight == 4;
bool luma8x8TUFlag = lumaWidth == 8 && lumaHeight == 8;
bool chroma8x8TUFlag = chromaWidth == 8 && chromaHeight == 8;
bool lumaCountFlag = ( lumaWidth >= 8 && lumaHeight >= 8 ) || luma4x4TUFlag;
bool chromaCountFlag = ( chromaWidth >= 8 && chromaHeight >= 8 ) || chroma4x4TUFlag;
uint32_t count = 0;
for( uint32_t i = 0; i < ::getNumberValidTBlocks( *tu.cs->pcv ); i++ )
{
if( tu.blocks[ i ].valid() && tu.mtsIdx != MTS_SKIP && TU::getCbf( tu, ComponentID( i ) ) )
{
if( isLuma( tu.blocks[ i ].compID ) && ( !lumaFlag || !lumaCountFlag ) ) continue;
if( isChroma( tu.blocks[ i ].compID ) && ( !chromaFlag || !chromaCountFlag ) ) continue;
const ScanElement * scan = g_coefTopLeftDiagScan8x8[ gp_sizeIdxInfo->idxFrom( tu.blocks[ i ].width ) ];
const TCoeff* coeff = tu.getCoeffs( ComponentID( i ) ).buf;
int startPos = MAX_LFNST_COEF_NUM, endPos = 47;
if( ( isLuma( tu.blocks[ i ].compID ) && luma4x4TUFlag ) || ( isChroma( tu.blocks[ i ].compID ) && chroma4x4TUFlag ) )
{
startPos = 8; endPos = 15;
}
else if( ( isLuma( tu.blocks[ i ].compID ) && luma8x8TUFlag ) || ( isChroma( tu.blocks[ i ].compID ) && chroma8x8TUFlag ) )
{
startPos = 8; endPos = 47;
}
const ScanElement *scanPtr = scan + startPos;
for( uint32_t j = startPos; j <= endPos; j++ )
{
count += coeff[ scanPtr->idx ] != 0;
scanPtr++;
}
}
}
return count;
}
#endif
bool TU::needsSqrt2Scale( const TransformUnit &tu, const ComponentID &compID )
{
const Size &size=tu.blocks[compID];
const bool isTransformSkip = tu.mtsIdx==MTS_SKIP && isLuma(compID);
return (!isTransformSkip) && (((g_aucLog2[size.width] + g_aucLog2[size.height]) & 1) == 1);
}
#if HM_QTBT_AS_IN_JEM_QUANT
bool TU::needsBlockSizeTrafoScale( const TransformUnit &tu, const ComponentID &compID )
{
return needsSqrt2Scale( tu, compID ) || isNonLog2BlockSize( tu.blocks[compID] );
}
#else
bool TU::needsQP3Offset(const TransformUnit &tu, const ComponentID &compID)
{
if( !tu.transformSkip[compID] )
{
return ( ( ( g_aucLog2[tu.blocks[compID].width] + g_aucLog2[tu.blocks[compID].height] ) & 1 ) == 1 );
}
return false;
}
#endif
TransformUnit* TU::getPrevTU( const TransformUnit &tu, const ComponentID compID )
{
TransformUnit* prevTU = tu.prev;
if( prevTU != nullptr && ( prevTU->cu != tu.cu || !prevTU->blocks[compID].valid() ) )
{
prevTU = nullptr;
}
return prevTU;
}
bool TU::getPrevTuCbfAtDepth( const TransformUnit ¤tTu, const ComponentID compID, const int trDepth )
{
const TransformUnit* prevTU = getPrevTU( currentTu, compID );
return ( prevTU != nullptr ) ? TU::getCbfAtDepth( *prevTU, compID, trDepth ) : false;
}
#if !JVET_N0866_UNIF_TRFM_SEL_IMPL_MTS_ISP
void TU::getTransformTypeISP( const TransformUnit &tu, const ComponentID compID, int &typeH, int &typeV )
{
typeH = DCT2, typeV = DCT2;
const int uiChFinalMode = PU::getFinalIntraMode( *tu.cu->firstPU, toChannelType( compID ) );
bool intraModeIsEven = uiChFinalMode % 2 == 0;
if( uiChFinalMode == DC_IDX || uiChFinalMode == 33 || uiChFinalMode == 35 )
{
typeH = DCT2;
typeV = typeH;
}
else if( uiChFinalMode == PLANAR_IDX || ( uiChFinalMode >= 31 && uiChFinalMode <= 37 ) )
{
typeH = DST7;
typeV = typeH;
}
else if( ( intraModeIsEven && uiChFinalMode >= 2 && uiChFinalMode <= 30 ) || ( !intraModeIsEven && uiChFinalMode >= 39 && uiChFinalMode <= 65 ) )
{
typeH = DST7;
typeV = DCT2;
}
else if( ( !intraModeIsEven && uiChFinalMode >= 3 && uiChFinalMode <= 29 ) || ( intraModeIsEven && uiChFinalMode >= 38 && uiChFinalMode <= 66 ) )
{
typeH = DCT2;
typeV = DST7;
}
//Size restriction for non-DCT-II transforms
Area tuArea = tu.blocks[compID];
typeH = tuArea.width <= 2 || tuArea.width >= 32 ? DCT2 : typeH;
typeV = tuArea.height <= 2 || tuArea.height >= 32 ? DCT2 : typeV;
}
#endif
// other tools
uint32_t getCtuAddr( const Position& pos, const PreCalcValues& pcv )
{
return ( pos.x >> pcv.maxCUWidthLog2 ) + ( pos.y >> pcv.maxCUHeightLog2 ) * pcv.widthInCtus;
}
#if JVET_N0217_MATRIX_INTRAPRED
int getNumModesMip(const Size& block)
{
if (block.width > (4 * block.height) || block.height > (4 * block.width))
{
return 0;
}
if( block.width == 4 && block.height == 4 )
{
return 35;
}
else if (block.width <= 8 && block.height <= 8)
{
return 19;
}
else
{
return 11;
}
}
int getNumEpBinsMip(const Size& block)
{
int numModes = getNumModesMip(block);
return int(std::ceil((std::log2(numModes - NUM_MPM_MIP - 1))));
}
bool mipModesAvailable(const Size& block)
{
return (getNumModesMip(block));
}
#endif