-
Frank Bossen authoredFrank Bossen authored
MatrixIntraPrediction.cpp 16.47 KiB
/* The copyright in this software is being made available under the BSD
* License, included below. This software may be subject to other third party
* and contributor rights, including patent rights, and no such rights are
* granted under this license.
*
* Copyright (c) 2010-2019, ITU/ISO/IEC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the ITU/ISO/IEC nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file MatrixIntraPrediction.cpp
\brief matrix-based intra prediction class
*/
#include "MatrixIntraPrediction.h"
#include "dtrace_next.h"
#include "UnitTools.h"
#include "MipData.h"
MatrixIntraPrediction::MatrixIntraPrediction():
m_reducedBoundary (MIP_MAX_INPUT_SIZE),
m_reducedBoundaryTransposed(MIP_MAX_INPUT_SIZE),
m_inputOffset ( 0 ),
m_inputOffsetTransp( 0 ),
m_refSamplesTop (MIP_MAX_WIDTH),
m_refSamplesLeft(MIP_MAX_HEIGHT),
m_blockSize( 0, 0 ),
m_numModes( 0 ),
m_reducedBoundarySize( 0, 0 ),
m_reducedPredictionSize( 0, 0 ),
m_upsmpFactorHor( 0 ),
m_upsmpFactorVer( 0 )
{
}
void MatrixIntraPrediction::prepareInputForPred(const CPelBuf &pSrc, const Area& block, const int bitDepth)
{
// Step 1: Save block size and calculate dependent values
initPredBlockParams(block);
// Step 2: Get the input data (left and top reference samples)
m_refSamplesTop.resize(block.width);
for (int x = 0; x < block.width; x++)
{
m_refSamplesTop[x] = pSrc.at(x + 1, 0);
}
m_refSamplesLeft.resize(block.height);
for (int y = 0; y < block.height; y++)
{
m_refSamplesLeft[y] = pSrc.at(y + 1, 1);
}
// Step 3: Compute the reduced boundary via Haar-downsampling (input for the prediction)
m_reducedBoundary .resize( m_reducedBoundarySize.width + m_reducedBoundarySize.height );
m_reducedBoundaryTransposed.resize( m_reducedBoundarySize.width + m_reducedBoundarySize.height );
int* const topReduced = m_reducedBoundary.data();
boundaryDownsampling1D(topReduced, m_refSamplesTop.data(), block.width, m_reducedBoundarySize.width);
int* const leftReduced = m_reducedBoundary.data() + m_reducedBoundarySize.width;
boundaryDownsampling1D(leftReduced, m_refSamplesLeft.data(), block.height, m_reducedBoundarySize.height);
int* const leftReducedTransposed = m_reducedBoundaryTransposed.data();
int* const topReducedTransposed = m_reducedBoundaryTransposed.data() + m_reducedBoundarySize.height;
for( int x = 0; x < m_reducedBoundarySize.width; x++ )
{
topReducedTransposed[ x ] = topReduced[ x ];
}
for( int y = 0; y < m_reducedBoundarySize.height; y++ )
{
leftReducedTransposed[ y ] = leftReduced[ y ];
}
// Step 4: Rebase the reduced boundary
const int inputSize = m_reducedBoundarySize.width + m_reducedBoundarySize.height;
m_inputOffset = m_reducedBoundary[0];
m_inputOffsetTransp = m_reducedBoundaryTransposed[0];
const bool hasFirstCol = (m_blockSize.width <= 8 && m_blockSize.height <= 8);
m_reducedBoundary [0] = hasFirstCol ? (m_inputOffset - (1 << (bitDepth - 1))) : 0; // first column of matrix not needed for large blocks
m_reducedBoundaryTransposed[0] = hasFirstCol ? (m_inputOffsetTransp - (1 << (bitDepth - 1))) : 0;
for (int i = 1; i < inputSize; i++)
{
m_reducedBoundary [i] -= m_inputOffset;
m_reducedBoundaryTransposed[i] -= m_inputOffsetTransp;
}
}
void MatrixIntraPrediction::predBlock(int* const result, const int modeIdx, const int bitDepth)
{
const bool transpose = isTransposed( modeIdx );
const bool needUpsampling = ( m_upsmpFactorHor > 1 ) || ( m_upsmpFactorVer > 1 );
const uint8_t* matrix;
int shiftMatrix = 0, offsetMatrix = 0;
getMatrixData(matrix, shiftMatrix, offsetMatrix, modeIdx);
bool leaveHorOut = ( m_blockSize.width == 4 && m_blockSize.height >= 16 );
bool leaveVerOut = ( m_blockSize.height == 4 && m_blockSize.width >= 16 );
if (transpose)
{
std::swap(leaveHorOut, leaveVerOut);
}
static_vector<int, MIP_MAX_REDUCED_OUTPUT_SAMPLES> bufReducedPred( m_reducedPredictionSize.area() );
int* const reducedPred = needUpsampling ? bufReducedPred.data() : result;
const int* const reducedBoundary = transpose ? m_reducedBoundaryTransposed.data() : m_reducedBoundary.data();
computeReducedPred( reducedPred, reducedBoundary, matrix, leaveHorOut, leaveVerOut, shiftMatrix, offsetMatrix,
transpose, needUpsampling, bitDepth );
// Reduced prediction is transposed if ( transpose && needUpsampling ).
if( needUpsampling )
{
predictionUpsampling( result, reducedPred, transpose );
}
}
bool MatrixIntraPrediction::isTransposed(const int modeIdx) const
{
return ( modeIdx > ( m_numModes / 2 ) );
}
int MatrixIntraPrediction::getWeightIdx(const int modeIdx) const
{
if( modeIdx > m_numModes / 2 )
{
return modeIdx - m_numModes / 2;
}
else
{
return modeIdx;
}
}
void MatrixIntraPrediction::initPredBlockParams(const Size& block)
{
m_blockSize = block;
m_numModes = getNumModesMip(m_blockSize);
// init reduced boundary size
if (m_blockSize.width > 4 || m_blockSize.height > 4)
{
m_reducedBoundarySize = Size(4, 4);
}
else
{
m_reducedBoundarySize = Size(2, 2);
}
// init reduced prediction size
if (m_blockSize.width <= 8 && m_blockSize.height <= 8)
{
m_reducedPredictionSize = Size(4, 4);
}
else
{
m_reducedPredictionSize = Size(std::min<SizeType>(m_blockSize.width, 8), std::min<SizeType>(m_blockSize.height, 8));
}
// init upsampling factors
m_upsmpFactorHor = m_blockSize.width / m_reducedPredictionSize.width;
CHECKD(m_reducedPredictionSize.width * m_upsmpFactorHor != m_blockSize.width, "Need integer horizontal upsampling factor.");
CHECKD((m_upsmpFactorHor < 1) || ((m_upsmpFactorHor & (m_upsmpFactorHor - 1)) != 0), "Need power of two horizontal upsampling factor.");
m_upsmpFactorVer = m_blockSize.height / m_reducedPredictionSize.height;
CHECKD(m_reducedPredictionSize.height * m_upsmpFactorVer != m_blockSize.height, "Need integer vertical upsampling factor.");
CHECKD((m_upsmpFactorVer < 1) || ((m_upsmpFactorVer & (m_upsmpFactorVer - 1)) != 0), "Need power of two vertical upsampling factor.");
}
void MatrixIntraPrediction::doDownsampling(int* dst, const int* src, const SizeType srcLen, const SizeType dstLen)
{
const SizeType downsmpFactor = srcLen / dstLen;
CHECKD( srcLen != dstLen * downsmpFactor, "Need integer downsampling factor." );
CHECKD( ( downsmpFactor & ( downsmpFactor - 1 ) ) != 0, "Need power of two downsampling factor." );
const int log2DownsmpFactor = floorLog2( downsmpFactor );
const int roundingOffset = ( 1 << ( log2DownsmpFactor - 1 ) );
for( SizeType srcIdx = 0, dstIdx = 0; dstIdx < dstLen; ++dstIdx )
{
int sum = 0;
for( SizeType blockIdx = 0; blockIdx < downsmpFactor; ++blockIdx, ++srcIdx )
{
sum += src[ srcIdx ];
}
dst[ dstIdx ] = ( sum + roundingOffset ) >> log2DownsmpFactor;
}
}
void MatrixIntraPrediction::boundaryDownsampling1D(int* reducedDst, const int* const fullSrc, const SizeType srcLen, const SizeType dstLen)
{
if (dstLen < srcLen)
{
// Create reduced boundary by downsampling
doDownsampling(reducedDst, fullSrc, srcLen, dstLen);
}
else
{
// Copy boundary if no downsampling is needed
for (SizeType i = 0; i < dstLen; ++i)
{
reducedDst[i] = fullSrc[i];
}
}
}
void MatrixIntraPrediction::predictionUpsampling1D(int* const dst, const int* const src, const int* const bndry,
const SizeType srcSizeUpsmpDim, const SizeType srcSizeOrthDim,
const SizeType srcStep, const SizeType srcStride,
const SizeType dstStep, const SizeType dstStride,
const SizeType bndryStep,
const unsigned int upsmpFactor )
{
const int log2UpsmpFactor = floorLog2( upsmpFactor );
CHECKD( upsmpFactor <= 1, "Upsampling factor must be at least 2." );
const int roundingOffset = 1 << (log2UpsmpFactor - 1);
SizeType idxOrthDim = 0;
const int* srcLine = src;
int* dstLine = dst;
const int* bndryLine = bndry + bndryStep - 1;
while( idxOrthDim < srcSizeOrthDim )
{
SizeType idxUpsmpDim = 0;
const int* before = bndryLine;
const int* behind = srcLine;
int* currDst = dstLine;
while( idxUpsmpDim < srcSizeUpsmpDim )
{
SizeType pos = 1;
int scaledBefore = ( *before ) << log2UpsmpFactor;
int scaledBehind = 0;
while( pos <= upsmpFactor )
{
scaledBefore -= *before;
scaledBehind += *behind;
*currDst = (scaledBefore + scaledBehind + roundingOffset) >> log2UpsmpFactor;
pos++;
currDst += dstStep;
}
idxUpsmpDim++;
before = behind;
behind += srcStep;
}
idxOrthDim++;
srcLine += srcStride;
dstLine += dstStride;
bndryLine += bndryStep;
}
}
void MatrixIntraPrediction::predictionUpsampling(int* const dst, const int* const src, const bool transpose) const
{
// shorter side is upsampled first
if( m_blockSize.height > m_blockSize.width )
{
const int* verSrc = nullptr;
SizeType verSrcStep = 0;
SizeType verSrcStride = 0;
if( m_upsmpFactorHor > 1 )
{
const SizeType horSrcStep = transpose ? m_reducedPredictionSize.height : 1;
const SizeType horSrcStride = transpose ? 1 : m_reducedPredictionSize.width;
int* const horDst = dst + ( m_upsmpFactorVer - 1 ) * m_blockSize.width;
const SizeType horDstStride = m_upsmpFactorVer * m_blockSize.width;
predictionUpsampling1D( horDst, src, m_refSamplesLeft.data(),
m_reducedPredictionSize.width, m_reducedPredictionSize.height,
horSrcStep, horSrcStride, 1, horDstStride,
m_upsmpFactorVer, m_upsmpFactorHor );
verSrc = horDst;
verSrcStep = horDstStride;
verSrcStride = 1;
}
else
{
verSrc = src;
verSrcStep = transpose ? 1 : m_blockSize.width;
verSrcStride = transpose ? m_reducedPredictionSize.height : 1;
}
predictionUpsampling1D( dst, verSrc, m_refSamplesTop.data(),
m_reducedPredictionSize.height, m_blockSize.width,
verSrcStep, verSrcStride, m_blockSize.width, 1,
1, m_upsmpFactorVer );
}
else
{
const int* horSrc = nullptr;
SizeType horSrcStep = 0;
SizeType horSrcStride = 0;
if( m_upsmpFactorVer > 1 )
{
const SizeType verSrcStep = transpose ? 1 : m_reducedPredictionSize.width;
const SizeType verSrcStride = transpose ? m_reducedPredictionSize.height : 1;
int* const verDst = dst + ( m_upsmpFactorHor - 1 );
const SizeType verDstStep = m_blockSize.width;
const SizeType verDstStride = m_upsmpFactorHor;
predictionUpsampling1D( verDst, src, m_refSamplesTop.data(),
m_reducedPredictionSize.height, m_reducedPredictionSize.width,
verSrcStep, verSrcStride, verDstStep, verDstStride,
m_upsmpFactorHor, m_upsmpFactorVer );
horSrc = verDst;
horSrcStep = verDstStride;
horSrcStride = verDstStep;
}
else
{
horSrc = src;
horSrcStep = transpose ? m_blockSize.height : 1;
horSrcStride = transpose ? 1 : m_reducedPredictionSize.width;
}
predictionUpsampling1D( dst, horSrc, m_refSamplesLeft.data(),
m_reducedPredictionSize.width, m_blockSize.height,
horSrcStep, horSrcStride, 1, m_blockSize.width,
1, m_upsmpFactorHor );
}
}
void MatrixIntraPrediction::getMatrixData(const uint8_t*& matrix, int &shiftMatrix, int &offsetMatrix, const int modeIdx) const
{
const int idx = getWeightIdx( modeIdx );
if( m_blockSize.width == 4 && m_blockSize.height == 4 )
{
matrix = &mipMatrix4x4 [idx][0][0];
shiftMatrix = mipShiftMatrix4x4 [idx];
offsetMatrix = mipOffsetMatrix4x4[idx];
}
else if( m_blockSize.width <= 8 && m_blockSize.height <= 8 )
{
matrix = &mipMatrix8x8 [idx][0][0];
shiftMatrix = mipShiftMatrix8x8 [idx];
offsetMatrix = mipOffsetMatrix8x8[idx];
}
else
{
matrix = &mipMatrix16x16 [idx][0][0];
shiftMatrix = mipShiftMatrix16x16 [idx];
offsetMatrix = mipOffsetMatrix16x16[idx];
}
}
void MatrixIntraPrediction::computeReducedPred(int*const result, const int* const input, const uint8_t*matrix,
const bool leaveHorOut, const bool leaveVerOut,
const int shiftMatrix, const int offsetMatrix,
const bool transpose, const bool needUpsampling, const int bitDepth )
{
const int inputSize = m_reducedBoundarySize.width + m_reducedBoundarySize.height;
// Use local buffer for transposed result if no upsampling will be done.
static_vector<int, MIP_MAX_REDUCED_OUTPUT_SAMPLES> resBufTransposed( m_reducedPredictionSize.area() );
int*const resPtr = (transpose && !needUpsampling) ? resBufTransposed.data() : result;
int sum = 0;
for (int i = 0; i < inputSize; i++) { sum += input[i]; }
const int offset = (1 << (shiftMatrix - 1)) - offsetMatrix * sum;
CHECK(inputSize != 4 * (inputSize >> 2), "Error, input size not divisible by four");
const uint8_t *weight = matrix;
const int inputOffset = transpose ? m_inputOffsetTransp : m_inputOffset;
const int intermediateWidth = transpose ? m_reducedPredictionSize.height : m_reducedPredictionSize.width;
const int intermediateHeight = transpose ? m_reducedPredictionSize.width : m_reducedPredictionSize.height;
const int xStep = leaveHorOut ? 2 : 1;
const int yStep = leaveVerOut ? intermediateWidth : 0;
const int redSize = (m_blockSize.width <= 8 && m_blockSize.height <= 8) ? 0 : 1;
if ( redSize ) weight += xStep-1;
int posRes = 0;
for (int y = 0; y < intermediateHeight; y++)
{
for (int x = 0; x < intermediateWidth; x++)
{
if(redSize) weight -= xStep;
int tmp0 = redSize ? 0 : (input[0] * weight[0]);
int tmp1 = input[1] * weight[1];
int tmp2 = input[2] * weight[2];
int tmp3 = input[3] * weight[3];
for (int i = 4; i < inputSize; i += 4)
{
tmp0 += input[i] * weight[i];
tmp1 += input[i + 1] * weight[i + 1];
tmp2 += input[i + 2] * weight[i + 2];
tmp3 += input[i + 3] * weight[i + 3];
}
resPtr[posRes++] = ClipBD<int>( ((tmp0 + tmp1 + tmp2 + tmp3 + offset) >> shiftMatrix) + inputOffset, bitDepth );
weight += xStep * inputSize;
}
weight += yStep * (inputSize - redSize);
}
// Re-transpose if no upsampling will be done.
if( transpose && !needUpsampling )
{
for( int y = 0; y < m_reducedPredictionSize.height; y++ )
{
for( int x = 0; x < m_reducedPredictionSize.width; x++ )
{
CHECKD( x * m_reducedPredictionSize.height + y >= m_reducedPredictionSize.area(), "error" );
result[ y * m_reducedPredictionSize.width + x ] = resPtr[ x * m_reducedPredictionSize.height + y ];
}
}
}
}